

UNIX® AND LINUX® SYSTEM
ADMINISTRATION

HANDBOOK
FIFTH EDITION

This page intentionally left blank

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Evi Nemeth
Garth Snyder
Trent R. Hein
Ben Whaley
Dan Mackin

UNIX® AND LINUX® SYSTEM
ADMINISTRATION

HANDBOOK
FIFTH EDITION

with James Garnett, Fabrizio Branca, and Adrian Mouat

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

Ubuntu is a registered trademark of Canonical Limited, and is used with permission.

Debian is a registered trademark of Software in the Public Interest Incorporated.

CentOS is a registered trademark of Red Hat Inc., and is used with permission.

FreeBSD is a registered trademark of The FreeBSD Foundation, and is used with permission.

The Linux Tux logo was created by Larry Ewing, lewing@isc.tamu.edu.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inciden-
tal or consequential damages in connection with or arising out of the use of the information or programs con-
tained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business, train-
ing goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the web: informit.com

Library of Congress Control Number: 2017945559

Copyright © 2018 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, request forms and the appropriate contacts within the Pear-
son Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-427755-4
ISBN-10: 0-13-427755-4

1  17

mailto:lewing@isc.tamu.edu
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com
http://www.pearsoned.com/permissions/

			 v

Tribute to Evi	 xl
Preface	 xlii
Foreword	 xliv
Acknowledgments	 xlvi

SECTION ONE: BASIC ADMINISTRATION

Chapter 1	 Where to Start	 3
Essential duties of a system administrator . 4

Controlling access. 4
Adding hardware. 4
Automating tasks. 4
Overseeing backups. 4
Installing and upgrading software . 5
Monitoring. 5
Troubleshooting . 5
Maintaining local documentation . 5
Vigilantly monitoring security . 6
Tuning performance. 6
Developing site policies. 6
Working with vendors. 6
Fire fighting . 6

Table of Contents

vi	 UNIX and Linux System Administration Handbook	

Suggested background. 7
Linux distributions. 8
Example systems used in this book. 9

Example Linux distributions. 10
Example UNIX distribution. 11

Notation and typographical conventions . 12
Units. 13
Man pages and other on-line documentation . 14

Organization of the man pages. 14
man: read man pages. 15
Storage of man pages. 15

Other authoritative documentation. 16
System-specific guides. 16
Package-specific documentation . 16
Books . 17
RFC publications . 17

Other sources of information. 18
Keeping current. 18
HowTos and reference sites. 19
Conferences. 19

Ways to find and install software . 19
Determining if software is already installed. 21
Adding new software . 22
Building software from source code. 23
Installing from a web script. 24

Where to host . 25
Specialization and adjacent disciplines. 26

DevOps. 26
Site reliability engineers. 27
Security operations engineers. 27
Network administrators. 27
Database administrators . 27
Network operations center (NOC) engineers. 27
Data center technicians. 28
Architects. 28

Recommended reading. 28
System administration and DevOps . 28
Essential tools. 29

	 Table of Contents	 vii

Chapter 2	 Booting and System Management Daemons	 30
Boot process overview. 30
System firmware. 32

BIOS vs. UEFI. 32
Legacy BIOS . 33
UEFI. 33

Boot loaders. 35
GRUB: the GRand Unified Boot loader . 35

GRUB configuration. 36
The GRUB command line. 37
Linux kernel options . 38

The FreeBSD boot process. 39
The BIOS path: boot0. 39
The UEFI path. 39
loader configuration . 40
loader commands. 40

System management daemons. 41
Responsibilities of init. 41
Implementations of init. 42
Traditional init . 43
systemd vs. the world. 43
inits judged and assigned their proper punishments 44

systemd in detail. 44
Units and unit files. 45
systemctl: manage systemd . 46
Unit statuses. 47
Targets . 49
Dependencies among units. 50
Execution order. 51
A more complex unit file example . 52
Local services and customizations. 53
Service and startup control caveats . 54
systemd logging. 56

FreeBSD init and startup scripts . 57
Reboot and shutdown procedures. 59

Shutting down physical systems. 59
Shutting down cloud systems. 59

Stratagems for a nonbooting system. 60
Single-user mode . 61
Single-user mode on FreeBSD . 62
Single-user mode with GRUB. 62
Recovery of cloud systems. 62

viii	 UNIX and Linux System Administration Handbook	

Chapter 3	 Access Control and Rootly Powers	 65
Standard UNIX access control. 66

Filesystem access control. 66
Process ownership . 67
The root account. 67
Setuid and setgid execution. 68

Management of the root account. 69
Root account login. 69
su: substitute user identity. 70
sudo: limited su . 70

Example configuration. 71
sudo pros and cons. 72
sudo vs. advanced access control. 73
Typical setup. 74
Environment management. 74
sudo without passwords . 75
Precedence. 75
sudo without a control terminal. 76
Site-wide sudo configuration. 76

Disabling the root account . 78
System accounts other than root . 78

Extensions to the standard access control model. 79
Drawbacks of the standard model. 80
PAM: Pluggable Authentication Modules. 80
Kerberos: network cryptographic authentication . 81
Filesystem access control lists. 81
Linux capabilities . 82
Linux namespaces. 82

Modern access control. 83
Separate ecosystems. 84
Mandatory access control . 84
Role-based access control . 85
SELinux: Security-Enhanced Linux. 85
AppArmor. 87

Recommended reading. 89

Chapter 4	 Process Control	 90
Components of a process. 90

PID: process ID number . 91
PPID: parent PID. 91
UID and EUID: real and effective user ID . 92
GID and EGID: real and effective group ID. 92
Niceness. 93
Control terminal. 93

	 Table of Contents	 ix

The life cycle of a process. 93
Signals . 94
kill: send signals. 97
Process and thread states. 97

ps: monitor processes. 98
Interactive monitoring with top. 101
nice and renice: influence scheduling priority. 102
The /proc filesystem. 104
strace and truss: trace signals and system calls . 105
Runaway processes. 107
Periodic processes. 109

cron: schedule commands. 109
The format of crontab files. 110
Crontab management. 112
Other crontabs. 112
cron access control. 113

systemd timers. 113
Structure of systemd timers . 114
systemd timer example. 114
systemd time expressions. 116
Transient timers . 117

Common uses for scheduled tasks. 118
Sending mail. 118
Cleaning up a filesystem . 118
Rotating a log file . 118
Running batch jobs. 118
Backing up and mirroring. 119

Chapter 5	 The Filesystem	 120
Pathnames. 122
Filesystem mounting and unmounting. 122
Organization of the file tree. 125
File types . 126

Regular files. 129
Directories. 129
Hard links . 129
Character and block device files. 130
Local domain sockets. 131
Named pipes. 131
Symbolic links. 131

x	 UNIX and Linux System Administration Handbook	

File attributes. 132
The permission bits. 132
The setuid and setgid bits. 133
The sticky bit . 134
ls: list and inspect files. 134
chmod: change permissions. 136
chown and chgrp: change ownership and group. 137
umask: assign default permissions. 138
Linux bonus flags . 139

Access control lists . 140
A cautionary note. 141
ACL types. 141
Implementation of ACLs. 142
Linux ACL support. 142
FreeBSD ACL support. 143
POSIX ACLs . 143

Interaction between traditional modes and ACLs. 144
POSIX access determination. 146
POSIX ACL inheritance. 146

NFSv4 ACLs . 147
NFSv4 entities for which permissions can be specified. 148
NFSv4 access determination. 149
ACL inheritance in NFSv4. 149
NFSv4 ACL viewing. 150
Interactions between ACLs and modes. 151
NFSv4 ACL setup. 151

Chapter 6	 Software Installation and Management	 153
Operating system installation. 154

Installing from the network. 154
Setting up PXE . 155
Using kickstart, the automated installer for Red Hat and CentOS 156

Setting up a kickstart configuration file. 156
Building a kickstart server. 158
Pointing kickstart at your config file . 158

Automating installation for Debian and Ubuntu. 159
Netbooting with Cobbler, the open source Linux provisioning server. . . . 161
Automating FreeBSD installation. 161

Managing packages . 162
Linux package management systems . 164

rpm: manage RPM packages . 164
dpkg: manage .deb packages. 166

	 Table of Contents	 xi

High-level Linux package management systems. 166
Package repositories. 167
RHN: the Red Hat Network . 169
APT: the Advanced Package Tool. 169
Repository configuration. 170
An example /etc/apt/sources.list file. 171
Creation of a local repository mirror. 172
APT automation. 173
yum: release management for RPM. 174

FreeBSD software management. 175
The base system. 175
pkg: the FreeBSD package manager. 176
The ports collection . 177

Software localization and configuration. 178
Organizing your localization. 179
Structuring updates . 179
Limiting the field of play. 180
Testing . 180

Recommended reading. 181

Chapter 7	 Scripting and the Shell	 182
Scripting philosophy . 183

Write microscripts . 183
Learn a few tools well. 184
Automate all the things . 184
Don’t optimize prematurely. 185
Pick the right scripting language . 186
Follow best practices . 187

Shell basics. 189
Command editing. 190
Pipes and redirection. 190
Variables and quoting. 192
Environment variables. 193
Common filter commands . 194

cut: separate lines into fields. 194
sort: sort lines. 194
uniq: print unique lines. 195
wc: count lines, words, and characters. 196
tee: copy input to two places. 196
head and tail: read the beginning or end of a file 196
grep: search text. 197

xii	 UNIX and Linux System Administration Handbook	

sh scripting . 198
Execution . 198
From commands to scripts. 199
Input and output. 201
Spaces in filenames. 202
Command-line arguments and functions. 203
Control flow. 205
Loops . 207
Arithmetic . 209

Regular expressions . 209
The matching process. 210
Literal characters. 210
Special characters. 210
Example regular expressions. 211
Captures. 213
Greediness, laziness, and catastrophic backtracking. 213

Python programming. 215
The passion of Python 3. 215
Python 2 or Python 3?. 216
Python quick start. 216
Objects, strings, numbers, lists, dictionaries, tuples, and files. 218
Input validation example. 220
Loops . 221

Ruby programming . 223
Installation. 223
Ruby quick start . 224
Blocks. 225
Symbols and option hashes. 227
Regular expressions in Ruby. 227
Ruby as a filter. 229

Library and environment management for Python and Ruby. 229
Finding and installing packages. 229
Creating reproducible environments. 230
Multiple environments. 231

virtualenv: virtual environments for Python. 232
RVM: the Ruby enVironment Manager. 232

Revision control with Git. 235
A simple Git example. 236
Git caveats . 239
Social coding with Git. 239

Recommended reading. 241
Shells and shell scripting. 241
Regular expressions . 241
Python . 242
Ruby. 242

	 Table of Contents	 xiii

Chapter 8	 User Management	 243
Account mechanics. 244
The /etc/passwd file. 245

Login name. 245
Encrypted password. 246
UID (user ID) number. 248
Default GID (group ID) number. 249
GECOS field . 249
Home directory. 250
Login shell. 250

The Linux /etc/shadow file . 250
FreeBSD's /etc/master.passwd and /etc/login.conf files 252

The /etc/master.passwd file. 252
The /etc/login.conf file. 253

The /etc/group file . 254
Manual steps for adding users . 255

Editing the passwd and group files. 256
Setting a password . 257
Creating the home directory and installing startup files. 257
Setting home directory permissions and ownerships. 259
Configuring roles and administrative privileges . 259
Finishing up. 260

Scripts for adding users: useradd, adduser, and newusers. 260
useradd on Linux. 261
adduser on Debian and Ubuntu . 262
adduser on FreeBSD . 262
newusers on Linux: adding in bulk. 263

Safe removal of a user’s account and files . 264
User login lockout. 265
Risk reduction with PAM . 266
Centralized account management. 266

LDAP and Active Directory . 267
Application-level single sign-on systems. 267
Identity management systems. 268

Chapter 9	 Cloud Computing	 270
The cloud in context. 271
Cloud platform choices. 273

Public, private, and hybrid clouds . 273
Amazon Web Services . 274
Google Cloud Platform. 275
DigitalOcean. 275

xiv	 UNIX and Linux System Administration Handbook	

Cloud service fundamentals. 276
Access to the cloud. 277
Regions and availability zones . 278
Virtual private servers . 279
Networking. 280
Storage. 281
Identity and authorization. 281
Automation . 282
Serverless functions. 282

Clouds: VPS quick start by platform. 283
Amazon Web Services . 283

aws: control AWS subsystems. 284
Creating an EC2 instance. 284
Viewing the console log. 286
Stopping and terminating instances. 287

Google Cloud Platform. 288
Setting up gcloud. 288
Running an instance on GCE. 288

DigitalOcean. 289
Cost control. 291
Recommended Reading. 293

Chapter 10	 Logging	 294
Log locations. 296

Files not to manage. 298
How to view logs in the systemd journal . 298

The systemd journal. 299
Configuring the systemd journal. 300
Adding more filtering options for journalctl. 301
Coexisting with syslog. 301

Syslog. 302
Reading syslog messages. 303
Rsyslog architecture. 304
Rsyslog versions . 304
Rsyslog configuration. 305

Modules. 306
sysklogd syntax. 307
Legacy directives. 311
RainerScript. 312

Config file examples. 314
Basic rsyslog configuration. 314
Network logging client. 315
Central logging host. 316

Syslog message security. 317
Syslog configuration debugging. 318

	 Table of Contents	 xv

Kernel and boot-time logging. 318
Management and rotation of log files . 319

logrotate: cross-platform log management . 319
newsyslog: log management on FreeBSD. 321

Management of logs at scale. 321
The ELK stack . 321
Graylog. 322
Logging as a service. 323

Logging policies . 323

Chapter 11	 Drivers and the Kernel	 325
Kernel chores for system administrators. 326
Kernel version numbering. 327

Linux kernel versions. 327
FreeBSD kernel versions . 328

Devices and their drivers. 328
Device files and device numbers. 329
Challenges of device file management. 330
Manual creation of device files. 331
Modern device file management . 331
Linux device management. 331

Sysfs: a window into the souls of devices. 332
udevadm: explore devices. 333
Rules and persistent names. 334

FreeBSD device management. 337
Devfs: automatic device file configuration . 337
devd: higher-level device management. 338

Linux kernel configuration. 339
Tuning Linux kernel parameters. 339
Building a custom kernel. 341

If it ain’t broke, don’t fix it . 341
Setting up to build the Linux kernel. 341
Configuring kernel options. 342
Building the kernel binary. 343

Adding a Linux device driver . 344
FreeBSD kernel configuration . 344

Tuning FreeBSD kernel parameters. 344
Building a FreeBSD kernel . 345

Loadable kernel modules . 346
Loadable kernel modules in Linux. 346
Loadable kernel modules in FreeBSD. 348

Booting . 348
Linux boot messages . 349
FreeBSD boot messages. 353

xvi	 UNIX and Linux System Administration Handbook	

Booting alternate kernels in the cloud. 355
Kernel errors. 356

Linux kernel errors. 356
FreeBSD kernel panics. 359

Recommended reading. 359

Chapter 12	 Printing	 360
CUPS printing. 361

Interfaces to the printing system . 361
The print queue. 362
Multiple printers and queues . 363
Printer instances. 363
Network printer browsing. 363
Filters . 364

CUPS server administration. 365
Network print server setup. 365
Printer autoconfiguration . 366
Network printer configuration. 367
Printer configuration examples. 367
Service shutoff. 368
Other configuration tasks . 368

Troubleshooting tips. 369
Print daemon restart . 369
Log files . 369
Direct printing connections . 370
Network printing problems. 370

Recommended reading. 371

SECTION TWO: NETWORKING

Chapter 13	 TCP/IP Networking	 375
TCP/IP and its relationship to the Internet. 375

Who runs the Internet? . 376
Network standards and documentation . 376

Networking basics . 378
IPv4 and IPv6 . 379
Packets and encapsulation. 381
Ethernet framing. 382
Maximum transfer unit. 382

	 Table of Contents	 xvii

Packet addressing. 384
Hardware (MAC) addressing . 384
IP addressing. 385
Hostname “addressing”. 385
Ports. 385
Address types. 386

IP addresses: the gory details . 387
IPv4 address classes . 387
IPv4 subnetting. 388
Tricks and tools for subnet arithmetic. 390
CIDR: Classless Inter-Domain Routing. 391
Address allocation. 392
Private addresses and network address translation (NAT). 392
IPv6 addressing . 394

IPv6 address notation. 395
IPv6 prefixes . 396
Automatic host numbering. 397
Stateless address autoconfiguration. 397
IPv6 tunneling. 398
IPv6 information sources. 398

Routing. 398
Routing tables. 399
ICMP redirects . 401

IPv4 ARP and IPv6 neighbor discovery . 401
DHCP: the Dynamic Host Configuration Protocol. 402

DHCP software. 403
DHCP behavior. 404
ISC’s DHCP software. 404

Security issues. 406
IP forwarding . 406
ICMP redirects . 407
Source routing. 407
Broadcast pings and other directed broadcasts . 407
IP spoofing. 408
Host-based firewalls. 408
Virtual private networks. 409

Basic network configuration. 410
Hostname and IP address assignment. 411
Network interface and IP configuration. 412
Routing configuration . 414
DNS configuration. 415
System-specific network configuration. 416

xviii	 UNIX and Linux System Administration Handbook	

Linux networking. 417
NetworkManager . 417
ip: manually configure a network. 418
Debian and Ubuntu network configuration. 419
Red Hat and CentOS network configuration. 419
Linux network hardware options. 421
Linux TCP/IP options . 422
Security-related kernel variables . 424

FreeBSD networking . 425
ifconfig: configure network interfaces. 425
FreeBSD network hardware configuration. 426
FreeBSD boot-time network configuration. 426
FreeBSD TCP/IP configuration . 427

Network troubleshooting. 428
ping: check to see if a host is alive. 429
traceroute: trace IP packets . 431
Packet sniffers. 434

tcpdump: command-line packet sniffer. 435
Wireshark and TShark: tcpdump on steroids. 436

Network monitoring . 437
SmokePing: gather ping statistics over time. 437
iPerf: track network performance . 437
Cacti: collect and graph data. 438

Firewalls and NAT. 440
Linux iptables: rules, chains, and tables. 440

iptables rule targets. 441
iptables firewall setup . 442
A complete example. 442
Linux NAT and packet filtering . 444

IPFilter for UNIX systems. 445
Cloud networking. 448

AWS’s virtual private cloud (VPC). 448
Subnets and routing tables. 449
Security groups and NACLs. 450
A sample VPC architecture. 451
Creating a VPC with Terraform. 452

Google Cloud Platform networking. 455
DigitalOcean networking . 456

Recommended reading. 457
History. 457
Classics and bibles . 458
Protocols . 458

	 Table of Contents	 xix

Chapter 14	 Physical Networking	 459
Ethernet: the Swiss Army knife of networking. 460

Ethernet signaling. 460
Ethernet topology. 461
Unshielded twisted-pair cabling. 462
Optical fiber. 464
Ethernet connection and expansion . 465

Hubs. 465
Switches. 465
VLAN-capable switches. 466
Routers. 467

Autonegotiation. 467
Power over Ethernet. 468
Jumbo frames . 468

Wireless: Ethernet for nomads. 469
Wireless standards . 469
Wireless client access. 470
Wireless infrastructure and WAPs. 470

Wireless topology. 471
Small money wireless. 472
Big money wireless. 472

Wireless security. 473
SDN: software-defined networking. 473
Network testing and debugging. 474
Building wiring. 475

UTP cabling options. 475
Connections to offices. 475
Wiring standards. 475

Network design issues. 476
Network architecture vs. building architecture . 477
Expansion . 477
Congestion. 478
Maintenance and documentation. 478

Management issues. 478
Recommended vendors. 479

Cables and connectors. 479
Test equipment . 480
Routers/switches. 480

Recommended reading. 480

xx	 UNIX and Linux System Administration Handbook	

Chapter 15	 IP Routing	 481
Packet forwarding: a closer look. 482
Routing daemons and routing protocols. 485

Distance-vector protocols. 486
Link-state protocols. 487
Cost metrics. 487
Interior and exterior protocols. 488

Protocols on parade. 488
RIP and RIPng: Routing Information Protocol. 488
OSPF: Open Shortest Path First. 489
EIGRP: Enhanced Interior Gateway Routing Protocol. 490
BGP: Border Gateway Protocol . 490

Routing protocol multicast coordination. 490
Routing strategy selection criteria. 490
Routing daemons. 492

routed: obsolete RIP implementation. 492
Quagga: mainstream routing daemon. 493
XORP: router in a box . 494

Cisco routers. 494
Recommended reading. 496

Chapter 16	 DNS: The Domain Name System	 498
DNS architecture . 499

Queries and responses. 499
DNS service providers. 500

DNS for lookups. 500
resolv.conf: client resolver configuration. 500
nsswitch.conf: who do I ask for a name?. 501

The DNS namespace. 502
Registering a domain name. 503
Creating your own subdomains. 503

How DNS works. 503
Name servers. 504
Authoritative and caching-only servers. 505
Recursive and nonrecursive servers. 505
Resource records. 506
Delegation. 506
Caching and efficiency. 508
Multiple answers and round robin DNS load balancing. 508
Debugging with query tools . 509

The DNS database. 512
Parser commands in zone files. 512
Resource records . 513
The SOA record. 516

	 Table of Contents	 xxi

NS records. 518
A records . 519
AAAA records. 519
PTR records. 520
MX records . 521
CNAME records. 522
SRV records. 523
TXT records. 524
SPF, DKIM, and DMARC records. 525
DNSSEC records. 525

The BIND software. 525
Components of BIND . 525
Configuration files . 526
The include statement. 527
The options statement. 528
The acl statement. 534
The (TSIG) key statement. 534
The server statement . 535
The masters statement. 535
The logging statement. 536
The statistics-channels statement. 536
The zone statement. 536

Configuring the master server for a zone. 537
Configuring a slave server for a zone. 538
Setting up the root server hints. 539
Setting up a forwarding zone . 539

The controls statement for rndc . 540
Split DNS and the view statement. 541
BIND configuration examples . 543

The localhost zone. 543
A small security company. 544

Zone file updating. 547
Zone transfers. 548
Dynamic updates . 549

DNS security issues . 551
Access control lists in BIND, revisited. 552
Open resolvers. 553
Running in a chrooted jail . 554
Secure server-to-server communication with TSIG and TKEY 554
Setting up TSIG for BIND. 555
DNSSEC. 557
DNSSEC policy. 558
DNSSEC resource records. 558
Turning on DNSSEC . 560
Key pair generation . 560

xxii	 UNIX and Linux System Administration Handbook	

Zone signing. 562
The DNSSEC chain of trust. 564
DNSSEC key rollover. 565
DNSSEC tools. 566

ldns tools, nlnetlabs.nl/projects/ldns. 566
dnssec-tools.org . 566
RIPE tools, ripe.net. 567
OpenDNSSEC, opendnssec.org. 567

Debugging DNSSEC. 567
BIND debugging. 568

Logging in BIND . 568
Channels. 569
Categories. 570
Log messages. 570
Sample BIND logging configuration. 573
Debug levels in BIND. 573

Name server control with rndc. 574
Command-line querying for lame delegations. 575

Recommended reading. 576
Books and other documentation . 577
On-line resources. 577
The RFCs . 577

Chapter 17	 Single Sign-On	 578
Core SSO elements. 579
LDAP: “lightweight” directory services. 580

Uses for LDAP. 580
The structure of LDAP data. 581
OpenLDAP: the traditional open source LDAP server. 582
389 Directory Server: alternative open source LDAP server. 583
LDAP Querying . 584
Conversion of passwd and group files to LDAP. 585

Using directory services for login. 586
Kerberos. 586

Linux Kerberos configuration for AD integration. 587
FreeBSD Kerberos configuration for AD integration 587

sssd: the System Security Services Daemon. 589
nsswitch.conf: the name service switch . 590
PAM: cooking spray or authentication wonder? . 590

PAM configuration. 591
PAM example . 592

Alternative approaches. 594
NIS: the Network Information Service . 594
rsync: transfer files securely. 594

Recommended reading. 595

	 Table of Contents	 xxiii

Chapter 18	 Electronic Mail	 596
Mail system architecture. 597

User agents. 597
Submission agents. 598
Transport agents. 598
Local delivery agents . 599
Message stores. 599
Access agents. 599

Anatomy of a mail message. 600
The SMTP protocol. 603

You had me at EHLO. 604
SMTP error codes. 604
SMTP authentication. 604

Spam and malware. 605
Forgeries. 606
SPF and Sender ID. 606
DKIM. 607

Message privacy and encryption . 607
Mail aliases. 608

Getting aliases from files. 610
Mailing to files. 611
Mailing to programs. 611
Building the hashed alias database. 612

Email configuration . 612
sendmail . 613

The switch file . 614
Starting sendmail. 615
Mail queues. 616
sendmail configuration. 617
The m4 preprocessor . 617
The sendmail configuration pieces . 618
A configuration file built from a sample .mc file . 619
Configuration primitives. 620
Tables and databases. 620
Generic macros and features. 621

OSTYPE macro . 621
DOMAIN macro. 621
MAILER macro. 622
FEATURE macro. 622
use_cw_file feature. 622
redirect feature. 623
always_add_domain feature. 623
access_db feature. 623
virtusertable feature. 624

xxiv	 UNIX and Linux System Administration Handbook	

ldap_routing feature. 624
Masquerading features. 625
MAIL_HUB and SMART_HOST macros. 626

Client configuration. 626
m4 configuration options. 627
Spam-related features in sendmail . 628

Relay control. 629
User or site blacklisting . 630
Throttles, rates, and connection limits. 631

Security and sendmail. 632
Ownerships. 633
Permissions. 634
Safer mail to files and programs. 634
Privacy options. 635
Running a chrooted sendmail (for the truly paranoid). 636
Denial of service attacks . 636
TLS: Transport Layer Security . 637

sendmail testing and debugging . 638
Queue monitoring . 638
Logging. 639

Exim. 640
Exim installation. 640
Exim startup . 642
Exim utilities. 642
Exim configuration language . 643
Exim configuration file . 644
Global options. 645

Options. 645
Lists. 646
Macros . 647

Access control lists (ACLs) . 647
Content scanning at ACL time. 650
Authenticators. 651
Routers. 652

The accept router. 653
The dnslookup router . 653
The manualroute router. 653
The redirect router. 654
Per-user filtering through .forward files. 655

Transports . 655
The appendfile transport. 655
The smtp transport. 656

Retry configuration . 656
Rewriting configuration. 657
Local scan function . 657

	 Table of Contents	 xxv

Logging. 657
Debugging. 658

Postfix. 658
Postfix architecture. 659

Receiving mail. 659
Managing mail-waiting queues. 660
Sending mail. 660

Security . 661
Postfix commands and documentation. 661
Postfix configuration . 661

What to put in main.cf. 662
Basic settings. 662
Null client. 662
Use of postconf. 663
Lookup tables . 663
Local delivery . 664

Virtual domains. 665
Virtual alias domains . 666
Virtual mailbox domains. 667

Access control . 667
Access tables. 669
Authentication of clients and encryption . 670

Debugging. 670
Looking at the queue . 671
Soft-bouncing. 671

Recommended reading. 672
sendmail references. 672
Exim references. 672
Postfix references . 672
RFCs. 673

Chapter 19	 Web Hosting	 674
HTTP: the Hypertext Transfer Protocol. 674

Uniform Resource Locators (URLs) . 675
Structure of an HTTP transaction. 676

HTTP requests . 677
HTTP responses. 677
Headers and the message body. 678

curl: HTTP from the command line . 679
TCP connection reuse . 680
HTTP over TLS. 681
Virtual hosts. 681

xxvi	 UNIX and Linux System Administration Handbook	

Web software basics. 682
Web servers and HTTP proxy software. 683
Load balancers . 684
Caches . 686

Browser caches . 687
Proxy cache. 688
Reverse proxy cache. 688
Cache problems. 688
Cache software . 689

Content delivery networks . 689
Languages of the web. 691

Ruby. 691
Python . 691
Java. 691
Node.js. 691
PHP. 692
Go. 692

Application programming interfaces (APIs). 692
Web hosting in the cloud. 694

Build versus buy. 694
Platform-as-a-Service. 695
Static content hosting. 695
Serverless web applications. 696

Apache httpd. 696
httpd in use. 697
httpd configuration logistics. 698
Virtual host configuration. 699

HTTP basic authentication. 701
Configuring TLS. 702
Running web applications within Apache. 702

Logging. 703
NGINX. 704

Installing and running NGINX . 704
Configuring NGINX . 705
Configuring TLS for NGINX . 708
Load balancing with NGINX . 708

HAProxy . 710
Health checks . 711
Server statistics. 712
Sticky sessions. 712
TLS termination. 713

Recommended reading. 714

	 Table of Contents	 xxvii

SECTION THREE: STORAGE

Chapter 20	 Storage	 717
I just want to add a disk! . 718

Linux recipe. 719
FreeBSD recipe. 720

Storage hardware . 721
Hard disks . 722

Hard disk reliability . 723
Failure modes and metrics. 723
Drive types. 724
Warranties and retirement. 725

Solid state disks. 725
Rewritability limits. 726
Flash memory and controller types. 726
Page clusters and pre-erasing . 727
SSD reliability . 727

Hybrid drives. 728
Advanced Format and 4KiB blocks . 729

Storage hardware interfaces . 730
The SATA interface. 730
The PCI Express interface . 730
The SAS interface . 731
USB. 732

Attachment and low-level management of drives . 733
Installation verification at the hardware level. 733
Disk device files. 734
Ephemeral device names. 735
Formatting and bad block management. 735
ATA secure erase. 737
hdparm and camcontrol: set disk and interface parameters. 738
Hard disk monitoring with SMART . 738

The software side of storage: peeling the onion . 739
Elements of a storage system. 740
The Linux device mapper. 742

Disk partitioning. 742
Traditional partitioning. 744
MBR partitioning. 745
GPT: GUID partition tables . 746
Linux partitioning. 746
FreeBSD partitioning. 747

xxviii	 UNIX and Linux System Administration Handbook	

Logical volume management . 747
Linux logical volume management . 748

Volume snapshots. 750
Filesystem resizing. 751

FreeBSD logical volume management. 753
RAID: redundant arrays of inexpensive disks . 753

Software vs. hardware RAID. 753
RAID levels. 754
Disk failure recovery . 756
Drawbacks of RAID 5 . 757
mdadm: Linux software RAID. 758

Creating an array. 758
mdadm.conf: document array configuration. 760
Simulating a failure. 761

Filesystems. 762
Traditional filesystems: UFS, ext4, and XFS. 763

Filesystem terminology. 764
Filesystem polymorphism. 765
Filesystem formatting. 766
fsck: check and repair filesystems. 766
Filesystem mounting . 767
Setup for automatic mounting . 768
USB drive mounting. 770
Swapping recommendations. 770

Next-generation filesystems: ZFS and Btrfs . 772
Copy-on-write. 772
Error detection. 772
Performance . 773

ZFS: all your storage problems solved. 773
ZFS on Linux. 774
ZFS architecture . 774
Example: disk addition . 775
Filesystems and properties . 776
Property inheritance. 777
One filesystem per user. 778
Snapshots and clones. 779
Raw volumes. 780
Storage pool management . 781

Btrfs: “ZFS lite” for Linux . 783
Btrfs vs. ZFS. 783
Setup and storage conversion. 784
Volumes and subvolumes. 786
Volume snapshots. 787
Shallow copies. 788

	 Table of Contents	 xxix

Data backup strategy. 788
Recommended reading. 790

Chapter 21	 The Network File System	 791
Meet network file services. 791

The competition . 792
Issues of state. 792
Performance concerns. 793
Security . 793

The NFS approach. 794
Protocol versions and history. 794
Remote procedure calls. 795
Transport protocols . 795
State . 796
Filesystem exports . 796
File locking . 797
Security concerns. 798
Identity mapping in version 4. 799
Root access and the nobody account. 800
Performance considerations in version 4 . 801

Server-side NFS . 801
Linux exports . 802
FreeBSD exports. 804
nfsd: serve files. 806

Client-side NFS. 807
Mounting remote filesystems at boot time. 810
Restricting exports to privileged ports . 810

Identity mapping for NFS version 4. 810
nfsstat: dump NFS statistics. 811
Dedicated NFS file servers. 812
Automatic mounting . 812

Indirect maps. 814
Direct maps. 814
Master maps . 815
Executable maps. 815
Automount visibility. 816
Replicated filesystems and automount. 816
Automatic automounts (V3; all but Linux). 817
Specifics for Linux . 817

Recommended reading. 818

xxx	 UNIX and Linux System Administration Handbook	

Chapter 22	 SMB	 819
Samba: SMB server for UNIX. 820
Installing and configuring Samba. 821

File sharing with local authentication. 822
File sharing with accounts authenticated by Active Directory. 822
Configuring shares. 823

Sharing home directories. 823
Sharing project directories . 824

Mounting SMB file shares. 825
Browsing SMB file shares. 826
Ensuring Samba security. 826
Debugging Samba. 827

Querying Samba’s state with smbstatus . 827
Configuring Samba logging. 828
Managing character sets . 829

Recommended reading. 829

SECTION FOUR: OPERATIONS

Chapter 23	 Configuration Management	 833
Configuration management in a nutshell. 834
Dangers of configuration management. 834
Elements of configuration management. 835

Operations and parameters. 835
Variables. 837
Facts . 838
Change handlers. 838
Bindings. 838
Bundles and bundle repositories . 839
Environments . 839
Client inventory and registration . 840

Popular CM systems compared . 841
Terminology . 842
Business models . 842
Architectural options. 843
Language options. 845
Dependency management options. 846
General comments on Chef. 848
General comments on Puppet . 849
General comments on Ansible and Salt. 850
YAML: a rant. 850

	 Table of Contents	 xxxi

Introduction to Ansible. 852
Ansible example . 853
Client setup. 855
Client groups. 857
Variable assignments . 858
Dynamic and computed client groups. 859
Task lists. 860
state parameters. 862
Iteration. 862
Interaction with Jinja . 863
Template rendering . 863
Bindings: plays and playbooks. 864
Roles. 866
Recommendations for structuring the configuration base. 868
Ansible access options . 869

Introduction to Salt . 871
Minion setup. 873
Variable value binding for minions . 874
Minion matching . 876
Salt states. 877
Salt and Jinja . 878
State IDs and dependencies. 880
State and execution functions. 882
Parameters and names. 883
State binding to minions. 886
Highstates . 886
Salt formulas. 887
Environments . 888
Documentation roadmap . 892

Ansible and Salt compared . 893
Deployment flexibility and scalability. 893
Built-in modules and extensibility. 894
Security . 894
Miscellaneous . 895

Best practices. 895
Recommended reading. 899

Chapter 24	 Virtualization	 900
Virtual vernacular. 901

Hypervisors. 901
Full virtualization. 901
Paravirtualization. 902
Hardware-assisted virtualization . 902
Paravirtualized drivers. 902

xxxii	 UNIX and Linux System Administration Handbook	

Modern virtualization . 903
Type 1 vs. type 2 hypervisors. 903

Live migration. 904
Virtual machine images. 904
Containerization. 904

Virtualization with Linux. 905
Xen . 906
Xen guest installation. 907
KVM. 908
KVM guest installation . 909

FreeBSD bhyve . 910
VMware. 910
VirtualBox. 911
Packer. 911
Vagrant. 913
Recommended reading . 914

Chapter 25	 Containers	 915
Background and core concepts. 916

Kernel support. 917
Images. 917
Networking. 918

Docker: the open source container engine. 919
Basic architecture. 919
Installation. 921
Client setup. 921
The container experience. 922
Volumes. 926
Data volume containers. 927
Docker networks. 927

Namespaces and the bridge network. 928
Network overlays . 930

Storage drivers. 930
dockerd option editing . 930
Image building . 932

Choosing a base image. 933
Building from a Dockerfile. 933
Composing a derived Dockerfile. 934

Registries. 936

	 Table of Contents	 xxxiii

Containers in practice . 937
Logging. 938
Security advice . 939

Restrict access to the daemon. 939
Use TLS . 940
Run processes as unprivileged users . 940
Use a read-only root filesystem. 941
Limit capabilities. 941
Secure images . 941

Debugging and troubleshooting. 942
Container clustering and management. 942

A synopsis of container management software. 944
Kubernetes. 944
Mesos and Marathon. 946
Docker Swarm. 947
AWS EC2 Container Service. 947

Recommended reading. 948

Chapter 26	 Continuous Integration and Delivery	 949
CI/CD essentials. 951

Principles and practices. 951
Use revision control. 952
Build once, deploy often . 952
Automate end-to-end. 952
Build every integration commit. 952
Share responsibility. 953
Build fast, fix fast . 953
Audit and verify. 953

Environments . 953
Feature flags. 955

Pipelines. 955
The build process. 956
Testing . 957
Deployment. 959
Zero-downtime deployment techniques. 960

Jenkins: the open source automation server. 961
Basic Jenkins concepts. 962
Distributed builds. 963
Pipeline as code. 963

xxxiv	 UNIX and Linux System Administration Handbook	

CI/CD in practice. 964
UlsahGo, a trivial web application. 966
Unit testing UlsahGo. 966
Taking first steps with the Jenkins Pipeline. 968
Building a DigitalOcean image . 970
Provisioning a single system for testing. 972
Testing the droplet . 975
Deploying UlsahGo to a pair of droplets and a load balancer. 976
Concluding the demonstration pipeline. 977

Containers and CI/CD. 978
Containers as a build environment . 979
Container images as build artifacts . 979

Recommended reading. 980

Chapter 27	 Security	 981
Elements of security. 983
How security is compromised. 983

Social engineering . 983
Software vulnerabilities. 984
Distributed denial-of-service attacks (DDoS) . 985
Insider abuse. 986
Network, system, or application configuration errors. 986

Basic security measures. 987
Software updates . 987
Unnecessary services. 988
Remote event logging. 989
Backups . 989
Viruses and worms. 989
Root kits. 990
Packet filtering. 991
Passwords and multifactor authentication . 991
Vigilance. 991
Application penetration testing. 992

Passwords and user accounts . 992
Password changes. 993
Password vaults and password escrow. 993
Password aging. 995
Group logins and shared logins . 996
User shells . 996
Rootly entries . 996

	 Table of Contents	 xxxv

Security power tools. 996
Nmap: network port scanner . 996
Nessus: next-generation network scanner. 998
Metasploit: penetration testing software. 999
Lynis: on-box security auditing . 999
John the Ripper: finder of insecure passwords. 1000
Bro: the programmable network intrusion detection system. 1000
Snort: the popular network intrusion detection system. 1001
OSSEC: host-based intrusion detection . 1002

OSSEC basic concepts . 1002
OSSEC installation. 1003
OSSEC configuration. 1004

Fail2Ban: brute-force attack response system. 1004
Cryptography primer. 1005

Symmetric key cryptography . 1005
Public key cryptography . 1006
Public key infrastructure. 1007
Transport Layer Security. 1009
Cryptographic hash functions . 1009
Random number generation. 1011
Cryptographic software selection. 1012
The openssl command. 1012

Preparing keys and certificates. 1013
Debugging TLS servers . 1014

PGP: Pretty Good Privacy. 1014
Kerberos: a unified approach to network security 1015

SSH, the Secure SHell. 1016
OpenSSH essentials . 1016
The ssh client. 1018
Public key authentication . 1019
The ssh-agent . 1020
Host aliases in ~/.ssh/config. 1022
Connection multiplexing. 1023
Port forwarding. 1023
sshd: the OpenSSH server. 1024
Host key verification with SSHFP . 1026
File transfers . 1027
Alternatives for secure logins . 1027

Firewalls. 1027
Packet-filtering firewalls . 1028
Filtering of services. 1028
Stateful inspection firewalls. 1029
Firewalls: safe?. 1029

xxxvi	 UNIX and Linux System Administration Handbook	

Virtual private networks (VPNs) . 1030
IPsec tunnels. 1030
All I need is a VPN, right?. 1031

Certifications and standards. 1031
Certifications. 1031
Security standards . 1032

ISO 27001:2013. 1032
PCI DSS. 1033
NIST 800 series. 1033
The Common Criteria . 1034
OWASP: the Open Web Application Security Project. 1034
CIS: the Center for Internet Security. 1034

Sources of security information. 1034
SecurityFocus.com, the BugTraq mailing list, and the OSS mailing list. . 1035
Schneier on Security. 1035
The Verizon Data Breach Investigations Report. 1035
The SANS Institute. 1035
Distribution-specific security resources . 1036
Other mailing lists and web sites . 1036

When your site has been attacked . 1037
Recommended reading. 1038

Chapter 28	 Monitoring	 1040
An overview of monitoring. 1041

Instrumentation . 1042
Data types . 1042
Intake and processing. 1043
Notifications . 1043
Dashboards and UIs. 1044

The monitoring culture . 1044
The monitoring platforms. 1045

Open source real-time platforms. 1046
Nagios and Icinga. 1046
Sensu. 1047

Open source time-series platforms . 1047
Graphite. 1047
Prometheus. 1048
InfluxDB. 1049
Munin. 1049

Open source charting platforms. 1049
Commercial monitoring platforms . 1050
Hosted monitoring platforms. 1051

	 Table of Contents	 xxxvii

Data collection . 1051
StatsD: generic data submission protocol. 1052
Data harvesting from command output . 1054

Network monitoring . 1055
Systems monitoring. 1056

Commands for systems monitoring. 1057
collectd: generalized system data harvester. 1057
sysdig and dtrace: execution tracers. 1058

Application monitoring. 1059
Log monitoring. 1059
Supervisor + Munin: a simple option for limited domains 1060
Commercial application monitoring tools . 1060

Security monitoring. 1061
System integrity verification. 1061
Intrusion detection monitoring . 1062

SNMP: the Simple Network Management Protocol . 1063
SNMP organization . 1064
SNMP protocol operations. 1065
Net-SNMP: tools for servers. 1065

Tips and tricks for monitoring. 1068
Recommended reading. 1069

Chapter 29	 Performance Analysis	 1070
Performance tuning philosophy. 1071
Ways to improve performance . 1073
Factors that affect performance . 1074
Stolen CPU cycles. 1075
Analysis of performance problems. 1076
System performance checkup. 1077

Taking stock of your equipment. 1077
Gathering performance data. 1079
Analyzing CPU usage. 1079
Understanding how the system manages memory 1081
Analyzing memory usage. 1082
Analyzing disk I/O. 1084
fio: testing storage subsystem performance . 1085
sar: collecting and reporting statistics over time. 1086
Choosing a Linux I/O scheduler. 1086
perf: profiling Linux systems in detail. 1087

Help! My server just got really slow! . 1088
Recommended reading. 1090

xxxviii	 UNIX and Linux System Administration Handbook	

Chapter 30	 Data Center Basics	 1091
Racks. .1092
Power. 1092

Rack power requirements. 1093
kVA vs. kW. 1094
Energy efficiency. 1095
Metering. 1095
Cost. 1096
Remote control. 1096

Cooling and environment. 1096
Cooling load estimation. 1097

Roof, walls, and windows . 1097
Electronic gear. 1097
Light fixtures. 1098
Operators. 1098
Total heat load. 1098

Hot aisles and cold aisles. 1098
Humidity. 1100
Environmental monitoring. 1100

Data center reliability tiers . 1101
Data center security. 1102

Location. 1102
Perimeter. 1102
Facility access . 1102
Rack access . 1103

Tools. 1103
Recommended reading. 1104

Chapter 31	 Methodology, Policy, and Politics	 1105
The grand unified theory: DevOps. 1106

DevOps is CLAMS. 1107
Culture. 1107
Lean . 1108
Automation . 1109
Measurement. 1110
Sharing. 1110

System administration in a DevOps world. 1110
Ticketing and task management systems . 1111

Common functions of ticketing systems. 1112
Ticket ownership. 1112
User acceptance of ticketing systems. 1113
Sample ticketing systems. 1114
Ticket dispatching. 1114

	 Table of Contents	 xxxix

Local documentation maintenance. 1115
Infrastructure as code . 1116
Documentation standards. 1116

Environment separation . 1118
Disaster management. 1119

Risk assessment. 1119
Recovery planning. 1120
Staffing for a disaster . 1121
Security incidents. 1122

IT policies and procedures . 1122
The difference between policies and procedures . 1123
Policy best practices . 1124
Procedures. 1124

Service level agreements . 1125
Scope and descriptions of services. 1125
Queue prioritization policies. .1126
Conformance measurements . 1127

Compliance: regulations and standards. 1127
Legal issues . 1131

Privacy. 1131
Policy enforcement. 1132
Control = liability. 1132
Software licenses. 1133

Organizations, conferences, and other resources. 1133
Recommended reading . 1135

Index 	 1136
A Brief History of System Administration	 1166
Colophon	 1176
About the Contributors	 1178
About the Authors	 1179

xl

Every field has an avatar who defines and embodies that space. For system admin-
istration, that person is Evi Nemeth.

This is the 5th edition of a book that Evi led as an author for almost three decades.
Although Evi wasn’t able to physically join us in writing this edition, she’s with us
in spirit and, in some cases, in the form of text and examples that have endured.
We’ve gone to great efforts to maintain Evi’s extraordinary style, candor, technical
depth, and attention to detail.

An accomplished mathematician and cryptographer, Evi’s professional days were
spent (most recently) as a computer science professor at the University of Colorado
at Boulder. How system administration came into being, and Evi’s involvement in it,
is detailed in the last chapter of this book, A Brief History of System Administration.

Throughout her career, Evi looked forward to retiring and sailing the world. In 2001,
she did exactly that: she bought a sailboat (Wonderland) and set off on an adventure.
Across the years, Evi kept us entertained with stories of amazing islands, cool new
people, and other sailing escapades. We produced two editions of this book with
Evi anchoring as close as possible to shoreline establishments so that she could
camp on their Wi-Fi networks and upload chapter drafts.

Never one to decline an intriguing venture, Evi signed on in June 2013 as crew for
the historic schooner Nina for a sail across the Tasman Sea. The Nina disappeared
shortly thereafter in a bad storm, and we haven’t heard from Evi since. She was
living her dream.

Evi taught us much more than system administration. Even in her 70s, she ran
circles around all of us. She was always the best at building a network, configuring

Tribute to Evi

	 Tribute to Evi 	 xli

a server, debugging a kernel, splitting wood, frying chicken, baking a quiche, or
quaffing an occasional glass of wine. With Evi by your side, anything was achievable.

It’s impossible to encapsulate all of Evi’s wisdom here, but these tenets have stuck
with us:

•	 Be conservative in what you send and liberal in what you receive.1

•	 Be liberal in who you hire, but fire early.
•	 Don’t use weasel words.
•	 Undergraduates are the secret superpower.
•	 You can never use too much red ink.
•	 You don’t really understand something until you’ve implemented it.
•	 It’s always time for sushi.
•	 Be willing to try something twice.
•	 Always use sudo.

We’re sure some readers will write in to ask what, exactly, some of the guidance
above really means. We’ve left that as an exercise for the reader, as Evi would have.
You can hear her behind you now, saying “Try it yourself. See how it works.”

Smooth sailing, Evi. We miss you.

	 1.	 This tenet is also known as Postel’s Law, named in honor of Jon Postel, who served as Editor of the
RFC series from 1969 until his death in 1998.

xlii

Modern technologists are masters at the art of searching Google for answers. If
another system administrator has already encountered (and possibly solved) a
problem, chances are you can find their write-up on the Internet. We applaud and
encourage this open sharing of ideas and solutions.

If great information is already available on the Internet, why write another edition
of this book? Here’s how this book helps system administrators grow:

•	 We offer philosophy, guidance, and context for applying technology ap-
propriately. As with the blind men and the elephant, it’s important to
understand any given problem space from a variety of angles. Valuable
perspectives include background on adjacent disciplines such as security,
compliance, DevOps, cloud computing, and software development life cycles.

•	 We take a hands-on approach. Our purpose is to summarize our collec-
tive perspective on system administration and to recommend approaches
that stand the test of time. This book contains numerous war stories and
a wealth of pragmatic advice.

•	 This is not a book about how to run UNIX or Linux at home, in your ga-
rage, or on your smartphone. Instead, we describe the management of
production environments such as businesses, government offices, and
universities. These environments have requirements that are different
from (and far outstrip) those of a typical hobbyist.

•	 We teach you how to be a professional. Effective system administration
requires both technical and “soft” skills. It also requires a sense of humor.

Preface

	 Preface 	 xliii

The organization of this book
This book is divided into four large chunks: Basic Administration, Networking,
Storage, and Operations.

Basic Administration presents a broad overview of UNIX and Linux from a system
administrator’s perspective. The chapters in this section cover most of the facts and
techniques needed to run a stand-alone system.

The Networking section describes the protocols used on UNIX systems and the
techniques used to set up, extend, and maintain networks and Internet-facing serv-
ers. High-level network software is also covered here. Among the featured topics
are the Domain Name System, electronic mail, single sign-on, and web hosting.

The Storage section tackles the challenges of storing and managing data. This section
also covers subsystems that allow file sharing on a network, such as the Network
File System and the Windows-friendly SMB protocol.

The Operations section addresses the key topics that a system administrator faces
on a daily basis when managing production environments. These topics include
monitoring, security, performance, interactions with developers, and the politics
of running a system administration group.

Our contributors
We’re delighted to welcome James Garnett, Fabrizio Branca, and Adrian Mouat as
contributing authors for this edition. These contributors’ deep knowledge of a va-
riety of areas has greatly enriched the content of this book.

Contact information
Please send suggestions, comments, and bug reports to ulsah@book.admin.com.
We do answer mail, but please be patient; it is sometimes a few days before one of
us is able to respond. Because of the volume of email that this alias receives, we
regret that we are unable to answer technical questions.

To view a copy of our current bug list and other late-breaking information, visit
our web site, admin.com.

We hope you enjoy this book, and we wish you the best of luck with your adven-
tures in system administration!

Garth Snyder
Trent R. Hein
Ben Whaley
Dan Mackin

July 2017

mailto:ulsah@book.admin.com
http://admin.com

xliv

In 1942, Winston Churchill described an early battle of WWII: “this is not the end—
it is not even the beginning of the end—but it is, perhaps, the end of the beginning.”
I was reminded of these words when I was approached to write this Foreword for
the fifth edition of UNIX and Linux System Administration Handbook. The loss at sea
of Evi Nemeth has been a great sadness for the UNIX community, but I’m pleased
to see her legacy endure in the form of this book and in her many contributions to
the field of system administration.

The way the world got its Internet was, originally, through UNIX. A remarkable
departure from the complex and proprietary operating systems of its day, UNIX
was minimalistic, tools-driven, portable, and widely used by people who wanted
to share their work with others. What we today call open source software was al-
ready pervasive—but nameless—in the early days of UNIX and the Internet. Open
source was just how the technical and academic communities did things, because
the benefits so obviously outweighed the costs.

Detailed histories of UNIX, Linux, and the Internet have been lovingly presented
elsewhere. I bring up these high-level touchpoints only to remind us all that the
modern world owes much to open source software and to the Internet, and that
the original foundation for this bounty was UNIX.

As early UNIX and Internet companies fought to hire the most brilliant people
and to deliver the most innovative features, software portability was often sacri-
ficed. Eventually, system administrators had to know a little bit about a lot of things
because no two UNIX-style operating systems (then, or now) were entirely alike. As
a working UNIX system administrator in the mid-1980s and later, I had to know not
just shell scripting and Sendmail configuration but also kernel device drivers. It was
also important to know how to fix a filesystem with an octal debugger. Fun times!

Foreword

	 Foreword 	 xlv

Out of that era came the first edition of this book and all the editions that followed
it. In the parlance of the times, we called the authors “Evi and crew” or perhaps “Evi
and her kids.” Because of my work on Cron and BIND, Evi spent a week or two with
me (and my family, and my workplace) every time an edition of this book was in
progress to make sure she was saying enough, saying nothing wrong, and hopefully,
saying something unique and useful about each of those programs. Frankly, being
around Evi was exhausting, especially when she was curious about something, or
on a deadline, or in my case, both. That having been said, I miss Evi terribly and I
treasure every memory and every photograph of her.

In the decades of this book’s multiple editions, much has changed. It has been fasci-
nating to watch this book evolve along with UNIX itself. Every new edition omitted
some technologies that were no longer interesting or relevant to make room for
new topics that were just becoming important to UNIX administrators, or that the
authors thought soon would be.

It’s hard to believe that we ever spent dozens of kilowatts of power on truck-sized
computers whose capabilities are now dwarfed by an Android smartphone. It’s equal-
ly hard to believe that we used to run hundreds or thousands of individual server
and desktop computers with now-antiquated technologies like rdist. In those years,
various editions of this book helped people like me (and like Evi herself) cope with
heterogeneous and sometimes proprietary computers that were each real rather than
virtualized, and which each had to be maintained rather than being reinstalled (or
in Docker, rebuilt) every time something needed patching or upgrading.

We adapt, or we exit. The “Evi kids” who carry on Evi’s legacy have adapted, and
they are back in this fifth edition to tell you what you need to know about how
modern UNIX and Linux computers work and how you can make them work
the way you want them to. Evi’s loss marks the end of an era, but it’s also sobering
to consider how many aspects of system administration have passed into history
alongside her. I know dozens of smart and successful technologists who will never
dress cables in the back of an equipment rack, hear the tone of a modem, or see
an RS-232 cable. This edition is for those whose systems live in the cloud or in
virtualized data centers; those whose administrative work largely takes the form
of automation and configuration source code; those who collaborate closely with
developers, network engineers, compliance officers, and all the other worker bees
who inhabit the modern hive.

You hold in your hand the latest, best edition of a book whose birth and evolution
have precisely tracked the birth and evolution of the UNIX and Internet community.
Evi would be extremely proud of her kids, both because of this book, and because
of who they have each turned out to be. I am proud to know them.

Paul Vixie
La Honda, California
June 2017

xlvi

Many people contributed to this project, bestowing everything from technical re-
views and constructive suggestions to overall moral support. The following indi-
viduals deserve special thanks for hanging in there with us:

Jason Carolan Ned McClain Dave Roth
Randy Else Beth McElroy Peter Sankauskas
Steve Gaede Paul Nelson Deepak Singh
Asif Khan Tim O’Reilly Paul Vixie
Sam Leathers Madhuri Peri

Our editor at Pearson, Mark Taub, deserves huge thanks for his wisdom, patient
support, and gentle author herding throughout the production of this book. It’s safe
to say this edition would not have come to fruition without him.

Mary Lou Nohr has been our relentless behind-the-scenes copy editor for over 20
years. When we started work on this edition, Mary Lou was headed for well-de-
served retirement. After a lot of begging and guilt-throwing, she agreed to join us
for an encore. (Both Mary Lou Nohr and Evi Nemeth appear on the cover. Can
you find them?)

We’ve had a fantastic team of technical reviewers. Three dedicated souls reviewed
the entire book: Jonathan Corbet, Pat Parseghian, and Jennine Townsend. We greatly
appreciate their tenacity and tactfulness.

This edition’s awesome cartoons and cover were conceived and executed by Lisa
Haney. Her portfolio is on-line at lisahaney.com.

Last but not least, special thanks to Laszlo Nemeth for his willingness to support
the continuation of this series.

Acknowledgments

http://lisahaney.com

SECTION ONE
BASIC ADMINISTRATION

This page intentionally left blank

W
he

re
 to

 S
ta

rt

			 3

We’ve designed this book to occupy a specific niche in the vast ecosystem of man
pages, blogs, magazines, books, and other reference materials that address the needs
of UNIX and Linux system administrators.

First, it’s an orientation guide. It reviews the major administrative systems, identifies
the different pieces of each, and explains how they work together. In the many cases
where you must choose among various implementations of a concept, we describe
the advantages and drawbacks of the most popular options.

Second, it’s a quick-reference handbook that summarizes what you need to know
to perform common tasks on a variety of common UNIX and Linux systems. For
example, the ps command, which shows the status of running processes, supports
more than 80 command-line options on Linux systems. But a few combinations
of options satisfy the majority of a system administrator’s needs; we summarize
them on page 98.

Finally, this book focuses on the administration of enterprise servers and networks.
That is, serious, professional system administration. It’s easy to set up a single system;
harder to keep a distributed, cloud-based platform running smoothly in the face of
viral popularity, network partitions, and targeted attacks. We describe techniques

1 Where to Start

4	 Chapter 1	 Where to Start	

and rules of thumb that help you recover systems from adversity, and we help you
choose solutions that scale as your empire grows in size, complexity, and heterogeneity.

We don’t claim to do all of this with perfect objectivity, but we think we’ve made our
biases fairly clear throughout the text. One of the interesting things about system
administration is that reasonable people can have dramatically different notions of
what constitutes the most appropriate solution. We offer our subjective opinions
to you as raw data. Decide for yourself how much to accept and how much of our
comments apply to your environment.

1.1	 Essential duties of a system administrator
The sections below summarize some of the main tasks that administrators are
expected to perform. These duties need not necessarily be carried out by a single
person, and at many sites the work is distributed among the members of a team.
However, at least one person should understand all the components and ensure
that every task is performed correctly.

Controlling access
The system administrator creates accounts for new users, removes the accounts of
inactive users, and handles all the account-related issues that come up in between
(e.g., forgotten passwords and lost key pairs). The process of actually adding and
removing accounts is typically automated by a configuration management system
or centralized directory service.

Adding hardware
Administrators who work with physical hardware (as opposed to cloud or hosted
systems) must install it and configure it to be recognized by the operating system.
Hardware support chores might range from the simple task of adding a network
interface card to configuring a specialized external storage array.

Automating tasks
Using tools to automate repetitive and time-consuming tasks increases your effi-
ciency, reduces the likelihood of errors caused by humans, and improves your ability
to respond rapidly to changing requirements. Administrators strive to reduce the
amount of manual labor needed to keep systems functioning smoothly. Familiarity
with scripting languages and automation tools is a large part of the job.

Overseeing backups
Backing up data and restoring it successfully when required are important admin-
istrative tasks. Although backups are time consuming and boring, the frequency of
real-world disasters is simply too high to allow the job to be disregarded.

See Chapters 8,
17, and 23 for in-
formation about user
account provisioning.

See Chapter 7,
Scripting and the
Shell, for informa-
tion about scripting
and automation.

See page 788 for
some tips on per-
forming backups.

	 Essential duties of a system administrator	 5

W
he

re
 to

 S
ta

rt

Operating systems and some individual software packages provide well-established
tools and techniques to facilitate backups. Backups must be executed on a regular
schedule and restores must be tested periodically to ensure that they are function-
ing correctly.

Installing and upgrading software
Software must be selected, installed, and configured, often on a variety of oper-
ating systems. As patches and security updates are released, they must be tested,
reviewed, and incorporated into the local environment without endangering the
stability of production systems.

The term “software delivery” refers to the process of releasing updated versions of
software—especially software developed in-house—to downstream users. “Continu-
ous delivery” takes this process to the next level by automatically releasing software
to users at a regular cadence as it is developed. Administrators help implement ro-
bust delivery processes that meet the requirements of the enterprise.

Monitoring
Working around a problem is usually faster than taking the time to document and
report it, and users internal to an organization often follow the path of least resis-
tance. External users are more likely to voice their complaints publicly than to open
a support inquiry. Administrators can help to prevent both of these outcomes by
detecting problems and fixing them before public failures occur.

Some monitoring tasks include ensuring that web services respond quickly and
correctly, collecting and analyzing log files, and keeping tabs on the availability of
server resources such as disk space. All of these are excellent opportunities for au-
tomation, and a slew of open source and commercial monitoring systems can help
sysadmins with these tasks.

Troubleshooting
Networked systems fail in unexpected and sometimes spectacular fashion. It’s the
administrator’s job to play mechanic by diagnosing problems and calling in sub-
ject-matter experts as needed. Finding the source of a problem is often more chal-
lenging than resolving it.

Maintaining local documentation
Administrators choose vendors, write scripts, deploy software, and make many oth-
er decisions that may not be immediately obvious or intuitive to others. Thorough
and accurate documentation is a blessing for team members who would otherwise
need to reverse-engineer a system to resolve problems in the middle of the night.
A lovingly crafted network diagram is more useful than many paragraphs of text
when describing a design.

See Chapter 6 for
information about
software management.

See Chapter 26
for information
about software
deployment and
continuous delivery.

See Chapter 28
for information
about monitoring.

See page 428 for an
introduction to net-
work troubleshooting.

See page 1115 for
suggestions regarding
documentation.

6	 Chapter 1	 Where to Start	

Vigilantly monitoring security
Administrators are the first line of defense for protecting network-attached sys-
tems. The administrator must implement a security policy and set up procedures
to prevent systems from being breached. This responsibility might include only a
few basic checks for unauthorized access, or it might involve an elaborate network
of traps and auditing programs, depending on the context. System administrators
are cautious by nature and are often the primary champions of security across a
technical organization.

Tuning performance
UNIX and Linux are general purpose operating systems that are well suited to al-
most any conceivable computing task. Administrators can tailor systems for optimal
performance in accord with the needs of users, the available infrastructure, and the
services the systems provide. When a server is performing poorly, it is the admin-
istrator’s job to investigate its operation and identify areas that need improvement.

Developing site policies
For legal and compliance reasons, most sites need policies that govern the accept-
able use of computer systems, the management and retention of data, the privacy
and security of networks and systems, and other areas of regulatory interest. System
administrators often help organizations develop sensible policies that meet the letter
and intent of the law and yet still promote progress and productivity.

Working with vendors
Most sites rely on third parties to provide a variety of ancillary services and prod-
ucts related to their computing infrastructure. These providers might include
software developers, cloud infrastructure providers, hosted software-as-a-service
(SaaS) shops, help-desk support staff, consultants, contractors, security experts, and
platform or infrastructure vendors. Administrators may be tasked with selecting
vendors, assisting with contract negotiations, and implementing solutions once the
paperwork has been completed.

Fire fighting
Although helping other people with their various problems is rarely included in a
system administrator’s job description, these tasks claim a measurable portion of
most administrators’ workdays. System administrators are bombarded with prob-
lems ranging from “It worked yesterday and now it doesn’t! What did you change?”
to “I spilled coffee on my keyboard! Should I pour water on it to wash it out?”

In most cases, your response to these issues affects your perceived value as an ad-
ministrator far more than does any actual technical skill you might possess. You
can either howl at the injustice of it all, or you can delight in the fact that a single

See Chapter 27 for
more information
about security.

See Chapter 29 for
more information
about performance.

See the sections start-
ing on page 17 for
information about
local policy-making.

	 Suggested background	 7

W
he

re
 to

 S
ta

rt

well-handled trouble ticket scores more brownie points than five hours of midnight
debugging. Your choice!

1.2	 Suggested background
We assume in this book that you have a certain amount of Linux or UNIX experi-
ence. In particular, you should have a general concept of how the system looks and
feels from a user’s perspective since we do not review that material. Several good
books can get you up to speed; see Recommended reading on page 28.

We love well-designed graphical interfaces. Unfortunately, GUI tools for system
administration on UNIX and Linux remain rudimentary in comparison with the
richness of the underlying software. In the real world, administrators must be com-
fortable using the command line.

For text editing, we strongly recommend learning vi (now seen more commonly
in its enhanced form, vim), which is standard on all systems. It is simple, powerful,
and efficient. Mastering vim is perhaps the single best productivity enhancement
available to administrators. Use the vimtutor command for an excellent, interac-
tive introduction.

Alternatively, GNU’s nano is a simple and low-impact “starter editor” that has on-
screen prompts. Use it discreetly; professional administrators may be visibly dis-
tressed if they witness a peer running nano.

Although administrators are not usually considered software developers, industry
trends are blurring the lines between these functions. Capable administrators are
usually polyglot programmers who don’t mind picking up a new language when
the need arises.

For new scripting projects, we recommend Bash (aka bash, aka sh), Ruby, or Python.
Bash is the default command shell on most UNIX and Linux systems. It is primitive
as a programming language, but it serves well as the duct tape in an administrative
tool box. Python is a clever language with a highly readable syntax, a large devel-
oper community, and libraries that facilitate many common tasks. Ruby developers
describe the language as “a joy to work with” and “beautiful to behold.” Ruby and
Python are similar in many ways, and we’ve found them to be equally functional for
administration. The choice between them is mostly a matter of personal preference.

We also suggest that you learn expect, which is not a programming language so
much as a front end for driving interactive programs. It’s an efficient glue technol-
ogy that can replace some complex scripting and is easy to learn.

Chapter 7, Scripting and the Shell, summarizes the most important things to
know about scripting for Bash, Python, and Ruby. It also reviews regular expres-
sions (text matching patterns) and some shell idioms that are useful for sysadmins.

See Chapter 7
for an introduc-
tion to scripting.

8	 Chapter 1	 Where to Start	

1.3	 Linux distributions
A Linux distribution comprises the Linux kernel, which is the core of the operating
system, and packages that make up all the commands you can run on the system.
All distributions share the same kernel lineage, but the format, type, and number
of packages differ quite a bit. Distributions also vary in their focus, support, and
popularity. There continue to be hundreds of independent Linux distributions, but
our sense is that distributions derived from the Debian and Red Hat lineages will
predominate in production environments in the years ahead.

By and large, the differences among Linux distributions are not cosmically sig-
nificant. In fact, it is something of a mystery why so many different distributions
exist, each claiming “easy installation” and “a massive software library” as its dis-
tinguishing features. It’s hard to avoid the conclusion that people just like to make
new Linux distributions.

Most major distributions include a relatively painless installation procedure, a desk-
top environment, and some form of package management. You can try them out
easily by starting up a cloud instance or a local virtual machine.

Much of the insecurity of general-purpose operating systems derives from their
complexity. Virtually all leading distributions are cluttered with scores of unused
software packages; security vulnerabilities and administrative anguish often come
along for the ride. In response, a relatively new breed of minimalist distributions
has been gaining traction. CoreOS is leading the charge against the status quo and
prefers to run all software in containers. Alpine Linux is a lightweight distribution
that is used as the basis of many public Docker images. Given this reductionist trend,
we expect the footprint of Linux to shrink over the coming years.

By adopting a distribution, you are making an investment in a particular vendor’s
way of doing things. Instead of looking only at the features of the installed software,
it’s wise to consider how your organization and that vendor are going to work with
each other. Some important questions to ask are:

•	 Is this distribution going to be around in five years?
•	 Is this distribution going to stay on top of the latest security patches?
•	 Does this distribution have an active community and sufficient documentation?
•	 If I have problems, will the vendor talk to me, and how much will that cost?

Table 1.1 lists some of the most popular mainstream distributions.

The most viable distributions are not necessarily the most corporate. For example,
we expect Debian Linux (OK, OK, Debian GNU/Linux!) to remain viable for a long
time despite the fact that Debian is not a company, doesn’t sell anything, and offers
no enterprise-level support. Debian benefits from a committed group of contributors
and from the enormous popularity of the Ubuntu distribution, which is based on it.

A comprehensive list of distributions, including many non-English distributions,
can be found at lwn.net/Distributions or distrowatch.com.

See Chapter 25,
Containers, for more
information about
Docker and containers.

 	

http://lwn.net/Distributions
http://distrowatch.com

	 Example systems used in this book	 9

W
he

re
 to

 S
ta

rt

1.4	 Example systems used in this book
We have chosen three popular Linux distributions and one UNIX variant as our
primary examples for this book: Debian GNU/Linux, Ubuntu Linux, Red Hat En-
terprise Linux (and its dopplegänger CentOS), and FreeBSD. These systems are
representative of the overall marketplace and account collectively for a substantial
portion of installations in use at large sites today.

Information in this book generally applies to all of our example systems unless a
specific attribution is given. Details particular to one system are marked with a logo:

Debian GNU/Linux 9.0 “Stretch”

Ubuntu® 17.04 “Zesty Zapus”

Red Hat® Enterprise Linux® 7.1 and CentOS® 7.1

FreeBSD® 11.0

Most of these marks belong to the vendors that release the corresponding software
and are used with the kind permission of their respective owners. However, the
vendors have not reviewed or endorsed the contents of this book.

RHEL

	

	
	
	
	

Table 1.1	 Most popular general-purpose Linux distributions

Distribution Web site Comments

Arch archlinux.org For those who fear not the command line
CentOS centos.org Free analog of Red Hat Enterprise
CoreOS coreos.com Containers, containers everywhere
Debian debian.org Free as in freedom, most GNUish distro
Fedora fedoraproject.org Test bed for Red Hat Linux
Kali kali.org For penetration testers
Linux Mint linuxmint.com Ubuntu-based, desktop-friendly
openSUSE opensuse.org Free analog of SUSE Linux Enterprise
openWRT openwrt.org Linux for routers and embedded devices
Oracle Linux oracle.com Oracle-supported version of RHEL
RancherOS rancher.com 20MiB, everything in containers
Red Hat Enterprise redhat.com Reliable, slow-changing, commercial
Slackware slackware.com Grizzled, long-surviving distro
SUSE Linux Enterprise suse.com Strong in Europe, multilingual
Ubuntu ubuntu.com Cleaned-up version of Debian

http://www.archlinux.org
http://www.centos.org
http://www.coreos.com
http://www.debian.org
http://www.fedoraproject.org
http://www.kali.org
http://www.linuxmint.com
http://www.opensuse.org
http://www.openwrt.org
http://www.oracle.com
http://www.rancher.com
http://www.redhat.com
http://www.slackware.com
http://www.suse.com
http://www.ubuntu.com

10	 Chapter 1	 Where to Start	

We repeatedly attempted and failed to obtain permission from Red Hat to use their
famous red fedora logo, so you’re stuck with yet another technical acronym. At least
this one is in the margins.

The paragraphs below provide a bit more detail about each of the example systems.

Example Linux distributions
Information that’s specific to Linux but not to any particular distribution is marked
with the Tux penguin logo shown at left.

Debian (pronounced deb-ian, named after the late founder Ian Murdock and his
wife Debra), is one of the oldest and most well-regarded distributions. It is a non-
commercial project with more than a thousand contributors worldwide. Debian
maintains an ideological commitment to community development and open ac-
cess, so there’s never any question about which parts of the distribution are free or
redistributable.

Debian defines three releases that are maintained simultaneously: stable, targeting
production servers; unstable, with current packages that may have bugs and secu-
rity vulnerabilities; and testing, which is somewhere in between.

Ubuntu is based on Debian and maintains Debian’s commitment to free and open
source software. The business behind Ubuntu is Canonical Ltd., founded by entre-
preneur Mark Shuttleworth.

Canonical offers a variety of editions of Ubuntu targeting the cloud, the desktop,
and bare metal. There are even releases intended for phones and tablets. Ubuntu
version numbers derive from the year and month of release, so version 16.10 is
from October, 2016. Each release also has an alliterative code name such as Vivid
Vervet or Wily Werewolf.

Two versions of Ubuntu are released annually: one in April and one in October. The
April releases in even-numbered years are long-term support (LTS) editions that
promise five years of maintenance updates. These are the releases recommended
for production use.

Red Hat has been a dominant force in the Linux world for more than two decades,
and its distributions are widely used in North America and beyond. By the numbers,
Red Hat, Inc., is the most successful open source software company in the world.

Red Hat Enterprise Linux, often shortened to RHEL, targets production environ-
ments at large enterprises that require support and consulting services to keep
their systems running smoothly. Somewhat paradoxically, RHEL is open source
but requires a license. If you’re not willing to pay for the license, you’re not going
to be running Red Hat.

Red Hat also sponsors Fedora, a community-based distribution that serves as an
incubator for bleeding-edge software not considered stable enough for RHEL.

RHEL

	 Example systems used in this book	 11

W
he

re
 to

 S
ta

rt

Fedora is used as the initial test bed for software and configurations that later find
their way to RHEL.

CentOS is virtually identical to Red Hat Enterprise Linux, but free of charge. The
CentOS Project (centos.org) is owned by Red Hat and employs its lead developers.
However, they operate separately from the Red Hat Enterprise Linux team. The
CentOS distribution lacks Red Hat’s branding and a few proprietary tools, but is
in other respects equivalent.

CentOS is an excellent choice for sites that want to deploy a production-oriented
distribution without paying tithes to Red Hat. A hybrid approach is also feasible:
front-line servers can run Red Hat Enterprise Linux and avail themselves of Red
Hat’s excellent support, even as nonproduction systems run CentOS. This arrange-
ment covers the important bases in terms of risk and support while also minimizing
cost and administrative complexity.

CentOS aspires to full binary and bug-for-bug compatibility with Red Hat Enter-
prise Linux. Rather than repeating “Red Hat and CentOS” ad nauseam, we generally
mention only one or the other in this book. The text applies equally to Red Hat and
CentOS unless we note otherwise.

Other popular distributions are also Red Hat descendants. Oracle sells a rebranded
and customized version of CentOS to customers of its enterprise database software.
Amazon Linux, available to Amazon Web Services users, was initially derived from
CentOS and still shares many of its conventions.

Most administrators will encounter a Red Hat-like system at some point in their
careers, and familiarity with its nuances is helpful even if it isn’t the system of
choice at your site.

Example UNIX distribution
The popularity of UNIX has been waning for some time, and most of the stalwart
UNIX distributions (e.g., Solaris, HP-UX, and AIX) are no longer in common use.
The open source descendants of BSD are exceptions to this trend and continue to
enjoy a cult following, particularly among operating system experts, free software
evangelists, and security-minded administrators. In other words, some of the world’s
foremost operating system authorities rely on the various BSD distributions. Apple’s
macOS has a BSD heritage.

FreeBSD, first released in late 1993, is the most widely used of the BSD derivatives. It
commands a 70% market share among BSD variants according to some usage statis-
tics. Users include major Internet companies such as WhatsApp, Google, and Netflix.

Unlike Linux, FreeBSD is a complete operating system, not just a kernel. Both the
kernel and userland software are licensed under the permissive BSD License, a
fact that encourages development by and additions from the business community.

http://centos.org

12	 Chapter 1	 Where to Start	

1.5	 Notation and typographical conventions
In this book, filenames, commands, and literal arguments to commands are shown
in boldface. Placeholders (e.g., command arguments that should not be taken lit-
erally) are in italics. For example, in the command

cp file directory

you’re supposed to replace file and directory with the names of an actual file and
an actual directory.

Excerpts from configuration files and terminal sessions are shown in a code font.
Sometimes, we annotate sessions with the bash comment character # and italic
text. For example:

$ grep Bob /pub/phonelist	 # Look up Bob's phone number
Bob Knowles 555-2834
Bob Smith 555-2311

We use $ to denote the shell prompt for a normal, unprivileged user, and # for the
root user. When a command is specific to a distribution or family of distributions,
we prefix the prompt with the distribution name. For example:

$ sudo su - root			 # Become root
# passwd				 # Change root's password
debian# dpkg -l 		 # List installed packages on Debian and Ubuntu

This convention is aligned with the one used by standard UNIX and Linux shells.

Outside of these specific cases, we have tried to keep special fonts and formatting
conventions to a minimum as long as we could do so without compromising intel-
ligibility. For example, we often talk about entities such as the daemon group with
no special formatting at all.

We use the same conventions as the manual pages for command syntax:

•	 Anything between square brackets (“[” and “]”) is optional.
•	 Anything followed by an ellipsis (“…”) can be repeated.
•	 Curly braces (“{” and “}”) mean that you should select one of the items

separated by vertical bars (“|”).

For example, the specification

bork [  -x  ] {  on  |  off  } filename ...

would match any of the following commands:

bork on /etc/passwd
bork -x off /etc/passwd /etc/smartd.conf
bork off /usr/lib/tmac

	 Units	 13

W
he

re
 to

 S
ta

rt

We use shell-style globbing characters for pattern matching:

•	 A star (*) matches zero or more characters.
•	 A question mark (?) matches one character.
•	 A tilde or “twiddle” (~) means the home directory of the current user.
•	~user means the home directory of user.

For example, we might refer to the startup script directories /etc/rc0.d, /etc/rc1.d,
and so on with the shorthand pattern /etc/rc*.d.

Text within quotation marks often has a precise technical meaning. In these cases,
we ignore the normal rules of U.S. English and put punctuation outside the quotes
so that there can be no confusion about what’s included and what’s not.

1.6	 Units
Metric prefixes such as kilo-, mega-, and giga- are defined as powers of 10; one
megabuck is $1,000,000. However, computer types have long poached these prefixes
and used them to refer to powers of 2. For example, one “megabyte” of memory is
really 220 or 1,048,576 bytes. The stolen units have even made their way into formal
standards such as the JEDEC Solid State Technology Association’s Standard 100B.01,
which recognizes the prefixes as denoting powers of 2 (albeit with some misgivings).

In an attempt to restore clarity, the International Electrotechnical Commission has
defined a set of numeric prefixes (kibi-, mebi-, gibi-, and so on, abbreviated Ki, Mi,
and Gi) based explicitly on powers of 2. Those units are always unambiguous, but
they are just starting to be widely used. The original kilo-series prefixes are still
used in both senses.

Context helps with decoding. RAM is always denominated in powers of 2, but net-
work bandwidth is always a power of 10. Storage space is usually quoted in pow-
er-of-10 units, but block and page sizes are in fact powers of 2.

In this book, we use IEC units for powers of 2, metric units for powers of 10, and
metric units for rough values and cases in which the exact basis is unclear, undoc-
umented, or impossible to determine. In command output and in excerpts from
configuration files, or where the delineation is not important, we leave the original
values and unit designators. We abbreviate bit as b and byte as B. Table 1.2 on the
next page shows some examples.

The abbreviation K, as in “8KB of RAM!”, is not part of any standard. It’s a comput-
erese adaptation of the metric abbreviation k, for kilo-, and originally meant 1,024
as opposed to 1,000. But since the abbreviations for the larger metric prefixes are
already upper case, the analogy doesn’t scale. Later, people became confused about
the distinction and started using K for factors of 1,000, too.

Most of the world doesn’t consider this to be an important matter and, like the use
of imperial units in the United States, metric prefixes are likely to be misused for

14	 Chapter 1	 Where to Start	

Table 1.2	 Unit decoding examples

Example Meaning

1kB file A file that contains 1,000 bytes
4KiB SSD pages SSD pages that contain 4,096 bytes
8KB of memory Not used in this book; see note on page 13
100MB file size limit Nominally 108 bytes; in context, ambiguous
100MB disk partition Nominally 108 bytes; in context, probably 99,999,744 bytes a

1GiB of RAM 1,073,741,824 bytes of memory
1 Gb/s Ethernet A network that transmits 1,000,000,000 bits per second
6TB hard disk A hard disk that stores about 6,000,000,000,000 bytes

a.	 That is, 108 rounded down to the nearest whole multiple of the disk’s 512-byte block size

the foreseeable future. Ubuntu maintains a helpful units policy, though we suspect
it has not been widely adopted even at Canonical; see wiki.ubuntu.com/UnitsPolicy
for some additional details.

1.7	 Man pages and other on-line documentation
The manual pages, usually called “man pages” because they are read with the man
command, constitute the traditional “on-line” documentation. (Of course, these days
all documentation is on-line in some form or another.) Program-specific man pages
come along for the ride when you install new software packages. Even in the age
of Google, we continue to consult man pages as an authoritative resource because
they are accessible from the command line, typically include complete details on a
program’s options, and show helpful examples and related commands.

Man pages are concise descriptions of individual commands, drivers, file formats,
or library routines. They do not address more general topics such as “How do I in-
stall a new device?” or “Why is this system so damn slow?”

Organization of the man pages
FreeBSD and Linux divide the man pages into sections. Table 1.3 shows the basic
schema. Other UNIX variants sometimes define the sections slightly differently.

The exact structure of the sections isn’t important for most topics because man
finds the appropriate page wherever it is stored. Just be aware of the section defi-
nitions when a topic with the same name appears in multiple sections. For exam-
ple, passwd is both a command and a configuration file, so it has entries in both
section 1 and section 5.

 	

http://wiki.ubuntu.com/UnitsPolicy

	 Man pages and other on-line documentation	 15

W
he

re
 to

 S
ta

rt

man: read man pages
man title formats a specific manual page and sends it to your terminal through
more, less, or whatever program is specified in your PAGER environment variable.
title is usually a command, device, filename, or name of a library routine. The sec-
tions of the manual are searched in roughly numeric order, although sections that
describe commands (sections 1 and 8) are usually searched first.

The form man section title gets you a man page from a particular section. Thus, on
most systems, man sync gets you the man page for the sync command, and man
2 sync gets you the man page for the sync system call.

man -k keyword or apropos keyword prints a list of man pages that have keyword
in their one-line synopses. For example:

$ man -k translate
objcopy (1)	 - copy and translate object files
dcgettext (3)	 - translate message
tr (1)	 - translate or delete characters
snmptranslate (1)	 - translate SNMP OID values into useful information
tr (1p)	 - translate characters
...

The keywords database can become outdated. If you add additional man pages
to your system, you may need to rebuild this file with makewhatis (Red Hat and
FreeBSD) or mandb (Ubuntu).

Storage of man pages
nroff input for man pages (i.e., the man page source code) is stored in directories
under /usr/share/man and compressed with gzip to save space. The man command
knows how to decompress them on the fly.

See page 193 to
learn about envi-
ronment variables.

 	

  

	

	

Table 1.3	 Sections of the man pages

Section Contents

1 User-level commands and applications
2 System calls and kernel error codes
3 Library calls
4 Device drivers and network protocols
5 Standard file formats
6 Games and demonstrations
7 Miscellaneous files and documents
8 System administration commands
9 Obscure kernel specs and interfaces

16	 Chapter 1	 Where to Start	

man maintains a cache of formatted pages in /var/cache/man or /usr/share/man
if the appropriate directories are writable; however, this is a security risk. Most sys-
tems preformat the man pages once at installation time (see catman) or not at all.

The man command can search several man page repositories to find the manual
pages you request. On Linux systems, you can find out the current default search
path with the manpath command. This path (from Ubuntu) is typical:

ubuntu$ manpath
/usr/local/man:/usr/local/share/man:/usr/share/man

If necessary, you can set your MANPATH environment variable to override the
default path:

$ export MANPATH=/home/share/localman:/usr/share/man

Some systems let you set a custom system-wide default search path for man pages,
which can be useful if you need to maintain a parallel tree of man pages such as
those generated by OpenPKG. To distribute local documentation in the form of man
pages, however, it is simpler to use your system’s standard packaging mechanism
and to put man pages in the standard man directories. See Chapter 6, Software
Installation and Management, for more details.

1.8	 Other authoritative documentation
Man pages are just a small part of the official documentation. Most of the rest, un-
fortunately, is scattered about on the web.

System-specific guides
Major vendors have their own dedicated documentation projects. Many continue
to produce useful book-length manuals, including administration and installation
guides. These are generally available on-line and as downloadable PDF files. Table
1.4 shows where to look.

Although this documentation is helpful, it’s not the sort of thing you keep next to
your bed for light evening reading (though some vendors’ versions would make
useful sleep aids). We generally Google for answers before turning to vendor docs.

Package-specific documentation
Most of the important software packages in the UNIX and Linux world are main-
tained by individuals or by third parties such as the Internet Systems Consortium
and the Apache Software Foundation. These groups write their own documentation.
The quality runs the gamut from embarrassing to spectacular, but jewels such as
Pro Git from git-scm.com/book make the hunt worthwhile.

 	

http://git-scm.com/book

	 Other authoritative documentation	 17

W
he

re
 to

 S
ta

rt

Supplemental documents include white papers (technical reports), design rationales,
and book- or pamphlet-length treatments of particular topics. These supplemental
materials are not limited to describing just one command, so they can adopt a tu-
torial or procedural approach. Many pieces of software have both a man page and
a long-form article. For example, the man page for vim tells you about the com-
mand-line arguments that vim understands, but you have to turn to an in-depth
treatment to learn how to actually edit a file.

Most software projects have user and developer mailing lists and IRC channels. This
is the first place to visit if you have questions about a specific configuration issue
or if you encounter a bug.

Books
The O’Reilly books are favorites in the technology industry. The business began
with UNIX in a Nutshell and now includes a separate volume on just about every
important UNIX and Linux subsystem and command. O’Reilly also publishes books
on network protocols, programming languages, Microsoft Windows, and other
non-UNIX tech topics. All the books are reasonably priced, timely, and focused.

Many readers turn to O’Reilly’s Safari Books Online, a subscription service that
offers unlimited electronic access to books, videos, and other learning resources.
Content from many publishers is included—not just O’Reilly—and you can choose
from an immense library of material.

RFC publications
Request for Comments documents describe the protocols and procedures used on
the Internet. Most of these are relatively detailed and technical, but some are written
as overviews. The phrase “reference implementation” applied to software usually
translates to “implemented by a trusted source according to the RFC specification.”

RFCs are absolutely authoritative, and many are quite useful for system administra-
tors. See page 376 for a more complete description of these documents. We refer
to various RFCs throughout this book.

	

Table 1.4	 Where to find OS vendors’ proprietary documentation

OS URL Comments

Debian debian.org/doc Admin handbook lags behind the current version
Ubuntu help.ubuntu.com User oriented, see “server guide” for LTS releases
RHEL redhat.com/docs Comprehensive docs for administrators
CentOS wiki.centos.org Includes tips, HowTos, and FAQs
FreeBSD freebsd.org/docs.html See the FreeBSD Handbook for sysadmin info

http://www.debian.org/doc
http://www.help.ubuntu.com
http://www.redhat.com/docs
http://www.wiki.centos.org
http://www.freebsd.org/docs.html

18	 Chapter 1	 Where to Start	

1.9	 Other sources of information
The sources discussed in the previous section are peer reviewed and written by au-
thoritative sources, but they’re hardly the last word in UNIX and Linux administra-
tion. Countless blogs, discussion forums, and news feeds are available on the Internet.

It should go without saying, but Google is a system administrator’s best friend. Un-
less you’re looking up the details of a specific command or file format, Google or an
equivalent search engine should be the first resource you consult for any sysadmin
question. Make it a habit; if nothing else, you’ll avoid the delay and humiliation of
having your questions in an on-line forum answered with a link to Google.1 When
stuck, search the web.

Keeping current
Operating systems and the tools and techniques that support them change rapidly.
Read the sites in Table 1.5 with your morning coffee to keep abreast of industry trends.

Table 1.5	 Resources for keeping up to date

Web site Description

darkreading.com Security news, trends, and discussion
devopsreactions.tumblr.com Sysadmin humor in animated GIF form
linux.com A Linux Foundation site; forum, good for new users
linuxfoundation.org Nonprofit fostering OSS, employer of Linus Torvalds
lwn.net High-quality, timely articles on Linux and OSS
lxer.com Linux news aggregator
securityfocus.com Vulnerability reports and security-related mailing lists
@SwiftOnSecurity Infosec opinion from Taylor Swift (parody account)
@nixcraft Tweets about UNIX and Linux administration
everythingsysadmin.com Blog of Thomas Limoncelli, respected sysadmin a

sysadvent.blogspot.com Advent for sysadmins with articles each December
oreilly.com/topics Learning resources from O’Reilly on many topics
schneier.com Blog of Bruce Schneier, privacy and security expert

a.	 See also Tom’s collection of April Fools’ Day RFCs at rfc-humor.com

Social media are also useful. Twitter and reddit in particular have strong, engaged
communities with a lot to offer, though the signal-to-noise ratio can sometimes be
quite bad. On reddit, join the sysadmin, linux, linuxadmin, and netsec subreddits.

	 1. 	Or worse yet, a link to Google through lmgtfy.com

http://rfc-humor.com
http://lmgtfy.com
http://www.darkreading.com
http://www.devopsreactions.tumblr.com
http://www.linux.com
http://www.linuxfoundation.org
http://www.lwn.net
http://www.lxer.com
http://www.securityfocus.com
http://www.@SwiftOnSecurity
http://www.@nixcraft
http://www.everythingsysadmin.com
http://www.sysadvent.blogspot.com
http://www.oreilly.com/topics
http://www.schneier.com

	 Ways to find and install software	 19

W
he

re
 to

 S
ta

rt

HowTos and reference sites
The sites listed in Table 1.6 contain guides, tutorials, and articles about how to ac-
complish specific tasks on UNIX and Linux.

Table 1.6	 Task-specific forums and reference sites

Web site Description

wiki.archlinux.org Articles and guides for Arch Linux; many are more general
askubuntu.com Q&A for Ubuntu users and developers
digitalocean.com Tutorials on many OSS, development, and sysadmin topics a

kernel.org Official Linux kernel site
serverfault.com Collaboratively edited database of sysadmin questions b

serversforhackers.com High-quality videos, forums, and articles on administration

a.	 See digitalocean.com/community/tutorials
b.	Also see the sister site stackoverflow.com, which is dedicated to programming but useful for sysadmins

Stack Overflow and Server Fault, both listed in Table 1.6 (and both members of
the Stack Exchange group of sites), warrant a closer look. If you’re having a prob-
lem, chances are that somebody else has already seen it and asked for help on one
of these sites. The reputation-based Q&A format used by the Stack Exchange sites
has proved well suited to the kinds of problems that sysadmins and programmers
encounter. It’s worth creating an account and joining this large community.

Conferences
Industry conferences are a great way to network with other professionals, keep tabs
on technology trends, take training classes, gain certifications, and learn about the
latest services and products. The number of conferences pertinent to administra-
tion has exploded in recent years. Table 1.7 on the next page highlights some of
the most prominent ones.

Meetups (meetup.com) are another way to network and engage with like-minded
people. Most urban areas in the United States and around the world have a Linux
user group or DevOps meetup that sponsors speakers, discussions, and hack days.

1.10	 Ways to find and install software
Chapter 6, Software Installation and Management, addresses software provision-
ing in detail. But for the impatient, here’s a quick primer on how to find out what’s
installed on your system and how to obtain and install new software.

Modern operating systems divide their contents into packages that can be installed
independently of one another. The default installation includes a range of starter
packages that you can expand and contract according to your needs. When adding

http://digitalocean.com/community/tutorials
http://stackoverflow.com
http://meetup.com
http://www.wiki.archlinux.org
http://www.askubuntu.com
http://www.digitalocean.com
http://www.kernel.org
http://www.serverfault.com
http://www.serversforhackers.com

20	 Chapter 1	 Where to Start	

Table 1.7	 Conferences relevant to system administrators

Conference Location When Description

LISA Varies Q4 Large Installation System Administration
Monitorama Portland June Monitoring tools and techniques
OSCON Varies (US/EU) Q2 or Q3 Long-running O’Reilly OSS conference
SCALE Pasadena Jan Southern California Linux Expo
DefCon Las Vegas July Oldest and largest hacker convention
Velocity Global Varies O’Reilly conference on web operations
BSDCan Ottawa May/June Everything BSD from novices to gurus
re:Invent Las Vegas Q4 AWS cloud computing conference
VMWorld Varies (US/EU) Q3 or Q4 Virtualization and cloud computing
LinuxCon Global Varies The future of Linux
RSA San Francisco Q1 or Q2 Enterprise cryptography and infosec
DevOpsDays Global Varies A range of topics on bridging the gap

between development and ops teams
QCon Global Varies A conference for software developers

software, don your security hat and remember that additional software creates ad-
ditional attack surface. Only install what’s necessary.

Add-on software is often provided in the form of precompiled packages as well,
although the degree to which this is a mainstream approach varies widely among
systems. Most software is developed by independent groups that release the soft-
ware in the form of source code. Package repositories then pick up the source code,
compile it appropriately for the conventions in use on the systems they serve, and
package the resulting binaries. It’s usually easier to install a system-specific binary
package than to fetch and compile the original source code. However, packagers
are sometimes a release or two behind the current version.

The fact that two systems use the same package format doesn’t necessarily mean
that packages for the two systems are interchangeable. Red Hat and SUSE both use
RPM, for example, but their filesystem layouts are somewhat different. It’s best to
use packages designed for your particular system if they are available.

Our example systems provide excellent package management systems that include
tools for accessing and searching hosted software repositories. Distributors aggres-
sively maintain these repositories on behalf of the community, to facilitate patching
and software updates. Life is good.

When the packaged format is insufficient, administrators must install software the
old-fashioned way: by downloading a tar archive of the source code and manually
configuring, compiling, and installing it. Depending on the software and the oper-
ating system, this process can range from trivial to nightmarish.

	 Ways to find and install software	 21

W
he

re
 to

 S
ta

rt

In this book, we generally assume that optional software is already installed rather
than torturing you with boilerplate instructions for installing every package. If there’s
a potential for confusion, we sometimes mention the exact names of the packages
needed to complete a particular project. For the most part, however, we don’t repeat
installation instructions since they tend to be similar from one package to the next.

Determining if software is already installed
For a variety of reasons, it can be a bit tricky to determine which package contains
the software you actually need. Rather than starting at the package level, it’s easier
to use the shell’s which command to find out if a relevant binary is already in your
search path. For example, the following command reveals that the GNU C compiler
has already been installed on this machine:

ubuntu$ which gcc
/usr/bin/gcc

If which can’t find the command you’re looking for, try whereis; it searches a broader
range of system directories and is independent of your shell’s search path.

Another alternative is the incredibly useful locate command, which consults a pre-
compiled index of the filesystem to locate filenames that match a particular pattern.

FreeBSD includes locate as part of the base system. In Linux, the current imple-
mentation of locate is in the mlocate package. On Red Hat and CentOS, install the
mlocate package with yum; see page 174.

locate can find any type of file; it is not specific to commands or packages. For
example, if you weren’t sure where to find the signal.h include file, you could try

freebsd$ locate signal.h
/usr/include/machine/signal.h
/usr/include/signal.h
/usr/include/sys/signal.h
...

locate’s database is updated periodically by the updatedb command (in FreeBSD,
locate.updatedb), which runs periodically out of cron. Therefore, the results of a
locate don’t always reflect recent changes to the filesystem.

If you know the name of the package you’re looking for, you can also use your sys-
tem’s packaging utilities to check directly for the package’s presence. For example,
on a Red Hat system, the following command checks for the presence (and installed
version) of the Python interpreter:

redhat$ rpm -q python
python-2.7.5-18.el7_1.1.x86_64

See Chapter 6
for more informa-
tion about package
management.

22	 Chapter 1	 Where to Start	

You can also find out which package a particular file belongs to:

redhat$ rpm -qf /etc/httpd
httpd-2.4.6-31.el7.centos.x86_64

freebsd$ pkg which /usr/local/sbin/httpd
/usr/local/sbin/httpd was installed by package apache24-2.4.12

ubuntu$ dpkg-query -S /etc/apache2
apache2: /etc/apache2

Adding new software
If you do need to install additional software, you first need to determine the canon-
ical name of the relevant software package. For example, you’d need to translate “I
want to install locate” to “I need to install the mlocate package,” or translate “I need
named” to “I have to install BIND.” A variety of system-specific indexes on the web
can help with this, but Google is usually just as effective. For example, a search for

“locate command” takes you directly to several relevant discussions.

The following examples show the installation of the tcpdump command on each of
our example systems. tcpdump is a packet capture tool that lets you view the raw
packets being sent to and from the system on the network.

Debian and Ubuntu use APT, the Debian Advanced Package Tool:

ubuntu# sudo apt-get install tcpdump
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
 tcpdump
0 upgraded, 1 newly installed, 0 to remove and 81 not upgraded.
Need to get 0 B/360 kB of archives.
After this operation, 1,179 kB of additional disk space will be used.
Selecting previously unselected package tcpdump.
(Reading database ... 63846 files and directories currently installed.)
Preparing to unpack .../tcpdump_4.6.2-4ubuntu1_amd64.deb ...
Unpacking tcpdump (4.6.2-4ubuntu1) ...
Processing triggers for man-db (2.7.0.2-5) ...
Setting up tcpdump (4.6.2-4ubuntu1) ...

The Red Hat and CentOS version is

redhat# sudo yum install tcpdump
Loaded plugins: fastestmirror
Determining fastest mirrors
 * base: mirrors.xmission.com
 * epel: linux.mirrors.es.net
 * extras: centos.arvixe.com
 * updates: repos.lax.quadranet.com

RHEL

http://mirrors.xmission.com
http://linux.mirrors.es.net
http://centos.arvixe.com
http://repos.lax.quadranet.com

	 Ways to find and install software	 23

W
he

re
 to

 S
ta

rt

Resolving Dependencies
--> Running transaction check
---> Package tcpdump.x86_64 14:4.5.1-2.el7 will be installed
--> Finished Dependency Resolution
tcpdump-4.5.1-2.el7.x86_64.rpm	 | 387 kB 00:00
Running transaction check
Running transaction test
Transaction test succeeded
Running transaction
 Installing : 14:tcpdump-4.5.1-2.el7.x86_64	 1/1
 Verifying : 14:tcpdump-4.5.1-2.el7.x86_64	 1/1
Installed:
 tcpdump.x86_64 14:4.5.1-2.el7
Complete!

The package manager for FreeBSD is pkg.

freebsd# sudo pkg install -y tcpdump
Updating FreeBSD repository catalogue...
Fetching meta.txz: 			 100% 944 B 0.9kB/s 00:01
Fetching packagesite.txz: 	 100% 5 MiB 5.5MB/s 00:01
Processing entries: 100%
FreeBSD repository update completed. 24632 packages processed.
All repositories are up-to-date.
The following 2 package(s) will be affected (of 0 checked):

New packages to be INSTALLED:
	 tcpdump: 4.7.4
	 libsmi: 0.4.8_1

The process will require 17 MiB more space.
2 MiB to be downloaded.
Fetching tcpdump-4.7.4.txz: 	 100% 301 KiB 307.7kB/s 00:01
Fetching libsmi-0.4.8_1.txz:	 100% 2 MiB 2.0MB/s 00:01
Checking integrity... done (0 conflicting)
[1/2] Installing libsmi-0.4.8_1...
[1/2] Extracting libsmi-0.4.8_1: 100%
[2/2] Installing tcpdump-4.7.4...
[2/2] Extracting tcpdump-4.7.4: 100%

Building software from source code
As an illustration, here’s how you build a version of tcpdump from the source code.

The first chore is to identify the code. Software maintainers sometimes keep an in-
dex of releases on the project’s web site that are downloadable as tarballs. For open
source projects, you’re most likely to find the code in a Git repository.

24	 Chapter 1	 Where to Start	

The tcpdump source is kept on GitHub. Clone the repository in the /tmp directo-
ry, create a branch of the tagged version you want to build, then unpack, configure,
build, and install it:

redhat$ cd /tmp
redhat$ git clone https://github.com/the-tcpdump-group/tcpdump.git
<status messages as repository is cloned>
redhat$ cd tcpdump
redhat$ git checkout tags/tcpdump-4.7.4 -b tcpdump-4.7.4
Switched to a new branch 'tcpdump-4.7.4'
redhat$./configure 	
checking build system type... x86_64-unknown-linux-gnu
checking host system type... x86_64-unknown-linux-gnu
checking for gcc... gcc
checking whether the C compiler works... yes
...
redhat$ make
<several pages of compilation output>
redhat$ sudo make install
<files are moved in to place>

This configure/make/make install sequence is common to most software written
in C and works on all UNIX and Linux systems. It’s always a good idea to check
the package’s INSTALL or README file for specifics. You must have the develop-
ment environment and any package-specific prerequisites installed. (In the case of
tcpdump, libpcap and its libraries are prerequisites.)

You’ll often need to tweak the build configuration, so use ./configure --help to see
the options available for each particular package. Another useful configure option
is --prefix=directory, which lets you compile the software for installation somewhere
other than /usr/local, which is usually the default.

Installing from a web script
Cross-platform software bundles increasingly offer an expedited installation pro-
cess that’s driven by a shell script you download from the web with curl, fetch, or
wget.2 For example, to set up a machine as a Salt client, you can run the following
commands:

$ curl -o /tmp/saltboot -sL https://bootstrap.saltstack.com
$ sudo sh /tmp/saltboot

The bootstrap script investigates the local environment, then downloads, installs,
and configures an appropriate version of the software. This type of installation is
particularly common in cases where the process itself is somewhat complex, but
the vendor is highly motivated to make things easy for users. (Another good ex-
ample is RVM; see page 232.)

	 2.	 These are all simple HTTP clients that download the contents of a URL to a local file or, optionally,
print the contents to their standard output.

	 Where to host	 25

W
he

re
 to

 S
ta

rt

This installation method is perfectly fine, but it raises a couple of issues that are
worth mentioning. To begin with, it leaves no proper record of the installation for
future reference. If your operating system offers a packagized version of the soft-
ware, it’s usually preferable to install the package instead of running a web installer.
Packages are easy to track, upgrade, and remove. (On the other hand, most OS-level
packages are out of date. You probably won’t end up with the most current version
of the software.)

Be very suspicious if the URL of the boot script is not secure (that is, it does not start
with https:). Unsecured HTTP is trivial to hijack, and installation URLs are of par-
ticular interest to hackers because they know you’re likely to run, as root, whatever
code comes back. By contrast, HTTPS validates the identity of the server through
a cryptographic chain of trust. Not foolproof, but reliable enough.

A few vendors publicize an HTTP installation URL that automatically redirects to
an HTTPS version. This is dumb and is in fact no more secure than straight-up
HTTP. There’s nothing to prevent the initial HTTP exchange from being intercept-
ed, so you might never reach the vendor’s redirect. However, the existence of such
redirects does mean it’s worth trying your own substitution of https for http in in-
secure URLs. More often than not, it works just fine.

The shell accepts script text on its standard input, and this feature enables tidy, one-
line installation procedures such as the following:

$ curl -L https://badvendor.com | sudo sh

However, there’s a potential issue with this construction in that the root shell still
runs even if curl outputs a partial script and then fails—say, because of a transient
network glitch. The end result is unpredictable and potentially not good.

We are not aware of any documented cases of problems attributable to this cause.
Nevertheless, it is a plausible failure mode. More to the point, piping the output of
curl to a shell has entered the collective sysadmin unconscious as a prototypical
rookie blunder, so if you must do it, at least keep it on the sly.

The fix is easy: just save the script to a temporary file, then run the script in a sep-
arate step after the download successfully completes.

1.11	 Where to host
Operating systems and software can be hosted in private data centers, at co-location
facilities, on a cloud platform, or on some combination of these. Most burgeoning
startups choose the cloud. Established enterprises are likely to have existing data
centers and may run a private cloud internally.

See Chapter 6
for more informa-
tion about package
installation.

See page 1007 for
details on HTTPS’s
chain of trust.

26	 Chapter 1	 Where to Start	

The most practical choice, and our recommendation for new projects, is a public
cloud provider. These facilities offer numerous advantages over data centers:

•	 No capital expenses and low initial operating costs
•	 No need to install, secure, and manage hardware
•	 On-demand adjustment of storage, bandwidth, and compute capacity
•	 Ready-made solutions for common ancillary needs such as databases, load

balancers, queues, monitoring, and more
•	 Cheaper and simpler implementation of highly available/redundant systems

Early cloud systems acquired a reputation for inferior security and performance, but
these are no longer major concerns. These days, most of our administration work
is in the cloud. See Chapter 9 for a general introduction to this space.

Our preferred cloud platform is the leader in the space: Amazon Web Services (AWS).
Gartner, a leading technology research firm, found that AWS is ten times the size
of all competitors combined. AWS innovates rapidly and offers a much broader
array of services than does any other provider. It also has a reputation for excellent
customer service and supports a large and engaged community. AWS offers a free
service tier to cut your teeth on, including a year’s use of a low powered cloud server.

Google Cloud Platform (GCP) is aggressively improving and marketing its prod-
ucts. Some claim that its technology is unmatched by other providers. GCP’s growth
has been slow, in part due to Google’s reputation for dropping support for popular
offerings. However, its customer-friendly pricing terms and unique features are
appealing differentiators.

DigitalOcean is a simpler service with a stated goal of high performance. Its target
market is developers, whom it woos with a clean API, low pricing, and extremely fast
boot times. DigitalOcean is a strong proponent of open source software, and their
tutorials and guides for popular Internet technologies are some of the best available.

1.12	 Specialization and adjacent disciplines
System administrators do not exist in a vacuum; a team of experts is required to
build and maintain a complex network. This section describes some of the roles
with which system administrators overlap in skills and scope. Some administrators
choose to specialize in one or more of these areas.

Your goal as a system administrator, or as a professional working in any of these
related areas, is to achieve the objectives of the organization. Avoid letting politics
or hierarchy interfere with progress. The best administrators solve problems and
share information freely with others.

DevOps
DevOps is not so much a specific function as a culture or operational philosophy.
It aims to improve the efficiency of building and delivering software, especially at

See page 1106 for more
comments on DevOps.

	 Specialization and adjacent disciplines	 27

W
he

re
 to

 S
ta

rt

large sites that have many interrelated services and teams. Organizations with a
DevOps practice promote integration among engineering teams and may draw
little or no distinction between development and operations. Experts who work in
this area seek out inefficient processes and replace them with small shell scripts or
large and unwieldy Chef repositories.

Site reliability engineers
Site reliability engineers value uptime and correctness above all else. Monitoring
networks, deploying production software, taking pager duty, planning future expan-
sion, and debugging outages all lie within the realm of these availability crusaders.
Single points of failure are site reliability engineers’ nemeses.

Security operations engineers
Security operations engineers focus on the practical, day-to-day side of an infor-
mation security program. These folks install and operate tools that search for vul-
nerabilities and monitor for attacks on the network. They also participate in attack
simulations to gauge the effectiveness of their prevention and detection techniques.

Network administrators
Network administrators design, install, configure, and operate networks. Sites that
operate data centers are most likely to employ network administrators; that’s be-
cause these facilities have a variety of physical switches, routers, firewalls, and other
devices that need management. Cloud platforms also offer a variety of networking
options, but these usually don’t require a dedicated administrator because most of
the work is handled by the provider.

Database administrators
Database administrators (sometimes known as DBAs) are experts at installing
and managing database software. They manage database schemas, perform instal-
lations and upgrades, configure clustering, tune settings for optimal performance,
and help users formulate efficient queries. DBAs are usually wizards with one or
more query languages and have experience with both relational and nonrelational
(NoSQL) databases.

Network operations center (NOC) engineers
NOC engineers monitor the real-time health of large sites and track incidents and
outages. They troubleshoot tickets from users, perform routine upgrades, and co-
ordinate actions among other teams. They can most often be found watching a wall
of monitors that show graphs and measurements.

28	 Chapter 1	 Where to Start	

Data center technicians
Data center technicians work with hardware. They receive new equipment, track
equipment inventory and life cycles, install servers in racks, run cabling, maintain
power and air conditioning, and handle the daily operations of a data center. As a
system administrator, it’s in your best interest to befriend data center technicians
and bribe them with coffee, caffeinated soft drinks, and alcoholic beverages.

Architects
Systems architects have deep expertise in more than one area. They use their expe-
rience to design distributed systems. Their job descriptions may include defining
security zones and segmentation, eliminating single points of failure, planning for
future growth, ensuring connectivity among multiple networks and third parties,
and other site-wide decision making. Good architects are technically proficient and
generally prefer to implement and test their own designs.

1.13	 Recommended reading
Abbott, Martin L., and Michael T. Fisher. The Art of Scalability: Scalable Web
Architecture, Processes, and Organizations for the Modern Enterprise (2nd Edition).
Addison-Wesley Professional, 2015.

Gancarz, Mike. Linux and the Unix Philosophy. Boston: Digital Press, 2003.

Limoncelli, Thomas A., and Peter Salus. The Complete April Fools’ Day RFCs.
Peer-to-Peer Communications LLC. 2007. Engineering humor. You can read this
collection on-line for free at rfc-humor.com.

Raymond, Eric S. The Cathedral & The Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary. Sebastopol, CA: O’Reilly Media, 2001.

Salus, Peter H. The Daemon, the GNU & the Penguin: How Free and Open Soft-
ware is Changing the World. Reed Media Services, 2008. This fascinating history
of the open source movement by UNIX’s best-known historian is also available at
groklaw.com under the Creative Commons license. The URL for the book itself is
quite long; look for a current link at groklaw.com or try this compressed equiva-
lent: tinyurl.com/d6u7j.

Siever, Ellen, Stephen Figgins, Robert Love, and Arnold Robbins. Linux in
a Nutshell (6th Edition). Sebastopol, CA: O’Reilly Media, 2009.

System administration and DevOps
Kim, Gene, Kevin Behr, and George Spafford. The Phoenix Project: A Novel
about IT, DevOps, and Helping Your Business Win. Portland, OR: IT Revolution
Press, 2014. A guide to the philosophy and mindset needed to run a modern IT
organization, written as a narrative. An instant classic.

http://rfc-humor.com
http://groklaw.com
http://groklaw.com
http://tinyurl.com/d6u7j

	 Recommended reading	 29

W
he

re
 to

 S
ta

rt

Kim, Gene, Jez Humble, Patrick Debois, and John Willis. The DevOps Hand-
book: How to Create World-Class Agility, Reliability, and Security in Technology Or-
ganizations. Portland, OR: IT Revolution Press, 2016.

Limoncelli, Thomas A., Christina J. Hogan, and Strata R. Chalup. The
Practice of System and Network Administration (2nd Edition). Reading, MA: Ad-
dison-Wesley, 2008. This is a good book with particularly strong coverage of the
policy and procedural aspects of system administration. The authors maintain a
system administration blog at everythingsysadmin.com.

Limoncelli, Thomas A., Christina J. Hogan, and Strata R. Chalup. The Prac-
tice of Cloud System Administration. Reading, MA: Addison-Wesley, 2014. From
the same authors as the previous title, now with a focus on distributed systems and
cloud computing.

Essential tools
Blum, Richard, and Christine Bresnahan. Linux Command Line and Shell
Scripting Bible (3rd Edition). Wiley, 2015.

Dougherty, Dale, and Arnold Robins. Sed & Awk (2nd Edition). Sebastopol,
CA: O’Reilly Media, 1997. Classic O’Reilly book on the powerful, indispensable
text processors sed and awk.

Kim, Peter. The Hacker Playbook 2: Practical Guide To Penetration Testing. Cre-
ateSpace Independent Publishing Platform, 2015.

Neil, Drew. Practical Vim: Edit Text at the Speed of Thought. Pragmatic Bookshelf,
2012.

Shotts, William E. The Linux Command Line: A Complete Introduction. San Fran-
cisco, CA: No Starch Press, 2012.

Sweigart, Al. Automate the Boring Stuff with Python: Practical Programming for
Total Beginners. San Francisco, CA: No Starch Press, 2015.

http://everythingsysadmin.com

30

“Booting” is the standard term for “starting up a computer.” It’s a shortened form of
the word “bootstrapping,” which derives from the notion that the computer has to

“pull itself up by its own bootstraps.”

The boot process consists of a few broadly defined tasks:

•	 Finding, loading, and running bootstrapping code
•	 Finding, loading, and running the OS kernel
•	 Running startup scripts and system daemons
•	 Maintaining process hygiene and managing system state transitions

The activities included in that last bullet point continue as long as the system remains
up, so the line between bootstrapping and normal operation is inherently a bit blurry.

2.1	 Boot process overview
Startup procedures have changed a lot in recent years. The advent of modern (UEFI)
BIOSs has simplified the early stages of booting, at least from a conceptual stand-
point. In later stages, most Linux distributions now use a system manager daemon
called systemd instead of the traditional UNIX init. systemd streamlines the boot

2 Booting and System
Management Daemons

	 Boot process overview	 31

Bo
ot

in
g

process by adding dependency management, support for concurrent startup pro-
cesses, and a comprehensive approach to logging, among other features.

Boot management has also changed as systems have migrated into the cloud. The
drift toward virtualization, cloud instances, and containerization has reduced the
need for administrators to touch physical hardware. Instead, we now have image
management, APIs, and control panels.

During bootstrapping, the kernel is loaded into memory and begins to execute. A
variety of initialization tasks are performed, and the system is then made available
to users. The general overview of this process is shown in Exhibit A.

Exhibit A	 Linux & UNIX boot process

Load BIOS/UEFI
from NVRAM

Select boot device
(disk, network, ...)

Identify EFI
system partition

Load boot loader
(e.g., GRUB)

Determine which
kernel to boot

Load kernel Instantiate kernel
data structures

Start init/systemd
as PID 1

Execute
startup scripts

Running system

Probe for
hardware

Power
On

Administrators have little direct, interactive control over most of the steps required
to boot a system. Instead, admins can modify bootstrap configurations by editing
config files for the system startup scripts or by changing the arguments the boot
loader passes to the kernel.

Before the system is fully booted, filesystems must be checked and mounted and
system daemons started. These procedures are managed by a series of shell scripts
(sometimes called “init scripts”) or unit files that are run in sequence by init or
parsed by systemd. The exact layout of the startup scripts and the manner in which
they are executed varies among systems. We cover the details later in this chapter.

32	 Chapter 2	 Booting and System Management Daemons	

2.2	 System firmware
When a machine is powered on, the CPU is hardwired to execute boot code stored
in ROM. On virtualized systems, this “ROM” may be imaginary, but the concept
remains the same.

The system firmware typically knows about all the devices that live on the mother-
board, such as SATA controllers, network interfaces, USB controllers, and sensors
for power and temperature.1 In addition to allowing hardware-level configuration
of these devices, the firmware lets you either expose them to the operating system
or disable and hide them.

On physical (as opposed to virtualized) hardware, most firmware offers a user in-
terface. However, it’s generally crude and a bit tricky to access. You need control of
the computer and console, and must press a particular key immediately after pow-
ering on the system. Unfortunately, the identity of the magic key varies by manufac-
turer; see if you can glimpse a cryptic line of instructions at the instant the system
first powers on.2 Barring that, try Delete, Control, F6, F8, F10, or F11. For the best
chance of success, tap the key several times, then hold it down.

During normal bootstrapping, the system firmware probes for hardware and disks,
runs a simple set of health checks, and then looks for the next stage of bootstrap-
ping code. The firmware UI lets you designate a boot device, usually by prioritizing
a list of available options (e.g., “try to boot from the DVD drive, then a USB drive,
then a hard disk”).

In most cases, the system’s disk drives populate a secondary priority list. To boot
from a particular drive, you must both set it as the highest-priority disk and make
sure that “hard disk” is enabled as a boot medium.

BIOS vs. UEFI
Traditional PC firmware was called the BIOS, for Basic Input/Output System. Over
the last decade, however, BIOS has been supplanted by a more formalized and
modern standard, the Unified Extensible Firmware Interface (UEFI). You’ll often
see UEFI referred to as “UEFI BIOS,” but for clarity, we’ll reserve the term BIOS
for the legacy standard in this chapter. Most systems that implement UEFI can
fall back to a legacy BIOS implementation if the operating system they’re booting
doesn’t support UEFI.

UEFI is the current revision of an earlier standard, EFI. References to the name
EFI persist in some older documentation and even in some standard terms, such
as “EFI system partition.” In all but the most technically explicit situations, you can
treat these terms as equivalent.

	 1.	 Virtual systems pretend to have this same set of devices.
	 2.	 You might find it helpful to disable the monitor’s power management features temporarily.

	 System firmware	 33

Bo
ot

in
g

UEFI support is pretty much universal on new PC hardware these days, but plen-
ty of BIOS systems remain in the field. Moreover, virtualized environments often
adopt BIOS as their underlying boot mechanism, so the BIOS world isn’t in danger
of extinction just yet.

As much as we’d prefer to ignore BIOS and just talk about UEFI, it’s likely that you’ll
encounter both types of systems for years to come. UEFI also builds-in several ac-
commodations to the old BIOS regime, so a working knowledge of BIOS can be
quite helpful for deciphering the UEFI documentation.

Legacy BIOS
Traditional BIOS assumes that the boot device starts with a record called the MBR
(Master Boot Record). The MBR includes both a first-stage boot loader (aka “boot
block”) and a primitive disk partitioning table. The amount of space available for
the boot loader is so small (less than 512 bytes) that it’s not able to do much other
than load and run a second-stage boot loader.

Neither the boot block nor the BIOS is sophisticated enough to read any type of
standard filesystem, so the second-stage boot loader must be kept somewhere easy
to find. In one typical scenario, the boot block reads the partitioning information
from the MBR and identifies the disk partition marked as “active.” It then reads and
executes the second-stage boot loader from the beginning of that partition. This
scheme is known as a volume boot record.

Alternatively, the second-stage boot loader can live in the dead zone that lies be-
tween the MBR and the beginning of the first disk partition. For historical reasons,
the first partition doesn’t start until the 64th disk block, so this zone normally con-
tains at least 32KB of storage: still not a lot, but enough to store a filesystem driver.
This storage scheme is commonly used by the GRUB boot loader; see page 35.

To effect a successful boot, all components of the boot chain must be properly in-
stalled and compatible with one another. The MBR boot block is OS-agnostic, but
because it assumes a particular location for the second stage, there may be multiple
versions that can be installed. The second-stage loader is generally knowledgeable
about operating systems and filesystems (it may support several of each), and usu-
ally has configuration options of its own.

UEFI
The UEFI specification includes a modern disk partitioning scheme known as GPT
(GUID Partition Table, where GUID stands for “globally unique identifier”). UEFI
also understands FAT (File Allocation Table) filesystems, a simple but functional
layout that originated in MS-DOS. These features combine to define the concept
of an EFI System Partition (ESP). At boot time, the firmware consults the GPT
partition table to identify the ESP. It then reads the configured target application
directly from a file in the ESP and executes it.

Partitioning is a
way to subdivide
physical disks. See
page 742 for a more
detailed discussion.

See page 746 for
more information
about GPT partitions.

34	 Chapter 2	 Booting and System Management Daemons	

Because the ESP is just a generic FAT filesystem, it can be mounted, read, written,
and maintained by any operating system. No “mystery meat” boot blocks are re-
quired anywhere on the disk.3

In fact, no boot loader at all is technically required. The UEFI boot target can be a
UNIX or Linux kernel that has been configured for direct UEFI loading, thus effect-
ing a loader-less bootstrap. In practice, though, most systems still use a boot loader,
partly because that makes it easier to maintain compatibility with legacy BIOSes.

UEFI saves the pathname to load from the ESP as a configuration parameter. With
no configuration, it looks for a standard path, usually /efi/boot/bootx64.efi on
modern Intel systems. A more typical path on a configured system (this one for
Ubuntu and the GRUB boot loader) would be /efi/ubuntu/grubx64.efi. Other dis-
tributions follow a similar convention.

UEFI defines standard APIs for accessing the system’s hardware. In this respect, it’s
something of a miniature operating system in its own right. It even provides for
UEFI-level add-on device drivers, which are written in a processor-independent
language and stored in the ESP. Operating systems can use the UEFI interface, or
they can take over direct control of the hardware.

Because UEFI has a formal API, you can examine and modify UEFI variables (in-
cluding boot menu entries) on a running system. For example, efibootmgr -v shows
the following summary of the boot configuration:

$ efibootmgr -v
BootCurrent: 0004
BootOrder: 0000,0001,0002,0004,0003
Boot0000* EFI DVD/CDROM PciRoot(0x0)/Pci(0x1f,0x2)/Sata(1,0,0)
Boot0001* EFI Hard Drive PciRoot(0x0)/Pci(0x1f,0x2)/Sata(0,0,0)
Boot0002* EFI Network PciRoot(0x0)/Pci(0x5,0x0)/MAC(001c42fb5baf,0)
Boot0003* EFI Internal Shell MemoryMapped(11,0x7ed5d000,0x7f0dcfff)/

FvFile(c57ad6b7-0515-40a8-9d21-551652854e37)
Boot0004* ubuntu HD(1,GPT,020c8d3e-fd8c-4880-9b61-

ef4cffc3d76c,0x800,0x100000)/File(\EFI\ubuntu\shimx64.efi)

efibootmgr lets you change the boot order, select the next configured boot option,
or even create and destroy boot entries. For example, to set the boot order to try
the system drive before trying the network, and to ignore other boot options, we
could use the command

$ sudo efibootmgr -o 0004,0002

Here, we’re specifying the options Boot0004 and Boot0002 from the output above.

The ability to modify the UEFI configuration from user space means that the firm-
ware’s configuration information is mounted read/write—a blessing and a curse. On

	 3.	 Truth be told, UEFI does maintain an MBR-compatible record at the beginning of each disk to facili-
tate interoperability with BIOS systems. BIOS systems can’t see the full GPT-style partition table, but
they at least recognize the disk as having been formatted. Be careful not to run MBR-specific admin-
istrative tools on GPT disks. They may think they understand the disk layout, but they do not.

	 Boot loaders	 35

Bo
ot

in
g

systems (typically, those with systemd) that allow write access by default, rm -rf /
can be enough to permanently destroy the system at the firmware level; in addition
to removing files, rm also removes variables and other UEFI information accessible
through /sys.4 Yikes! Don’t try this at home!

2.3	 Boot loaders
Most bootstrapping procedures include the execution of a boot loader that is dis-
tinct from both the BIOS/UEFI code and the OS kernel. It’s also separate from the
initial boot block on a BIOS system, if you’re counting steps.

The boot loader’s main job is to identify and load an appropriate operating system
kernel. Most boot loaders can also present a boot-time user interface that lets you
select which of several possible kernels or operating systems to invoke.

Another task that falls to the boot loader is the marshaling of configuration argu-
ments for the kernel. The kernel doesn’t have a command line per se, but its startup
option handling will seem eerily similar from the shell. For example, the argument
single or -s usually tells the kernel to enter single-user mode instead of completing
the normal boot process.

Such options can be hard-wired into the boot loader’s configuration if you want them
used on every boot, or they can be provided on the fly through the boot loader’s UI.

In the next few sections, we discuss GRUB (the Linux world’s predominant boot
loader) and the boot loaders used with FreeBSD.

2.4	 GRUB: the GRand Unified Boot loader
GRUB, developed by the GNU Project, is the default boot loader on most Linux
distributions. The GRUB lineage has two main branches: the original GRUB, now
called GRUB Legacy, and the newer, extra-crispy GRUB 2, which is the current
standard. Make sure you know which GRUB you’re dealing with, as the two ver-
sions are quite different.

GRUB 2 has been the default boot manager for Ubuntu since version 9.10, and it
recently became the default for RHEL 7. All our example Linux distributions use
it as their default. In this book we discuss only GRUB 2, and we refer to it simply
as GRUB.

FreeBSD has its own boot loader (covered in more detail starting on page 39).
However, GRUB is perfectly happy to boot FreeBSD, too. This might be an advan-
tageous configuration if you’re planning to boot multiple operating systems on a
single computer. Otherwise, the FreeBSD boot loader is more than adequate.

	 4.	 See goo.gl/QMSiSG (link to Phoronix article) for some additional details.

http://goo.gl/QMSiSG

36	 Chapter 2	 Booting and System Management Daemons	

GRUB configuration
GRUB lets you specify parameters such as the kernel to boot (specified as a GRUB

“menu entry”) and the operating mode to boot into.

Since this configuration information is needed at boot time, you might imagine
that it would be stored somewhere strange, such as the system’s NVRAM or the
disk blocks reserved for the boot loader. In fact, GRUB understands most of the
filesystems in common use and can usually find its way to the root filesystem on its
own. This feat lets GRUB read its configuration from a regular text file.

The config file is called grub.cfg, and it’s usually kept in /boot/grub (/boot/grub2 in
Red Hat and CentOS) along with a selection of other resources and code modules
that GRUB might need to access at boot time.5 Changing the boot configuration is
a simple matter of updating the grub.cfg file.

Although you can create the grub.cfg file yourself, it’s more common to generate
it with the grub-mkconfig utility, which is called grub2-mkconfig on Red Hat
and CentOS and wrapped as update-grub on Debian and Ubuntu. In fact, most
distributions assume that grub.cfg can be regenerated at will, and they do so au-
tomatically after updates. If you don’t take steps to prevent this, your handcrafted
grub.cfg file will get clobbered.

As with all things Linux, distributions configure grub-mkconfig in a variety of ways.
Most commonly, the configuration is specified in /etc/default/grub in the form of
sh variable assignments. Table 2.1 shows some of the commonly modified options.

Table 2.1	 Common GRUB configuration options from /etc/default/grub

Shell variable name Contents or function

GRUB_BACKGROUND Background image a

GRUB_CMDLINE_LINUX Kernel parameters to add to menu entries for Linux b

GRUB_DEFAULT Number or title of the default menu entry
GRUB_DISABLE_RECOVERY Prevents the generation of recovery mode entries
GRUB_PRELOAD_MODULES List of GRUB modules to be loaded as early as possible
GRUB_TIMEOUT Seconds to display the boot menu before autoboot

a.	 The background image must be a .png, .tga, .jpg, or .jpeg file.
b.	Table 2.3 on page 38 lists some of the available options.

	 5.	 If you’re familiar with UNIX filesystem conventions (see Chapter 5, The Filesystem, starting on
page 120), you might wonder why /boot/grub isn’t named something more standard-looking such
as /var/lib/grub or /usr/local/etc/grub. The reason is that the filesystem drivers used at boot time are
somewhat simplified. Boot loaders can’t handle advanced features such as mount points as they tra-
verse the filesystem. Everything in /boot should be a simple file or directory.

See page 49 for more
about operating modes.

	 GRUB: the GRand Unified Boot loader	 37

Bo
ot

in
g

After editing /etc/default/grub, run update-grub or grub2-mkconfig to translate
your configuration into a proper grub.cfg file. As part of the configuration-building
process, these commands inventory the system’s bootable kernels, so they can be
useful to run after you make kernel changes even if you haven’t explicitly changed
the GRUB configuration.

You may need to edit the /etc/grub.d/40_custom file to change the order in which
kernels are listed in the boot menu (after you create a custom kernel, for exam-
ple), set a boot password, or change the names of boot menu items. As usual, run
update-grub or grub2-mkconfig after making changes.

As an example, here’s a 40_custom file that invokes a custom kernel on an Ubuntu
system:

#!/bin/sh

exec tail -n +3 $0

This file provides an easy way to add custom menu entries. Just type
the menu entries you want to add after this comment. Be careful not to
change the 'exec tail' line above.

menuentry 'My Awesome Kernel' {
	 set root='(hd0,msdos1)'
	 linux	 /awesome_kernel root=UUID=XXX-XXX-XXX ro quiet
	 initrd	 /initrd.img-awesome_kernel
}

In this example, GRUB loads the kernel from /awesome_kernel. Kernel paths are
relative to the boot partition, which historically was mounted as /boot but with the
advent of UEFI now is likely an unmounted EFI System Partition. Use gpart show
and mount to examine your disk and determine the state of the boot partition.

The GRUB command line
GRUB supports a command-line interface for editing config file entries on the fly
at boot time. To enter command-line mode, type c at the GRUB boot screen.

From the command line, you can boot operating systems that aren’t listed in the
grub.cfg file, display system information, and perform rudimentary filesystem
testing. Anything that can be done through grub.cfg can also be done through
the command line.

Press the <Tab> key to see a list of possible commands. Table 2.2 on the next page
shows some of the more useful ones.

See page 122 for more
information about
mounting filesystems.

38	 Chapter 2	 Booting and System Management Daemons	

Table 2.2	 GRUB commands

Cmd Function

boot Boots the system from the specified kernel image
help Gets interactive help for a command
linux Loads a Linux kernel
reboot Reboots the system
search Searches devices by file, filesystem label, or UUID
usb Tests USB support

For detailed information about GRUB and its command-line options, refer to the
official manual at gnu.org/software/grub/manual.

Linux kernel options
Kernel startup options typically modify the values of kernel parameters, instruct
the kernel to probe for particular devices, specify the path to the init or systemd
process, or designate a particular root device. Table 2.3 shows a few examples.

Table 2.3	 Examples of kernel boot time options

Option Meaning

debug Turns on kernel debugging
init=/bin/bash Starts only the bash shell; useful for emergency recovery
root=/dev/foo Tells the kernel to use /dev/foo as the root device
single  Boots to single-user mode

When specified at boot time, kernel options are not persistent. Edit the appropriate
kernel line in /etc/grub.d/40_custom or /etc/defaults/grub (the variable named
GRUB_CMDLINE_LINUX) to make the change permanent across reboots.

Security patches, bug fixes, and features are all regularly added to the Linux kernel.
Unlike other software packages, however, new kernel releases typically do not re-
place old ones. Instead, the new kernels are installed side by side with the previous
versions so that you can return to an older kernel in the event of problems.

This convention helps administrators back out of an upgrade if a kernel patch
breaks their system, although it also means that the boot menu tends to get clut-
tered with old versions of the kernel. Try choosing a different kernel if your system
won’t boot after an update.

See Chapter 11
for more about ker-
nel parameters.

http://gnu.org/software/grub/manual

	 The FreeBSD boot process	 39

Bo
ot

in
g

2.5	 The FreeBSD boot process
FreeBSD’s boot system is a lot like GRUB in that the final-stage boot loader (called
loader) uses a filesystem-based configuration file, supports menus, and offers an
interactive, command-line-like mode. loader is the final common pathway for both
the BIOS and UEFI boot paths.

The BIOS path: boot0
As with GRUB, the full loader environment is too large to fit in an MBR boot block,
so a chain of progressively more sophisticated preliminary boot loaders get loader
up and running on a BIOS system.

GRUB bundles all of these components under the umbrella name “GRUB,” but in
FreeBSD, the early boot loaders are part of a separate system called boot0 that’s
used only on BIOS systems. boot0 has options of its own, mostly because it stores
later stages of the boot chain in a volume boot record (see Legacy BIOS on page
33) rather than in front of the first disk partition.

For that reason, the MBR boot record needs a pointer to the partition it should use
to continue the boot process. Normally, all this is automatically set up for you as
part of the FreeBSD installation process, but if you should ever need to adjust the
configuration, you can do so with the boot0cfg command.

The UEFI path
On UEFI systems, FreeBSD creates an EFI system partition and installs boot code
there under the path /boot/bootx64.efi.6 This is the default path that UEFI sys-
tems check at boot time (at least on modern PC platforms), so no firmware-level
configuration should be needed other than ensuring that device boot priorities
are properly set.

By default, FreeBSD doesn’t keep the EFI system partition mounted after booting.
You can inspect the partition table with gpart to identify it:

$ gpart show
=>		 40	 134217648	 ada0	 GPT (64G)
		 40	 1600	 1	 efi (800K)
		 1640	 127924664	 2	 freebsd-ufs (61G)
		 127926304	 6291383	 3	 freebsd-swap (3.0G)
		 134217687	 1		 - free - (512B)

Although you can mount the ESP if you’re curious to see what’s in it (use mount’s
-t msdos option), the whole filesystem is actually just a copy of an image found in
/boot/boot1.efifat on the root disk. No user-serviceable parts inside.

	 6.	 Don’t confuse the /boot directory in the EFI system partition with the /boot directory in the FreeBSD
root filesystem. They are separate and serve different purposes, although of course both are boot-
strapping related.

See page 122 for more
information about
mounting filesystems.

40	 Chapter 2	 Booting and System Management Daemons	

If the ESP partition gets damaged or removed, you can re-create it by setting up the
partition with gpart and then copying in the filesystem image with dd:

$ sudo dd if=/boot/boot1.efifat of=/dev/ada0p1

Once the first-stage UEFI boot loader finds a partition of type freebsd-ufs,7 it loads
a UEFI version of the loader software from /boot/loader.efi. From there, booting
proceeds as under BIOS, with loader determining the kernel to load, the kernel
parameters to set, and so on.

loader configuration
loader is actually a scripting environment, and the scripting language is Forth.8
There’s a bunch of Forth code stored under /boot that controls loader’s operations,
but it’s designed to be self-contained—you needn’t learn Forth.

The Forth scripts execute /boot/loader.conf to obtain the values of configuration
variables, so that’s where your customizations should go. Don’t confuse this file with
/boot/defaults/loader.conf, which contains the configuration defaults and isn’t in-
tended for modification. Fortunately, the variable assignments in loader.conf are
syntactically similar to standard sh assignments.

The man pages for loader and loader.conf give the dirt on all the boot loader op-
tions and the configuration variables that control them. Some of the more interest-
ing options include those for protecting the boot menu with a password, changing
the splash screen displayed at boot, and passing kernel options.

loader commands
loader understands a variety of interactive commands. For example, to locate and
boot an alternate kernel, you’d use a sequence of commands like this:

Type ‘?’ for a list of commands, ‘help’ for more detailed help.
OK ls
/
 d .snap
 d dev
...
d rescue
l home
...
OK unload
OK load /boot/kernel/kernel.old
/boot/kernel/kernel.old text=0xf8f898 data=0x124 ... b077]
OK boot

	 7.	 As of FreeBSD 10.1, it is now possible to use ZFS as the root partition on a UEFI system.
	 8.	 This is a remarkable and interesting fact if you’re a historian of programming languages, and unim-

portant otherwise.

	 System management daemons	 41

Bo
ot

in
g

Here, we listed the contents of the (default) root filesystem, unloaded the default
kernel (/boot/kernel/kernel), loaded an older kernel (/boot/kernel/kernel.old),
and then continued the boot process.

See man loader for complete documentation of the available commands.

2.6	 System management daemons
Once the kernel has been loaded and has completed its initialization process, it cre-
ates a complement of “spontaneous” processes in user space. They’re called spon-
taneous processes because the kernel starts them autonomously—in the normal
course of events, new processes are created only at the behest of existing processes.

Most of the spontaneous processes are really part of the kernel implementation.
They don’t necessarily correspond to programs in the filesystem. They’re not con-
figurable, and they don’t require administrative attention. You can recognize them
in ps listings (see page 98) by their low PIDs and by the brackets around their
names (for example, [pagedaemon] on FreeBSD or [kdump] on Linux).

The exception to this pattern is the system management daemon. It has process ID
1 and usually runs under the name init. The system gives init a couple of special
privileges, but for the most part it’s just a user-level program like any other daemon.

Responsibilities of init
init has multiple functions, but its overarching goal is to make sure the system runs
the right complement of services and daemons at any given time.

To serve this goal, init maintains a notion of the mode in which the system should
be operating. Some commonly defined modes:9

•	 Single-user mode, in which only a minimal set of filesystems is mounted,
no services are running, and a root shell is started on the console

•	 Multiuser mode, in which all customary filesystems are mounted and all
configured network services have been started, along with a window sys-
tem and graphical login manager for the console

•	 Server mode, similar to multiuser mode, but with no GUI running on
the console

Every mode is associated with a defined complement of system services, and the
initialization daemon starts or stops services as needed to bring the system’s actu-
al state into line with the currently active mode. Modes can also have associated
milepost tasks that run whenever the mode begins or ends.

	 9.	 Don’t take these mode names or descriptions too literally; they’re just examples of common operating
modes that most systems define in one way or another.

42	 Chapter 2	 Booting and System Management Daemons	

As an example, init normally takes care of many different startup chores as a side
effect of its transition from bootstrapping to multiuser mode. These may include

•	 Setting the name of the computer
•	 Setting the time zone
•	 Checking disks with fsck
•	 Mounting filesystems
•	 Removing old files from the /tmp directory
•	 Configuring network interfaces
•	 Configuring packet filters
•	 Starting up other daemons and network services

init has very little built-in knowledge about these tasks. In simply runs a set of com-
mands or scripts that have been designated for execution in that particular context.

Implementations of init
Today, three very different flavors of system management processes are in wide-
spread use:

•	 An init styled after the init from AT&T’s System V UNIX, which we re-
fer to as “traditional init.” This was the predominant init used on Linux
systems until the debut of systemd.

•	 An init variant that derives from BSD UNIX and is used on most BSD-
based systems, including FreeBSD, OpenBSD, and NetBSD. This one is
just as tried-and-true as the SysV init and has just as much claim to being
called “traditional,” but for clarity we refer to it as “BSD init.” This variant
is quite simple in comparison with SysV-style init. We discuss it separately
starting on page 57.

•	 A more recent contender called systemd which aims to be one-stop-shop-
ping for all daemon- and state-related issues. As a consequence, systemd
carves out a significantly larger territory than any historical version of init.
That makes it somewhat controversial, as we discuss below. Nevertheless,
all our example Linux distributions have now adopted systemd.

Although these implementations are the predominant ones today, they’re far from
being the only choices. Apple’s macOS, for example, uses a system called launchd.
Until it adopted systemd, Ubuntu used another modern init variant called Upstart.

On Linux systems, you can theoretically replace your system’s default init with
whichever variant you prefer. But in practice, init is so fundamental to the opera-
tion of the system that a lot of add-on software is likely to break. If you can’t abide
systemd, standardize on a distribution that doesn’t use it.

	 System management daemons	 43

Bo
ot

in
g

Traditional init
In the traditional init world, system modes (e.g., single-user or multiuser) are known
as “run levels.” Most run levels are denoted by a single letter or digit.

Traditional init has been around since the early 80s, and grizzled folks in the anti-​
systemd camp often cite the principle, “If it ain’t broke, don’t fix it.” That said, tra-
ditional init does have a number of notable shortcomings.

To begin with, the traditional init on its own is not really powerful enough to han-
dle the needs of a modern system. Most systems that use it actually have a standard
and fixed init configuration that never changes. That configuration points to a sec-
ond tier of shell scripts that do the actual work of changing run levels and letting
administrators make configuration changes.

The second layer of scripts maintains yet a third layer of daemon- and system-spe-
cific scripts, which are cross-linked to run-level-specific directories that indicate
what services are supposed to be running at what run level. It’s all a bit hackish
and unsightly.

More concretely, this system has no general model of dependencies among services,
so it requires that all startups and takedowns be run in a numeric order that’s main-
tained by the administrator. Later actions can’t run until everything ahead of them
has finished, so it’s impossible to execute actions in parallel, and the system takes
a long time to change states.

systemd vs. the world
Few issues in the Linux space have been more hotly debated than the migration
from traditional init to systemd. For the most part, complaints center on systemd’s
seemingly ever-increasing scope.

systemd takes all the init features formerly implemented with sticky tape, shell
script hacks, and the sweat of administrators and formalizes them into a unified
field theory of how services should be configured, accessed, and managed.

Much like a package management system, systemd defines a robust dependency
model, not only among services but also among “targets,” systemd’s term for the
operational modes that traditional init calls run levels. systemd not only manages
processes in parallel, but also manages network connections (networkd), kernel
log entries (journald), and logins (logind).

The anti-systemd camp argues that the UNIX philosophy is to keep system com-
ponents small, simple, and modular. A component as fundamental as init, they
say, should not have monolithic control over so many of the OS’s other subsystems.
systemd not only breeds complexity, but also introduces potential security weak-
nesses and muddies the distinction between the OS platform and the services that
run on top of it.

See Chapter 6,
Software Installation
and Management,
for more informa-
tion about package
management.

44	 Chapter 2	 Booting and System Management Daemons	

systemd has also received criticism for imposing new standards and responsibili-
ties on the Linux kernel, for its code quality, for the purported unresponsiveness of
its developers to bug reports, for the functional design of its basic features, and for
looking at people funny. We can’t fairly address these issues here, but you may find it
informative to peruse the Arguments against systemd section at without-systemd.org,
the Internet’s premier systemd hate site.

inits judged and assigned their proper punishments
The architectural objections to systemd outlined above are all reasonable points.
systemd does indeed display most of the telltale stigmata of an overengineered
software project.

In practice, however, many administrators quite like systemd, and we fall squarely
into this camp. Ignore the controversy for a bit and give systemd a chance to win
your love. Once you’ve become accustomed to it, you will likely find yourself ap-
preciating its many merits.

At the very least, keep in mind that the traditional init that systemd displaces was
no national treasure. If nothing else, systemd delivers some value just by eliminat-
ing a few of the unnecessary differences among Linux distributions.

The debate really doesn’t matter anymore because the systemd coup is over. The ar-
gument was effectively settled when Red Hat, Debian, and Ubuntu switched. Many
other Linux distributions are now adopting systemd, either by choice or by being
dragged along, kicking and screaming, by their upstream distributions.

Traditional init still has a role to play when a distribution either targets a small
installation footprint or doesn’t need systemd’s advanced process management
functions. There’s also a sizable population of revanchists who disdain systemd on
principle, so some Linux distributions are sure to keep traditional init alive indef-
initely as a form of protest theater.

Nevertheless, we don’t think that traditional init has enough of a future to merit a
detailed discussion in this book. For Linux, we mostly limit ourselves to systemd.
We also discuss the mercifully simple system used by FreeBSD, starting on page 57.

2.7	 systemd in detail
The configuration and control of system services is an area in which Linux distri-
butions have traditionally differed the most from one another. systemd aims to
standardize this aspect of system administration, and to do so, it reaches further
into the normal operations of the system than any previous alternative.

http://without-systemd.org

Bo
ot

in
g

	 systemd in detail	 45

systemd is not a single daemon but a collection of programs, daemons, libraries,
technologies, and kernel components. A post on the systemd blog at 0pointer.de/blog
notes that a full build of the project generates 69 different binaries. Think of it as a
scrumptious buffet at which you are forced to consume everything.

Since systemd depends heavily on features of the Linux kernel, it’s a Linux-only
proposition. You won’t see it ported to BSD or to any other variant of UNIX with-
in the next five years.

Units and unit files
An entity that is managed by systemd is known generically as a unit. More spe-
cifically, a unit can be “a service, a socket, a device, a mount point, an automount
point, a swap file or partition, a startup target, a watched filesystem path, a timer
controlled and supervised by systemd, a resource management slice, a group of
externally created processes, or a wormhole into an alternate universe.”10 OK, we
made up the part about the alternate universe, but that still covers a lot of territory.

Within systemd, the behavior of each unit is defined and configured by a unit file.
In the case of a service, for example, the unit file specifies the location of the ex-
ecutable file for the daemon, tells systemd how to start and stop the service, and
identifies any other units that the service depends on.

We explore the syntax of unit files in more detail soon, but here’s a simple example
from an Ubuntu system as an appetizer. This unit file is rsync.service; it handles
startup of the rsync daemon that mirrors filesystems.

[Unit]
Description=fast remote file copy program daemon
ConditionPathExists=/etc/rsyncd.conf

[Service]
ExecStart=/usr/bin/rsync --daemon --no-detach

[Install]
WantedBy=multi-user.target

If you recognize this as the file format used by MS-DOS .ini files, you are well on
your way to understanding both systemd and the anguish of the systemd haters.

Unit files can live in several different places. /usr/lib/systemd/system is the main
place where packages deposit their unit files during installation; on some systems,
the path is /lib/systemd/system instead. The contents of this directory are consid-
ered stock, so you shouldn’t modify them. Your local unit files and customizations
can go in /etc/systemd/system. There’s also a unit directory in /run/systemd/system
that’s a scratch area for transient units.

systemd maintains a telescopic view of all these directories, so they’re pretty much
equivalent. If there’s any conflict, the files in /etc have the highest priority.

	 10.	 Mostly quoted from the systemd.unit man page

See page 594 for
more information
about rsync.

http://0pointer.de/blog

46	 Chapter 2	 Booting and System Management Daemons	

By convention, unit files are named with a suffix that varies according to the type
of unit being configured. For example, service units have a .service suffix and tim-
ers use .timer. Within the unit file, some sections (e.g., [Unit]) apply generically
to all kinds of units, but others (e.g., [Service]) can appear only in the context of
a particular unit type.

systemctl: manage systemd
systemctl is an all-purpose command for investigating the status of systemd and
making changes to its configuration. As with Git and several other complex software
suites, systemctl’s first argument is typically a subcommand that sets the general
agenda, and subsequent arguments are specific to that particular subcommand. The
subcommands could be top-level commands in their own right, but for consistency
and clarity, they’re bundled into the systemctl omnibus.

Running systemctl without any arguments invokes the default list-units subcom-
mand, which shows all loaded and active services, sockets, targets, mounts, and
devices. To show only loaded and active services, use the --type=service qualifier:

$ systemctl list-units --type=service
UNIT	 LOAD	 ACTIVE	 SUB	 DESCRIPTION
accounts-daemon.service	 loaded	 active	 running	 Accounts Service
...
wpa_supplicant.service	 loaded	 active	 running	 WPA supplicant

It’s also sometimes helpful to see all the installed unit files, regardless of whether
or not they’re active:

$ systemctl list-unit-files --type=service
UNIT FILE	 STATE
...
cron.service	 enabled
cryptdisks-early.service	 masked
cryptdisks.service	 masked
cups-browsed.service	 enabled
cups.service	 disabled
...
wpa_supplicant.service	 disabled
x11-common.service	 masked

188 unit files listed.

For subcommands that act on a particular unit (e.g., systemctl status) systemctl
can usually accept a unit name without a unit-type suffix (e.g., cups instead of
cups.service). However, the default unit type with which simple names are fleshed
out varies by subcommand.

Table 2.4 shows the most common and useful systemctl subcommands. See the
systemctl man page for a complete list.

See page 235 for more
information about Git.

Bo
ot

in
g

	 systemd in detail	 47

Table 2.4	 Commonly used systemctl subcommands

Subcommand Function

list-unit-files [ pattern ] Shows installed units; optionally matching pattern
enable unit Enables unit to activate at boot
disable unit Prevents unit from activating at boot
isolate target Changes operating mode to target
start unit Activates unit immediately
stop unit Deactivates unit immediately
restart unit Restarts (or starts, if not running) unit immediately
status unit Shows unit’s status and recent log entries
kill pattern Sends a signal to units matching pattern
reboot Reboots the computer
daemon-reload Reloads unit files and systemd configuration

Unit statuses
In the output of systemctl list-unit-files above, we can see that cups.service is dis-
abled. We can use systemctl status to find out more details:

$ sudo systemctl status -l cups
cups.service - CUPS Scheduler
 Loaded: loaded (/lib/systemd/system/cups.service; disabled; vendor

preset: enabled)
 Active: inactive (dead) since Sat 2016-12-12 00:51:40 MST; 4s ago
 Docs: man:cupsd(8)
 Main PID: 10081 (code=exited, status=0/SUCCESS)

Dec 12 00:44:39 ulsah systemd[1]: Started CUPS Scheduler.
Dec 12 00:44:45 ulsah systemd[1]: Started CUPS Scheduler.
Dec 12 00:51:40 ulsah systemd[1]: Stopping CUPS Scheduler...
Dec 12 00:51:40 ulsah systemd[1]: Stopped CUPS Scheduler.

Here, systemctl shows us that the service is currently inactive (dead) and tells us
when the process died. (Just a few seconds ago; we disabled it for this example.) It
also shows (in the section marked Loaded) that the service defaults to being enabled
at startup, but that it is presently disabled.

The last four lines are recent log entries. By default, the log entries are condensed
so that each entry takes only one line. This compression often makes entries un-
readable, so we included the -l option to request full entries. It makes no difference
in this case, but it’s a useful habit to acquire.

Table 2.5 on the next page shows the statuses you’ll encounter most frequently
when checking up on units.

48	 Chapter 2	 Booting and System Management Daemons	

Table 2.5	 Unit file statuses

State Meaning

bad Some kind of problem within systemd; usually a bad unit file
disabled Present, but not configured to start autonomously
enabled Installed and runnable; will start autonomously
indirect Disabled, but has peers in Also clauses that may be enabled
linked Unit file available through a symlink
masked Banished from the systemd world from a logical perspective
static Depended upon by another unit; has no install requirements

The enabled and disabled states apply only to unit files that live in one of systemd’s
system directories (that is, they are not linked in by a symbolic link) and that have
an [Install] section in their unit files. “Enabled” units should perhaps really be
thought of as “installed,” meaning that the directives in the [Install] section have
been executed and that the unit is wired up to its normal activation triggers. In
most cases, this state causes the unit to be activated automatically once the system
is bootstrapped.

Likewise, the disabled state is something of a misnomer because the only thing
that’s actually disabled is the normal activation path. You can manually activate a
unit that is disabled by running systemctl start; systemd won’t complain.

Many units have no installation procedure, so they can’t truly be said to be enabled
or disabled; they’re just available. Such units’ status is listed as static. They only
become active if activated by hand (systemctl start) or named as a dependency of
other active units.

Unit files that are linked were created with systemctl link. This command creates a
symbolic link from one of systemd’s system directories to a unit file that lives else-
where in the filesystem. Such unit files can be addressed by commands or named
as dependencies, but they are not full citizens of the ecosystem and have some no-
table quirks. For example, running systemctl disable on a linked unit file deletes
the link and all references to it.

Unfortunately, the exact behavior of linked unit files is not well documented. Al-
though the idea of keeping local unit files in a separate repository and linking them
into systemd has a certain appeal, it’s probably not the best approach at this point.
Just make copies.

The masked status means “administratively blocked.” systemd knows about the unit,
but has been forbidden from activating it or acting on any of its configuration direc-
tives by systemctl mask. As a rule of thumb, turn off units whose status is enabled
or linked with systemctl disable and reserve systemctl mask for static units.

Bo
ot

in
g

	 systemd in detail	 49

Returning to our investigation of the cups service, we could use the following com-
mands to reenable and start it:

$ sudo systemctl enable cups
Synchronizing state of cups.service with SysV init with /lib/systemd/

systemd-sysv-install...
Executing /lib/systemd/systemd-sysv-install enable cups
insserv: warning: current start runlevel(s) (empty) of script `cups’

overrides LSB defaults (2 3 4 5).
insserv: warning: current stop runlevel(s) (1 2 3 4 5) of script `cups’

overrides LSB defaults (1).
Created symlink from /etc/systemd/system/sockets.target.wants/cups.socket

to /lib/systemd/system/cups.socket.
Created symlink from /etc/systemd/system/multi-user.target.wants/cups.

path to /lib/systemd/system/cups.path.
$ sudo systemctl start cups

Targets
Unit files can declare their relationships to other units in a variety of ways. In the
example on page 45, for example, the WantedBy clause says that if the system
has a multi-user.target unit, that unit should depend on this one (rsync.service)
when this unit is enabled.

Because units directly support dependency management, no additional machin-
ery is needed to implement the equivalent of init’s run levels. For clarity, systemd
does define a distinct class of units (of type .target) to act as well-known markers
for common operating modes. However, targets have no real superpowers beyond
the dependency management that’s available to any other unit.

Traditional init defines at least seven numeric run levels, but many of those aren’t
actually in common use. In a perhaps-ill-advised gesture toward historical conti-
nuity, systemd defines targets that are intended as direct analogs of the init run
levels (runlevel0.target, etc.). It also defines mnemonic targets for day-to-day use
such as poweroff.target and graphical.target. Table 2.6 on the next page shows
the mapping between init run levels and systemd targets.

The only targets to really be aware of are multi-user.target and graphical.target for
day-to-day use, and rescue.target for accessing single-user mode. To change the
system’s current operating mode, use the systemctl isolate command:

$ sudo systemctl isolate multi-user.target

The isolate subcommand is so-named because it activates the stated target and its
dependencies but deactivates all other units.

Under traditional init, you use the telinit command to change run levels once the
system is booted. Some distributions now define telinit as a symlink to the systemctl
command, which recognizes how it’s being invoked and behaves appropriately.

50	 Chapter 2	 Booting and System Management Daemons	

Table 2.6	 Mapping between init run levels and systemd targets

Run level Target Description

0 poweroff.target System halt
emergency emergency.target Bare-bones shell for system recovery
1, s, single rescue.target Single-user mode

2 multi-user.target a Multiuser mode (command line)
3 multi-user.target a Multiuser mode with networking
4 multi-user.target a Not normally used by init
5 graphical.target Multiuser mode with networking and GUI
6 reboot.target System reboot

a.	 By default, multi-user.target maps to runlevel3.target, multiuser mode with networking.

To see the target the system boots into by default, run the get-default subcommand:

$ systemctl get-default
graphical.target

Most Linux distributions boot to graphical.target by default, which isn’t appropri-
ate for servers that don’t need a GUI. But that’s easily changed:

$ sudo systemctl set-default multi-user.target

To see all the system’s available targets, run systemctl list-units:

$ systemctl list-units --type=target

Dependencies among units
Linux software packages generally come with their own unit files, so administra-
tors don’t need a detailed knowledge of the entire configuration language. However,
they do need a working knowledge of systemd’s dependency system to diagnose
and fix dependency problems.

To begin with, not all dependencies are explicit. systemd takes over the functions of
the old inetd and also extends this idea into the domain of the D-Bus interprocess
communication system. In other words, systemd knows which network ports or
IPC connection points a given service will be hosting, and it can listen for requests
on those channels without actually starting the service. If a client does materialize,
systemd simply starts the actual service and passes off the connection. The service
runs if it’s actually used and remains dormant otherwise.

Second, systemd makes some assumptions about the normal behavior of most kinds
of units. The exact assumptions vary by unit type. For example, systemd assumes that
the average service is an add-on that shouldn’t be running during the early phases of
system initialization. Individual units can turn off these assumptions with the line

DefaultDependencies=false

Bo
ot

in
g

	 systemd in detail	 51

in the [Unit] section of their unit file; the default is true. See the man page for
systemd.unit-type to see the exact assumptions that apply to each type of unit (e.g.,
man systemd.service).

A third class of dependencies are those explicitly declared in the [Unit] sections of
unit files. Table 2.7 shows the available options.

Table 2.7	 Explicit dependencies in the [Unit] section of unit files

Option Meaning

Wants Units that should be coactivated if possible, but are not required
Requires Strict dependencies; failure of any prerequisite terminates this service
Requisite Like Requires, but must already be active
BindsTo Similar to Requires, but even more tightly coupled
PartOf Similar to Requires, but affects only starting and stopping
Conflicts Negative dependencies; cannot be coactive with these units

With the exception of Conflicts, all the options in Table 2.7 express the basic idea
that the unit being configured depends on some set of other units. The exact dis-
tinctions among these options are subtle and primarily of interest to service devel-
opers. The least restrictive variant, Wants, is preferred when possible.

You can extend a unit’s Wants or Requires cohorts by creating a unit-file.wants or
unit-file.requires directory in /etc/systemd/system and adding symlinks there to
other unit files. Better yet, just let systemctl do it for you. For example, the command

$ sudo systemctl add-wants multi-user.target my.local.service

adds a dependency on my.local.service to the standard multiuser target, ensuring
that the service will be started whenever the system enters multiuser mode.

In most cases, such ad hoc dependencies are automatically taken care of for you,
courtesy of the [Install] sections of unit files. This section includes WantedBy
and RequiredBy options that are read only when a unit is enabled with systemctl
enable or disabled with systemctl disable. On enablement, they make systemctl
perform the equivalent of an add-wants for every WantedBy or an add-requires
for every RequiredBy.

The [Install] clauses themselves have no effect in normal operation, so if a unit
doesn’t seem to be started when it should be, make sure that it has been properly
enabled and symlinked.

Execution order
You might reasonably guess that if unit A Requires unit B, then unit B will be started
or configured before unit A. But in fact that is not the case. In systemd, the order

52	 Chapter 2	 Booting and System Management Daemons	

in which units are activated (or deactivated) is an entirely separate question from
that of which units to activate.

When the system transitions to a new state, systemd first traces the various sources
of dependency information outlined in the previous section to identify the units
that will be affected. It then uses Before and After clauses from the unit files to
sort the work list appropriately. To the extent that units have no Before or After
constraints, they are free to be adjusted in parallel.

Although potentially surprising, this is actually a praiseworthy design feature. One of
the major design goals of systemd was to facilitate parallelism, so it makes sense that
units do not acquire serialization dependencies unless they explicitly ask for them.

In practice, After clauses are typically used more frequently than Wants or Requires.
Target definitions (and in particular, the reverse dependencies encoded in WantedBy
and RequiredBy clauses) establish the general outlines of the services running in
each operating mode, and individual packages worry only about their immediate
and direct dependencies.

A more complex unit file example
Now for a closer look at a few of the directives used in unit files. Here’s a unit file
for the NGINX web server, nginx.service:

[Unit]
Description=The nginx HTTP and reverse proxy server
After=network.target remote-fs.target nss-lookup.target

[Service]
Type=forking
PIDFile=/run/nginx.pid
ExecStartPre=/usr/bin/rm -f /run/nginx.pid
ExecStartPre=/usr/sbin/nginx -t
ExecStart=/usr/sbin/nginx
ExecReload=/bin/kill -s HUP $MAINPID
KillMode=process
KillSignal=SIGQUIT
TimeoutStopSec=5
PrivateTmp=true

[Install]
WantedBy=multi-user.target

This service is of type forking, which means that the startup command is expected
to terminate even though the actual daemon continues running in the background.
Since systemd won’t have directly started the daemon, the daemon records its PID
(process ID) in the stated PIDFile so that systemd can determine which process
is the daemon’s primary instance.

The Exec lines are commands to be run in various circumstances. ExecStartPre
commands are run before the actual service is started; the ones shown here validate

Bo
ot

in
g

	 systemd in detail	 53

the syntax of NGINX’s configuration file and ensure that any preexisting PID file
is removed. ExecStart is the command that actually starts the service. ExecReload
tells systemd how to make the service reread its configuration file. (systemd au-
tomatically sets the environment variable MAINPID to the appropriate value.)

Termination for this service is handled through KillMode and KillSignal, which
tell systemd that the service daemon interprets a QUIT signal as an instruction to
clean up and exit. The line

ExecStop=/bin/kill -s HUP $MAINPID

would have essentially the same effect. If the daemon doesn’t terminate within
TimeoutStopSec seconds, systemd will force the issue by pelting it with a TERM
signal and then an uncatchable KILL signal.

The PrivateTmp setting is an attempt at increasing security. It puts the service’s
/tmp directory somewhere other than the actual /tmp, which is shared by all the
system’s processes and users.

Local services and customizations
As you can see from the previous examples, it’s relatively trivial to create a unit file
for a home-grown service. Browse the examples in /usr/lib/systemd/system and
adapt one that’s close to what you want. See the man page for systemd.service for
a complete list of configuration options for services. For options common to all
types of units, see the page for systemd.unit.

Put your new unit file in /etc/systemd/system. You can then run

$ sudo systemctl enable custom.service

to activate the dependencies listed in the service file’s [Install] section.

As a general rule, you should never edit a unit file you didn’t write. Instead, create
a configuration directory in /etc/systemd/system/unit-file.d and add one or more
configuration files there called xxx.conf. The xxx part doesn’t matter; just make
sure the file has a .conf suffix and is in the right location. override.conf is the
standard name.

.conf files have the same format as unit files, and in fact systemd smooshes them
all together with the original unit file. However, override files have priority over
the original unit file should both sources try to set the value of a particular option.

One point to keep in mind is that many systemd options are allowed to appear
more than once in a unit file. In these cases, the multiple values form a list and are
all active simultaneously. If you assign a value in your override.conf file, that val-
ue joins the list but does not replace the existing entries. This may or may not be
what you want. To remove the existing entries from a list, just assign the option an
empty value before adding your own.

See page 94 for
more information
about signals.

54	 Chapter 2	 Booting and System Management Daemons	

Let’s look at an example. Suppose that your site keeps its NGINX configuration
file in a nonstandard place, say, /usr/local/www/nginx.conf. You need to run the
nginx daemon with a -c /usr/local/www/nginx.conf option so that it can find the
proper configuration file.

You can’t just add this option to /usr/lib/systemd/system/nginx.service because
that file will be replaced whenever the NGINX package is updated or refreshed.
Instead, you can use the following command sequence:

$ sudo mkdir /etc/systemd/system/nginx.service.d
$ sudo cat > !$/override.conf 11
[Service]
ExecStart=
ExecStart=/usr/sbin/nginx -c /usr/local/www/nginx.conf
<Control-D>
$ sudo systemctl daemon-reload
$ sudo systemctl restart nginx.service

The first ExecStart= removes the current entry, and the second sets an alterna-
tive start command. systemctl daemon-reload makes systemd re-parse unit files.
However, it does not restart daemons automatically, so you’ll also need an explicit
systemctl restart to make the change take effect immediately.

This command sequence is such a common idiom that systemctl now implements
it directly:

$ sudo systemctl edit nginx.service
<edit the override file in the editor>
$ sudo systemctl restart nginx.service

 As shown, you must still do the restart by hand.

One last thing to know about override files is that they can’t modify the [Install]
section of a unit file. Any changes you make are silently ignored. Just add depen-
dencies directly with systemctl add-wants or systemctl add-requires.

Service and startup control caveats
systemd has many architectural implications, and adopting it is not a simple task for
the teams that build Linux distributions. Current releases are mostly Frankenstein
systems that adopt much of systemd but also retain a few links to the past. Some-
times the holdovers just haven’t yet been fully converted. In other cases, various
forms of glue have been left behind to facilitate compatibility.

	 11.	 The > and !$ are shell metacharacters. The > redirects output to a file, and the !$ expands to the last
component of the previous command line so that you don’t have to retype it. All shells understand
this notation. See Shell basics starting on page 189 for some other handy features.

http://www/nginx.conf

Bo
ot

in
g

	 systemd in detail	 55

Though systemctl can and should be used for managing services and daemons, don’t
be surprised when you run into traditional init scripts or their associated helper
commands. If you attempt to use systemctl to disable the network on a CentOS or
Red Hat system, for example, you’ll receive the following output:

$ sudo systemctl disable network
network.service is not a native service, redirecting to /sbin/chkconfig.
Executing /sbin/chkconfig network off

Traditional init scripts often continue to function on a systemd system. For exam-
ple, an init script /etc/rc.d/init.d/my-old-service might be automatically mapped
to a unit file such as my-old-service.service during system initialization or when
systemctl daemon-reload is run. Apache 2 on Ubuntu 17.04 is a case in point: at-
tempting to disable the apache2.service results in the following output:

$ sudo systemctl disable apache2
Synchronizing state of apache2.service with SysV service script with

/lib/systemd/systemd-sysv-install.
Executing: /lib/systemd/systemd-sysv-install disable apache2

The end result is what you wanted, but it goes through a rather circuitous route.

Red Hat, and by extension CentOS, still run the /etc/rc.d/rc.local script at boot
time if you configure it to be executable.12 In theory, you can use this script to hack
in site-specific tweaks or post-boot tasks if desired. (At this point, though, you
should really skip the hacks and do things systemd’s way by creating an appropri-
ate set of unit files.)

Some Red Hat and CentOS boot chores continue to use config files found in the
/etc/sysconfig directory. Table 2.8 summarizes these.

Table 2.8	 Files and subdirectories of Red Hat’s /etc/sysconfig directory

File or directory Contents

console/ A directory that historically allowed for custom keymapping
crond Arguments to pass to the crond daemon
init Configuration for handling messages from startup scripts
iptables-config Loads additional iptables modules such as NAT helpers
network-scripts/ Accessory scripts and network config files
nfs Optional RPC and NFS arguments
ntpd Command-line options for ntpd
selinux Symlink to /etc/selinux/config a

a.	 Sets arguments for SELinux or allows you to disable it altogether; see page 85.

	 12.	 A quick sudo chmod +x /etc/rc.d/rc.local will ensure that the file is executable.

See page 696 for
more information
about Apache.

RHEL

56	 Chapter 2	 Booting and System Management Daemons	

A couple of the items in Table 2.8 merit additional comment:

•	 The network-scripts directory contains additional material related to net-
work configuration. The only things you might need to change here are
the files named ifcfg-interface. For example, network-scripts/ifcfg-eth0
contains the configuration parameters for the interface eth0. It sets the
interface’s IP address and networking options. See page 419 for more
information about configuring network interfaces.

•	 The iptables-config file doesn’t actually allow you to modify the iptables
(firewall) rules themselves. It just provides a way to load additional mod-
ules such as those for network address translation (NAT) if you’re going
to be forwarding packets or using the system as a router. See page 440
for more information about configuring iptables.

systemd logging
Capturing the log messages produced by the kernel has always been something of
a challenge. It became even more important with the advent of virtual and cloud-
based systems, since it isn’t possible to simply stand in front of these systems’ con-
soles and watch what happens. Frequently, crucial diagnostic information was lost
to the ether.

systemd alleviates this problem with a universal logging framework that includes all
kernel and service messages from early boot to final shutdown. This facility, called
the journal, is managed by the journald daemon.

System messages captured by journald are stored in the /run directory. rsyslog
can process these messages and store them in traditional log files or forward them
to a remote syslog server. You can also access the logs directly with the journalctl
command.

Without arguments, journalctl displays all log entries (oldest first):

$ journalctl
-- Logs begin at Fri 2016-02-26 15:01:25 UTC, end at Fri 2016-02-26

15:05:16 UTC. --
Feb 26 15:01:25 ubuntu systemd-journal[285]: Runtime journal is using

4.6M (max allowed 37.0M, t
Feb 26 15:01:25 ubuntu systemd-journal[285]: Runtime journal is using

4.6M (max allowed 37.0M, t
Feb 26 15:01:25 ubuntu kernel: Initializing cgroup subsys cpuset
Feb 26 15:01:25 ubuntu kernel: Initializing cgroup subsys cpu
Feb 26 15:01:25 ubuntu kernel: Linux version 3.19.0-43-generic (buildd@

lcy01-02) (gcc version 4.
Feb 26 15:01:25 ubuntu kernel: Command line: BOOT_IMAGE=/boot/vmlinuz-

3.19.0-43-generic root=UUI
Feb 26 15:01:25 ubuntu kernel: KERNEL supported cpus:
Feb 26 15:01:25 ubuntu kernel: Intel GenuineIntel
...

Bo
ot

in
g

	 FreeBSD init and startup scripts	 57

You can configure journald to retain messages from prior boots. To do this, edit
/etc/systemd/journald.conf and configure the Storage attribute:

[Journal]
Storage=persistent

 Once you’ve configured journald, you can obtain a list of prior boots with

$ journalctl --list-boots
-1 a73415fade0e4e7f4bea60913883d180dc Fri 2016-02-26 15:01:25 UTC

Fri 2016-02-26 15:05:16 UTC
0 0c563fa3830047ecaa2d2b053d4e661d Fri 2016-02-26 15:11:03 UTC Fri

2016-02-26 15:12:28 UTC

You can then access messages from a prior boot by referring to its index or by nam-
ing its long-form ID:

$ journalctl -b -1
$ journalctl -b a73415fade0e4e7f4bea60913883d180dc

To restrict the logs to those associated with a specific unit, use the -u flag:

$ journalctl -u ntp
-- Logs begin at Fri 2016-02-26 15:11:03 UTC, end at Fri 2016-02-26

15:26:07 UTC. --
Feb 26 15:11:07 ub-test-1 systemd[1]: Stopped LSB: Start NTP daemon.
Feb 26 15:11:08 ub-test-1 systemd[1]: Starting LSB: Start NTP daemon...
Feb 26 15:11:08 ub-test-1 ntp[761]: * Starting NTP server ntpd
...

System logging is covered in more detail in Chapter 10, Logging.

2.8	 FreeBSD init and startup scripts
FreeBSD uses a BSD-style init, which does not support the concept of run levels.
To bring the system to its fully booted state, FreeBSD’s init just runs /etc/rc. This
program is a shell script, but it should not be directly modified. Instead, the rc
system implements a couple of standardized ways for administrators and software
packages to extend the startup system and make configuration changes.

/etc/rc is primarily a wrapper that runs other startup scripts, most of which live in
/usr/local/etc/rc.d. and /etc/rc.d. Before it runs any of those scripts, however, rc
executes three files that hold configuration information for the system:

•	 /etc/defaults/config
•	 /etc/rc.conf
•	 /etc/rc.conf.local

These files are themselves scripts, but they typically contain only definitions for the
values of shell variables. The startup scripts then check these variables to determine

See Chapter 7 for
more information
about shell scripting.

58	 Chapter 2	 Booting and System Management Daemons	

how to behave. (/etc/rc uses some shell magic to ensure that the variables defined
in these files are visible everywhere.)

/etc/defaults/rc.conf lists all the configuration parameters and their default settings.
Never edit this file, lest the startup script bogeyman hunt you down and overwrite
your changes the next time the system is updated. Instead, just override the default
values by setting them again in /etc/rc.conf or /etc/rc.conf.local. The rc.conf man
page has an extensive list of the variables you can specify.

In theory, the rc.conf files can also specify other directories in which to look for
startup scripts by your setting the value of the local_startup variable. The default
value is /usr/local/etc/rc.d, and we recommend leaving it that way.13

As you can see from peeking at /etc/rc.d, there are many different startup scripts,
more than 150 on a standard installation. /etc/rc runs these scripts in the order
calculated by the rcorder command, which reads the scripts and looks for depen-
dency information that’s been encoded in a standard way.

FreeBSD’s startup scripts for garden-variety services are fairly straightforward. For
example, the top of the sshd startup script is as follows:

#!/bin/sh
PROVIDE: sshd
REQUIRE: LOGIN FILESYSTEMS
KEYWORD: shutdown
. /etc/rc.subr
name="sshd"
rcvar="sshd_enable"
command="/usr/sbin/${name}"
...

The rcvar variable contains the name of a variable that’s expected to be defined
in one of the rc.conf scripts, in this case, sshd_enable. If you want sshd (the real
daemon, not the startup script; both are named sshd) to run automatically at boot
time, put the line

sshd_enable="YES"

into /etc/rc.conf. If this variable is set to "NO" or commented out, the sshd script
will not start the daemon or check to see whether it should be stopped when the
system is shut down.

The service command provides a real-time interface into FreeBSD’s rc.d system.14
To stop the sshd service manually, for example, you could run the command

$ sudo service sshd stop

	 13.	 For local customizations, you have the option of either creating standard rc.d-style scripts that go in
/usr/local/etc/rc.d or editing the system-wide /etc/rc.local script. The former is preferred.

	 14.	 The version of service that FreeBSD uses derives from the Linux service command, which manipu-
lates traditional init services.

	 Reboot and shutdown procedures	 59

Bo
ot

in
g

Note that this technique works only if the service is enabled in the /etc/rc.conf
files. If it is not, use the subcommand onestop, onestart, or onerestart, depend-
ing on what you want to do. (service is generally forgiving and will remind you if
need be, however.)

2.9	 Reboot and shutdown procedures
Historically, UNIX and Linux machines were touchy about how they were shut down.
Modern systems have become less sensitive, especially when a robust filesystem
is used, but it’s always a good idea to shut down a machine nicely when possible.

Consumer operating systems of yesteryear trained many sysadmins to reboot the
system as the first step in debugging any problem. It was an adaptive habit back
then, but these days it more commonly wastes time and interrupts service. Focus
on identifying the root cause of problems, and you’ll probably find yourself re-
booting less often.

That said, it’s a good idea to reboot after modifying a startup script or making sig-
nificant configuration changes. This check ensures that the system can boot success-
fully. If you’ve introduced a problem but don’t discover it until several weeks later,
you’re unlikely to remember the details of your most recent changes.

Shutting down physical systems
The halt command performs the essential duties required for shutting down the sys-
tem. halt logs the shutdown, kills nonessential processes, flushes cached filesystem
blocks to disk, and then halts the kernel. On most systems, halt -p powers down
the system as a final flourish.

reboot is essentially identical to halt, but it causes the machine to reboot instead
of halting.

The shutdown command is a layer over halt and reboot that provides for sched-
uled shutdowns and ominous warnings to logged-in users. It dates back to the
days of time-sharing systems and is now largely obsolete. shutdown does nothing
of technical value beyond halt or reboot, so feel free to ignore it if you don’t have
multiuser systems.

Shutting down cloud systems
You can halt or restart a cloud system either from within the server (with halt or
reboot, as described in the previous section) or from the cloud provider’s web con-
sole (or its equivalent API).

Generally speaking, powering down from the cloud console is akin to turning off the
power. It’s better if the virtual server manages its own shutdown, but feel free to kill
a virtual server from the console if it becomes unresponsive. What else can you do?

60	 Chapter 2	 Booting and System Management Daemons	

Either way, make sure you understand what a shutdown means from the perspec-
tive of the cloud provider. It would be a shame to destroy your system when all you
meant to do was reboot it.

In the AWS universe, the Stop and Reboot operations do what you’d expect. “Ter-
minate” decommissions the instance and removes it from your inventory. If the
underlying storage device is set to “delete on termination,” not only will your in-
stance be destroyed, but the data on the root disk will also be lost. That’s perfectly
fine, as long as it’s what you expect. You can enable “termination protection” if you
consider this a bad thing.

2.10	 Stratagems for a nonbooting system
A variety of problems can prevent a system from booting, ranging from faulty de-
vices to kernel upgrades gone wrong. There are three basic approaches to this sit-
uation, listed here in rough order of desirability:

•	 Don’t debug; just restore the system to a known-good state.
•	 Bring the system up just enough to run a shell, and debug interactively.
•	 Boot a separate system image, mount the sick system’s filesystems, and

investigate from there.

The first option is the one most commonly used in the cloud, but it can be helpful
on physical servers, too, as long as you have access to a recent image of the entire
boot disk. If your site does backups by filesystem, a whole-system restore may be
more trouble than it’s worth. We discuss the whole-system restore option in Recov-
ery of cloud systems, which starts on page 62.

The remaining two approaches focus on giving you a way to access the system,
identify the underlying issue, and make whatever fix is needed. Booting the ailing
system to a shell is by far the preferable option, but problems that occur very early
in the boot sequence may stymie this approach.

The “boot to a shell” mode is known generically as single-user mode or rescue mode.
Systems that use systemd have an even more primitive option available in the form
of emergency mode; it’s conceptually similar to single-user mode, but does an ab-
solute minimum of preparation before starting a shell.

Because single-user, rescue, and emergency modes don’t configure the network
or start network-related services, you’ll generally need physical access to the con-
sole to make use of them. As a result, single-user mode normally isn’t available for
cloud-hosted systems. We review some options for reviving broken cloud images
starting on page 62.

	 Stratagems for a nonbooting system	 61

Bo
ot

in
g

Single-user mode
In single-user mode, also known as rescue.target on systems that use systemd, only
a minimal set of processes, daemons, and services are started. The root filesystem
is mounted (as is /usr, in most cases), but the network remains uninitialized.

At boot time, you request single-user mode by passing an argument to the kernel,
usually single or -s. You can do this through the boot loader’s command-line inter-
face. In some cases, it may be set up for you automatically as a boot menu option.

If the system is already running, you can bring it down to single-user mode with a
shutdown (FreeBSD), telinit (traditional init), or systemctl (systemd) command.

Sane systems prompt for the root password before starting the single-user root
shell. Unfortunately, this means that it’s virtually impossible to reset a forgotten
root password through single-user mode. If you need to reset the password, you’ll
have to access the disk by way of separate boot media.

From the single-user shell, you can execute commands in much the same way as
when logged in on a fully booted system. However, sometimes only the root parti-
tion is mounted; you must mount other filesystems manually to use programs that
don’t live in /bin, /sbin, or /etc.

You can often find pointers to the available filesystems by looking in /etc/fstab. Un-
der Linux, you can run fdisk -l (lowercase L option) to see a list of the local system’s
disk partitions. The analogous procedure on FreeBSD is to run camcontrol devlist
to identify disk devices and then run fdisk -s device for each disk.

In many single-user environments, the filesystem root directory starts off being
mounted read-only. If /etc is part of the root filesystem (the usual case), it will be
impossible to edit many important configuration files. To fix this problem, you’ll
have to begin your single-user session by remounting / in read/write mode. Under
Linux, the command

mount -o rw,remount /

usually does the trick. On FreeBSD systems, the remount option is implicit when
you repeat an existing mount, but you’ll need to explicitly specify the source de-
vice. For example,

mount -o rw /dev/gpt/rootfs /

Single-user mode in Red Hat and CentOS is a bit more aggressive than normal. By
the time you reach the shell prompt, these systems have tried to mount all local
filesystems. Although this default is usually helpful, it can be problematic if you
have a sick filesystem. In that case, you can boot to emergency mode by adding
systemd.unit=emergency.target to the kernel arguments from within the boot
loader (usually GRUB). In this mode, no local filesystems are mounted and only a
few essential services are started.

See Chapter 3, for
more information
about the root account.

See Chapter 5 for
more information
about filesystems
and mounting.

RHEL

62	 Chapter 2	 Booting and System Management Daemons	

The fsck command is run during a normal boot to check and repair filesystems.
Depending on what filesystem you’re using for the root, you may need to run fsck
manually when you bring the system up in single-user or emergency mode. See
page 766 for more details about fsck.

Single-user mode is just a waypoint on the normal booting path, so you can terminate
the single-user shell with exit or <Control-D> to continue with booting. You can
also type <Control-D> at the password prompt to bypass single-user mode entirely.

Single-user mode on FreeBSD
FreeBSD includes a single-user option in its boot menu:

1. Boot Multi User [Enter]
2. Boot Single User
3. Escape to loader prompt
4. Reboot

Options
5. Kernel: default/kernel (1 of 2)
6. Configure Boot Options...

One nice feature of FreeBSD’s single-user mode is that it asks you what program
to use as the shell. Just press <Enter> for /bin/sh.

If you choose option 3, “Escape to loader prompt,” you’ll drop into a boot-level
command-line environment implemented by FreeBSD’s final-common-stage boot
loader, loader.

Single-user mode with GRUB
On systems that use systemd, you can boot into rescue mode by appending
systemd.unit=rescue.target to the end of the existing Linux kernel line. At the
GRUB splash screen, highlight your desired kernel and press the “e” key to edit its
boot options. Similarly, for emergency mode, use systemd.unit=emergency.target.

Here’s an example of a typical configuration:

linux16 /vmlinuz-3.10.0-229.el7.x86_64 root=/dev/mapper/rhel_rhel-root
ro crashkernel=auto rd.lvm.lv=rhel_rhel/swap rd.lvm.lv=rhel_rhel/root
rhgb quiet LANG=en_US.UTF-8 systemd.unit=rescue.target

Type <Control-X> to start the system after you’ve made your changes.

Recovery of cloud systems
It’s inherent in the nature of cloud systems that you can’t hook up a monitor or USB
stick when boot problems occur. Cloud providers do what they can to facilitate
problem solving, but basic limitations remain.

See Chapter 9 for a
broader introduction
to cloud computing.

	 Stratagems for a nonbooting system	 63

Bo
ot

in
g

Backups are important for all systems, but cloud servers are particularly easy to
snapshot. Providers charge extra for backups, but they’re inexpensive. Be liberal
with your snapshots and you’ll always have a reasonable system image to fall back
on at short notice.

From a philosophical perspective, you’re probably doing something wrong if your
cloud servers require boot-time debugging. Pets and physical servers receive vet-
erinary care when they’re sick, but cattle get euthanized. Your cloud servers are
cattle; replace them with known-good copies when they misbehave. Embracing
this approach helps you not only avoid critical failures but also facilitates scaling
and system migration.

That said, you will inevitably need to attempt to recover cloud systems or drives, so
we briefly discuss that process below.

Within AWS, single-user and emergency modes are unavailable. However, EC2
filesystems can be attached to other virtual servers if they’re backed by Elastic Block
Storage (EBS) devices. This is the default for most EC2 instances, so it’s likely that
you can use this method if you need to. Conceptually, it’s similar to booting from a
USB drive so that you can poke around on a physical system’s boot disk.

Here’s what to do:

1.	 Launch a new instance in the same availability zone as the instance you’re
having issues with. Ideally, this recovery instance should be launched
from the same base image and should use the same instance type as the
sick system.

2.	 Stop the problem instance. (But be careful not to “terminate” it; that
operation deletes the boot disk image.)

3.	 With the AWS web console or CLI, detach the volume from the problem
system and attach the volume to the recovery instance.

4.	 Log in to the recovery system. Create a mount point and mount the vol-
ume, then do whatever’s necessary to fix the issue. Then unmount the
volume. (Won’t unmount? Make sure you’re not cd’ed there.)

5.	 In the AWS console, detach the volume from the recovery instance and
reattach it to the problem instance. Start the problem instance and hope
for the best.

DigitalOcean droplets offer a VNC-enabled console that you can access through
the web, although the web app’s behavior is a bit wonky on some browsers. Dig-
italOcean does not afford a way to detach storage devices and migrate them to a

64	 Chapter 2	 Booting and System Management Daemons	

recovery system the way Amazon does. Instead, most system images let you boot
from an alternate recovery kernel.15

To access the recovery kernel, first power off the droplet and then mount the re-
covery kernel and reboot. If all went well, the virtual terminal will give you access
to a single-user-like mode. More detailed instructions for this process are available
at digitalocean.com.

Boot issues within a Google Compute Engine instance should first be investigated
by examination of the instance’s serial port information:

$ gcloud compute instances get-serial-port-output instance

The same information is available through GCP web console.

A disk-shuffling process similar to that described above for the Amazon cloud is
also available on Google Compute Engine. You use the CLI to remove the disk from
the defunct instance and boot a new instance that mounts the disk as an add-on
filesystem. You can then run filesystem checks, modify boot parameters, and select
a new kernel if necessary. This process is nicely detailed in Google’s documentation
at cloud.google.com/compute/docs/troubleshooting.

	 15.	 The recovery kernel is not available on all modern distributions. If you’re running a recent release
and the recovery tab tells you that “The kernel for this Droplet is managed internally and cannot be
changed from the control panel” you’ll need to open a support ticket with DigitalOcean to have them
associate your instance with a recovery ISO, allowing you to continue your recovery efforts.

http://digitalocean.com
http://cloud.google.com/compute/docs/troubleshooting

Ac
ce

ss
 C

on
tr

ol

			 65

This chapter is about “access control,” as opposed to “security,” by which we mean
that it focuses on the mechanical details of how the kernel and its delegates make
security-related decisions. Chapter 27, Security, addresses the more general ques-
tion of how to set up a system or network to minimize the chance of unwelcome
access by intruders.

Access control is an area of active research, and it has long been one of the major
challenges of operating system design. Over the last decade, UNIX and Linux have
seen a Cambrian explosion of new options in this domain. A primary driver of this
surge has been the advent of kernel APIs that allow third party modules to aug-
ment or replace the traditional UNIX access control system. This modular approach
creates a variety of new frontiers; access control is now just as open to change and
experimentation as any other aspect of UNIX.

Nevertheless, the traditional system remains the UNIX and Linux standard, and
it’s adequate for the majority of installations. Even for administrators who want
to venture into the new frontier, a thorough grounding in the basics is essential.

3 Access Control and
Rootly Powers

66	 Chapter 3	 Access Control and Rootly Powers	

3.1	 Standard UNIX access control
The standard UNIX access control model has remained largely unchanged for de-
cades. With a few enhancements, it continues to be the default for general-purpose
OS distributions. The scheme follows a few basic rules:

•	 Access control decisions depend on which user is attempting to perform an
operation, or in some cases, on that user’s membership in a UNIX group.

•	 Objects (e.g., files and processes) have owners. Owners have broad (but
not necessarily unrestricted) control over their objects.

•	 You own the objects you create.

•	 The special user account called “root” can act as the owner of any object.

•	 Only root can perform certain sensitive administrative operations.1

Certain system calls (e.g., settimeofday) are restricted to root; the implementation
simply checks the identity of the current user and rejects the operation if the user
is not root. Other system calls (e.g., kill) implement different calculations that in-
volve both ownership matching and special provisions for root. Finally, filesystems
have their own access control systems, which they implement in cooperation with
the kernel’s VFS layer. These are generally more elaborate than the access controls
found elsewhere in the kernel. For example, filesystems are much more likely to
make use of UNIX groups for access control.

Complicating this picture is that the kernel and the filesystem are intimately in-
tertwined. For example, you control and communicate with most devices through
files that represent them in /dev. Since device files are filesystem objects, they are
subject to filesystem access control semantics. The kernel uses that fact as its pri-
mary form of access control for devices.

Filesystem access control
In the standard model, every file has both an owner and a group, sometimes referred
to as the “group owner.” The owner can set the permissions of the file. In particular,
the owner can set them so restrictively that no one else can access it. We talk more
about file permissions in Chapter 5, The Filesystem (see page 132).

Although the owner of a file is always a single person, many people can be group
owners of the file, as long as they are all part of a single group. Groups are tradi-
tionally defined in the /etc/group file, but these days group information is often
stored in a network database system such as LDAP; see Chapter 17, Single Sign-
On, for details.

	 1.	 Keep in mind that we are here describing the original design of the access control system. These days,
not all of these statements remain literally true. For example, a Linux process that bears appropriate
capabilities (see page 82) can now perform some operations that were previously restricted to root.

See page 130 for
more information
about device files.

See page 254 for
more information
about groups.

	 Standard UNIX access control	 67

Ac
ce

ss
 C

on
tr

ol

The owner of a file gets to specify what the group owners can do with it. This scheme
allows files to be shared among members of the same project.

You can determine the ownerships of a file with ls -l:

$ ls -l ~garth/todo
-rw-r----- 1 garth staff 1259 May 29 19:55 /Users/garth/todo

This file is owned by user garth and group staff. The letters and dashes in the first
column symbolize the permissions on the file; see page 134 for details on how to
decode this information. In this case, the codes mean that garth can read or write
the file and that members of the staff group can read it.

Both the kernel and the filesystem track owners and groups as numbers rather than
as text names. In the most basic case, user identification numbers (UIDs for short)
are mapped to usernames in the /etc/passwd file, and group identification num-
bers (GIDs) are mapped to group names in /etc/group. (See Chapter 17, Single
Sign-On, for information about the more sophisticated options.)

The text names that correspond to UIDs and GIDs are defined only for the con-
venience of the system’s human users. When commands such as ls should display
ownership information in a human-readable format, they must look up each name
in the appropriate file or database.

Process ownership
The owner of a process can send the process signals (see page 94) and can also
reduce (degrade) the process’s scheduling priority. Processes actually have multi-
ple identities associated with them: a real, effective, and saved UID; a real, effective,
and saved GID; and under Linux, a “filesystem UID” that is used only to determine
file access permissions. Broadly speaking, the real numbers are used for accounting
(now largely vestigial), and the effective numbers are used for the determination of
access permissions. The real and effective numbers are normally the same.

The saved UID and GID are parking spots for IDs that are not currently in use but
that remain available for the process to invoke. The saved IDs allow a program to
repeatedly enter and leave a privileged mode of operation; this precaution reduces
the risk of unintended misbehavior.

The filesystem UID is generally explained as an implementation detail of NFS, the
Network File System. It is usually the same as the effective UID.

The root account
The root account is UNIX’s omnipotent administrative user. It’s also known as the
superuser account, although the actual username is “root”.

The defining characteristic of the root account is its UID of 0. Nothing prevents you
from changing the username on this account or from creating additional accounts

See Chapter 8 for
more information
about the passwd
and group files.

See Chapter 21 for
more about NFS.

68	 Chapter 3	 Access Control and Rootly Powers	

whose UIDs are 0; however, these are both bad ideas.2 Such changes have a ten-
dency to create inadvertent breaches of system security. They also create confusion
when other people have to deal with the strange way you’ve configured your system.

Traditional UNIX allows the superuser (that is, any process for which the effective
UID is 0) to perform any valid operation on any file or process.3

Some examples of restricted operations are

•	 Creating device files
•	 Setting the system clock
•	 Raising resource usage limits and process priorities
•	 Setting the system’s hostname
•	 Configuring network interfaces
•	 Opening privileged network ports (those numbered below 1,024)
•	 Shutting down the system

An example of superuser powers is the ability of a process owned by root to change
its UID and GID. The login program and its GUI equivalents are a case in point; the
process that prompts you for your password when you log in to the system initially
runs as root. If the password and username that you enter are legitimate, the login
program changes its UID and GID to your UID and GID and starts up your shell
or GUI environment. Once a root process has changed its ownerships to become
a normal user process, it can’t recover its former privileged state.

Setuid and setgid execution
Traditional UNIX access control is complemented by an identity substitution system
that’s implemented by the kernel and the filesystem in collaboration. This scheme
allows specially marked executable files to run with elevated permissions, usually
those of root. It lets developers and administrators set up structured ways for un-
privileged users to perform privileged operations.

When the kernel runs an executable file that has its “setuid” or “setgid” permission
bits set, it changes the effective UID or GID of the resulting process to the UID or
GID of the file containing the program image rather than the UID and GID of the
user that ran the command. The user’s privileges are thus promoted for the execu-
tion of that specific command only.

For example, users must be able to change their passwords. But since passwords are
(traditionally) stored in the protected /etc/master.passwd or /etc/shadow file, us-
ers need a setuid passwd command to mediate their access. The passwd command

	 2.	 Jennine Townsend, one of our stalwart technical reviewers, commented, “Such bad ideas that I fear
even mentioning them might encourage someone!”

	 3.	 “Valid” is the operative word here. Certain operations (such as executing a file on which the execute
permission bit is not set) are forbidden even to the superuser.

	 Management of the root account	 69

Ac
ce

ss
 C

on
tr

ol

checks to see who’s running it and customizes its behavior accordingly: users can
change only their own passwords, but root can change any password.

Programs that run setuid, especially ones that run setuid to root, are prone to secu-
rity problems. The setuid commands distributed with the system are theoretically
secure; however, security holes have been discovered in the past and will undoubt-
edly be discovered in the future.

The surest way to minimize the number of setuid problems is to minimize the
number of setuid programs. Think twice before installing software that needs to
run setuid, and avoid using the setuid facility in your own home-grown software.
Never use setuid execution on programs that were not explicitly written with se-
tuid execution in mind.

You can disable setuid and setgid execution on individual filesystems by specifying
the nosuid option to mount. It’s a good idea to use this option on filesystems that
contain users’ home directories or that are mounted from less trustworthy admin-
istrative domains.

3.2	 Management of the root account
Root access is required for system administration, and it’s also a pivot point for sys-
tem security. Proper husbandry of the root account is a crucial skill.

Root account login
Since root is just another user, most systems let you log in directly to the root account.
However, this turns out to be a bad idea, which is why Ubuntu forbids it by default.

To begin with, root logins leave no record of what operations were performed as
root. That’s bad enough when you realize that you broke something last night at
3:00 a.m. and can’t remember what you changed; it’s even worse when an access
was unauthorized and you are trying to figure out what an intruder has done to
your system. Another disadvantage is that the log-in-as-root scenario leaves no re-
cord of who was actually doing the work. If several people have access to the root
account, you won’t be able to tell who used it and when.

For these reasons, most systems allow root logins to be disabled on terminals,
through window systems, and across the network—everywhere but on the system
console. We suggest that you use these features. See PAM: cooking spray or authen-
tication wonder? starting on page 590 to see how to implement this policy on your
particular system.

If root does have a password (that is, the root account is not disabled; see page
78), that password must be of high quality. See page 992 for some additional
comments regarding password selection.

See page 767 for
more information
about filesystem
mount options.

70	 Chapter 3	 Access Control and Rootly Powers	

su: substitute user identity
A marginally better way to access the root account is to use the su command. If
invoked without arguments, su prompts for the root password and then starts up
a root shell. Root privileges remain in effect until you terminate the shell by typing
<Control-D> or the exit command. su doesn’t record the commands executed as
root, but it does create a log entry that states who became root and when.

The su command can also substitute identities other than root. Sometimes, the only
way to reproduce or debug a user’s problem is to su to their account so that you
reproduce the environment in which the problem occurs.

If you know someone’s password, you can access that person’s account directly by
executing su - username. As with an su to root, you are prompted for the password
for username. The - (dash) option makes su spawn the shell in login mode.

The exact implications of login mode vary by shell, but login mode normally changes
the number or identity of the files that the shell reads when it starts up. For example,
bash reads ~/.bash_profile in login mode and ~/.bashrc in nonlogin mode. When
diagnosing other users’ problems, it helps to reproduce their login environments
as closely as possible by running in login mode.

On some systems, the root password allows an su or login to any account. On oth-
ers, you must first su explicitly to root before suing to another account; root can
su to any account without entering a password.

Get in the habit of typing the full pathname to su (e.g., /bin/su or /usr/bin/su) rath-
er than relying on the shell to find the command for you. This precaution gives you
some protection against arbitrary programs called su that might have been sneaked
into your search path with the intention of harvesting passwords.4

On most systems, you must be a member of the group “wheel” to use su.

We consider su to have been largely superseded by sudo, described in the next
section. su is best reserved for emergencies. It’s also helpful for fixing situations in
which sudo has been broken or misconfigured.

sudo: limited su
Without one of the advanced access control systems outlined starting on page 83,
it’s hard to enable someone to do one task (backups, for example) without giving
that person free run of the system. And if the root account is used by several ad-
ministrators, you really have only a vague idea of who’s using it or what they’ve done.

The most widely used solution to these problems is a program called sudo that is
currently maintained by Todd Miller. It runs on all our example systems and is

	 4.	 For the same reason, do not include “.” (the current directory) in your shell’s search path (which you
can see by typing echo $PATH). Although convenient, including “.” makes it easy to inadvertently
run “special” versions of system commands that an intruder has left lying around as a trap. Naturally,
this advice goes double for root.

	 Management of the root account	 71

Ac
ce

ss
 C

on
tr

ol

also available in source code form from sudo.ws. We recommend it as the primary
method of access to the root account.

sudo takes as its argument a command line to be executed as root (or as another
restricted user). sudo consults the file /etc/sudoers (/usr/local/etc/sudoers on
FreeBSD), which lists the people who are authorized to use sudo and the commands
they are allowed to run on each host. If the proposed command is permitted, sudo
prompts for the user’s own password and executes the command.

Additional sudo commands can be executed without the “doer” having to type a
password until a five-minute period (configurable) has elapsed with no further
sudo activity. This timeout serves as a modest protection against users with sudo
privileges who leave terminals unattended.

sudo keeps a log of the command lines that were executed, the hosts on which they
were run, the people who ran them, the directories from which they were run, and
the times at which they were invoked. This information can be logged by syslog or
placed in the file of your choice. We recommend using syslog to forward the log
entries to a secure central host.

A log entry for randy’s executing sudo /bin/cat /etc/sudoers might look like this:

Dec 7 10:57:19 tigger sudo: randy: TTY=ttyp0 ; PWD=/tigger/users/randy;
USER=root ; COMMAND=/bin/cat /etc/sudoers

Example configuration
The sudoers file is designed so that a single version can be used on many different
hosts at once. Here’s a typical example:

Define aliases for machines in CS & Physics departments
Host_Alias	 CS = tigger, anchor, piper, moet, sigi
Host_Alias	 PHYSICS = eprince, pprince, icarus

Define collections of commands
Cmnd_Alias	 DUMP = /sbin/dump, /sbin/restore
Cmnd_Alias	 WATCHDOG = /usr/local/bin/watchdog
Cmnd_Alias	 SHELLS = /bin/sh, /bin/dash, /bin/bash

Permissions
mark, ed		 PHYSICS = ALL
herb			 CS = /usr/sbin/tcpdump : PHYSICS = (operator) DUMP
lynda		 ALL = (ALL) ALL, !SHELLS
%wheel		 ALL, !PHYSICS = NOPASSWD: WATCHDOG

The first two sets of lines define groups of hosts and commands that are referred
to in the permission specifications later in the file. The lists could be included lit-
erally in the specifications, but aliases make the sudoers file easier to read and un-
derstand; they also make the file easier to update in the future. It’s also possible to
define aliases for sets of users and for sets of users as whom commands may be run.

See Chapter 10
for more informa-
tion about syslog.

72	 Chapter 3	 Access Control and Rootly Powers	

Each permission specification line includes information about

•	 The users to whom the line applies
•	 The hosts on which the line should be heeded
•	 The commands that the specified users can run
•	 The users as whom the commands can be executed

The first permission line applies to the users mark and ed on the machines in the
PHYSICS group (eprince, pprince, and icarus). The built-in command alias ALL al-
lows them to run any command. Since no list of users is specified in parentheses,
sudo will run commands as root.

The second permission line allows herb to run tcpdump on CS machines and
dump-related commands on PHYSICS machines. However, the dump commands
can be run only as operator, not as root. The actual command line that herb would
type would be something like

ubuntu$ sudo -u operator /usr/sbin/dump 0u /dev/sda1

The user lynda can run commands as any user on any machine, except that she
can’t run several common shells. Does this mean that lynda really can’t get a root
shell? Of course not:

ubuntu$ cp -p /bin/sh /tmp/sh
ubuntu$ sudo /tmp/sh

Generally speaking, any attempt to allow “all commands except …” is doomed to
failure, at least in a technical sense. However, it might still be worthwhile to set up
the sudoers file this way as a reminder that root shells are strongly discouraged.

The final line allows users in group wheel to run the local watchdog command as
root on all machines except eprince, pprince, and icarus. Furthermore, no password
is required to run the command.

Note that commands in the sudoers file are specified with full pathnames to prevent
people from executing their own programs and scripts as root. Though no exam-
ples are shown above, it is possible to specify the arguments that are permissible
for each command as well.

To manually modify the sudoers file, use the visudo command, which checks to be
sure no one else is editing the file, invokes an editor on it (vi, or whichever editor
you specify in your EDITOR environment variable), and then verifies the syntax
of the edited file before installing it. This last step is particularly important because
an invalid sudoers file might prevent you from sudoing again to fix it.

sudo pros and cons
The use of sudo has the following advantages:

•	 Accountability is much improved because of command logging.
•	 Users can do specific chores without having unlimited root privileges.

	 Management of the root account	 73

Ac
ce

ss
 C

on
tr

ol

•	 The real root password can be known to only one or two people.5

•	 Using sudo is faster than using su or logging in as root.
•	 Privileges can be revoked without the need to change the root password.
•	 A canonical list of all users with root privileges is maintained.
•	 The chance of a root shell being left unattended is lessened.
•	 A single file can control access for an entire network.

sudo has a couple of disadvantages as well. The worst of these is that any breach in
the security of a sudoer’s personal account can be equivalent to breaching the root
account itself. You can’t do much to counter this threat other than caution your
sudoers to protect their own accounts as they would the root account. You can also
run a password cracker regularly on sudoers’ passwords to ensure that they are
making good password selections. All the comments on password selection from
page 992 apply here as well.

sudo’s command logging can easily be subverted by tricks such as shell escapes
from within an allowed program, or by sudo sh and sudo su. (Such commands do
show up in the logs, so you’ll at least know they’ve been run.)

sudo vs. advanced access control
If you think of sudo as a way of subdividing the privileges of the root account, it
is superior in some ways to many of the drop-in access control systems outlined
starting on page 83:

•	 You decide exactly how privileges will be subdivided. Your division can be
coarser or finer than the privileges defined for you by an off-the-shelf system.

•	 Simple configurations—the most common—are simple to set up, main-
tain, and understand.

•	 sudo runs on all UNIX and Linux systems. You do need not worry about
managing different solutions on different platforms.

•	 You can share a single configuration file throughout your site.

•	 You get consistent, high-quality logging for free.

Because the system is vulnerable to catastrophic compromise if the root account
is penetrated, a major drawback of sudo-based access control is that the potential
attack surface expands to include the accounts of all administrators.

sudo works well as a tool for well-intentioned administrators who need general
access to root privileges. It’s also great for allowing non-administrators to perform
a few specific operations. Despite a configuration syntax that suggests otherwise, it
is unfortunately not a safe way to define limited domains of autonomy or to place
certain operations out of bounds.

	 5.	 Or even zero people, if you have the right kind of password vault system in place.

See page 1000 for more
information about
password cracking.

74	 Chapter 3	 Access Control and Rootly Powers	

Don’t even attempt these configurations. If you need this functionality, you are
much better off enabling one of the drop-in access control systems described start-
ing on page 83.

Typical setup
sudo’s configuration system has accumulated a lot of features over the years. It has
also expanded to accommodate a variety of unusual situations and edge cases. As
a result, the current documentation conveys an impression of complexity that isn’t
necessarily warranted.

Since it’s important that sudo be reliable and secure, it’s natural to wonder if you
might be exposing your systems to additional risk if you don’t make use of sudo’s
advanced features and set exactly the right values for all options. The answer is no.
90% of sudoers files look something like this:

User_Alias	 ADMINS = alice, bob, charles
ADMINS		 ALL = (ALL) ALL

This is a perfectly respectable configuration, and in many cases there’s no need to
complicate it further. We’ve mentioned a few extras you can play with in the sections
below, but they’re all problem-solving tools that are helpful for specific situations.
Nothing more is required for general robustness.

Environment management
Many commands consult the values of environment variables and modify their
behavior depending on what they find. In the case of commands run as root, this
mechanism can be both a useful convenience and a potential route of attack.

For example, several commands run the program specified in your EDITOR envi-
ronment variable to spawn a text editor. If this variable points to a hacker’s mali-
cious program instead of an editor, it’s likely that you’ll eventually end up running
that program as root.6

To minimize this risk, sudo’s default behavior is to pass only a minimal, sanitized
environment to the commands that it runs. If your site needs additional environ-
ment variables to be passed, you can whitelist them by adding them to the sudoers
file’s env_keep list. For example, the lines

Defaults		 env_keep += "SSH_AUTH_SOCK"
Defaults		 env_keep += "DISPLAY XAUTHORIZATION XAUTHORITY"

preserve several environment variables used by X Windows and by SSH key forwarding.

	 6.	 Just to be clear, the scenario in this case is that your account has been compromised, but the attacker
does not know your actual password and so cannot run sudo directly. Unfortunately, this is a com-
mon situation—all it takes is a terminal window left momentarily unattended.

	 Management of the root account	 75

Ac
ce

ss
 C

on
tr

ol

It’s possible to set different env_keep lists for different users or groups, but the config-
uration rapidly becomes complicated. We suggest sticking to a single, universal list
and being relatively conservative with the exceptions you enshrine in the sudoers file.

If you need to preserve an environment variable that isn’t listed in the sudoers file,
you can set it explicitly on the sudo command line. For example, the command

$ sudo EDITOR=emacs vipw

edits the system password file with emacs. This feature has some potential restric-
tions, but they’re waived for users who can run ALL commands.

sudo without passwords
It’s distressingly common to see sudo set up to allow command execution as root
without the need to enter a password. Just for reference, that configuration is achieved
with the NOPASSWD keyword in the sudoers file. For example:

ansible		 ALL = (ALL) NOPASSWD: ALL	 # Don't do this

Sometimes this is done out of laziness, but more typically, the underlying need is to
allow some type of unattended sudo execution. The most common cases are when
performing remote configuration through a system such as Ansible, or when run-
ning commands out of cron.

Needless to say, this configuration is dangerous, so avoid it if you can. At the very
least, restrict passwordless execution to a specific set of commands if you can.

Another option that works well in the context of remote execution is to replace
manually entered passwords with authentication through ssh-agent and forwarded
SSH keys. You can configure this method of authentication through PAM on the
server where sudo will actually run.

Most systems don’t include the PAM module that implements SSH-based authentica-
tion by default, but it is readily available. Look for a pam_ssh_agent_auth package.

SSH key forwarding has its own set of security concerns, but it’s certainly an im-
provement over no authentication at all.

Precedence
A given invocation of sudo might potentially be addressed by several entries in the
sudoers file. For example, consider the following configuration:

User_Alias		 ADMINS = alice, bob, charles
User_Alias		 MYSQL_ADMINS = alice, bob

%wheel			 ALL = (ALL) ALL
MYSQL_ADMINS	 ALL = (mysql) NOPASSWD: ALL
ADMINS			 ALL = (ALL) NOPASSWD: /usr/sbin/logrotate

See Chapter 23 for
more information
about Ansible.

See page 591 for more
information about
PAM configuration.

76	 Chapter 3	 Access Control and Rootly Powers	

Here, administrators can run the logrotate command as any user without supply-
ing a password. MySQL administrators can run any command as mysql without a
password. Anyone in the wheel group can run any command under any UID, but
must authenticate with a password first.

If user alice is in the wheel group, she is potentially covered by each of the last three
lines. How do you know which one will determine sudo’s behavior?

The rule is that sudo always obeys the last matching line, with matching being
determined by the entire 4-tuple of user, host, target user, and command. Each of
those elements must match the configuration line, or the line is simply ignored.

Therefore, NOPASSWD exceptions must follow their more general counterparts, as
shown above. If the order of the last three lines were reversed, poor alice would have
to type a password no matter what sudo command she attempted to run.

sudo without a control terminal
In addition to raising the issue of passwordless authentication, unattended execution
of sudo (e.g., from cron) often occurs without a normal control terminal. There’s
nothing inherently wrong with that, but it’s an odd situation that sudo can check
for and reject if the requiretty option is turned on in the sudoers file.

This option is not the default from sudo’s perspective, but some OS distributions
include it in their default sudoers files, so it’s worth checking for and removing.
Look for a line of the form

Defaults		 requiretty

and invert its value:

Defaults		 !requiretty

The requiretty option does offer a small amount of symbolic protection against
certain attack scenarios. However, it’s easy to work around and so offers little real
security benefit. In our opinion, requiretty should be disabled as a matter of course
because it is a common source of problems.

Site-wide sudo configuration
Because the sudoers file includes the current host as a matching criterion for con-
figuration lines, you can use one master sudoers file throughout an administrative
domain (that is, a region of your site in which hostnames and user accounts are
guaranteed to be name-equivalent). This approach makes the initial sudoers setup
a bit more complicated, but it’s a great idea, for multiple reasons. You should do it.

The main advantage of this approach is that there’s no mystery about who has what
permissions on what hosts. Everything is recorded in one authoritative file. When
an administrator leaves your organization, for example, there’s no need to track

	 Management of the root account	 77

Ac
ce

ss
 C

on
tr

ol

down all the hosts on which that user might have had sudo permissions. When
changes are needed, you simply modify the master sudoers file and redistribute it.

A natural corollary of this approach is that sudo permissions might be better ex-
pressed in terms of user accounts rather than UNIX groups. For example,

%wheel		 ALL = ALL

has some intuitive appeal, but it defers the enumeration of privileged users to each
local machine. You can’t look at this line and determine who’s covered by it with-
out an excursion to the machine in question. Since the idea is to keep all relevant
information in one place, it’s best to avoid this type of grouping option when shar-
ing a sudoers file on a network. Of course, if your group memberships are tightly
coordinated site-wide, it’s fine to use groups.

Distribution of the sudoers file is best achieved through a broader system of config-
uration management, as described in Chapter 23. But if you haven’t yet reached
that level of organization, you can easily roll your own. Be careful, though: install-
ing a bogus sudoers file is a quick route to disaster. This is also a good file to keep
an eye on with a file integrity monitoring solution of some kind; see page 1061.

In the absence of a configuration management system, it’s best to use a “pull” script
that runs out of cron on each host. Use scp to copy the current sudoers file from
a known central repository, then validate it with visudo -c -f newsudoers before
installation to verify that the format is acceptable to the local sudo. scp checks the
remote server’s host key for you, ensuring that the sudoers file is coming from the
host you intended and not from a spoofed server.

Hostname specifications can be a bit subtle when sharing the sudoers file. By de-
fault, sudo uses the output of the hostname command as the text to be matched.
Depending on the conventions in use at your site, this name may or may not in-
clude a domain portion (e.g., anchor vs. anchor.cs.colorado.edu). In either case,
the hostnames specified in the sudoers file must match the hostnames as they are
returned on each host. (You can turn on the fqdn option in the sudoers file to at-
tempt to normalize local hostnames to their fully qualified forms.)

Hostname matching gets even stickier in the cloud, where instance names of-
ten default to algorithmically generated patterns. sudo understands simple pat-
tern-matching characters (globbing) in hostnames, so consider adopting a naming
scheme that incorporates some indication of each host’s security classification from
sudo’s perspective.

Alternatively, you can use your cloud provider’s virtual networking features to seg-
regate hosts by IP address, and then match on IP addresses instead of hostnames
from within the sudoers file.

http://anchor.cs.colorado.edu

78	 Chapter 3	 Access Control and Rootly Powers	

Disabling the root account
If your site standardizes on the use of sudo, you’ll have surprisingly little use for
actual root passwords. Most of your administrative team will never have occasion
to use them.

That fact raises the question of whether a root password is necessary at all. If you
decide that it isn’t, you can disable root logins entirely by setting root’s encrypted
password to * or to some other fixed, arbitrary string. On Linux, passwd -l “locks”
an account by prepending a ! to the encrypted password, with equivalent results.

The * and the ! are just conventions; no software checks for them explicitly. Their
effect derives from their not being valid password hashes. As a result, attempts to
verify root’s password simply fail.

The main effect of locking the root account is that root cannot log in, even on the
console. Neither can any user successfully run su, because that requires a root pass-
word check as well. However, the root account continues to exist, and all the software
that usually runs as root continues to do so. In particular, sudo works normally.

The main advantage of disabling the root account is that you needn’t record and
manage root’s password. You’re also eliminating the possibility of the root password
being compromised, but that’s more a pleasant side effect than a compelling rea-
son to go passwordless. Rarely used passwords are already at low risk of violation.

It’s particularly helpful to have a real root password on physical computers (as op-
posed to cloud or virtual instances; see Chapters 9 and 24). Real computers
are apt to require rescuing when hardware or configuration problems interfere
with sudo or the boot process. In these cases, it’s nice to have the traditional root
account available as an emergency fallback.

Ubuntu ships with the root account locked, and all administrative access is funneled
through sudo or a GUI equivalent. If you prefer, it’s fine to set a root password on
Ubuntu and then unlock the account with sudo passwd -u root.

System accounts other than root
Root is generally the only user that has special status in the eyes of the kernel, but
several other pseudo-users are defined by most systems. You can identify these
sham accounts by their low UIDs, usually less than 100. Most often, UIDs under
10 are system accounts, and UIDs between 10 and 100 are pseudo-users associated
with specific pieces of software.

It’s customary to replace the encrypted password field of these special users in the
shadow or master.passwd file with a star so that their accounts cannot be logged
in to. Their shells should be set to /bin/false or /bin/nologin as well, to protect
against remote login exploits that use password alternatives such as SSH key files.

As with user accounts, most systems define a variety of system-related groups that
have similarly low GIDs.

See page 250 for
more information
about shadow and
master.passwd.

	 Extensions to the standard access control model	 79

Ac
ce

ss
 C

on
tr

ol

Files and processes that are part of the operating system but that need not be owned
by root are sometimes assigned to the users bin or daemon. The theory was that
this convention would help avoid the security hazards associated with ownership
by root. It’s not a compelling argument, however, and current systems often just
use the root account instead.

The main advantage of defining pseudo-accounts and pseudo-groups is that they
can be used more safely than the root account to provide access to defined groups
of resources. For example, databases often implement elaborate access control sys-
tems of their own. From the perspective of the kernel, they run as a pseudo-user
such as “mysql” that owns all database-related resources.

The Network File System (NFS) uses an account called “nobody” to represent root
users on other systems. For remote roots to be stripped of their rootly powers, the
remote UID 0 has to be mapped to something other than the local UID 0. The
nobody account acts as a generic alter ego for these remote roots. In NFSv4, the
nobody account can be applied to remote users that correspond to no valid local
account as well.

Since the nobody account is supposed to represent a generic and relatively pow-
erless user, it shouldn’t own any files. If nobody does own files, remote roots can
take control of them.

3.3	 Extensions to the standard access control model
The preceding sections outline the major concepts of the traditional access control
model. Even though this model can be summarized in a couple of pages, it has stood
the test of time because it’s simple, predictable, and capable of handling the require-
ments of the average site. All UNIX and Linux variants continue to support this
model, and it remains the default approach and the one that’s most widely used today.

As actually implemented and shipped on modern operating systems, the model
includes a number of important refinements. Three layers of software contribute
to the current status quo:

•	 The standard model as described to this point
•	 Extensions that generalize and fine-tune this basic model
•	 Kernel extensions that implement alternative approaches

These categories are not architectural layers so much as historical artifacts. Early
UNIX derivatives all used the standard model, but its deficiencies were widely rec-
ognized even then. Over time, the community began to develop workarounds for
a few of the more pressing issues. In the interest of maintaining compatibility and
encouraging widespread adoption, changes were usually structured as refinements
of the traditional system. Some of these tweaks (e.g., PAM) are now considered
UNIX standards.

See page 800 for more
information about
the nobody account.

80	 Chapter 3	 Access Control and Rootly Powers	

Over the last decade, great strides have been made toward modularization of ac-
cess control systems. This evolution enables even more radical changes to access
control. We’ve reviewed some of the more common pluggable options for Linux
and FreeBSD, starting on page 83.

For now, we look at some of the more prosaic extensions that are bundled with
most systems. First, we consider the problems those extensions attempt to address.

Drawbacks of the standard model
Despite its elegance, the standard model has some obvious shortcomings.

•	 To begin with, the root account represents a potential single point of fail-
ure. If it’s compromised, the integrity of the entire system is violated, and
there is essentially no limit to the damage an attacker can inflict.

•	 The only way to subdivide the privileges of the root account is to write
setuid programs. Unfortunately, as the steady flow of security-related soft-
ware updates demonstrates, it’s difficult to write secure software. Every
setuid program is a potential target.

•	 The standard model has little to say about security on a network. No com-
puter to which an unprivileged user has physical access can be trusted to
accurately represent the ownerships of the processes it’s running. Who’s
to say that someone hasn’t reformatted the disk and installed their own
operating system, with UIDs of their choosing?

•	 In the standard model, group definition is a privileged operation. For
example, there’s no way for a generic user to express the intent that only
alice and bob should have access to a particular file.

•	 Because many access control rules are embedded in the code of individual
commands and daemons (the classic example being the passwd program),
you cannot redefine the system’s behavior without modifying the source
code and recompiling. In the real world, that’s impractical and error prone.

•	 The standard model also has little or no support for auditing or logging.
You can see which UNIX groups a user belongs to, but you can’t neces-
sarily determine what those group memberships permit a user to do. In
addition, there’s no real way to track the use of elevated privileges or to
see what operations they have performed.

PAM: Pluggable Authentication Modules
User accounts are traditionally secured by passwords stored (in encrypted form)
in the /etc/shadow or /etc/master.passwd file or an equivalent network database.
Many programs may need to validate accounts, including login, sudo, su, and any
program that accepts logins on a GUI workstation.

See page 250 for
more information
about the shadow and
master.passwd files.

	 Extensions to the standard access control model	 81

Ac
ce

ss
 C

on
tr

ol

These programs really shouldn’t have hard-coded expectations about how passwords
are to be encrypted or verified. Ideally, they shouldn’t even assume that passwords
are in use at all. What if you want to use biometric identification, a network iden-
tity system, or some kind of two-factor authentication? Pluggable Authentication
Modules to the rescue!

PAM is a wrapper for a variety of method-specific authentication libraries. Admin-
istrators specify the authentication methods they want the system to use, along with
the appropriate contexts for each one. Programs that require user authentication
simply call the PAM system rather than implement their own forms of authentication.
PAM in turn calls the authentication library specified by the system administrator.

Strictly speaking, PAM is an authentication technology, not an access control tech-
nology. That is, instead of addressing the question “Does user X have permission
to perform operation Y?”, it helps answer the precursor question, “How do I know
this is really user X?”

PAM is an important component of the access control chain on most systems, and
PAM configuration is a common administrative task. You can find more details on
PAM in the Single Sign-On chapter starting on page 590.

Kerberos: network cryptographic authentication
Like PAM, Kerberos deals with authentication rather than access control per se. But
whereas PAM is an authentication framework, Kerberos is a specific authentication
method. At sites that use Kerberos, PAM and Kerberos generally work together, PAM
being the wrapper and Kerberos the actual implementation.

Kerberos uses a trusted third party (a server) to perform authentication for an entire
network. You don’t authenticate yourself to the machine you are using, but provide
your credentials to the Kerberos service. Kerberos then issues cryptographic cre-
dentials that you can present to other services as evidence of your identity.

Kerberos is a mature technology that has been in widespread use for decades. It’s
the standard authentication system used by Windows, and is part of Microsoft’s
Active Directory system. Read more about Kerberos starting on page 586.

Filesystem access control lists
Since filesystem access control is so central to UNIX and Linux, it was an early tar-
get for elaboration. The most common addition has been support for access control
lists (ACLs), a generalization of the traditional user/group/other permission model
that permits permissions to be set for multiple users and groups at once.

ACLs are part of the filesystem implementation, so they have to be explicitly sup-
ported by whatever filesystem you are using. However, all major UNIX and Linux
filesystems now support ACLs in one form or another.

82	 Chapter 3	 Access Control and Rootly Powers	

ACL support generally comes in one of two forms: an early POSIX draft standard
that never quite made its way to formal adoption but was widely implemented
anyway, and the system standardized by NFSv4, which adapts Microsoft Windows
ACLs. Both ACL standards are described in more detail in the filesystem chapter,
starting on page 140.

Linux capabilities
Capability systems divide the powers of the root account into a handful (~30) of
separate permissions.

The Linux version of capabilities derives from the defunct POSIX 1003.1e draft,
which totters on despite never having been formally approved as a standard. In ad-
dition to bearing this zombie stigma, Linux capabilities raise the hackles of theorists
because of nonconformance to the academic conception of a capability system. No
matter; they’re here, and Linux calls them capabilities, so we will too.

Capabilities can be inherited from a parent process. They can also be enabled or
disabled by attributes set on an executable file, in a process reminiscent of setuid
execution. Processes can renounce capabilities that they don’t plan to use.

The traditional powers of root are simply the union of all possible capabilities, so
there’s a fairly direct mapping between the traditional model and the capability
model. The capability model is just more granular.

As an example, the Linux capability called CAP_NET_BIND_SERVICE controls
a process’s ability to bind to privileged network ports (those numbered under
1,024). Some daemons that traditionally run as root need only this one particular
superpower. In the capability world, such a daemon can theoretically run as an
unprivileged user and pick up the port-binding capability from its executable file.
As long as the daemon does not explicitly check to be sure that it’s running as root,
it needn’t even be capability aware.

Is all this actually done in the real world? Well, no. As it happens, capabilities have
evolved to become more an enabling technology than a user-facing system. They’re
widely employed by higher-level systems such as AppArmor (see page 87) and
Docker (see Chapter 25) but are rarely used on their own.

For administrators, it’s helpful to review the capabilities(7) man page just to get a
sense of what’s included in each of the capability buckets.

Linux namespaces
Linux can segregate processes into hierarchical partitions (“namespaces”) from which
they see only a subset of the system’s files, network ports, and processes. Among
other effects, this scheme acts as a form of preemptive access control. Instead of
having to base access control decisions on potentially subtle criteria, the kernel
simply denies the existence of objects that are not visible from inside a given box.

See Chapter 21, The
Network File System,
for more informa-
tion about NFS.

	 Modern access control	 83

Ac
ce

ss
 C

on
tr

ol

Inside a partition, normal access control rules apply, and in most cases jailed pro-
cesses are not even aware that they have been confined. Because confinement is ir-
reversible, processes can run as root within a partition without fear that they might
endanger other parts of the system.

This clever trick is one of the foundations of software containerization and its best-
known implementation, Docker. The full system is a lot more sophisticated and
includes extensions such as copy-on-write filesystem access. We have quite a bit
more to say about containers in Chapter 25.

As a form of access control, namespacing is a relatively coarse approach. The con-
struction of properly configured nests for processes to live in is also somewhat tricky.
Currently, this technology is applied primarily to add-on services as opposed to
intrinsic components of the operating system.

3.4	 Modern access control
Given the world’s wide range of computing environments and the mixed success
of efforts to advance the standard model, kernel maintainers have been reluctant
to act as mediators in the larger debate over access control. In the Linux world, the
situation came to a head in 2001, when the U.S. National Security Agency pro-
posed to integrate its Security-Enhanced Linux (SELinux) system into the kernel
as a standard facility.

For several reasons, the kernel maintainers resisted this merge. Instead of adopting
SELinux or another, alternative system, they developed the Linux Security Modules
API, a kernel-level interface that allows access control systems to integrate them-
selves as loadable kernel modules.

LSM-based systems have no effect unless users load them and turn them on. This
fact lowers the barriers for inclusion in the standard kernel, and Linux now ships
with SELinux and four other systems (AppArmor, Smack, TOMOYO, and Yama)
ready to go.

Developments on the BSD side have roughly paralleled those of Linux, thanks
largely to Robert Watson’s work on TrustedBSD. This code has been included in
FreeBSD since version 5. It also provides the application sandboxing technology
used in Apple’s macOS and iOS.

When multiple access control modules are active simultaneously, an operation
must be approved by all of them to be permitted. Unfortunately, the LSM system
requires explicit cooperation among active modules, and none of the current mod-
ules include this feature. For now, Linux systems are effectively limited to a choice
of one LSM add-on module.

84	 Chapter 3	 Access Control and Rootly Powers	

Separate ecosystems
Access control is inherently a kernel-level concern. With the exception of filesystem
access control lists (see page 140), there is essentially no standardization among sys-
tems with regard to alternative access control mechanisms. As a result, every kernel
has its own array of available implementations, and none of them are cross-platform.

Because Linux distributions share a common kernel lineage, all Linux distributions
are theoretically compatible with all the various Linux security offerings. But in
practical terms, they’re not: these systems all need user-level support in the form
of additional commands, modifications to user-level components, and securement
profiles for daemons and services. Ergo, every distribution has only one or two ac-
cess control mechanisms that it actively supports (if that).

Mandatory access control
The standard UNIX model is considered a form of “discretionary access control”
because it allows the owners of access-controlled entities to set the permissions on
them. For example, you might allow other users to view the contents of your home
directory, or you might write a setuid program that lets other people send signals
to your processes.

Discretionary access control provides no particular guarantee of security for us-
er-level data. The downside of letting users set permissions is that users can set
permissions; there’s no telling what they might do with their own files. And even
with the best intentions and training, users can make mistakes.

Mandatory access control (aka MAC) systems let administrators write access control
policies that override or supplement the discretionary permissions of the traditional
model. For example, you might establish the rule that users’ home directories are
accessible only by their owners. It then doesn’t matter if a user makes a private copy
of a sensitive document and is careless with the document’s permissions; nobody
else can see into that user’s home directory anyway.

MAC capabilities are an enabling technology for implementing security models such
as the Department of Defense’s “multilevel security” system. In this model, security
policies control access according to the perceived sensitivity of the resources being
controlled. Users are assigned a security classification from a structured hierarchy.
They can read and write items at the same classification level or lower but cannot ac-
cess items at a higher classification. For example, a user with “secret” access can read
and write “secret” objects but cannot read objects that are classified as “top secret.”

Unless you’re handling sensitive data for a government entity, it is unlikely that you
will ever encounter or need to deploy such comprehensive “foreign” security mod-
els. More commonly, MAC is used to protect individual services, and it otherwise
stays out of users’ way.

A well-implemented MAC policy relies on the principle of least privilege (allow-
ing access only when necessary), much as a properly designed firewall allows only

	 Modern access control	 85

Ac
ce

ss
 C

on
tr

ol

specifically recognized services and clients to pass. MAC can prevent software with
code execution vulnerabilities (e.g., buffer overflows) from compromising the sys-
tem by limiting the scope of the breach to the few specific resources required by
that software.

MAC has unfortunately become something of a buzzword synonymous with “ad-
vanced access control.” Even FreeBSD’s generic security API is called the MAC in-
terface, despite the fact that some plug-ins offer no actual MAC features.

Available MAC systems range from wholesale replacements for the standard model
to lightweight extensions that address specific domains and use cases. The common
thread among MAC implementations is that they generally add centralized, admin-
istrator-written (or vendor-supplied) policies into the access control system along
with the usual mix of file permissions, access controls lists, and process attributes.

Regardless of scope, MAC represents a potentially significant departure from the
standard system, and it’s one that programs expecting to deal with the standard
UNIX security model may find surprising. Before committing to a full-scale MAC
deployment, make sure you understand the module’s logging conventions and know
how to identify and troubleshoot MAC-related problems.

Role-based access control
Another feature commonly name-checked by access control systems is role-based
access control (aka RBAC), a theoretical model formalized in 1992 by David Ferraiolo
and Rick Kuhn. The basic idea is to add a layer of indirection to access control cal-
culations. Permissions, instead of being assigned directly to users, are assigned to
intermediate constructs known as “roles,” and roles in turn are assigned to users.
To make an access control decision, the system enumerates the roles of the cur-
rent user and checks to see if any of those roles have the appropriate permissions.

Roles are similar in concept to UNIX groups, but they’re more general because they
can be used outside the context of the filesystem. Roles can also have a hierarchical
relationship to one another, a fact that greatly simplifies administration. For exam-
ple, you might define a “senior administrator” role that has all the permissions of
an “administrator” plus the additional permissions X, Y, and Z.

Many UNIX variants, including Solaris, HP-UX, and AIX, include some form of
built-in RBAC system. Linux and FreeBSD have no distinct, native RBAC facility.
However, it is built into several of the more comprehensive MAC options.

SELinux: Security-Enhanced Linux
SELinux is one of the oldest Linux MAC implementations and is a product of the
U.S. National Security Agency. Depending on one’s perspective, that might be a
source of either comfort or suspicion.7

	 7.	 If your tastes incline toward suspicion, it’s worth noting that as part of the Linux kernel distribution,
the SELinux code base is open to inspection.

86	 Chapter 3	 Access Control and Rootly Powers	

SELinux takes a maximalist approach, and it implements pretty much every flavor
of MAC and RBAC one might envision. Although it has gained footholds in a few
distributions, it is notoriously difficult to administer and troubleshoot. This un-
attributed quote from a former version of the SELinux Wikipedia page vents the
frustration felt by many sysadmins:

	 Intriguingly, although the stated raison d’être of SELinux is to facilitate
the creation of individualized access control policies specifically attuned to
organizational data custodianship practices and rules, the supportive soft-
ware tools are so sparse and unfriendly that the vendors survive chiefly on

“consulting,’ which typically takes the form of incremental modifications to
boilerplate security policies.

Despite its administrative complexity, SELinux adoption has been slowly growing,
particularly in environments such as government, finance, and health care that
enforce strong and specific security requirements. It’s also a standard part of the
Android platform.

Our general opinion regarding SELinux is that it’s capable of delivering more
harm than benefit. Unfortunately, that harm can manifest not only as wasted time
and aggravation for system administrators, but also, ironically, as security lapses.
Complex models are hard to reason about, and SELinux isn’t really a level playing
field; hackers that focus on it understand the system far more thoroughly than the
average sysadmin.

In particular, SELinux policy development is a complicated endeavor. To protect a
new daemon, for example, a policy must carefully enumerate all the files, directo-
ries, and other objects to which the process needs access. For complicated software
like sendmail or httpd, this task can be quite complex. At least one company offers
a three-day class on policy development.

Fortunately, many general policies are available on-line, and most SELinux-enabled
distributions come with reasonable defaults. These can easily be installed and con-
figured for your particular environment. A full-blown policy editor that aims to
ease policy application can be found at seedit.sourceforge.net.

SELinux is well supported by both Red Hat (and hence, CentOS) and Fedora. Red
Hat enables it by default.

Debian and SUSE Linux also have some available support for SELinux, but you
must install additional packages, and the system is less aggressive in its default
configuration.

Ubuntu inherits some SELinux support from Debian, but over the last few releases,
Ubuntu’s focus has been on AppArmor (see page 87). Some vestigial SELinux-re-
lated packages are still available, but they are generally not up to date.

RHEL

http://seedit.sourceforge.net

	 Modern access control	 87

Ac
ce

ss
 C

on
tr

ol

/etc/selinux/config is the top-level control for SELinux. The interesting lines are

SELINUX=enforcing
SELINUXTYPE=targeted

The first line has three possible values: enforcing, permissive, or disabled. The
enforcing setting ensures that the loaded policy is applied and prohibits violations.
permissive allows violations to occur but logs them through syslog, which is valu-
able for debugging and policy development. disabled turns off SELinux entirely.

SELINUXTYPE refers to the name of the policy database to be applied. This is essen-
tially the name of a subdirectory within /etc/selinux. Only one policy can be active
at a time, and the available policy sets vary by system.

Red Hat’s default policy is targeted, which defines additional security for a few dae-
mons that Red Hat has explicitly protected but leaves the rest of the system alone.
There used to be a separate policy called strict that applied MAC to the entire sys-
tem, but that policy has now been merged into targeted. Remove the unconfined
and unconfineduser modules with semodule -d to achieve full-system MAC.

Red Hat also defines an mls policy that implements DoD-style multilevel security.
You must install it separately with yum install selinux-policy-mls.

If you’re interested in developing your own SELinux policies, check out the audit2allow
utility. It builds policy definitions from logs of violations. The idea is to permissively
protect a subsystem so that its violations are logged but not enforced. You can then
put the subsystem through its paces and build a policy that allows everything the
subsystem actually did. Unfortunately, it’s hard to guarantee complete coverage of
all code paths with this sort of ad hoc approach, so the autogenerated profiles are
unlikely to be perfect.

AppArmor
AppArmor is a product of Canonical, Ltd., releasers of the Ubuntu distribution.
It’s supported by Debian and Ubuntu, but has also been adopted as a standard by
SUSE distributions. Ubuntu and SUSE enable it on default installs, although the
complement of protected services is not extensive.

AppArmor implements a form of MAC and is intended as a supplement to the tra-
ditional UNIX access control system. Although any configuration is possible, Ap-
pArmor is not designed to be a user-facing system. Its main goal is service secure-
ment; that is, limiting the damage that individual programs can do if they should
be compromised or run amok.

Protected programs continue to be subject to all the limitations imposed by the
standard model, but in addition, the kernel filters their activities through a des-
ignated and task-specific AppArmor profile. By default, AppArmor denies all re-
quests, so the profile must explicitly name everything the process is allowed to do.

RHEL

88	 Chapter 3	 Access Control and Rootly Powers	

Programs without profiles, such as user shells, have no special restrictions and run
as if AppArmor were not installed.

This service securement role is essentially the same configuration that’s implemented
by SELinux in Red Hat’s targeted environment. However, AppArmor is designed
more specifically for service securement, so it sidesteps some of the more puzzling
nuances of SELinux.

AppArmor profiles are stored in /etc/apparmor.d, and they’re relatively readable
even without detailed knowledge of the system. For example, here’s the profile for
the cups-browsed daemon, part of the printing system on Ubuntu:

#include <tunables/global>

/usr/sbin/cups-browsed {

	 #include <abstractions/base>
	 #include <abstractions/nameservice>
	 #include <abstractions/cups-client>
	 #include <abstractions/dbus>
	 #include <abstractions/p11-kit>

	 /etc/cups/cups-browsed.conf r,
	 /etc/cups/lpoptions r,
	 /{var/,}run/cups/certs/* r,
	 /var/cache/cups/* rw,
	 /tmp/** rw,

	 # Site-specific additions and overrides. See local/README.
	 #include <local/usr.sbin.cups-browsed>
}

Most of this code is modular boilerplate. For example, this daemon needs to per-
form hostname lookups, so the profile interpolates abstractions/nameservice,
which gives access to name resolution libraries, /etc/nsswitch.conf, /etc/hosts, the
network ports used with LDAP, and so on.

The profiling information that’s specific to this daemon consists (in this case) of a
list of files the daemon can access, along with the permissions allowed on each file.
The pattern matching syntax is a bit idiosyncratic: ** can match multiple pathname
components, and {var/,} matches whether var/ appears at that location or not.

Even this simple profile is quite complex under the hood. With all the #include
instructions expanded, the profile is nearly 750 lines long. (And we chose this ex-
ample for its brevity. Yikes!)

AppArmor refers to files and programs by pathname, which makes profiles read-
able and independent of any particular filesystem implementation. This approach
is something of a compromise, however. For example, AppArmor doesn’t recognize
hard links as pointing to the same underlying entity.

	 Recommended reading	 89

Ac
ce

ss
 C

on
tr

ol

3.5	 Recommended reading
Ferraiolo, David F., D. Richard Kuhn, and Ramaswamy Chandramouli. Role-
Based Access Control (2nd Edition). Boston, MA: Artech House, 2007.

Haines, Richard. The SELinux Notebook (4th Edition). 2014. This compendium
of SELinux-related information is the closest thing to official documentation. It’s
available for download from freecomputerbooks.com.

Vermeulen, Sven. SELinux Cookbook. Birmingham, UK: Packt Publishing, 2014.
This book includes a variety of practical tips for dealing with SELinux. It covers
both service securement and user-facing security models.

http://freecomputerbooks.com

90

A process represents a running program. It’s the abstraction through which memory,
processor time, and I/O resources can be managed and monitored.

It is an axiom of the UNIX philosophy that as much work as possible be done with-
in the context of processes rather than being handled specially by the kernel. Sys-
tem and user processes follow the same rules, so you can use a single set of tools
to control them both.

4.1	 Components of a process
A process consists of an address space and a set of data structures within the ker-
nel. The address space is a set of memory pages that the kernel has marked for the
process’s use.1 These pages contain the code and libraries that the process is execut-
ing, the process’s variables, its stacks, and various extra information needed by the
kernel while the process is running. The process’s virtual address space is laid out
randomly in physical memory and tracked by the kernel’s page tables.

	 1.	 Pages are the units in which memory is managed. They are usually 4KiB or 8KiB in size.

4 Process Control

	 Components of a process	 91

Pr
oc

es
se

s

The kernel’s internal data structures record various pieces of information about
each process. Here are some of the more important of these:

•	 The process’s address space map
•	 The current status of the process (sleeping, stopped, runnable, etc.)
•	 The execution priority of the process
•	 Information about the resources the process has used (CPU, memory, etc.)
•	 Information about the files and network ports the process has opened
•	 The process’s signal mask (a record of which signals are blocked)
•	 The owner of the process

A “thread” is an execution context within a process. Every process has at least one
thread, but some processes have many. Each thread has its own stack and CPU
context but operates within the address space of its enclosing process.

Modern computer hardware includes multiple CPUs and multiple cores per CPU.
A process’s threads can run simultaneously on different cores. Multithreaded appli-
cations such as BIND and Apache benefit quite a bit from this architecture because
it lets them farm out requests to individual threads.

Many of the parameters associated with a process directly affect its execution: the
amount of processor time it gets, the files it can access, and so on. In the following
sections, we discuss the meaning and significance of the parameters that are most
interesting from a system administrator’s point of view. These attributes are com-
mon to all versions of UNIX and Linux.

PID: process ID number
The kernel assigns a unique ID number to every process. Most commands and
system calls that manipulate processes require you to specify a PID to identify the
target of the operation. PIDs are assigned in order as processes are created.

Linux now defines the concept of process “namespaces,” which further restrict
processes’ ability to see and affect each other. Container implementations use this
feature to keep processes segregated. One side effect is that a process might appear
to have different PIDs depending on the namespace of the observer. It’s kind of
like Einsteinian relativity for process IDs. Refer to Chapter 25, Containers, for
more information.

PPID: parent PID
Neither UNIX nor Linux has a system call that initiates a new process running a
particular program. Instead, it’s done in two separate steps. First, an existing process
must clone itself to create a new process. The clone can then exchange the program
it’s running for a different one.

92	 Chapter 4	 Process Control	

When a process is cloned, the original process is referred to as the parent, and the
copy is called the child. The PPID attribute of a process is the PID of the parent
from which it was cloned.2

The parent PID is a useful piece of information when you’re confronted with an
unrecognized (and possibly misbehaving) process. Tracing the process back to its
origin (whether that is a shell or some other program) may give you a better idea
of its purpose and significance.

UID and EUID: real and effective user ID
A process’s UID is the user identification number of the person who created it, or
more accurately, it is a copy of the UID value of the parent process. Usually, only
the creator (aka, the owner) and the superuser can manipulate a process.

The EUID is the “effective” user ID, an extra UID that determines what resources
and files a process has permission to access at any given moment. For most processes,
the UID and EUID are the same, the usual exception being programs that are setuid.

Why have both a UID and an EUID? Simply because it’s useful to maintain a distinc-
tion between identity and permission, and because a setuid program might not wish
to operate with expanded permissions all the time. On most systems, the effective
UID can be set and reset to enable or restrict the additional permissions it grants.

Most systems also keep track of a “saved UID,” which is a copy of the process’s
EUID at the point at which the process first begins to execute. Unless the process
takes steps to obliterate this saved UID, it remains available for use as the real or
effective UID. A conservatively written setuid program can therefore renounce its
special privileges for the majority of its execution and access them only at the points
where extra privileges are needed.

Linux also defines a nonstandard FSUID process parameter that controls the deter-
mination of filesystem permissions. It is infrequently used outside the kernel and
is not portable to other UNIX systems.

GID and EGID: real and effective group ID
The GID is the group identification number of a process. The EGID is related to
the GID in the same way that the EUID is related to the UID in that it can be “up-
graded” by the execution of a setgid program. As with the saved UID, the kernel
maintains a saved GID for each process.

The GID attribute of a process is largely vestigial. For purposes of access determi-
nation, a process can be a member of many groups at once. The complete group
list is stored separately from the distinguished GID and EGID. Determinations of
access permissions normally take into account the EGID and the supplemental
group list, but not the GID itself.

	 2.	 At least initially. If the original parent dies, init or systemd (process 1) becomes the new parent. See
page 94.

See page 248 for
more information
about UIDs.

See page 68 for more
information about
setuid execution.

See page 249 for
more information
about groups.

	 The life cycle of a process	 93

Pr
oc

es
se

s

The only time at which the GID is actually significant is when a process creates
new files. Depending on how the filesystem permissions have been set, new files
might default to adopting the GID of the creating process. See page 134 for details.

Niceness
A process’s scheduling priority determines how much CPU time it receives. The
kernel computes priorities with a dynamic algorithm that takes into account the
amount of CPU time that a process has recently consumed and the length of time
it has been waiting to run. The kernel also pays attention to an administratively set
value that’s usually called the “nice value” or “niceness,” so called because it specifies
how nice you are planning to be to other users of the system. We discuss niceness
in detail on page 102.

Control terminal
Most nondaemon processes have an associated control terminal. The control ter-
minal determines the default linkages for the standard input, standard output, and
standard error channels. It also distributes signals to processes in response to key-
board events such as <Control-C>; see the discussion starting on page 94.

Of course, actual terminals are rare outside of computer museums these days. Nev-
ertheless, they live on in the form of pseudo-terminals, which are still widely used
throughout UNIX and Linux systems. When you start a command from the shell,
for example, your terminal window typically becomes the process’s control terminal.

4.2	 The life cycle of a process
To create a new process, a process copies itself with the fork system call.3 fork cre-
ates a copy of the original process, and that copy is largely identical to the parent.
The new process has a distinct PID and has its own accounting information.

fork has the unique property of returning two different values. From the child’s
point of view, it returns zero. The parent receives the PID of the newly created child.
Since the two processes are otherwise identical, they must both examine the return
value to figure out which role they are supposed to play.

After a fork, the child process often uses one of the exec family of routines to begin
the execution of a new program. These calls change the program that the process
is executing and reset the memory segments to a predefined initial state. The vari-
ous forms of exec differ only in the ways in which they specify the command-line
arguments and environment to be given to the new program.

When the system boots, the kernel autonomously creates and installs several pro-
cesses. The most notable of these is init or systemd, which is always process num-

	 3.	 Technically, Linux systems use clone, a superset of fork that handles threads and includes additional
features. fork remains in the kernel for backward compatibility but calls clone behind the scenes.

See page 190 for more
information about
the standard commu-
nication channels.

94	 Chapter 4	 Process Control	

ber 1. This process executes the system’s startup scripts, although the exact manner
in which this is done differs slightly between UNIX and Linux. All processes other
than the ones the kernel creates are descendants of this primordial process. See
Chapter 2, Booting and System Management Daemons, for more information
about booting and the various flavors of init daemon.

init (or systemd) also plays another important role in process management. When a
process completes, it calls a routine named _exit to notify the kernel that it is ready
to die. It supplies an exit code (an integer) that tells why it’s exiting. By convention,
zero indicates a normal or “successful” termination.

Before a dead process can be allowed to disappear completely, the kernel requires
that its death be acknowledged by the process’s parent, which the parent does with
a call to wait. The parent receives a copy of the child’s exit code (or if the child did
not exit voluntarily, an indication of why it was killed) and can also obtain a sum-
mary of the child’s resource use if it wishes.

This scheme works fine if parents outlive their children and are conscientious about
calling wait so that dead processes can be disposed of. If a parent dies before its
children, however, the kernel recognizes that no wait is forthcoming. The kernel
adjusts the orphan processes to make them children of init or systemd, which po-
litely performs the wait needed to get rid of them when they die.

Signals
Signals are process-level interrupt requests. About thirty different kinds are defined,
and they’re used in a variety of ways:

•	 They can be sent among processes as a means of communication.

•	 They can be sent by the terminal driver to kill, interrupt, or suspend pro-
cesses when keys such as <Control-C> and <Control-Z> are pressed.4

•	 They can be sent by an administrator (with kill) to achieve various ends.

•	 They can be sent by the kernel when a process commits an infraction such
as division by zero.

•	 They can be sent by the kernel to notify a process of an “interesting” con-
dition such as the death of a child process or the availability of data on
an I/O channel.

When a signal is received, one of two things can happen. If the receiving process
has designated a handler routine for that particular signal, the handler is called with
information about the context in which the signal was delivered. Otherwise, the
kernel takes some default action on behalf of the process. The default action varies
from signal to signal. Many signals terminate the process; some also generate core
dumps (if core dumps have not been disabled).

	 4.	 The functions of <Control-Z> and <Control-C> can be reassigned to other keys with the stty com-
mand, but this is rare in practice. In this chapter we refer to them by their conventional bindings.

A core dump is a
copy of a process’s
memory image, which
is sometimes useful
for debugging.

	 The life cycle of a process	 95

Pr
oc

es
se

s

Specifying a handler routine for a signal is referred to as catching the signal. When
the handler completes, execution restarts from the point at which the signal was
received.

To prevent signals from arriving, programs can request that they be either ignored
or blocked. A signal that is ignored is simply discarded and has no effect on the
process. A blocked signal is queued for delivery, but the kernel doesn’t require the
process to act on it until the signal has been explicitly unblocked. The handler for
a newly unblocked signal is called only once, even if the signal was received several
times while reception was blocked.

Table 4.1 lists some signals that administrators should be familiar with. The up-
percase convention for the names derives from C language tradition. You might
also see signal names written with a SIG prefix (e.g., SIGHUP) for similar reasons.

Table 4.1	 Signals every administrator should know a

  # b Name Description Default
Can

catch?
Can

block?
Dump
core?

1 HUP Hangup Terminate Yes Yes No
2 INT Interrupt Terminate Yes Yes No
3 QUIT Quit Terminate Yes Yes Yes
9 KILL Kill Terminate No No No

 10 BUS Bus error Terminate Yes Yes Yes
11 SEGV Segmentation fault Terminate Yes Yes Yes
15 TERM Software termination Terminate Yes Yes No
 17 STOP Stop Stop No No No
 18 TSTP Keyboard stop Stop Yes Yes No
 19 CONT Continue after stop Ignore Yes No No
 28 WINCH Window changed Ignore Yes Yes No
 30 USR1 User-defined #1 Terminate Yes Yes No
 31 USR2 User-defined #2 Terminate Yes Yes No

a.	 A list of signal names and numbers is also available from the bash built-in command kill -l.
b.	 May vary on some systems. See /usr/include/signal.h or man signal for more information.

Other signals, not shown in Table 4.1, mostly report obscure errors such as “illegal
instruction.” The default handling for such signals is to terminate with a core dump.
Catching and blocking are generally allowed because some programs are smart
enough to try to clean up whatever problem caused the error before continuing.

The BUS and SEGV signals are also error signals. We’ve included them in the table
because they’re so common: when a program crashes, it’s usually one of these two
signals that finally brings it down. By themselves, the signals are of no specific diag-
nostic value. Both of them indicate an attempt to use or access memory improperly.

96	 Chapter 4	 Process Control	

The signals named KILL and STOP cannot be caught, blocked, or ignored. The
KILL signal destroys the receiving process, and STOP suspends its execution un-
til a CONT signal is received. CONT can be caught or ignored, but not blocked.

TSTP is a “soft” version of STOP that might be best described as a request to stop.
It’s the signal generated by the terminal driver when <Control-Z> is typed on the
keyboard. Programs that catch this signal usually clean up their state, then send
themselves a STOP signal to complete the stop operation. Alternatively, programs
can ignore TSTP to prevent themselves from being stopped from the keyboard.

The signals KILL, INT, TERM, HUP, and QUIT all sound as if they mean approx-
imately the same thing, but their uses are actually quite different. It’s unfortunate
that such vague terminology was selected for them. Here’s a decoding guide:

•	 KILL is unblockable and terminates a process at the kernel level. A pro-
cess can never actually receive or handle this signal.

•	 INT is sent by the terminal driver when the user presses <Control-C>. It’s
a request to terminate the current operation. Simple programs should quit
(if they catch the signal) or simply allow themselves to be killed, which
is the default if the signal is not caught. Programs that have interactive
command lines (such as shells) should stop what they’re doing, clean up,
and wait for user input again.

•	 TERM is a request to terminate execution completely. It’s expected that
the receiving process will clean up its state and exit.

•	 HUP has two common interpretations. First, it’s understood as a reset
request by many daemons. If a daemon is capable of rereading its con-
figuration file and adjusting to changes without restarting, a HUP can
generally trigger this behavior.

	 Second, HUP signals are sometimes generated by the terminal driver in
an attempt to “clean up” (i.e., kill) the processes attached to a particular
terminal. This behavior is largely a holdover from the days of wired ter-
minals and modem connections, hence the name “hangup.”

 Shells in the C shell family (tcsh et al.) usually make background pro-
cesses immune to HUP signals so that they can continue to run after the
user logs out. Users of Bourne-ish shells (ksh, bash, etc.) can emulate this
behavior with the nohup command.

•	 QUIT is similar to TERM, except that it defaults to producing a core dump
if not caught. A few programs cannibalize this signal and interpret it to
mean something else.

The signals USR1 and USR2 have no set meaning. They’re available for programs
to use in whatever way they’d like. For example, the Apache web server interprets
a HUP signal as a request for an immediate restart. A USR1 signal initiates a more
graceful transition in which existing client conversations are allowed to finish.

	 The life cycle of a process	 97

Pr
oc

es
se

s

kill: send signals
As its name implies, the kill command is most often used to terminate a process.
kill can send any signal, but by default it sends a TERM. kill can be used by normal
users on their own processes or by root on any process. The syntax is

kill [-signal] pid

where signal is the number or symbolic name of the signal to be sent (as shown in
Table 4.1) and pid is the process identification number of the target process.

A kill without a signal number does not guarantee that the process will die, because
the TERM signal can be caught, blocked, or ignored. The command

$ kill -9 pid

“guarantees” that the process will die because signal 9, KILL, cannot be caught. Use
kill -9 only if a polite request fails. We put quotes around “guarantees” because
processes can on occasion become so wedged that even KILL does not affect them,
usually because of some degenerate I/O vapor lock such as waiting for a volume
that has disappeared. Rebooting is usually the only way to get rid of these processes.

killall kills processes by name. For example, the following command kills all Apache
web server processes:

$ sudo killall httpd

The pkill command searches for processes by name (or other attributes, such as
EUID) and sends the specified signal. For example, the following command sends
a TERM signal to all processes running as the user ben:

$ sudo pkill -u ben

Process and thread states
As you saw in the previous section, a process can be suspended with a STOP signal
and returned to active duty with a CONT signal. The state of being suspended or
runnable applies to the process as a whole and is inherited by all the process’s threads.5

Even when nominally runnable, threads must often wait for the kernel to complete
some background work for them before they can continue execution. For example,
when a thread reads data from a file, the kernel must request the appropriate disk
blocks and then arrange for their contents to be delivered into the requesting pro-
cess’s address space. During this time, the requesting thread enters a short-term
sleep state in which it is ineligible to execute. Other threads in the same process
can continue to run, however.

You’ll sometimes see entire processes described as “sleeping” (for example, in ps
output—see the next section). Since sleeping is a thread-level attribute, this con-
vention is a bit deceptive. A process is generally reported as “sleeping” when all its

	 5.	 Individual threads can in fact be managed similarly. However, those facilities are primarily of interest
to developers; system administrators needn’t concern themselves.

98	 Chapter 4	 Process Control	

threads are asleep. Of course, the distinction is moot in the case of single-threaded
processes, which remain the most common case.

Interactive shells and system daemons spend most of their time sleeping, waiting
for terminal input or network connections. Since a sleeping thread is effectively
blocked until its request has been satisfied, its process generally receives no CPU
time unless it receives a signal or a response to one of its I/O requests.

Some operations can cause processes or threads to enter an uninterruptible sleep
state. This state is usually transient and is not observed in ps output (denoted by a
D in the STAT column; see Table 4.2 on page 100). However, a few degenerate situ-
ations can cause it to persist. The most common cause involves server problems on
an NFS filesystem mounted with the hard option. Since processes in the uninter-
ruptible sleep state cannot be roused even to service a signal, they cannot be killed.
To get rid of them, you must fix the underlying problem or reboot.

In the wild, you might occasionally see “zombie” processes that have finished ex-
ecution but that have not yet had their status collected by their parent process (or
by init or systemd). If you see zombies hanging around, check their PPIDs with
ps to find out where they’re coming from.

4.3	 ps: monitor processes
The ps command is the system administrator’s main tool for monitoring process-
es. Although versions of ps differ in their arguments and display, they all deliver
essentially the same information. Part of the enormous variation among versions
of ps can be traced back to differences in the development history of UNIX. How-
ever, ps is also a command that vendors tend to customize for other reasons. It’s
closely tied to the kernel’s handling of processes, so it tends to reflect all a vendor’s
underlying kernel changes.

ps can show the PID, UID, priority, and control terminal of processes. It also informs
you how much memory a process is using, how much CPU time it has consumed,
and what its current status is (running, stopped, sleeping, etc.). Zombies show up
in a ps listing as <exiting> or <defunct>.

Implementations of ps have become hopelessly complex over the years. Several
vendors have abandoned the attempt to define meaningful displays and made their
pses completely configurable. With a little customization work, almost any desired
output can be produced.

As a case in point, the ps used by Linux is a highly polymorphous version that under-
stands option sets from multiple historical lineages. Almost uniquely among UNIX

See page 809 for
more information
about hard-mounting
NFS filesystems.

Pr
oc

es
se

s

	 ps: monitor processes	 99

commands, Linux’s ps accepts command-line flags with or without dashes but might
assign different interpretations to those forms. For example, ps -a is not the same as ps a.

Do not be alarmed by all this complexity: it’s there mainly for developers, not for
system administrators. Although you will use ps frequently, you only need to know
a few specific incantations.

You can obtain a useful overview of all the processes running on the system with
ps aux. The a option says show all processes, and x says show even processes that
don’t have a control terminal; u selects the “user oriented” output format. Here’s
an example of ps aux output on a machine running Red Hat:

redhat$ ps aux
	 USER	 PID	%CPU	%MEM	 VSZ	 RSS	 TTY	STAT	 TIME	 COMMAND
	 root	 1	 0.1	 0.2	 3356	 560	 ?	 S	 0:00	 init [5]
	 root	 2	 0	 0	 0	 0	 ?	 SN	 0:00	 [ksoftirqd/0]
	 root	 3	 0	 0	 0	 0	 ?	 S<	 0:00	 [events/0]
	 root	 4	 0	 0	 0	 0	 ?	 S<	 0:00	 [khelper]
	 root	 5	 0	 0	 0	 0	 ?	 S<	 0:00	 [kacpid]
	 root	 18	 0	 0	 0	 0	 ?	 S<	 0:00	 [kblockd/0]
	 root	 28	 0	 0	 0	 0	 ?	 S	 0:00	 [pdflush]
...
	 root	 196	 0	 0	 0	 0	 ?	 S	 0:00	 [kjournald]
	 root	 1050	 0	 0.1	 2652	 448	 ?	 S<s	 0:00	 udevd
	 root	 1472	 0	 0.3	 3048	 1008	 ?	 S<s	 0:00	 /sbin/dhclient -1
	 root	 1646	 0	 0.3	 3012	 1012	 ?	 S<s	 0:00	 /sbin/dhclient -1
	 root	 1733	 0	 0	 0	 0	 ?	 S	 0:00	 [kjournald]
	 root	 2124	 0	 0.3	 3004	 1008	 ?	 Ss	 0:00	 /sbin/dhclient -1
	 root	 2182	 0	 0.2	 2264	 596	 ?	 Ss	 0:00	 rsyslog -m 0
	 root	 2186	 0	 0.1	 2952	 484	 ?	 Ss	 0:00	 klogd -x
	 root	 2519	 0.0	 0.0	 17036	 380	 ?	 Ss	 0:00	 /usr/sbin/atd
	 root 	2384	 0	 0.6	 4080	 1660	 ?	 Ss	 0:00	 /usr/sbin/sshd
	 root	 2419	 0	 1.1	 7776	 3004	 ?	 Ss	 0:00	 sendmail: accept
...

Command names in brackets are not really commands at all but rather kernel
threads scheduled as processes. The meaning of each field is shown in Table 4.2
on the next page.

Another useful set of arguments is lax, which gives more technical information. The
a and x options are as above (show every process), and l selects the “long” output
format. ps lax might be slightly faster to run than ps aux because it doesn’t have
to translate every UID to a username—efficiency can be important if the system
is already bogged down.

100	 Chapter 4	 Process Control	

Table 4.2	 Explanation of ps aux output

Field Contents

USER Username of the process’s owner
PID Process ID
%CPU Percentage of the CPU this process is using
%MEM Percentage of real memory this process is using
VSZ Virtual size of the process
RSS Resident set size (number of pages in memory)
TTY Control terminal ID
STAT Current process status:

	 R	 = Runnable					 D	 = In uninterruptible sleep
	 S	 = Sleeping (< 20 sec)	 T	 = Traced or stopped	
	 Z	 = Zombie
Additional flags:
	 W	 = Process is swapped out
	 <	 = Process has higher than normal priority
	 N	 = Process has lower than normal priority
	 L	 = Some pages are locked in core
	 s	 = Process is a session leader

TIME CPU time the process has consumed
COMMAND Command name and arguments a

a.	 Programs can modify this information, so it’s not necessarily an accurate representa-
tion of the actual command line.

Shown here in an abbreviated example, ps lax includes fields such as the parent
process ID (PPID), niceness (NI), and the type of resource on which the process
is waiting (WCHAN, short for “wait channel”).

redhat$ ps lax
	 F		 UID	 PID	 PPID	 PRI	 NI	 VSZ	 RSS	 WCHAN	 STAT	 TIME	 COMMAND
	 4		 0	 1	 0	 16	 0	 3356	 560	 select	 S	 0:00	 init [5]
	 1		 0	 2	 1	 34	 19	 0	 0	 ksofti	 SN	 0:00	 [ksoftirqd/0
	 1		 0	 3	 1	 5	-10	 0	 0	 worker	 S<	 0:00	 [events/0]
	 1		 0	 4	 3	 5	-10	 0	 0	 worker	 S<	 0:00	 [khelper]
	 5		 0	 2186	 1	 16	 0	 2952	 484	 syslog	 Ss	 0:00	 klogd -x
	 5		 32	 2207	 1	 15	 0	 2824	 580	 -	 Ss	 0:00	 portmap
	 5		 29	 2227	 1	 18	 0	 2100	 760	 select	 Ss	 0:00	 rpc.statd
	 1		 0	 2260	 1	 16	 0	 5668	 1084	 -	 Ss	 0:00	 rpc.idmapd
	 1		 0	 2336	 1	 21	 0	 3268	 556	 select	 Ss	 0:00	 acpid
	 5		 0	 2384	 1	 17	 0	 4080	 1660	 select	 Ss	 0:00	 sshd
	 1		 0	 2399	 1	 15	 0	 2780	 828	 select	 Ss	 0:00	 xinetd -sta
	 5		 0	 2419	 1	 16	 0	 7776	 3004	 select	 Ss	 0:00	 sendmail: a
...

Pr
oc

es
se

s

	 Interactive monitoring with top	 101

Commands with long argument lists may have the command-line output cut off.
Add w to the list of flags to display more columns in the output. Add w twice for
unlimited column width, handy for those processes that have exceptionally long
command-line arguments, such as some java applications.

Administrators frequently need to identify the PID of a process. You can find the
PID by grepping the output of ps:

$ ps aux | grep sshd
root 6811 0.0 0.0 78056 1340 ? Ss 16:04 0:00 /usr/sbin/sshd
bwhaley 13961 0.0 0.0 110408 868 pts/1 S+ 20:37 0:00 grep /usr/sbin/sshd

Note that the ps output includes the grep command itself, since the grep was ac-
tive in the process list at the time ps was running. You can remove this line from
the output with grep -v:

$ ps aux | grep -v grep | grep sshd
root 6811 0.0 0.0 78056 1340 ? Ss 16:04 0:00 /usr/sbin/sshd

You can also determine the PID of a process with the pidof command:

$ pidof /usr/sbin/sshd
6811

Or with the pgrep utility:

$ pgrep sshd
6811

pidof and pgrep show all processes that match the passed string. We often find a
simple grep to offer the most flexibility, though it can be a bit more verbose.

4.4	 Interactive monitoring with top
Commands like ps show you a snapshot of the system as it was at the time. Often,
that limited sample is insufficient to convey the big picture of what’s really going
on. top is a sort of real-time version of ps that gives a regularly updated, interactive
summary of processes and their resource usage. For example:

redhat$ top
top - 20:07:43 up 1:59, 3 users, load average: 0.45, 0.16, 0.09
Tasks: 251 total, 1 running, 250 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.7 us, 1.2 sy, 0.0 ni, 98.0 id, 0.0 wa, 0.0 hi, 0.2 si, 0.0 st
KiB Mem : 1013672 total, 128304 free, 547176 used, 338192 buff/cache
KiB Swap: 2097148 total, 2089188 free, 7960 used. 242556 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 2731 root 20 0 193316 34848 15184 S 1.7 3.4 0:30.39 Xorg
25721 ulsah 20 0 619412 27216 17636 S 1.0 2.7 0:03.67 konsole
25296 ulsah 20 0 260724 6068 3268 S 0.7 0.6 0:17.78 prlcc
 747 root 20 0 4372 604 504 S 0.3 0.1 0:02.68 rngd
 846 root 20 0 141744 384 192 S 0.3 0.0 0:01.74 prltoolsd

102	 Chapter 4	 Process Control	

 1647 root 20 0 177436 3656 2632 S 0.3 0.4 0:04.47 cupsd
10246 ulsah 20 0 130156 1936 1256 R 0.3 0.2 0:00.10 top
 1 root 20 0 59620 5472 3348 S 0.0 0.5 0:02.09 systemd
 2 root 20 0 0 0 0 S 0.0 0.0 0:00.02 kthreadd
 3 root 20 0 0 0 0 S 0.0 0.0 0:00.03 ksoftirqd/0
 5 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/0:+
 7 root rt 0 0 0 0 S 0.0 0.0 0:00.20 migration/0
 8 root 20 0 0 0 0 S 0.0 0.0 0:00.00 rcu_bh
 9 root 20 0 0 0 0 S 0.0 0.0 0:00.00 rcuob/0
...

By default, the display updates every 1–2 seconds, depending on the system. The
most CPU-consumptive processes appear at the top. top also accepts input from
the keyboard to send signals and renice processes (see the next section). You can
then observe how your actions affect the overall condition of the machine.

The summary information in the first few lines of top output is one of the first
places to look at to analyze the health of the system. It shows a condensed view of
the system load, memory usage, number of processes, and a breakdown of how
the CPU is being used.

On multicore systems, CPU usage is an average of all the cores in the system. Under
Linux, press 1 (numeral one) while top is open to switch to a display of the indi-
vidual cores. On FreeBSD, run top -P to achieve the same effect.6

Root can run top with the -q option to goose it up to the highest possible priority.
This option can be useful when you are trying to track down a process that has al-
ready brought the system to its knees.

We also like htop, an open source, cross-platform, interactive process viewer that
offers more features and has a nicer interface than that of top. It is not yet available
as a package for our example systems, but you can download a binary or source
version from the developer’s web site at hisham.hm/htop.

4.5	 nice and renice: influence scheduling priority
The “niceness” of a process is a numeric hint to the kernel about how the process
should be treated in relation to other processes contending for the CPU.7 The strange
name is derived from the fact that it determines how nice you are going to be to other
users of the system. A high niceness means a low priority for your process: you are
going to be nice. A low or negative value means high priority: you are not very nice.

It’s highly unusual to set priorities by hand these days. On the puny systems where
UNIX originated, performance was significantly affected by which process was on the

	 6.	 On FreeBSD systems, you can set the TOP environment variable to pass additional arguments to
top. We recommend -H to show all threads for multithreaded processes rather than just a summary,
plus -P to display all CPU cores. Add export TOP="-HP" to your shell initialization file to make these
changes persistent between shell sessions.

	 7.	 nice manages only CPU scheduling priority. To set I/O priority, use ionice.

Learn how to interpret
the CPU, memory,
and load details
in Chapter 29.

Pr
oc

es
se

s

	 nice and renice: influence scheduling priority	 103

CPU. Today, with more than adequate CPU power on every desktop, the scheduler
does a good job of managing most workloads. The addition of scheduling classes
gives developers additional control when fast response is essential.

The range of allowable niceness values varies among systems. In Linux the range is
-20 to +19, and in FreeBSD it’s -20 to +20.

Unless the user takes special action, a newly created process inherits the niceness
of its parent process. The owner of the process can increase its niceness but cannot
lower it, even to return the process to the default niceness. This restriction prevents
processes running at low priority from bearing high-priority children. However,
the superuser can set nice values arbitrarily.

I/O performance has not kept up with increasingly fast CPUs. Even with today’s
high-performance SSDs, disk bandwidth remains the primary bottleneck on most
systems. Unfortunately, a process’s niceness has no effect on the kernel’s manage-
ment of its memory or I/O; high-nice processes can still monopolize a dispropor-
tionate share of these resources.

A process’s niceness can be set at the time of creation with the nice command and
adjusted later with the renice command. nice takes a command line as an argument,
and renice takes a PID or (sometimes) a username.

Some examples:

$ nice -n 5 ~/bin/longtask 	 // Lowers priority (raise nice) by 5
$ sudo renice -5 8829 		 // Sets niceness to -5
$ sudo renice 5 -u boggs		 // Sets niceness of boggs’s procs to 5

Unfortunately, there is little agreement among systems about how the desired prior-
ities should be specified; in fact, even nice and renice from the same system usually
don’t agree. To complicate things, a version of nice is built into the C shell and some
other common shells (but not bash). If you don’t type the full path to nice, you’ll get
the shell’s version rather than the operating system’s. To sidestep this ambiguity, we
suggest using the fully qualified path to the system’s version, found at /usr/bin/nice.

Table 4.3 summarizes the variations. A prio is an absolute niceness, while an incr
is relative to the niceness of the shell from which nice or renice is run. Only the
shell nice understands plus signs (in fact, it requires them); leave them out in all
other circumstances.

Table 4.3	 How to express priorities for nice and renice

System Range OS nice csh nice renice

Linux -20 to 19 -n incr +incr or -incr prio or -n prio
FreeBSD -20 to 20 -n incr +incr or -incr incr or -n incr

104	 Chapter 4	 Process Control	

4.6	 The /proc filesystem
The Linux versions of ps and top read their process status information from the
/proc directory, a pseudo-filesystem in which the kernel exposes a variety of inter-
esting information about the system’s state.

Despite the name /proc (and the name of the underlying filesystem type, “proc”),
the information is not limited to process information—a variety of status infor-
mation and statistics generated by the kernel are represented here. You can even
modify some parameters by writing to the appropriate /proc file. See page 339
for some examples.

Although a lot of the information is easiest to access through front-end commands
such as vmstat and ps, some of the more obscure nuggets must be read directly
from /proc. It’s worth poking around in this directory to familiarize yourself with
everything that’s there. man proc has a comprehensive explanation of its contents.

Because the kernel creates the contents of /proc files on the fly (as they are read),
most appear to be empty, 0-byte files when listed with ls -l. You’ll have to cat or less
the contents to see what they actually contain. But be cautious—a few files contain
or link to binary data that can confuse your terminal emulator if viewed directly.

Process-specific information is divided into subdirectories named by PID. For ex-
ample, /proc/1 is always the directory that contains information about init. Table
4.4 lists the most useful per-process files.

Table 4.4	 Process information files in Linux /proc (numbered subdirectories)

File Contents

cgroup The control groups to which the process belongs
cmd Command or program the process is executing
cmdline a Complete command line of the process (null-separated)
cwd Symbolic link to the process’s current directory
environ The process’s environment variables (null-separated)
exe Symbolic link to the file being executed
fd Subdirectory containing links for each open file descriptor
fdinfo Subdirectory containing further info for each open file descriptor
maps Memory mapping information (shared segments, libraries, etc)
ns Subdirectory with links to each namespace used by the process.
root Symbolic link to the process’s root directory (set with chroot)
stat General process status information (best decoded with ps)
statm Memory usage information

a.	 Might be unavailable if the process is swapped out of memory

Pr
oc

es
se

s

	 strace and truss: trace signals and system calls 	 105

The individual components contained within the cmdline and environ files are
separated by null characters rather than newlines. You can filter their contents
through tr "\000" "\n" to make them more readable.

The fd subdirectory represents open files in the form of symbolic links. File descrip-
tors that are connected to pipes or network sockets don’t have an associated filename.
The kernel supplies a generic description as the link target instead.

The maps file can be useful for determining what libraries a program is linked to
or depends on.

FreeBSD includes a similar-but-different implementation of /proc. However, its use
has been deprecated because of neglect in the code base and a history of security
issues. It’s still available for compatibility but is not mounted by default. To mount
it, use the command 8

freebsd$ sudo mount -t procfs proc /proc

The filesystem layout is similar—but not identical—to the Linux version of procfs.
The information for a process includes its status, a symbolic link to the file being
executed, details about the process’s virtual memory, and other low-level informa-
tion. See also man procfs.

4.7	 strace and truss: trace signals and system calls
It’s often difficult to figure out what a process is actually doing. The first step is gen-
erally to make an educated guess based on indirect data collected from the filesys-
tem, logs, and tools such as ps.

If those sources of information prove insufficient, you can snoop on the process at a
lower level with the strace (Linux; usually an optional package) or truss (FreeBSD)
command. These commands display every system call that a process makes and
every signal it receives. You can attach strace or truss to a running process, snoop
for a while, and then detach from the process without disturbing it.9

Although system calls occur at a relatively low level of abstraction, you can usually
tell quite a bit about a process’s activity from the call trace. For example, the fol-
lowing log was produced by strace run against an active copy of top (which was
running as PID 5810):

redhat$ sudo strace -p 5810
gettimeofday( {1116193814, 213881}, {300, 0} )	 = 0
open("/proc", O_RDONLY|O_NONBLOCK|O_LARGEFILE|O_DIRECTORY) = 7
fstat64(7, {st_mode=S_IFDIR|0555, st_size=0, ...} )	 = 0
fcntl64(7, F_SETFD, FD_CLOEXEC)			 = 0

	 8.	 To automatically mount the /proc filesystem at boot time, append the line proc /proc procfs rw 0 0
to /etc/fstab.

	 9.	 Well, usually. strace can interrupt system calls. The monitored process must then be prepared to re-
start them. This is a standard rule of UNIX software hygiene, but it’s not always observed.

106	 Chapter 4	 Process Control	

getdents64(7, /* 36 entries */, 1024)			 = 1016
getdents64(7, /* 39 entries */, 1024)			 = 1016
stat64("/proc/1", {st_mode=S_IFDIR|0555, st_size=0, ...} ) = 0
open("/proc/1/stat", O_RDONLY)			 = 8
read(8, "1 (init) S 0 0 0 0 -1 4194560 73"..., 1023)	= 191
close(8)									 = 0
...

Not only does strace show you the name of every system call made by the process,
but it also decodes the arguments and shows the result code that the kernel returns.

In the example above, top starts by checking the current time. It then opens and
stats the /proc directory and reads the directory’s contents, thereby obtaining a list
of running processes. top goes on to stat the directory representing the init process
and then opens /proc/1/stat to read init’s status information.

System call output can often reveal errors that are not reported by the process it-
self. For example, filesystem permission errors or socket conflicts are usually quite
obvious in the output of strace or truss. Look for system calls that return error in-
dications, and check for nonzero values.

strace is packed with goodies, most of which are documented in the man page.
For example, the -f flag follows forked processes. This feature is useful for tracing
daemons (such as httpd) that spawn many children. The -e trace=file option dis-
plays only file-related operations. This feature is especially handy for discovering
the location of evasive configuration files.

Here’s a similar example from FreeBSD that uses truss. In this case, we trace how
cp copies a file:

freebsd$ truss cp /etc/passwd /tmp/pw
...
lstat("/etc/passwd",{ mode=-rw-r--r-- ,inode=13576,size=2380,

blksize=4096 }) = 0 (0x0)
umask(0x1ff)								 = 18 (0x12)
umask(0x12)								 = 511 (0x1ff)
fstatat(AT_FDCWD,"/etc/passwd",{ mode=-rw-r--r-- ,inode=13576,

size=2380,blksize=4096 },0x0)			 = 0 (0x0)
stat("/tmp/pw",0x7fffffffe440) ERR#2 'No such file or directory'
openat(AT_FDCWD,"/etc/passwd",O_RDONLY,00)		 = 3 (0x3)
openat(AT_FDCWD,"/tmp/pw",O_WRONLY|O_CREAT,0100644) = 4 (0x4)
mmap(0x0,2380,PROT_READ,MAP_SHARED,3,0x0) 	 = 34366304256

(0x800643000)
write(4,"# $FreeBSD: releng/11.0/etc/mast"...,2380)	 = 2380 (0x94c)
close(4) 						 = 0 (0x0)
close(3) 						 = 0 (0x0)
...

After allocating memory and opening library dependencies (not shown), cp uses
the lstat system call to check the current status of the /etc/passwd file. It then runs

	 Runaway processes	 107

Pr
oc

es
se

s

stat on the path of the prospective copy, /tmp/pw. That file does not yet exist, so
the stat fails and truss decodes the error for you as “No such file or directory.”

cp then invokes the openat system call (with the O_RDONLY option) to read the
contents of /etc/passwd, followed by an openat of /tmp/pw with O_WRONLY to
create the new destination file. It then maps the contents of /etc/passwd into mem-
ory (with mmap) and writes out the data with write. Finally, cp cleans up after itself
by closing both file handles.

System call tracing is a powerful debugging tool for administrators. Turn to these
tools after more traditional routes such as examining log files and configuring a
process for verbose output have been exhausted. Do not be intimidated by the dense
output; it’s usually sufficient to focus on the human-readable portions.

4.8	 Runaway processes
“Runaway” processes are those that soak up significantly more of the system’s CPU,
disk, or network resources than their usual role or behavior would lead you to ex-
pect. Sometimes, such programs have their own bugs that have led to degenerate
behavior. In other cases, they fail to deal appropriately with upstream failures and
get stuck in maladaptive loops. For example, a process might reattempt the same
failing operation over and over again, flooring the CPU. In yet another category of
cases, there is no bug per se, but the software is simply inefficient in its implemen-
tation and greedy with the system’s resources.

All these situations merit investigation by a system administrator, not only because
the runaway process is most likely malfunctioning but also because it typically in-
terferes with the operation of other processes that are running on the system.

The line between pathological behavior and normal behavior under heavy work-
load is vague. Often, the first step in diagnosis is to figure out which of these phe-
nomena you are actually observing. Generally, system processes should always
behave reasonably, so obvious misbehavior on the part of one of these processes is
automatically suspicious. User processes such as web servers and databases might
simply be overloaded.

You can identify processes that are using excessive CPU time by looking at the out-
put of ps or top. Also check the system load averages as reported by the uptime
command. Traditionally, these values quantify the average number of processes
that have been runnable over the previous 1-, 5-, and, 15-minute intervals. Under
Linux, the load average also takes account of busyness caused by disk traffic and
other forms of I/O.

For CPU bound systems, the load averages should be less than the total number of
CPU cores available on your system. If they are not, the system is overloaded. Un-
der Linux, check total CPU utilization with top or ps to determine whether high

108	 Chapter 4	 Process Control	

load averages relate to CPU load or to I/O. If CPU utilization is near 100%, that is
probably the bottleneck.

Processes that use excessive memory relative to the system’s physical RAM can
cause serious performance problems. You can check the memory size of process-
es by running top. The VIRT column shows the total amount of virtual memory
allocated by each process, and the RES column shows the portion of that memory
currently mapped to specific memory pages (the “resident set”).

Both of these numbers can include shared resources such as libraries and thus are
potentially misleading. A more direct measure of process-specific memory con-
sumption is found in the DATA column, which is not shown by default. To add this
column to top’s display, type the f key once top is running and select DATA from
the list by pressing the space bar. The DATA value indicates the amount of memo-
ry in each process’s data and stack segments, so it’s relatively specific to individual
processes (modulo shared memory segments). Look for growth over time as well as
absolute size. On FreeBSD, SIZE is the equivalent column and is shown by default.

Make a concerted effort to understand what’s going on before you terminate a
seemingly runaway process. The best route to debugging the issue and preventing
a recurrence is to have a live example you can investigate. Once you kill a misbe-
having process, most of the available evidence disappears.

Keep the possibility of hacking in mind as well. Malicious software is typically not
tested for correctness in a variety of environments, so it’s more likely than average
to enter some kind of degenerate state. If you suspect misfeasance, obtain a sys-
tem call trace with strace or truss to get a sense of what the process is doing (e.g.,
cracking passwords) and where its data is stored.

Runaway processes that produce output can fill up an entire filesystem, causing
numerous problems. When a filesystem fills up, lots of messages will be logged to
the console and attempts to write to the filesystem will produce error messages.

The first thing to do in this situation is to determine which filesystem is full and
which file is filling it up. The df -h command shows filesystem disk use in hu-
man-readable units. Look for a filesystem that’s 100% or more full.10 Use the du -h
command on the identified filesystem to determine which directory is using the
most space. Rinse and repeat with du until the large files are discovered.

df and du report disk usage in subtly different manners. df reports the disk space
used by a mounted filesystem according to disk block totals in the filesystem’s meta-
data. du sums the sizes of all files in a given directory. If a file is unlinked (delet-
ed) from the filesystem but is still referenced by some running process, df reports
the space but du does not. This disparity persists until the open file descriptor is
closed or the file is truncated. If you can’t determine which process is using a file,

	 10.	 Most filesystem implementations reserve a portion (about 5%) of the storage space for “breathing
room,” but processes running as root can encroach on this space, resulting in a reported usage that is
greater than 100%.

	 Periodic processes	 109

Pr
oc

es
se

s

try running the fuser and lsof commands (covered in detail on page 124) to get
more information.

4.9	 Periodic processes
It’s often useful to have a script or command executed without any human inter-
vention. Common use cases include scheduled backups, database maintenance
activities, or the execution of nightly batch jobs. As is typical of UNIX and Linux,
there’s more than one way to achieve this goal.

cron: schedule commands
The cron daemon is the traditional tool for running commands on a predetermined
schedule. It starts when the system boots and runs as long as the system is up. There
are multiple implementations of cron, but fortunately for administrators, the syntax
and functionality of the various versions is nearly identical.

For reasons that are unclear, cron has been renamed crond on Red Hat. But it is
still the same cron we all know and love.

cron reads configuration files containing lists of command lines and times at which
they are to be invoked. The command lines are executed by sh, so almost anything
you can do by hand from the shell can also be done with cron. If you prefer, you
can even configure cron to use a different shell.

A cron configuration file is called a “crontab,” short for “cron table.” Crontabs
for individual users are stored under /var/spool/cron (Linux) or /var/cron/tabs
(FreeBSD). There is at most one crontab file per user. Crontab files are plain text
files named with the login names of the users to whom they belong. cron uses these
filenames (and the file ownership) to figure out which UID to use when running
the commands contained in each file. The crontab command transfers crontab files
to and from this directory.

cron tries to minimize the time it spends reparsing configuration files and making
time calculations. The crontab command helps maintain cron’s efficiency by noti-
fying cron when crontab files change. Ergo, you shouldn’t edit crontab files directly,
because this approach might result in cron not noticing your changes. If you do
get into a situation where cron doesn’t seem to acknowledge a modified crontab, a
HUP signal sent to the cron process forces it to reload on most systems.

cron normally does its work silently, but most versions can keep a log file (usually
/var/log/cron) that lists the commands that were executed and the times at which
they ran. Glance at the cron log file if you’re having problems with a cron job and
can’t figure out why.

RHEL

See Chapter 10
for more informa-
tion about syslog.

110	 Chapter 4	 Process Control	

The format of crontab files
All the crontab files on a system share a similar format. Comments are introduced
with a pound sign (#) in the first column of a line. Each non-comment line contains
six fields and represents one command:

minute hour dom month weekday command

The first five fields tell cron when to run the command. They’re separated by
whitespace, but within the command field, whitespace is passed along to the shell.
The fields in the time specification are interpreted as shown in Table 4.5. An entry
in a crontab is colloquially known as a “cron job.”

Table 4.5	 Crontab time specifications

Field Description Range

minute Minute of the hour 0 to 59
hour Hour of the day 0 to 23
dom Day of the month 1 to 31
month Month of the year 1 to 12
weekday Day of the week 0 to 6 (0 = Sunday)

Each of the time-related fields can contain

•	 A star, which matches everything
•	 A single integer, which matches exactly
•	 Two integers separated by a dash, matching a range of values
•	 A range followed by a slash and a step value, e.g., 1-10/2
•	 A comma-separated list of integers or ranges, matching any value

For example, the time specification

45 10 * * 1-5

means “10:45 a.m., Monday through Friday.” A hint: never use stars in every field
unless you want the command to be run every minute, which is useful only in test-
ing scenarios. One minute is the finest granularity available to cron jobs.

Time ranges in crontabs can include a step value. For example, the series
0,3,6,9,12,15,18 can be written more concisely as 0-18/3. You can also use
three-letter text mnemonics for the names of months and days, but not in combi-
nation with ranges. As far as we know, this feature works only with English names.

There is a potential ambiguity to watch out for with the weekday and dom fields.
Every day is both a day of the week and a day of the month. If both weekday and
dom are specified, a day need satisfy only one of the two conditions to be selected.

	 Periodic processes	 111

Pr
oc

es
se

s

For example,

0,30 * 13 * 5

means “every half-hour on Friday, and every half-hour on the 13th of the month,”
not “every half-hour on Friday the 13th.”

The command is the sh command line to be executed. It can be any valid shell com-
mand and should not be quoted. The command is considered to continue to the
end of the line and can contain blanks or tabs.

Percent signs (%) indicate newlines within the command field. Only the text up to
the first percent sign is included in the actual command. The remaining lines are
given to the command as standard input. Use a backslash (\) as an escape character
in commands that have a meaningful percent sign, for example, date +\%s.�

Although sh is involved in executing the command, the shell does not act as a login
shell and does not read the contents of ~/.profile or ~/.bash_profile. As a result,
the command’s environment variables might be set up somewhat differently from
what you expect. If a command seems to work fine when executed from the shell
but fails when introduced into a crontab file, the environment is the likely culprit.
If need be, you can always wrap your command with a script that sets up the ap-
propriate environment variables.

We also suggest using the fully qualified path to the command, ensuring that the
job will work properly even if the PATH is not set as expected. For example, the
following command logs the date and uptime to a file in the user’s home directory
every minute:

* * * * * echo $(/bin/date) - $(/usr/bin/uptime) >> ~/uptime.log

Alternatively, you can set environment variables explicitly at the top of the crontab:

PATH=/bin:/usr/bin
* * * * * echo $(date) - $(uptime) >> ~/uptime.log

Here are a few more examples of valid crontab entries:

*/10 * * * 1,3,5 echo ruok | /usr/bin/nc localhost 2181 |
mail -s "TCP port 2181 status" ben@admin.com

This line emails the results of a connectivity check on port 2181 every 10 minutes
on Mondays, Wednesdays, and Fridays. Since cron executes command by way of
sh, special shell characters like pipes and redirects function as expected.

0 4 * * Sun (/usr/bin/mysqlcheck -u maintenance --optimize
--all-databases)

This entry runs the mysqlcheck maintenance program on Sundays at 4:00 a.m.
Since the output is not saved to a file or otherwise discarded, it will be emailed to
the owner of the crontab.

mailto:ben@admin.com

112	 Chapter 4	 Process Control	

20 1 * * *	 find /tmp -mtime +7 -type f -exec rm -f {  } ';'

This command runs at 1:20 each morning. It removes all files in the /tmp directory
that have not been modified in 7 days. The ';' at the end of the line marks the end
of the subcommand arguments to find.

cron does not try to compensate for commands that are missed while the system
is down. However, it is smart about time adjustments such as shifts into and out
of daylight saving time.

If your cron job is a script, be sure to make it executable (with chmod +x) or cron
won’t be able to execute it. Alternatively, set the cron command to invoke a shell
on your script directly (e.g., bash -c ~/bin/myscript.sh).

Crontab management
crontab filename installs filename as your crontab, replacing any previous version.
crontab -e checks out a copy of your crontab, invokes your editor on it (as specified
by the EDITOR environment variable), and then resubmits it to the crontab direc-
tory. crontab -l lists the contents of your crontab to standard output, and crontab

-r removes it, leaving you with no crontab file at all.

Root can supply a username argument to edit or view other users’ crontabs. For
example, crontab -r jsmith erases the crontab belonging to the user jsmith, and
crontab -e jsmith edits it. Linux allows both a username and a filename argument
in the same command, so the username must be prefixed with -u to disambiguate
(e.g., crontab -u jsmith crontab.new).

Without command-line arguments, most versions of crontab try to read a crontab
from standard input. If you enter this mode by accident, don’t try to exit with
<Control-D>; doing so erases your entire crontab. Use <Control-C> instead. FreeBSD
requires you to supply a dash as the filename argument to make crontab pay atten-
tion to its standard input. Smart.

Many sites have experienced subtle but recurrent network glitches that occur be-
cause administrators have configured cron to run the same command on hundreds
of machines at exactly the same time, causing delays or excessive load. Clock syn-
chronization with NTP exacerbates the problem. This issue is easy to fix with a
random delay script.

cron logs its activities through syslog using the facility “cron,” with most messag-
es submitted at level “info.” Default syslog configurations generally send cron log
data to its own file.

Other crontabs
In addition to looking for user-specific crontabs, cron also obeys system crontab
entries found in /etc/crontab and in the /etc/cron.d directory. These files have a
slightly different format from the per-user crontab files: they allow commands to

	 Periodic processes	 113

Pr
oc

es
se

s

be run as an arbitrary user. An extra username field comes before the command
name. The username field is not present in garden-variety crontab files because the
crontab’s filename supplies this same information.

In general, /etc/crontab is a file for system administrators to maintain by hand,
whereas /etc/cron.d is a sort of depot into which software packages can install any
crontab entries they might need. Files in /etc/cron.d are by convention named after
the packages that install them, but cron doesn’t care about or enforce this convention.

Linux distributions also pre-install crontab entries that run the scripts in a set of
well-known directories, thereby providing another way for software packages to
install periodic jobs without any editing of a crontab file. For example, scripts in
/etc/cron.hourly, /etc/cron.daily, and /etc/cron.weekly are run hourly, daily, and
weekly, respectively.

cron access control
Two config files specify which users may submit crontab files. For Linux, the files
are /etc/cron.{allow,deny}, and on FreeBSD they are /var/cron/{allow,deny}. Many
security standards require that crontabs be available only to service accounts or to
users with a legitimate business need. The allow and deny files facilitate compli-
ance with these requirements.

If the cron.allow file exists, then it contains a list of all users that may submit
crontabs, one per line. No unlisted person can invoke the crontab command. If the
cron.allow file doesn’t exist, then the cron.deny file is checked. It, too, is just a list of
users, but the meaning is reversed: everyone except the listed users is allowed access.

If neither the cron.allow file nor the cron.deny file exists, systems default (appar-
ently at random, there being no dominant convention) either to allowing all users
to submit crontabs or to limiting crontab access to root. In practice, a starter con-
figuration is typically included in the default OS installation, so the question of how
crontab might behave without configuration files is moot. Most default configura-
tions allow all users to access cron by default.

It’s important to note that on most systems, access control is implemented by crontab,
not by cron. If a user is able to sneak a crontab file into the appropriate directory
by other means, cron will blindly execute the commands it contains. Therefore it
is vital to maintain root ownership of /var/spool/cron and /var/cron/tabs. OS dis-
tributions always set the permissions correctly by default.

systemd timers
In accordance with its mission to duplicate the functions of all other Linux sub-
systems, systemd includes the concept of timers, which activate a given systemd
service on a predefined schedule. Timers are more powerful than crontab entries,
but they are also more complicated to set up and manage. Some Linux distributions

See Chapter 2, for
an introduction to
systemd and units.

114	 Chapter 4	 Process Control	

(e.g., CoreOS) have abandoned cron entirely in favor of systemd timers, but our
example systems all continue to include cron and to run it by default.

We have no useful advice regarding the choice between systemd timers and crontab
entries. Use whichever you prefer for any given task. Unfortunately, you do not really
have the option to standardize on one system or the other, because software pack-
ages add their jobs to a random system of their own choice. You’ll always have to
check both systems when you are trying to figure out how a particular job gets run.

Structure of systemd timers
A systemd timer comprises two files:

•	 A timer unit that describes the schedule and the unit to activate
•	 A service unit that specifies the details of what to run

In contrast to crontab entries, systemd timers can be described both in absolute
calendar terms (“Wednesdays at 10:00 a.m.”) and in terms that are relative to other
events (“30 seconds after system boot”). The options combine to allow powerful
expressions that don’t suffer the same constraints as cron jobs. Table 4.6 describes
the time expression options.

Table 4.6	 systemd timer types

Type Time basis

OnActiveSec Relative to the time at which the timer itself is activated
OnBootSec Relative to system boot time
OnStartupSec Relative to the time at which systemd was started
OnUnitActiveSec Relative to the time the specified unit was last active
OnUnitInactiveSec Relative to the time the specified unit was last inactive
OnCalendar A specific day and time

As their names suggest, values for these timer options are given in seconds. For
example, OnActiveSec=30 is 30 seconds after the timer activates. The value can
actually be any valid systemd time expression, as discussed in more detail starting
on page 116.

systemd timer example
Red Hat and CentOS include a preconfigured systemd timer that cleans up the sys-
tem’s temporary files once a day. Below, we take a more detailed look at an exam-
ple. First, we enumerate all the defined timers with the systemctl command. (We
rotated the output table below to make it readable. Normally, each timer produces
one long line of output.)

	 Periodic processes	 115

Pr
oc

es
se

s

redhat$ systemctl list-timers
NEXT		 Sun 2017-06-18 10:24:33 UTC
LEFT			 18h left
LAST			 Sat 2017-06-17 00:45:29 UTC
PASSED		 15h ago
UNIT		 systemd-tmpfiles-clean.timer
ACTIVATES	 systemd-tmpfiles-clean.service

The output lists both the name of the timer unit and the name of the service unit it
activates. Since this is a default system timer, the unit file lives in the standard sys-
temd unit directory, /usr/lib/systemd/system. Here’s the timer unit file:

redhat$ cat /usr/lib/systemd/system/systemd-tmpfiles-clean.timer
[Unit]
Description=Daily Cleanup of Temporary Directories
[Timer]
OnBootSec=15min
OnUnitActiveSec=1d

The timer first activates 15 minutes after boot and then fires once a day thereafter.
Note that some kind of trigger for the initial activation (here, OnBootSec) is always
necessary. There is no single specification that achieves an “every X minutes” ef-
fect on its own.

Astute observers will notice that the timer does not actually specify which unit to
run. By default, systemd looks for a service unit that has the same name as the timer.
You can specify a target unit explicitly with the Unit option.

In this case, the associated service unit holds no surprises:

redhat$ cat /usr/lib/systemd/system/systemd-tmpfiles-clean.service
[Unit]
Description=Cleanup of Temporary Directories
DefaultDependencies=no
Conflicts=shutdown.target
After=systemd-readahead-collect.service systemd-readahead-replay.service

local-fs.target time-sync.target
Before=shutdown.target

[Service]
Type=simple
ExecStart=/usr/bin/systemd-tmpfiles --clean
IOSchedulingClass=idle

You can run the target service directly (that is, independently of the timer) with
systemctl start systemd-tmpfiles-clean, just like any other service. This fact greatly
facilitates the debugging of scheduled tasks, which can be a source of much admin-
istrative anguish when you are using cron.

116	 Chapter 4	 Process Control	

To create your own timer, drop .timer and .service files in /etc/systemd/system. If
you want the timer to run at boot, add

[Install]
WantedBy=multi-user.target

to the end of the timer’s unit file. Don’t forget to enable the timer at boot time with
systemctl enable. (You can also start the timer immediately with systemctl start.)

A timer’s AccuracySec option delays its activation by a random amount of time
within the specified time window. This feature is handy when a timer runs on a
large group of networked machines and you want to avoid having all the timers
fire at exactly the same moment. (Recall that with cron, you need to use a random
delay script to achieve this feat.)

AccuracySec defaults to 60 seconds. If you want your timer to execute at exactly the
scheduled time, use AccuracySec=1ns. (A nanosecond is probably close enough.
Note that you won’t actually obtain nanosecond accuracy.)

systemd time expressions
Timers allow for flexible specification of dates, times, and intervals. The systemd.time
man page is the authoritative reference for the specification grammar.

You can use interval-valued expressions instead of seconds for relative timings
such as those used as the values of OnActiveSec and OnBootSec. For example, the
following forms are all valid:

OnBootSec=2h 1m
OnStartupSec=1week 2days 3hours
OnActiveSec=1hr20m30sec10msec

Spaces are optional in time expressions. The minimum granularity is nanoseconds,
but if your timer fires too frequently (more than once every two seconds) systemd
temporarily disables it.

In addition to triggering at periodic intervals, timers can be scheduled to activate
at specific times by including the OnCalendar option. This feature offers the closest
match to the syntax of a traditional cron job, but its syntax is more expressive and
flexible. Table 4.7 shows some examples of time specifications that could be used
as the value of OnCalendar.

In time expressions, stars are placeholders that match any plausible value. As in
crontab files, slashes introduce an increment value. The exact syntax is a bit dif-
ferent from that used in crontabs, however: crontabs want the incremented object
to be a range (e.g., 9-17/2, “every two hours between 9:00 a.m. and 5:00 p.m.”),
but systemd time expressions take only a start value (e.g., 9/2, “every two hours
starting at 9:00 a.m.”).

 	

	 Periodic processes	 117

Pr
oc

es
se

s

Table 4.7	 systemd time and date encoding examples

Time specification Meaning

2017-07-04 July 4th, 2017 at 00:00:00 (midnight)
Fri-Mon *-7-4 July 4th each year, but only if it falls on Fri–Mon
Mon-Wed *-*-* 12:00:00 Mondays, Tuesdays, and Wednesdays at noon
Mon 17:00:00 Mondays at 5:00 p.m.
weekly Mondays at 00:00:00 (midnight)
monthly The 1st day of the month at 00:00:00 (midnight)
*:0/10 Every 10 minutes, starting at the 0th minute
--* 11/12:10:0 At 11:10 and 23:10 every day

Transient timers
You can use the systemd-run command to schedule the execution of a command ac-
cording to any of the normal systemd timer types, but without creating task-specific
timer and service unit files. For example, to pull a Git repository every ten minutes:

$ systemd-run --on-calendar '*:0/10' /bin/sh -c "cd /app && git pull"
Running timer as unit run-8823.timer.
Will run service as unit run-8823.service.

systemd returns a transient unit identifier that you can list with systemctl. (Once
again, we futzed with the output format below...)

$ systemctl list-timers run-8823.timer
NEXT		 Sat 2017-06-17 20:40:07 UTC
LEFT			 9min left
LAST			 Sat 2017-06-17 20:30:07 UTC
PASSED		 18s ago

$ systemctl list-units run-8823.timer
UNIT		 run-8823.timer
LOAD		 loaded
ACTIVE		 active
SUB			 waiting
DESCRIPTION	/bin/sh -c "cd /app && git pull"

To cancel and remove a transient timer, just stop it by running systemctl stop:

$ sudo systemctl stop run-8823.timer

systemd-run functions by creating timer and unit files for you in subdirectories
of /run/systemd/system. However, transient timers do not persist after a reboot.
To make them permanent, you can fish them out of /run, tweak them as necessary,
and install them in /etc/systemd/system. Be sure to stop the transient timer before
starting or enabling the permanent version.

118	 Chapter 4	 Process Control	

Common uses for scheduled tasks
In this section, we look at a couple of common chores that are often automated
through cron or systemd.

Sending mail
The following crontab entry implements a simple email reminder. You can use an
entry like this to automatically email the output of a daily report or the results of a
command execution. (Lines have been folded to fit the page. In reality, this is one
long line.)

30 4 25 * *	 /usr/bin/mail -s "Time to do the TPS reports"
ben@admin.com%TPS reports are due at the end of the month! Get
busy!%%Sincerely,%cron%

Note the use of the % character both to separate the command from the input text
and to mark line endings within the input. This entry sends email at 4:30 a.m. on
the 25th day of each month.

Cleaning up a filesystem
When a program crashes, the kernel may write out a file (usually named core.pid,
core, or program.core) that contains an image of the program’s address space. Core
files are useful for developers, but for administrators they are usually a waste of space.
Users often don’t know about core files, so they tend not to disable their creation
or delete them on their own. You can use a cron job to clean up these core files or
other vestiges left behind by misbehaving and crashed processes.

Rotating a log file
Systems vary in the quality of their default log file management, and you will prob-
ably need to adjust the defaults to conform to your local policies. To “rotate” a log
file means to divide it into segments by size or by date, keeping several older ver-
sions of the log available at all times. Since log rotation is a recurrent and regularly
occurring event, it’s an ideal task to be scheduled. See Management and rotation of
log files on page 319, for more details.

Running batch jobs
Some long-running calculations are best run as batch jobs. For example, messages
can accumulate in a queue or database. You can use a cron job to process all the
queued messages at once as an ETL (extract, transform, and load) to another loca-
tion, such as a data warehouse.

Some databases benefit from routine maintenance. For example, the open source
distributed database Cassandra has a repair function that keeps the nodes in a clus-
ter in sync. These maintenance tasks are good candidates for execution through
cron or systemd.

	 Periodic processes	 119

Pr
oc

es
se

s

Backing up and mirroring
You can use a scheduled task to automatically back up a directory to a remote sys-
tem. We suggest running a full backup once a week, with incremental differences
each night. Run backups late at night when the load on the system is likely to be low.

Mirrors are byte-for-byte copies of filesystems or directories that are hosted on
another system. They can be used as a form of backup or as a way to make files
available at more than one location. Web sites and software repositories are often
mirrored to offer better redundancy and to offer faster access for users that are
physically distant from the primary site. Use periodic execution of the rsync com-
mand to maintain mirrors and keep them up to date.

120

Quick: which of the following would you expect to find in a “filesystem”?

•	 Processes
•	 Audio devices
•	 Kernel data structures and tuning parameters
•	 Interprocess communication channels

If the system is UNIX or Linux, the answer is “all the above, and more!” And yes,
you might find some files in there, too.1

The basic purpose of a filesystem is to represent and organize the system’s storage
resources. However, programmers have been eager to avoid reinventing the wheel
when it comes to managing other types of objects. It has often proved convenient
to map these objects into the filesystem namespace. This unification has some ad-
vantages (consistent programming interface, easy access from the shell) and some
disadvantages (filesystem implementations suggestive of Frankenstein’s monster),
but like it or not, this is the UNIX (and hence, the Linux) way.

	 1.	 It’s perhaps more accurate to say that these entities are represented within the filesystem. In most cas-
es, the filesystem is used as a rendezvous point to connect clients with the drivers they are seeking.

5 The Filesystem

Fi
le

sy
st

em

	 ﻿Introduction to The Filesystem	 121

The filesystem can be thought of as comprising four main components:

•	 A namespace – a way to name things and organize them in a hierarchy
•	 An API2 – a set of system calls for navigating and manipulating objects
•	 Security models – schemes for protecting, hiding, and sharing things
•	 An implementation – software to tie the logical model to the hardware

Modern kernels define an abstract interface that accommodates many different
back-end filesystems. Some portions of the file tree are handled by traditional disk-
based implementations. Others are fielded by separate drivers within the kernel. For
example, network filesystems are handled by a driver that forwards the requested
operations to a server on another computer.

Unfortunately, the architectural boundaries are not clearly drawn, and quite a few
special cases exist. For example, “device files” define a way for programs to com-
municate with drivers inside the kernel. Device files are not really data files, but
they’re handled through the filesystem and their characteristics are stored on disk.

Another complicating factor is that the kernel supports more than one type of disk-
based filesystem. The predominant standards are the ext4, XFS, and UFS filesystems,
along with Oracle’s ZFS and Btrfs. However, many others are available, including,
Veritas’s VxFS and JFS from IBM.

“Foreign” filesystems are also widely supported, including the FAT and NTFS filesystems
used by Microsoft Windows and the ISO 9660 filesystem used on older CD-ROMs.

The filesystem is a rich topic that we approach from several different angles. This
chapter tells where to find things on your system and describes the characteristics
of files, the meanings of permission bits, and the use of some basic commands that
view and set attributes. Chapter 20, Storage, is where you’ll find the more tech-
nical filesystem topics such as disk partitioning.

Chapter 21, The Network File System, describes NFS, a file sharing system that is
commonly used for remote file access between UNIX and Linux systems. Chapter
22, SMB, describes an analogous system from the Windows world.

With so many different filesystem implementations available, it may seem strange
that this chapter reads as if there were only a single filesystem. We can be vague
about the underlying code because most modern filesystems either try to imple-
ment the traditional filesystem functionality in a faster and more reliable manner,
or they add extra features as a layer on top of the standard filesystem semantics.
Some filesystems do both. For better or worse, too much existing software depends
on the model described in this chapter for that model to be discarded.

	 2.	 An API, or application programming interface, is the generic term for the set of routines that a li-
brary, operating system, or software package permits programmers to call.

See the sections
starting on page
762 for more in-
formation about
specific filesystems.

122	 Chapter 5	 The Filesystem	

5.1	 Pathnames
The filesystem is presented as a single unified hierarchy that starts at the directory
/ and continues downward through an arbitrary number of subdirectories. / is also
called the root directory. This single-hierarchy system differs from the one used by
Windows, which retains the concept of partition-specific namespaces.

Graphical user interfaces often refer to directories as “folders,” even on Linux sys-
tems. Folders and directories are exactly the same thing; “folder” is just linguistic
leakage from the worlds of Windows and macOS. Nevertheless, it’s worth noting
that the word “folder” tends to raise the hackles of some techies. Don’t use it in
technical contexts unless you’re prepared to receive funny looks.

The list of directories that must be traversed to locate a particular file plus that file’s
filename form a pathname. Pathnames can be either absolute (e.g., /tmp/foo) or
relative (e.g., book4/filesystem). Relative pathnames are interpreted starting at the
current directory. You might be accustomed to thinking of the current directory as
a feature of the shell, but every process has one.

The terms filename, pathname, and path are more or less interchangeable—or at
least, we use them interchangeably in this book. Filename and path can be used
for both absolute and relative paths; pathname usually suggests an absolute path.

The filesystem can be arbitrarily deep. However, each component of a pathname (that
is, each directory) must have a name no more than 255 characters long. There’s also a
limit on the total path length you can pass into the kernel as a system call argument
(4,095 bytes on Linux, 1,024 bytes on BSD). To access a file with a pathname longer
than this, you must cd to an intermediate directory and use a relative pathname.

5.2	 Filesystem mounting and unmounting
The filesystem is composed of smaller chunks—also called filesystems—each of
which consists of one directory and its subdirectories and files. It’s normally appar-
ent from context which type of “filesystem” is being discussed, but for clarity in the
following discussion, we use the term “file tree” to refer to the overall layout and
reserve the word “filesystem” for the branches attached to the tree.

Some filesystems live on disk partitions or on logical volumes backed by physical
disks, but as mentioned earlier, filesystems can be anything that obeys the proper
API: a network file server, a kernel component, a memory-based disk emulator, etc.
Most kernels have a nifty “loop” filesystem that lets you mount individual files as
if they were distinct devices. It’s useful for mounting DVD-ROM images stored on
disk or for developing filesystem images without having to worry about reparti-
tioning. Linux systems can even treat existing portions of the file tree as filesystems.
This trick lets you duplicate, move, or hide portions of the file tree.

	 Filesystem mounting and unmounting	 123

Fi
le

sy
st

em

In most situations, filesystems are attached to the tree with the mount command.3
mount maps a directory within the existing file tree, called the mount point, to the
root of the newly attached filesystem. The previous contents of the mount point
become temporarily inaccessible as long as another filesystem is mounted there.
Mount points are usually empty directories, however.

For example,

$ sudo mount /dev/sda4 /users

installs the filesystem stored on the disk partition represented by /dev/sda4 under
the path /users. You could then use ls /users to see that filesystem’s contents.

On some systems, mount is a just a wrapper that calls filesystem-specific commands
such as mount.ntfs or mount_smbfs. You’re free to call these helper commands
directly if you need to; they sometimes offer additional options that the mount
wrapper does not understand. On the other hand, the generic mount command
suffices for day-to-day use.

You can run the mount command without any arguments to see all the filesystems
that are currently mounted. On Linux systems, there might be 30 or more, most of
which represent various interfaces to the kernel.

The /etc/fstab file lists filesystems that are normally mounted on the system. The
information in this file allows filesystems to be automatically checked (with fsck)
and mounted (with mount) at boot time, with options you specify. The fstab file
also serves as documentation for the layout of the filesystems on disk and enables
short commands such as mount /usr. See page 768 for a discussion of fstab.

You detach filesystems with the umount command. umount complains if you try
to unmount a filesystem that’s in use. The filesystem to be detached must not have
open files or processes whose current directories are located there, and if the filesys-
tem contains executable programs, none of them can be running.

Linux has a “lazy” unmount option (umount -l) that removes a filesystem from the
naming hierarchy but does not truly unmount it until all existing file references
have been closed. It’s debatable whether this is a useful option. To begin with, there’s
no guarantee that existing references will ever close on their own. In addition, the

“semi-unmounted” state can present inconsistent filesystem semantics to the pro-
grams that are using it; they can read and write through existing file handles but
cannot open new files or perform other filesystem operations.

umount -f force-unmounts a busy filesystem and is supported on all our example
systems. However, it’s almost always a bad idea to use it on non-NFS mounts, and
it may not work on certain types of filesystems (e.g., those that keep journals, such
as XFS or ext4).

	 3.	 We say “in most situations” because ZFS adopts a rather different approach to mounting and un-
mounting, not to mention many other aspects of filesystem administration. See page 773 for details.

124	 Chapter 5	 The Filesystem	

Instead of reaching for umount -f when a filesystem you’re trying to unmount turns
out to be busy, run the fuser command to find out which processes hold references
to that filesystem. fuser -c mountpoint prints the PID of every process that’s using a
file or directory on that filesystem, plus a series of letter codes that show the nature
of the activity. For example,

freebsd$ fuser -c /usr/home
/usr/home: 15897c 87787c 67124x 11201x 11199x 11198x 972x

The exact letter codes vary from system to system. In this example from a FreeBSD
system, c indicates that a process has its current working directory on the filesystem
and x indicates a program being executed. However, the details are usually unim-
portant—the PIDs are what you want.

To investigate the offending processes, just run ps with the list of PIDs returned
by fuser. For example,

nutrient:~$ ps up "87787 11201"
USER PID %CPU %MEM STARTED TIME COMMAND
fnd 11201 0.0 0.2 14Jul16 2:32.49 ruby: slave_audiochannelbackend
fnd 87787 0.0 0.0 Thu07PM 0:00.93 -bash (bash)

Here, the quotation marks force the shell to pass the list of PIDs to ps as a single
argument.

On Linux systems, you can avoid the need to launder PIDs through ps by running
fuser with the -v flag. This option produces a more readable display that includes
the command name.

$ fuser -cv /usr
		 USER	 PID	 ACCESS	 COMMAND
	 /usr	 root	 444	m	 atd
		 root	 499	m	 sshd
		 root	 520	m	 lpd
...

The letter codes in the ACCESS column are the same ones used in fuser’s nonver-
bose output.

A more elaborate alternative to fuser is the lsof utility. lsof is a more complex and
sophisticated program than fuser, and its output is correspondingly verbose. lsof
comes installed by default on all our example Linux systems and is available as a
package on FreeBSD.

Under Linux, scripts in search of specific information about processes’ use of filesys-
tems can also read the files in /proc directly. However, lsof -F, which formats lsof’s
output for easy parsing, is an easier and more portable solution. Use additional
command-line flags to request just the information you need.

	 Organization of the file tree	 125

Fi
le

sy
st

em

5.3	 Organization of the file tree
UNIX systems have never been well organized. Various incompatible naming con-
ventions are used simultaneously, and different types of files are scattered random-
ly around the namespace. In many cases, files are divided by function and not by
how likely they are to change, making it difficult to upgrade the operating system.
The /etc directory, for example, contains some files that are never customized and
some that are entirely local. How do you know which files to preserve during an
upgrade? Well, you just have to know…or trust the installation software to make
the right decisions.

As a logically minded sysadmin, you may be tempted to improve the default orga-
nization. Unfortunately, the file tree has many hidden dependencies, so such efforts
usually end up creating problems. Just let everything stay where the OS installation
and the system packages put it. When offered a choice of locations, always accept
the default unless you have a specific and compelling reason to do otherwise.

The root filesystem includes at least the root directory and a minimal set of files and
subdirectories. The file that contains the OS kernel usually lives under /boot, but
its exact name and location can vary. Under BSD and some other UNIX systems,
the kernel is not really a single file so much as a set of components.

Also part of the root filesystem are /etc for critical system and configuration files,
/sbin and /bin for important utilities, and sometimes /tmp for temporary files.
The /dev directory was traditionally part of the root filesystem, but these days it’s a
virtual filesystem that’s mounted separately. (See page 331 for more information
about this topic.)

Some systems keep shared library files and a few other oddments, such as the C
preprocessor, in the /lib or /lib64 directory. Others have moved these items into
/usr/lib, sometimes leaving /lib as a symbolic link.

The directories /usr and /var are also of great importance. /usr is where most stan-
dard-but-not-system-critical programs are kept, along with various other booty
such as on-line manuals and most libraries. FreeBSD stores quite a bit of local
configuration under /usr/local. /var houses spool directories, log files, accounting
information, and various other items that grow or change rapidly and that vary on
each host. Both /usr and /var must be available to enable the system to come up
all the way to multiuser mode.

In the past, it was standard practice to partition the system disk and to put some
parts of the file tree on their own partitions, most commonly /usr, /var, and /tmp.
That’s not uncommon even now, but the secular trend is toward having one big root
filesystem. Large hard disks and increasingly sophisticated filesystem implementa-
tions have reduced the value of partitioning.

See Chapter 11 for
more information
about configur-
ing the kernel.

See page 742 for some
reasons why partition-
ing might be desirable
and some rules of
thumb to guide it.

126	 Chapter 5	 The Filesystem	

In cases where partitioning is used, it’s most frequently an attempt to prevent one
part of the file tree from consuming all available space and bringing the entire
system to a halt. Accordingly, /var (which contains log files that are apt to grow in
times of trouble), /tmp, and user home directories are some of the most common
candidates for having their own partitions. Dedicated filesystems can also store
bulky items such as source code libraries and databases.

Table 5.1 lists some of the more important standard directories. (Alternate rows
have been shaded to improve readability.)

On most systems, a hier man page outlines some general guidelines for the layout
of the filesystem. Don’t expect the actual system to conform to the master plan in
every respect, however.

For Linux systems, the Filesystem Hierarchy Standard attempts to codify, rational-
ize, and explain the standard directories.4 It’s an excellent resource to consult when
you confront an unusual situation and need to figure out where to put something.
Despite its status as a “standard,” it’s more a reflection of real-world practice than
a prescriptive document. It also hasn’t undergone much updating recently, so it
doesn’t describe the exact filesystem layout found on current distributions.

5.4	 File types
Most filesystem implementations define seven types of files. Even when developers
add something new and wonderful to the file tree (such as the process information
under /proc), it must still be made to look like one of these seven types: 

•	 Regular files
•	 Directories
•	 Character device files
•	 Block device files
•	 Local domain sockets
•	 Named pipes (FIFOs)
•	 Symbolic links

You can determine the type of an existing file with the file command. Not only does
file know about the standard types of files, but it also knows a thing or two about
common formats used within regular files.

$ file /usr/include
/usr/include: directory
$ file /bin/sh
/bin/sh: ELF 64-bit LSB executable, x86-64, version 1 (FreeBSD),

dynamically linked, interpreter /libexec/ld-elf.so.1, for FreeBSD 11.0
(1100122), FreeBSD-style, stripped

All that hoo-hah about /bin/sh means “it’s an executable command.”

	 4.	 See wiki.linuxfoundation.org/en/FHS.

 	

  

	
	
	
	
	
	
	
	
	

	
	
	
	
	

	

http://wiki.linuxfoundation.org/en/FHS

	 File types	 127

Fi
le

sy
st

em

	

  

	
	
	
	
	
	
	

	 	

Table 5.1	 Standard directories and their contents

Pathname Contents

/bin Core operating system commands
/boot Boot loader, kernel, and files needed by the kernel
/compat On FreeBSD, files and libraries for Linux binary compatibility
/dev Device entries for disks, printers, pseudo-terminals, etc.
/etc Critical startup and configuration files
/home Default home directories for users
/lib Libraries, shared libraries, and commands used by /bin and /sbin
/media Mount points for filesystems on removable media
/mnt Temporary mount points, mounts for removable media
/opt Optional software packages (rarely used, for compatibility)
/proc Information about all running processes
/root Home directory of the superuser (sometimes just /)
/run Rendezvous points for running programs (PIDs, sockets, etc.)
/sbin Core operating system commands a

/srv Files held for distribution through web or other servers
/sys A plethora of different kernel interfaces (Linux)
/tmp Temporary files that may disappear between reboots
/usr Hierarchy of secondary files and commands
	 /usr/bin Most commands and executable files
	 /usr/include Header files for compiling C programs
	 /usr/lib Libraries; also, support files for standard programs
	 /usr/local Local software or configuration data; mirrors /usr
	 /usr/sbin Less essential commands for administration and repair
	 /usr/share Items that might be common to multiple systems
	 /usr/share/man On-line manual pages
	 /usr/src Source code for nonlocal software (not widely used)
	 /usr/tmp More temporary space (preserved between reboots)
/var System-specific data and a few configuration files
	 /var/adm Varies: logs, setup records, strange administrative bits
	 /var/log System log files
	 /var/run Same function as /run; now often a symlink
	 /var/spool Spooling (that is, storage) directories for printers, mail, etc.
	 /var/tmp More temporary space (preserved between reboots)

a.	 The distinguishing characteristic of /sbin was originally that its contents were statically linked and so
had fewer dependencies on other parts of the system. These days, all binaries are dynamically linked
and there is no real difference between /bin and /sbin.

Another option for investigating files is ls -ld. The -l flag shows detailed informa-
tion, and the -d flag forces ls to show the information for a directory rather than
showing the directory’s contents.

128	 Chapter 5	 The Filesystem	

The first character of the ls output encodes the type. For example, the circled d in
the following output demonstrates that /usr/include is a directory:

$ ls -ld /usr/include
drwxr-xr-x 27 root root 4096 Jul 15 20:57 /usr/include

Table 5.2 shows the codes ls uses to represent the various types of files.

Table 5.2	 File-type encoding used by ls

File type Symbol Created by Removed by

Regular file - editors, cp, etc. rm
Directory d mkdir rmdir, rm -r
Character device file c mknod rm
Block device file b mknod rm
Local domain socket s socket system call rm
Named pipe p mknod rm
Symbolic link l ln -s rm

As Table 5.2 shows, rm is the universal tool for deleting files. But how would you
delete a file named, say, -f? It’s a legitimate filename under most filesystems, but
rm -f doesn’t work because rm interprets the -f as a flag. The answer is either to
refer to the file by a pathname that doesn’t start with a dash (such as ./-f) or to use
rm’s -- argument to tell it that everything that follows is a filename and not an op-
tion (i.e., rm  --  -f).

Filenames that contain control or Unicode characters present a similar problem
since reproducing these names from the keyboard can be difficult or impossible. In
this situation, you can use shell globbing (pattern matching) to identify the files to
delete. When you use pattern matching, it’s a good idea to get in the habit of using
rm’s -i option to make rm confirm the deletion of each file. This feature protects
you against deleting any “good” files that your pattern inadvertently matches. To
delete the file named foo<Control-D>bar in the following example, you could use

$ ls
foo?bar		 foose	 kde-root

$ rm -i foo*
rm: remove 'foo\004bar'? y
rm: remove 'foose'? n

Note that ls shows the control character as a question mark, which can be a bit de-
ceptive. If you don’t remember that ? is a shell pattern-matching character and try
to rm foo?bar, you might potentially remove more than one file (although not in
this example). -i is your friend!

	 File types	 129

Fi
le

sy
st

em

ls -b shows control characters as octal numbers, which can be helpful if you need
to identify them specifically. <Control-A> is 1 (\001 in octal), <Control-B> is 2,
and so on, in alphabetical order. man ascii and the Wikipedia page for ASCII both
include a nice table of control characters and their octal equivalents.

To delete the most horribly named files, you might need to resort to rm -i *.

Another option for removing files with squirrelly names is to use an alternative in-
terface to the filesystem such as emacs’s dired mode or a visual tool such as Nautilus.

Regular files
Regular files consist of a series of bytes; filesystems impose no structure on their
contents. Text files, data files, executable programs, and shared libraries are all stored
as regular files. Both sequential access and random access are allowed.

Directories
A directory contains named references to other files. You can create directories with
mkdir and delete them with rmdir if they are empty. You can recursively delete
nonempty directories—including all their contents—with rm -r.

The special entries “.” and “..” refer to the directory itself and to its parent directory;
they cannot be removed. Since the root directory has no real parent directory, the
path “/..” is equivalent to the path “/.” (and both are equivalent to /).

Hard links
A file’s name is stored within its parent directory, not with the file itself. In fact,
more than one directory (or more than one entry in a single directory) can refer
to a file at one time, and the references can have different names. Such an arrange-
ment creates the illusion that a file exists in more than one place at the same time.

These additional references (“links,” or “hard links” to distinguish them from sym-
bolic links, discussed below) are synonymous with the original file; as far as the
filesystem is concerned, all links to the file are equivalent. The filesystem maintains
a count of the number of links that point to each file and does not release the file’s
data blocks until its last link has been deleted. Hard links cannot cross filesystem
boundaries.

You create hard links with ln and remove them with rm. It’s easy to remember the
syntax of ln if you keep in mind that it mirrors the syntax of cp. The command cp
oldfile newfile creates a copy of oldfile called newfile, and ln oldfile newfile makes
the name newfile an additional reference to oldfile.

In most filesystem implementations, it is technically possible to make hard links to
directories as well as to flat files. However, directory links often lead to degenerate
conditions such as filesystem loops and directories that don’t have a single, unam-
biguous parent. In most cases, a symbolic link (see page 131) is a better option.

130	 Chapter 5	 The Filesystem	

You can use ls -l to see how many links to a given file exist. See the ls example out-
put on page 134 for some additional details. Also note the comments regarding
ls -i on page 135, as this option is particularly helpful for identifying hard links.

Hard links are not a distinct type of file. Instead of defining a separate “thing” called
a hard link, the filesystem simply allows more than one directory entry to point to
the same file. In addition to the file’s contents, the underlying attributes of the file
(such as ownerships and permissions) are also shared.

Character and block device files
Device files let programs communicate with the system’s hardware and peripherals.
The kernel includes (or loads) driver software for each of the system’s devices. This
software takes care of the messy details of managing each device so that the kernel
itself can remain relatively abstract and hardware-independent.

Device drivers present a standard communication interface that looks like a regular
file. When the filesystem is given a request that refers to a character or block device
file, it simply passes the request to the appropriate device driver. It’s important to
distinguish device files from device drivers, however. The files are just rendezvous
points that communicate with drivers. They are not drivers themselves.

The distinction between character and block devices is subtle and not worth re-
viewing in detail. In the past, a few types of hardware were represented by both
block and character device files, but that configuration is rare today. As a matter of
practice, FreeBSD has done away with block devices entirely, though their spectral
presence can still be glimpsed in man pages and header files.

Device files are characterized by two numbers, called the major and minor device
numbers. The major device number tells the kernel which driver the file refers to,
and the minor device number typically tells the driver which physical unit to ad-
dress. For example, major device number 4 on a Linux system denotes the serial
driver. The first serial port (/dev/tty0) would have major device number 4 and
minor device number 0.

Drivers can interpret the minor device numbers that are passed to them in whatever
way they please. For example, tape drivers use the minor device number to deter-
mine whether the tape should be rewound when the device file is closed.

In the distant past, /dev was a generic directory and the device files within it were
created with mknod and removed with rm. Unfortunately, this crude system was
ill-equipped to deal with the endless sea of drivers and device types that have ap-
peared over the last few decades. It also facilitated all sorts of potential configura-
tion mismatches: device files that referred to no actual device, devices inaccessible
because they had no device files, and so on.

These days, the /dev directory is normally mounted as a special filesystem type, and
its contents are automatically maintained by the kernel in concert with a user-lev-
el daemon. There are a couple of different versions of this same basic system. See

See Chapter 11
for more informa-
tion about devices
and drivers.

	 File types	 131

Fi
le

sy
st

em

Chapter 11, Drivers and the Kernel, for more information about each system’s
approach to this task.

Local domain sockets
Sockets are connections between processes that allow them to communicate hygien-
ically. UNIX defines several kinds of sockets, most of which involve the network.

Local domain sockets are accessible only from the local host and are referred to
through a filesystem object rather than a network port. They are sometimes known
as “UNIX domain sockets.” Syslog and the X Window System are examples of stan-
dard facilities that use local domain sockets, but there are many more, including
many databases and app servers.

Local domain sockets are created with the socket system call and removed with the
rm command or the unlink system call once they have no more users.

Named pipes
Like local domain sockets, named pipes allow communication between two pro-
cesses running on the same host. They’re also known as “FIFO files” (As in financial
accounting, FIFO is short for the phrase “first in, first out”). You can create named
pipes with mknod and remove them with rm.

Named pipes and local domain sockets serve similar purposes, and the fact that
both exist is essentially a historical artifact. Most likely, neither of them would exist
if UNIX and Linux were designed today; network sockets would stand in for both.

Symbolic links
A symbolic or “soft” link points to a file by name. When the kernel comes upon a
symbolic link in the course of looking up a pathname, it redirects its attention to
the pathname stored as the contents of the link. The difference between hard links
and symbolic links is that a hard link is a direct reference, whereas a symbolic link
is a reference by name. Symbolic links are distinct from the files they point to.

You create symbolic links with ln -s and remove them with rm. Since symbolic
links can contain arbitrary paths, they can refer to files on other filesystems or to
nonexistent files. A series of symbolic links can also form a loop.

A symbolic link can contain either an absolute or a relative path. For example,

$ sudo ln -s archived/secure /var/data/secure

links /var/data/secure to /var/data/archived/secure with a relative path. It creates
the symbolic link /var/data/secure with a target of archived/secure, as demon-
strated by this output from ls:

$ ls -l /var/data/secure
lrwxrwxrwx 1 root root 18 Aug 3 12:54 /var/data/secure -> archived/secure

See Chapter 10
for more informa-
tion about syslog.

132	 Chapter 5	 The Filesystem	

The entire /var/data directory could then be moved elsewhere without causing the
symbolic link to stop working.

The file permissions that ls shows for a symbolic link, lrwxrwxrwx, are dummy val-
ues. Permission to create, remove, or follow the link is controlled by the containing
directory, whereas read, write, and execute permission on the link target are granted
by the target’s own permissions. Therefore, symbolic links do not need (and do not
have) any permission information of their own.

A common mistake is to think that the first argument to ln -s is interpreted relative to
the current working directory. However, that argument is not actually resolved as a
filename by ln: it’s simply a literal string that becomes the target of the symbolic link.

5.5	 File attributes
Under the traditional UNIX and Linux filesystem model, every file has a set of nine
permission bits that control who can read, write, and execute the contents of the
file. Together with three other bits that primarily affect the operation of executable
programs, these bits constitute the file’s “mode.”

The twelve mode bits are stored along with four bits of file-type information. The
four file-type bits are set when the file is first created and cannot be changed, but
the file’s owner and the superuser can modify the twelve mode bits with the chmod
(change mode) command. Use ls -l (or ls -ld for a directory) to inspect the values
of these bits. See page 134 for an example.

The permission bits
Nine permission bits determine what operations can be performed on a file and by
whom. Traditional UNIX does not allow permissions to be set per user (although
all systems now support access control lists of one sort or another; see page 140).
Instead, three sets of permissions define access for the owner of the file, the group
owners of the file, and everyone else (in that order).5 Each set has three bits: a read
bit, a write bit, and an execute bit (also in that order).

It’s convenient to discuss file permissions in terms of octal (base 8) numbers because
each digit of an octal number represents three bits and each group of permission
bits consists of three bits. The topmost three bits (with octal values of 400, 200, and
100) control access for the owner. The second three (40, 20, and 10) control access
for the group. The last three (4, 2, and 1) control access for everyone else (“the
world”). In each triplet, the high bit is the read bit, the middle bit is the write bit,
and the low bit is the execute bit.

	 5.	 If you think of the owner as “the user” and everyone else as “other,” you can remember the order of
the permission sets by thinking of the name Hugo. u, g, and o are also the letter codes used by the
mnemonic version of chmod.

	 File attributes	 133

Fi
le

sy
st

em

Although a user might fit into two of the three permission categories, only the most
specific permissions apply. For example, the owner of a file always has access deter-
mined by the owner permission bits and never by the group permission bits. It is
possible for the “other” and “group” categories to have more access than the owner,
although this configuration would be highly unusual.

On a regular file, the read bit allows the file to be opened and read. The write bit al-
lows the contents of the file to be modified or truncated; however, the ability to delete
or rename (or delete and then re-create!) the file is controlled by the permissions
on its parent directory, where the name-to-dataspace mapping is actually stored.

The execute bit allows the file to be executed. Two types of executable files exist:
binaries, which the CPU runs directly, and scripts, which must be interpreted by
a shell or some other program. By convention, scripts begin with a line similar to

#!/usr/bin/perl

that specifies an appropriate interpreter. Nonbinary executable files that do not
specify an interpreter are assumed to be sh scripts.6

For a directory, the execute bit (often called the “search” or “scan” bit in this context)
allows the directory to be entered or passed through as a pathname is evaluated,
but not to have its contents listed. The combination of read and execute bits allows
the contents of the directory to be listed. The combination of write and execute bits
allows files to be created, deleted, and renamed within the directory.

A variety of extensions such as access control lists (see page 140), SELinux (see
page 85), and “bonus” permission bits defined by individual filesystems (see page
139) complicate or override the traditional 9-bit permission model. If you’re hav-
ing trouble explaining the system’s observed behavior, check to see whether one of
these factors might be interfering.

The setuid and setgid bits
The bits with octal values 4000 and 2000 are the setuid and setgid bits. When set on
executable files, these bits allow programs to access files and processes that would
otherwise be off-limits to the user that runs them. The setuid/setgid mechanism
for executables is described on page 68.

When set on a directory, the setgid bit causes newly created files within the direc-
tory to take on the group ownership of the directory rather than the default group
of the user that created the file. This convention makes it easier to share a directory
of files among several users, as long as they belong to a common group. This inter-

	 6.	 The kernel understands the #! (“shebang”) syntax and acts on it directly. However, if the interpreter is
not specified completely and correctly, the kernel will refuse to execute the file. The shell then makes
a second attempt to execute the script by calling /bin/sh, which is usually a link to the Almquist shell
or to bash; see page 198. Sven Mascheck maintains an excruciatingly detailed page about the history,
implementation, and cross-platform behavior of the shebang at goo.gl/J7izhL.

http://goo.gl/J7izhL

134	 Chapter 5	 The Filesystem	

pretation of the setgid bit is unrelated to its meaning when set on an executable file,
but no ambiguity can exist as to which meaning is appropriate.

The sticky bit
The bit with octal value 1000 is called the sticky bit. It was of historical importance
as a modifier for executable files on early UNIX systems. However, that meaning
of the sticky bit is now obsolete and modern systems silently ignore the sticky bit
when it’s set on regular files.

If the sticky bit is set on a directory, the filesystem won’t allow you to delete or re-
name a file unless you are the owner of the directory, the owner of the file, or the
superuser. Having write permission on the directory is not enough. This convention
helps make directories like /tmp a little more private and secure.

ls: list and inspect files
The filesystem maintains about forty separate pieces of information for each file, but
most of them are useful only to the filesystem itself. As a system administrator, you
will be concerned mostly with the link count, owner, group, mode, size, last access
time, last modification time, and type. You can inspect all these with ls -l (or ls -ld
for a directory; without the -d flag, ls lists the directory’s contents).

An attribute change time is also maintained for each file. The conventional name for
this time (the “ctime,” short for “change time”) leads some people to believe that it
is the file’s creation time. Unfortunately, it is not; it just records the time at which
the attributes of the file (owner, mode, etc.) were last changed (as opposed to the
time at which the file’s contents were modified).

Consider the following example:

$ ls -l /usr/bin/gzip
-rwxr-xr-x 4 root wheel 37432 Nov 11 2016 /usr/bin/gzip

The first field specifies the file’s type and mode. The first character is a dash, so the
file is a regular file. (See Table 5.2 on page 128 for other codes.)

The next nine characters in this field are the three sets of permission bits. The order
is owner-group-other, and the order of bits within each set is read-write-execute.
Although these bits have only binary values, ls shows them symbolically with the
letters r, w, and x for read, write, and execute. In this case, the owner has all per-
missions on the file and everyone else has read and execute permission.

If the setuid bit had been set, the x representing the owner’s execute permission
would have been replaced with an s, and if the setgid bit had been set, the x for the
group would also have been replaced with an s. The last character of the permissions
(execute permission for “other”) is shown as t if the sticky bit of the file is turned on.
If either the setuid/setgid bit or the sticky bit is set but the corresponding execute
bit is not, these bits are shown as S or T.

	 File attributes	 135

Fi
le

sy
st

em

The next field in the listing is the file’s link count. In this case it is 4, indicating that
/usr/bin/gzip is just one of four names for this file (the others on this system are
gunzip, gzcat, and zcat, all in /usr/bin). Each time a hard link is made to a file,
the file’s link count is incremented by 1. Symbolic links do not affect the link count.

All directories have at least two hard links: the link from the parent directory and
the link from the special file called . inside the directory itself.

The next two fields in the ls output are the owner and group owner of the file. In
this example, the file’s owner is root, and the file belongs to the group named wheel.
The filesystem actually stores these as the user and group ID numbers rather than
as names. If the text versions (names) can’t be determined, ls shows the fields as
numbers. This might happen if the user or group that owns the file has been deleted
from the /etc/passwd or /etc/group file. It could also suggest a problem with your
LDAP database (if you use one); see Chapter 17.

The next field is the size of the file in bytes. This file is 37,432 bytes long. Next comes
the date of last modification: November 11, 2016. The last field in the listing is the
name of the file, /usr/bin/gzip.

ls output is slightly different for a device file. For example:

$ ls -l /dev/tty0
crw--w----. 1 root tty 4, 0 Aug 3 15:12 /dev/tty0

Most fields are the same, but instead of a size in bytes, ls shows the major and mi-
nor device numbers. /dev/tty0 is the first virtual console on this (Red Hat) system
and is controlled by device driver 4 (the terminal driver). The dot at the end of the
mode indicates the absence of an access control list (ACL, discussed starting on
page 140). Some systems show this by default and some don’t.

One ls option that’s useful for scoping out hard links is -i, which tells ls to show
each file’s “inode number.” Briefly, the inode number is an integer associated with
the contents of a file. Inodes are the “things” that are pointed to by directory entries;
entries that are hard links to the same file have the same inode number. To figure
out a complex web of links, you need both ls -li, to show link counts and inode
numbers, and find, to search for matches.7

Some other ls options that are important to know are -a to show all entries in a
directory (even files whose names start with a dot), -t to sort files by modification
time (or -tr to sort in reverse chronological order), -F to show the names of files in
a way that distinguishes directories and executable files, -R to list recursively, and

-h to show file sizes in human-readable form (e.g., 8K or 53M).

Most versions of ls now default to color-coding files if your terminal program sup-
ports this (most do). ls specifies colors according to a limited and abstract palette
(“red,” “blue,” etc.), and it’s up to the terminal program to map these requests to
specific colors. You may need to tweak both ls (the LSCOLORS or LS_COLORS

	 7.	 Try find mountpoint -xdev -inum inode -print.

136	 Chapter 5	 The Filesystem	

environment variable) and the terminal emulator to achieve colors that are readable
and unobtrusive. Alternatively, you can just remove the default configuration for
colorization (usually /etc/profile.d/colorls*) to eliminate colors entirely.

chmod: change permissions
The chmod command changes the permissions on a file. Only the owner of the file
and the superuser can change a file’s permissions. To use the command on early
UNIX systems, you had to learn a bit of octal notation, but current versions accept
both octal notation and a mnemonic syntax. The octal syntax is generally more con-
venient for administrators, but it can only be used to specify an absolute value for the
permission bits. The mnemonic syntax can modify some bits but leave others alone.

The first argument to chmod is a specification of the permissions to be assigned,
and the second and subsequent arguments are names of files on which permissions
should be changed. In the octal case, the first octal digit of the specification is for the
owner, the second is for the group, and the third is for everyone else. If you want to
turn on the setuid, setgid, or sticky bits, you use four octal digits rather than three,
with the three special bits forming the first digit.

Table 5.3 illustrates the eight possible combinations for each set of three bits, where
r, w, and x stand for read, write, and execute.

Table 5.3	 Permission encoding for chmod

Octal Binary Perms Octal Binary Perms

0 000 --- 4 100 r--
1 001 --x 5 101 r-x
2 010 -w- 6 110 rw-
3 011 -wx 7 111 rwx

For example, chmod 711 myprog gives all permissions to the user (owner) and
execute-only permission to everyone else.8

For the mnemonic syntax, you combine a set of targets (u, g, or o for user, group,
other, or a for all three) with an operator (+, -, = to add, remove, or set) and a set
of permissions. The chmod man page gives the details, but the syntax is probably
best learned by example. Table 5.4 exemplifies some mnemonic operations.

The hard part about using the mnemonic syntax is remembering whether o stands for
“owner” or “other”; “other” is correct. Just remember u and g by analogy to UID and
GID; only one possibility is left. Or remember the order of letters in the name Hugo.

	 8.	 If myprog were a shell script, it would need both read and execute permission turned on. For the
script to be run by an interpreter, it must be opened and read like a text file. Binary files are executed
directly by the kernel and therefore do not need read permission turned on.

 	

	 File attributes	 137

Fi
le

sy
st

em

 	

	 	

Table 5.4	 Examples of chmod’s mnemonic syntax

Spec Meaning

u+w Adds write permission for the owner of the file
ug=rw,o=r Gives r/w permission to owner and group, and read permission to others
a-x Removes execute permission for all categories (owner/group/other)
ug=srx,o= Makes setuid/setgid and gives r/x permission to only owner and group
g=u Makes the group permissions be the same as the owner permissions

On Linux systems, you can also specify the modes to be assigned by copying them
from an existing file. For example, chmod --reference=filea fileb makes fileb’s
mode the same as filea’s.

With the -R option, chmod recursively updates the file permissions within a di-
rectory. However, this feat is trickier than it looks because the enclosed files and
directories may not share the same attributes; for example, some might be execut-
able files; others, text files. Mnemonic syntax is particularly useful with ‑R because
it preserves bits whose values you don’t set explicitly. For example,

$ chmod -R g+w mydir

adds group write permission to mydir and all its contents without messing up the
execute bits of directories and programs.

If you want to adjust execute bits, be wary of chmod -R. It’s blind to the fact that
the execute bit has a different interpretation on a directory than it does on a flat
file. Therefore, chmod -R a-x probably won’t do what you intend. Use find to select
only the regular files:

$ find mydir -type f -exec chmod a-x {} ';'

chown and chgrp: change ownership and group
The chown command changes a file’s ownership, and the chgrp command changes
its group ownership. The syntax of chown and chgrp mirrors that of chmod, except
that the first argument is the new owner or group, respectively.

To change a file’s group, you must either be the superuser or be the owner of the
file and belong to the group you’re changing to. Older systems in the SysV lineage
allowed users to give away their own files with chown, but that’s unusual these days;
chown is now a privileged operation.

Like chmod, chown and chgrp offer the recursive -R flag to change the settings of
a directory and all the files underneath it. For example, the sequence

$ sudo chown -R matt ~matt/restore
$ sudo chgrp -R staff ~matt/restore

138	 Chapter 5	 The Filesystem	

could reset the owner and group of files restored from a backup for the user matt.
Don’t try to chown dot files with a command such as

$ sudo chown -R matt ~matt/.*

since the pattern matches ~matt/.. and therefore ends up changing the ownerships
of the parent directory and probably the home directories of other users.

chown can change both the owner and group of a file at once with the syntax

chown user:group file ...

For example,

$ sudo chown -R matt:staff ~matt/restore

You can actually omit either user or group, which makes the chgrp command su-
perfluous. If you include the colon but name no specific group, the Linux version
of chown uses the user’s default group.

Some systems accept the notation user.group as being equivalent to user:group. This
is just a nod to historical variation among systems; it means the same thing.

umask: assign default permissions
You can use the built-in shell command umask to influence the default permissions
given to the files you create. Every process has its own umask attribute; the shell’s
built-in umask command sets the shell’s own umask, which is then inherited by
commands that you run.

The umask is specified as a three-digit octal value that represents the permissions
to take away. When a file is created, its permissions are set to whatever the creating
program requests minus whatever the umask forbids. Thus, the individual digits
of the umask allow the permissions shown in Table 5.5.

Table 5.5	 Permission encoding for umask

Octal Binary Perms Octal Binary Perms

0 000 rwx 4 100 -wx
1 001 rw- 5 101 -w-
2 010 r-x 6 110 --x
3 011 r-- 7 111 ---

For example, umask 027 allows all permissions for the owner but forbids write
permission to the group and allows no permissions for anyone else. The default
umask value is often 022, which denies write permission to the group and world
but allows read permission.

	 File attributes	 139

Fi
le

sy
st

em

In the standard access control model, you cannot force users to have a particular
umask value because they can always reset it to whatever they want. However, you
can put a suitable default in the sample startup files that you give to new users. If
you require more control over the permissions on user-created files, you’ll need
to graduate to a mandatory access control system such as SELinux; see page 84.

Linux bonus flags
Linux defines a set of supplemental flags that can be set on files to request special
handling. For example, the a flag makes a file append-only, and the i flag makes it
immutable and undeletable.

Flags have binary values, so they are either present or absent for a given file. The
underlying filesystem implementation must support the corresponding feature, so
not all flags can be used on all filesystem types. In addition, some flags are experi-
mental, unimplemented, or read-only.

Linux uses the commands lsattr and chattr to view and change file attributes. Table
5.6 lists some of the more mainstream flags.

Table 5.6	 Linux file attribute flags

Flag FS a Meaning

A XBE Never update access time (st_atime; for performance)
a XBE Allow writing only in append mode b

C B Disable copy-on-write updates
c B Compress contents
D BE Force directory updates to be written synchronously
d XBE Do not back up; backup utilities should ignore this file
i XBE Make file immutable and undeletable b

j E Keep a journal for data changes as well as metadata
S XBE Force changes to be written synchronously (no buffering)
X B Avoid data compression if it is the default

a.	 X = XFS, B = Btrfs, E = ext3 and ext4
b.	Can be set only by root

As might be expected from such a random grab bag of features, the value of these
flags to administrators varies. The main thing to remember is that if a particular
file seems to be behaving strangely, check it with lsattr to see if it has one or more
flags enabled.

Waiving maintenance of last-access times (the A flag) can boost performance in
some situations. However, its value depends on the filesystem implementation
and access pattern; you’ll have to do your own benchmarking. In addition, mod-

See Chapter 8 for
more information
about startup files.

140	 Chapter 5	 The Filesystem	

ern kernels now default to mounting filesystems with the relatime option, which
minimizes updates to st_atime and makes the A flag largely obsolete.

The immutable and append-only flags (i and a) were largely conceived as ways to
make the system more resistant to tampering by hackers or hostile code. Unfortu-
nately, they can confuse software and protect only against hackers that don’t know
enough to use chattr -ia. Real-world experience has shown that these flags are more
often used by hackers than against them.

We have seen several cases in which admins have used the i (immutable) flag to
prevent changes that would otherwise be imposed by a configuration management
system such as Ansible or Salt. Needless to say, this hack creates confusion once
the details have been forgotten and no one can figure out why configuration man-
agement isn’t working. Never do this—just think of the shame your mother would
feel if she knew what you’d been up to. Fix the issue within the configuration man-
agement system like Mom would want.

The “no backup” flag (d) is potentially of interest to administrators, but since it’s an
advisory flag, make sure that your backup system honors it.

Flags that affect journaling and write synchrony (D, j, and S) exist primarily to
support databases. They are not of general use for administrators. All these options
can reduce filesystem performance significantly. In addition, tampering with write
synchrony has been known to confuse fsck on ext* filesystems.

5.6	 Access control lists
The traditional 9-bit owner/group/other access control system is powerful enough
to accommodate the vast majority of administrative needs. Although the system
has clear limitations, it’s very much in keeping with the UNIX traditions (some
might say, “former traditions”) of simplicity and predictability.

Access control lists, aka ACLs, are a more powerful but also more complicated way
of regulating access to files. Each file or directory can have an associated ACL that
lists the permission rules to be applied to it. Each of the rules within an ACL is
called an access control entry or ACE.

An access control entry identifies the user or group to which it applies and spec-
ifies a set of permissions to be applied to those entities. ACLs have no set length
and can include permission specifications for multiple users or groups. Most OSes
limit the length of an individual ACL, but the limit is high enough (usually at least
32 entries) that it rarely comes into play.

The more sophisticated ACL systems let administrators specify partial sets of per-
missions or negative permissions. Most also have inheritance features that allow
access specifications to propagate to newly created filesystem entities.

See Chapter 23 for
more information
about configuration
management.

	 Access control lists	 141

Fi
le

sy
st

em

A cautionary note
ACLs are widely supported and occupy our attention for the rest of this chapter.
However, neither of these facts should be interpreted as an encouragement to em-
brace them. ACLs have a niche, but it lies outside the mainstream of UNIX and
Linux administration.

ACLs exist primarily to facilitate Windows compatibility and to serve the needs of
the small segment of enterprises that actually require ACL-level flexibility. They
are not the shiny next generation of access control and are not intended to supplant
the traditional model.

ACLs’ complexity creates several potential problems. Not only are ACLs tedious to
use, but they can also cause unexpected interactions with ACL-unaware backup
systems, network file service peers, and even simple programs such as text editors.

ACLs also tend to become increasingly unmaintainable as the number of entries
grows. Real-world ACLs frequently include vestigial entries and entries that serve
only to compensate for issues caused by previous entries. It’s possible to refactor
and simplify these complex ACLs, but that’s risky and time consuming, so it rarely
gets done.

In the past, copies of this chapter that we’ve sent out to professional administrators
for review have often come back with notes such as, “This part looks fine, but I can’t
really say, because I’ve never used ACLs.”

ACL types
Two types of ACLs have emerged as the predominant standards for UNIX and Li-
nux: POSIX ACLs and NFSv4 ACLs.

The POSIX version dates back to specification work done in the mid-1990s. Un-
fortunately, no actual standard was ever issued, and initial implementations varied
widely. These days, we are in much better shape. Systems have largely converged
on a common framing for POSIX ACLs and a common command set, getfacl and
setfacl, for manipulating them.

To a first approximation, the POSIX ACL model simply extends the traditional UNIX
rwx permission system to accommodate permissions for multiple groups and users.

As POSIX ACLs were coming into focus, it became increasingly common for UNIX
and Linux to share filesystems with Windows, which has its own set of ACL con-
ventions. Here the plot thickens, because Windows makes a variety of distinctions
that are not found in either the traditional UNIX model or its POSIX ACL equiva-
lent. Windows ACLs are semantically more complex, too; for example, they allow
negative permissions (“deny” entries) and have a complicated inheritance scheme.

The architects of version 4 of NFS—a common file-sharing protocol—wanted to
incorporate ACLs as a first-class entity. Because of the UNIX/Windows split and the
inconsistencies among UNIX ACL implementations, it was clear that the systems

See Chapter 21
for more informa-
tion about NFS.

142	 Chapter 5	 The Filesystem	

on the ends of an NFSv4 connection might often be of different types. Each system
might understand NFSv4 ACLs, POSIX ACLs, Windows ACLs, or no ACLs at all.
The NFSv4 standard would have to be interoperable with all these various worlds
without causing too many surprises or security problems.

Given this constraint, it’s perhaps not surprising that NFSv4 ACLs are essentially a
union of all preexisting systems. They are a strict superset of POSIX ACLs, so any
POSIX ACL can be represented as an NFSv4 ACL without loss of information. At
the same time, NFSv4 ACLs accommodate all the permission bits found on Win-
dows systems, and they have most of Windows’ semantic features as well.

Implementation of ACLs
In theory, responsibility for maintaining and enforcing ACLs could be assigned to
several different components of the operating system. ACLs could be implemented
by the kernel on behalf of all the system’s filesystems, by individual filesystems, or
perhaps by higher-level software such as NFS and SMB servers.

In practice, ACL support is both OS-dependent and filesystem-dependent. A filesys-
tem that supports ACLs on one system might not support them on another, or it
might feature a somewhat different implementation managed by different commands.

File service daemons map their host’s native ACL scheme (or schemes) to and from
the conventions appropriate to the filing protocol: NFSv4 ACLs for NFS, and Win-
dows ACLs for SMB. The details of that mapping depend on the implementation
of the file server. Usually, the rules are complicated and somewhat tunable with
configuration options.

Because ACL implementations are filesystem-specific and because systems support
multiple filesystem implementations, some systems end up supporting multiple
types of ACLs. Even a given filesystem might offer several ACL options, as seen in
the various ports of ZFS. If multiple ACL systems are available, the commands to
manipulate them might be the same or different; it depends on the system. Wel-
come to sysadmin hell.

Linux ACL support
Linux has standardized on POSIX-style ACLs. NFSv4 ACLs are not supported at
the filesystem level, though of course Linux systems can mount and share NFSv4
filesystems over the network.

An advantage of this standardization is that nearly all Linux filesystems now include
POSIX ACL support, including XFS, Btrfs, and the ext* family. Even ZFS, whose
native ACL system is NFSv4-ish, has been ported to Linux with POSIX ACLs. The
standard getfacl and setfacl commands can be used everywhere, without regard to
the underlying filesystem type. (You may, however, need to ensure that the correct
mount option has been used to mount the filesystem. Filesystems generally support
an acl option, a noacl option, or both, depending on their defaults.)

See Chapter 22
for more informa-
tion about SMB.

	 Access control lists	 143

Fi
le

sy
st

em

Linux does have a command suite (nfs4_getfacl, nfs4_setfacl, and nfs4_editfacl)
for grooming the NFSv4 ACLs of files mounted from NFS servers. However, these
commands cannot be used on locally stored files. Moreover, they are rarely included
in distributions’ default software inventory; you’ll have to install them separately.

FreeBSD ACL support
FreeBSD supports both POSIX ACLs and NFSv4 ACLs. Its native getfacl and setfacl
commands have been extended to include NFSv4-style ACL wrangling. NSFv4 ACL
support is a relatively recent (as of 2017) development.

At the filesystem level, both UFS and ZFS support NFSv4-style ACLs, and UFS sup-
ports POSIX ACLs as well. The potential point of confusion here is ZFS, which is
NFSv4-only on BSD (and on Solaris, its system of origin) and POSIX-only on Linux.

For UFS, use one of the mount options acls or nfsv4acls to specify which world
you want to live in. These options are mutually exclusive.

POSIX ACLs
POSIX ACLs are a mostly straightforward extension of the standard 9-bit UNIX
permission model. Read, write, and execute permission are the only capabilities
that the ACL system deals with. Embellishments such as the setuid and sticky bits
are handled exclusively through the traditional mode bits.

ACLs allow the rwx bits to be set independently for any combination of users and
groups. Table 5.7 shows what the individual entries in an ACL can look like.

Table 5.7	 Entries that can appear in POSIX ACLs

Format Example Sets permissions for

user : : perms user::rw- The file’s owner
user : username : perms user:trent:rw- A specific user
group : : perms group::r-x The group that owns the file
group : groupname : perms group:staff:rw- A specific group
other : : perms other::--- All others
mask : : perms mask::rwx All but owner and other a

a.	 Masks are somewhat tricky and are explained later in this section.

Users and groups can be identified by name or by UID/GID. The exact number of
entries that an ACL can contain varies with the filesystem implementation but is
usually at least 32. That’s probably about the practical limit for manageability, anyway.

144	 Chapter 5	 The Filesystem	

Interaction between traditional modes and ACLs
Files with ACLs retain their original mode bits, but consistency is automatically
enforced and the two sets of permissions can never conflict. The following exam-
ple demonstrates that the ACL entries automatically update in response to changes
made with the standard chmod command:

$ touch example
$ ls -l example
-rw-rw-r-- 1 garth garth 0 Jun 14 15:57 example
$ getfacl example
file: example
owner: garth
group: garth
user::rw-
group::rw-
other::r--
$ chmod 640 example
$ ls -l example
-rw-r----- 1 garth garth 0 Jun 14 15:57 example
$ getfacl --omit-header example 9
user::rw-
group::r--
other::---

This enforced consistency allows older software with no awareness of ACLs to play
reasonably well in the ACL world. However, there’s a twist. Even though the group::
ACL entry in the example above appears to be tracking the middle set of traditional
mode bits, that will not always be the case.

To understand why, suppose that a legacy program clears the write bits within all
three permission sets of the traditional mode (e.g., chmod ugo-w file). The inten-
tion is clearly to make the file unwritable by anyone. But what if the resulting ACL
were to look like this?

user::r--
group::r--
group:staff:rw-
other::r--

From the perspective of legacy programs, the file appears to be unmodifiable, yet
it is actually writable by anyone in group staff. Not good. To reduce the chance of
ambiguity and misunderstandings, the following rules are enforced:

•	 The user:: and other:: ACL entries are by definition identical to the “own-
er” and “other” permission bits from the traditional mode. Changing the
mode changes the corresponding ACL entries, and vice versa.

	 9.	 This example is from Linux. The FreeBSD version of getfacl uses -q instead of --omit-header to sup-
press the comment-like lines in the output.

	 Access control lists	 145

Fi
le

sy
st

em

•	 In all cases, the effective access permission afforded to the file’s owner and
to users not mentioned in another way are those specified in the user::
and other:: ACL entries, respectively.

•	 If a file has no explicitly defined ACL or has an ACL that consists of only
one user::, one group::, and one other:: entry, these ACL entries are
identical to the three sets of traditional permission bits. This is the case
illustrated in the getfacl example above. (Such an ACL is termed “mini-
mal” and need not actually be implemented as a logically separate ACL.)

•	 In more complex ACLs, the traditional group permission bits correspond
to a special ACL entry called mask rather than the group:: ACL entry.
The mask limits the access that the ACL can confer on all named users,
all named groups, and the default group.

In other words, the mask specifies an upper bound on the access that the ACL can
assign to individual groups and users. It is conceptually similar to the umask, except
that the ACL mask is always in effect and that it specifies the allowed permissions
rather than the permissions to be denied. ACL entries for named users, named
groups, and the default group can include permission bits that are not present in
the mask, but filesystems simply ignore them.

As a result, the traditional mode bits can never understate the access allowed by the
ACL as a whole. Furthermore, clearing a bit from the group portion of the traditional
mode clears the corresponding bit in the ACL mask and thereby forbids this per-
mission to everyone but the file’s owner and those who fall in the category of “other.”

When the ACL shown in the previous example is expanded to include entries for a
specific user and group, setfacl automatically supplies an appropriate mask:

$ ls -l example
-rw-r-----		 1 garth garth	 0 Jun 14 15:57 example
$ setfacl -m user::r,user:trent:rw,group:admin:rw example
$ ls -l example
-r--rw----+	 1 garth garth	 0 Jun 14 15:57 example
$ getfacl --omit-header example
user::r--
user:trent:rw-
group::r--
group:admin:rw-
mask::rw-
other::---

The -m option to setfacl means “modify”: it adds entries that are not already present
and adjusts those that are already there. Note that setfacl automatically generates a
mask that allows all the permissions granted in the ACL to take effect. If you want
to set the mask by hand, include it in the ACL entry list given to setfacl or use the

-n option to prevent setfacl from regenerating it.

146	 Chapter 5	 The Filesystem	

Note that after the setfacl command, ls -l shows a + sign at the end of the file’s
mode to denote that it now has a real ACL associated with it. The first ls -l shows
no + because at that point the ACL is “minimal.”

If you use the traditional chmod command to manipulate an ACL-bearing file, be
aware that your settings for the “group” permissions affect only the mask. To con-
tinue the previous example:

$ chmod 770 example
$ ls -l example
-rwxrwx---+ 1 garth staff 0 Jun 14 15:57 example
$ getfacl --omit-header example
user::rwx
user:trent:rw-
group::r--
group:admin:rw-
mask::rwx
other::---

The ls output in this case is misleading. Despite the apparently generous group
permissions, no one actually has permission to execute the file by reason of group
membership. To grant such permission, you must edit the ACL itself.

To remove an ACL entirely and revert to the standard UNIX permission system,
use setfacl -bn. (Strictly speaking, the -n flag is needed only on FreeBSD. Without
it, FreeBSD’s setfacl leaves you with a vestigial mask entry that will screw up later
group-mode changes. However, you can include the -n on Linux without creating
problems.)

POSIX access determination
When a process attempts to access a file, its effective UID is compared to the UID
that owns the file. If they are the same, access is determined by the ACL’s user::
permissions. Otherwise, if a matching user-specific ACL entry exists, permissions
are determined by that entry in combination with the ACL mask.

If no user-specific entry is available, the filesystem tries to locate a valid group-related
entry that authorizes the requested access; these entries are processed in conjunction
with the ACL mask. If no matching entry can be found, the other:: entry prevails.

POSIX ACL inheritance
In addition to the ACL entry types listed in Table 5.7 on page 143, the ACLs for
directories can include default entries that are propagated to the ACLs of newly
created files and subdirectories created within them. Subdirectories receive these
entries both in the form of active ACL entries and in the form of copies of the de-
fault entries. Therefore, the original default entries may eventually propagate down
through several layers of the directory hierarchy.

	 Access control lists	 147

Fi
le

sy
st

em

Once default entries have been copied to new subdirectories, there is no ongoing
connection between the parent and child ACLs. If the parent’s default entries change,
those changes are not reflected in the ACLs of existing subdirectories.

You can set default ACL entries with setfacl -dm. Alternatively, you can include de-
fault entries within a regular access control entry list by prefixing them with default:.

If a directory has any default entries, it must include a full set of defaults for user::,
group::, other::, and mask::. setfacl will fill in any default entries you don’t spec-
ify by copying them from the current permissions ACL, generating a summary
mask as usual.

NFSv4 ACLs
In this section, we discuss the characteristics of NFSv4 ACLs and briefly review the
command syntax used to set and inspect them on FreeBSD. They aren’t supported
on Linux (other than by NFS service daemons).

From a structural perspective, NFSv4 ACLs are similar to Windows ACLs. The
main difference between them lies in the specification of the entity to which an
access control entry refers.

In both systems, the ACL stores this entity as a string. For Windows ACLs, the
string typically contains a Windows security identifier (SID), whereas for NFSv4,
the string is typically of the form user:username or group:groupname. It can also
be one of the special tokens owner@, group@, or everyone@. These latter entries are
the most common because they correspond to the mode bits found on every file.

Systems such as Samba that share files between UNIX and Windows systems must
provide some way of mapping between Windows and NFSv4 identities.

The NFSv4 and Windows permission models are more granular than the traditional
UNIX read-write-execute model. In the case of NFSv4, the main refinements are
as follows:

•	 NFSv4 distinguishes permission to create files within a directory from
permission to create subdirectories.

•	 NFSv4 has a separate “append” permission bit.

•	 NFSv4 has separate read and write permissions for data, file attributes,
extended attributes, and ACLs.

•	 NFSv4 controls a user’s ability to change the ownership of a file through
the standard ACL system. In traditional UNIX, the ability to change the
ownership of files is usually reserved for root.

Table 5.8 on the next page shows the various permissions that can be assigned in
the NFSv4 system. It also shows the one-letter codes used to represent them and
the more verbose canonical names.

148	 Chapter 5	 The Filesystem	

Table 5.8	 NFSv4 file permissions

Code Verbose name Permission

r read_data Read data (file) or list directory contents (directory)
w write_data Write data (file) or create file (directory)
x execute Execute as a program
p append_data Append data (file) or create subdirectory (directory)
D delete_child Delete child within a directory
d delete Delete
a read_attributes Read nonextended attributes
A write_attributes Write nonextended attributes
R read_xattr Read named (“extended”) attributes
W write_xattr Write named (“extended”) attributes
c read_acl Read access control list
C write_acl Write access control list
o write_owner Change ownership
s synchronize Allow requests for synchronous I/O (usually ignored)

Although the NFSv4 permission model is fairly detailed, the individual permissions
should mostly be self-explanatory. (The “synchronize” permission allows a client to
specify that its modifications to a file should be synchronous—that is, calls to write
should not return until the data has actually been saved on disk.)

An extended attribute is a named chunk of data that is stored along with a file; most
modern filesystems support such attributes. At this point, the predominant use of
extended attributes is to store ACLs themselves. However, the NFSv4 permission
model treats ACLs separately from other extended attributes.

In FreeBSD’s implementation, a file’s owner always has read_acl, write_acl,
read_attributes, and write_attributes permissions, even if the file’s ACL itself
specifies otherwise.

NFSv4 entities for which permissions can be specified
In addition to the garden-variety user:username and group:groupname specifiers,
NFSv4 defines several special entities that may be assigned permissions in an ACL.
Most important among these are owner@, group@, and everyone@, which correspond
to the traditional categories in the 9-bit permission model.

NFSv4 has several differences from POSIX. For one thing, it has no default entity,
used in POSIX to control ACL inheritance. Instead, any individual access control
entry (ACE) can be flagged as inheritable (see ACL inheritance in NFSv4, below).
NFSv4 also does not use a mask to reconcile the permissions specified in a file’s
mode with its ACL. The mode is required to be consistent with the settings spec-

	 Access control lists	 149

Fi
le

sy
st

em

ified for owner@, group@, and everyone@, and filesystems that implement NFSv4
ACLs must preserve this consistency when either the mode or the ACL is updated.

NFSv4 access determination
The NFSv4 system differs from POSIX in that an ACE specifies only a partial set
of permissions. Each ACE is either an “allow” ACE or a “deny” ACE; it acts more
like a mask than an authoritative specification of all possible permissions. Multiple
ACEs can apply to any given situation.

When deciding whether to allow a particular operation, the filesystem reads the
ACL in order, processing ACEs until either all requested permissions have been
granted or some requested permission has been denied. Only ACEs whose entity
strings are compatible with the current user’s identity are considered.

This iterative evaluation process means that owner@, group@, and everyone@ are
not exact analogs of the corresponding traditional mode bits. An ACL can contain
multiple copies of these elements, and their precedence is determined by their or-
der of appearance in the ACL rather than by convention. In particular, everyone@
really does apply to everyone, not just users who aren’t addressed more specifically.

It’s possible for the filesystem to reach the end of an ACL without having obtained
a definitive answer to a permission query. The NFSv4 standard considers the result
to be undefined, but real-world implementations deny access, both because this is
the convention used by Windows and because it’s the only option that makes sense.

ACL inheritance in NFSv4
Like POSIX ACLs, NFSv4 ACLs allow newly created objects to inherit access con-
trol entries from their enclosing directory. However, the NFSv4 system is a bit more
powerful and a lot more confusing. Here are the important points:

•	 You can flag any ACE as inheritable. Inheritance for newly created sub-
directories (dir_inherit or d) and inheritance for newly created files
(file_inherit or f) are flagged separately.

•	 You can apply different access control entries to new files and new direc-
tories by creating separate access control entries on the parent directory
and flagging them appropriately. You can also apply a single ACE to all
new child entities (of whatever type) by turning on both the d and f flags.

•	 From the perspective of access determination, access control entries have
the same effect on the parent (source) directory whether or not they are
inheritable. If you want an entry to apply to children but not to the parent
directory itself, turn on the ACE’s inherit_only (i) flag.

•	 New subdirectories normally inherit two copies of each ACE: one with the
inheritance flags turned off, which applies to the subdirectory itself; and
one with the inherit_only flag turned on, which sets up the new subdi-

150	 Chapter 5	 The Filesystem	

rectory to propagate its inherited ACEs. You can suppress the creation of
this second ACE by turning on the no_propagate (n) flag on the parent
directory’s copy of the ACE. The end result is that the ACE propagates
only to immediate children of the original directory.

•	 Don’t confuse the propagation of access control entries with true inheri-
tance. Your setting an inheritance-related flag on an ACE simply means
that the ACE will be copied to new entities. It does not create any ongoing
relationship between the parent and its children. If you later change the
ACE entries on the parent directory, the children are not updated.

Table 5.9 summarizes these various inheritance flags.

Table 5.9	 NFSv4 ACE inheritance flags

Code Verbose name Meaning

f file_inherit Propagate this ACE to newly created files.
d dir_inherit Propagate this ACE to newly created subdirectories.
i inherit_only Propagate, but don’t apply to the current directory.
n no_propagate Propagate to new subdirectories, but turn off inheritance.

NFSv4 ACL viewing
FreeBSD has extended the standard setfacl and getfacl commands used with POSIX
ACLs to handle NFSv4 ACLs as well. For example, here’s the ACL for a newly cre-
ated directory:

freebsd$ mkdir example
freebsd$ ls -ld example
drwxr-xr-x 2 garth staff 2 Aug 16 18:52 example/

$ getfacl -q example
 owner@:rwxp--aARWcCos:------:allow
 group@:r-x---a-R-c--s:------:allow
 everyone@:r-x---a-R-c--s:------:allow

The -v flag requests verbose permission names:

freebsd$ getfacl -qv example
	 owner@:read_data/write_data/execute/append_data/read_attributes/
		 write_attributes/read_xattr/write_xattr/read_acl/write_acl/
		 write_owner/synchronize::allow
	 group@:read_data/execute/read_attributes/read_xattr/read_acl/
		 synchronize::allow
	 everyone@:read_data/execute/read_attributes/read_xattr/read_acl/
		 synchronize::allow

We indented these out-
put lines and wrapped
them at slashes to
clarify structure.

	 Access control lists	 151

Fi
le

sy
st

em

This newly created directory seems to have a complex ACL, but in fact this is just the
9-bit mode translated into ACLese. It is not necessary for the filesystem to store an
actual ACL, because the ACL and the mode are equivalent. (As with POSIX ACLS,
such lists are termed “minimal” or “trivial.”) If the directory had an actual ACL, ls
would show the mode bits with a + on the end (i.e., drwxr-xr-x+) to mark its presence.

Each clause represents one access control entry. The format is

entity : permissions : inheritance_flags : type

The entity can be the keywords owner@, group@, or everyone@, or a form such as
user:username or group:groupname. Both the permissions and the inheritance_flags
are slash-separated lists of options in the verbose output and ls-style bitmaps in
short output. The type of an ACE is either allow or deny.

The use of a colon as a subdivider within the entity field makes it tricky for scripts
to parse getfacl output no matter which output format you use. If you need to pro-
cess ACLs programmatically, it’s best to do so through a modular API rather than
by parsing command output.

Interactions between ACLs and modes
The mode and the ACL must remain consistent, so whenever you adjust one of
these entities, the other automatically updates to conform to it. It’s easy for the sys-
tem to determine the appropriate mode for a given ACL. However, emulating the
traditional behavior of the mode with a series of access control entries is trickier,
especially in the context of an existing ACL. The system must often generate mul-
tiple and seemingly inconsistent sets of entries for owner@, group@, and everyone@
that depend on evaluation order for their aggregate effect.

As a rule, it’s best to avoid tampering with a file’s or directory’s mode once you’ve
applied an ACL.

NFSv4 ACL setup
Because the permission system enforces consistency between a file’s mode and
its ACL, all files have at least a trivial ACL. Ergo, ACL changes are always updates.

You make ACL changes with the setfacl command, much as you do under the POSIX
ACL regime. The main difference is that order of access control entries is significant
for an NFSv4 ACL, so you might need to insert new entries at a particular point
within the existing ACL. You can do that with the -a flag:

setfacl -a position entries file ...

Here, position is the index of the existing access control entry (numbered starting at
zero) in front of which the new entries should be inserted. For example, the command

$ setfacl -a 0 user:ben:full_set::deny ben_keep_out

152	 Chapter 5	 The Filesystem	

installs an access control entry on the file ben_keep_out that denies all permis-
sions to the user ben. The notation full_set is a shorthand notation that includes all
possible permissions. (Written out, those would currently be rwxpDdaARWcCos;
compare with Table 5.8 on page 148.)

Because the new access control entry is inserted at position zero, it’s the first one
consulted and takes precedence over later entries. Ben will be denied access to the
file even if, for example, the everyone@ permissions grant access to other users.

You can also use long names such as write_data to identify permissions. Separate
multiple long names with slashes. You cannot mix single-letter codes and long
names in a single command.

As with POSIX ACLs, you can use the -m flag to add new entries to the end of the
existing ACL.

As for complex changes to existing ACLs, you can best achieve them by dumping
the ACL to a text file, editing the access control entries in a text editor, and then
reloading the entire ACL. For example:

$ getfacl -q file > /tmp/file.acl
$ vi /tmp/file.acl # Make any required changes
$ setfacl -b -M /tmp/file.acl file

setfacl’s -b option removes the existing ACL before adding the access control en-
tries listed in file.acl. Its inclusion lets you delete entries simply by removing them
from the text file.

So
ft

w
ar

e

			 153

The installation, configuration, and management of software is a large part of most
sysadmins’ jobs. Administrators respond to installation and configuration requests
from users, apply updates to fix security problems, and supervise transitions to new
software releases that may offer both new features and incompatibilities. Generally,
administrators perform all the following tasks:

•	 Automating mass installations of operating systems
•	 Maintaining custom OS configurations
•	 Keeping systems and applications patched and up to date
•	 Tracking software licenses
•	 Managing add-on software packages

The process of configuring an off-the-shelf distribution or software package to
conform to your needs (and to your local conventions for security, file placement,
and network topology) is often referred to as “localization.” This chapter explores
some techniques and software that help reduce the pain of software installation and
make these tasks scale more gracefully. We also discuss the installation procedure
for each of our example operating systems, including some options for automated
deployment that use common (platform-specific) tools.

6 Software Installation and
Management

154	 Chapter 6	 Software Installation and Management	

6.1	 Operating system installation
Linux distributions and FreeBSD have straightforward procedures for basic instal-
lation. For physical hosts, installation typically involves booting from external USB
storage or optical media, answering a few basic questions, optionally configuring
disk partitions, and then telling the installer which software packages to install.
Most systems, including all our example distributions, include a “live” option on
the installation media that lets you run the operating system without actually in-
stalling it on a local disk.

Installing the base operating system from local media is fairly trivial thanks to the
GUI applications that shepherd you through the process. Table 6.1 lists pointers to
detailed installation instructions for each of our example systems.

Table 6.1	 Installation documentation

System Documentation source

Red Hat redhat.com/docs/manuals/enterprise
CentOS wiki.centos.org/Manuals/ReleaseNotes/CentOS7
Debian debian.org/releases/stable/installmanual
Ubuntu help.ubuntu.com/lts/serverguide/installation.html
FreeBSD freebsd.org/doc/handbook/bsdinstall.html

Installing from the network
If you have to install an operating system on more than one computer, you will
quickly reach the limits of interactive installation. It’s time consuming, error prone,
and boring to repeat the standard installation process on hundreds of systems. You
can minimize human errors with a localization checklist, but even this measure
does not remove all potential sources of variation.

To alleviate some of these problems, you can use network installation options to
simplify deployments. Network installations are appropriate for sites with more
than ten or so systems. The most common methods use DHCP and TFTP to boot
the system sans physical media. They then retrieve the OS installation files from a
network server with HTTP, NFS, or FTP.

You can set up completely hands-free installations through PXE, the Preboot
eXecution Environment. This scheme is a standard from Intel that lets systems
boot from a network interface. It works especially well in virtualized environments.

PXE acts like a miniature OS that sits in a ROM on your network card. It exposes its
network capabilities through a standardized API for the system BIOS to use. This
cooperation makes it possible for a single boot loader to netboot any PXE-enabled
PC without having to supply special drivers for each network card.

http://Hatredhat.com/docs/manuals/enterprise
http://CentOSwiki.centos.org/Manuals/ReleaseNotes/CentOS7
http://Debiandebian.org/releases/stable/installmanual
http://Ubuntuhelp.ubuntu.com/lts/serverguide/installation.html
http://FreeBSDfreebsd.org/doc/handbook/bsdinstall.html

	 Operating system installation	 155

So
ft

w
ar

e

The external (network) portion of the PXE protocol is straightforward and is similar
to the netboot procedures used on other architectures. A host broadcasts a DHCP
“discover” request with the PXE flag turned on, and a DHCP server or proxy re-
sponds with a DHCP packet that includes PXE options (the name of a boot server
and boot file). The client downloads its boot file over TFTP (or, optionally, multi-
cast TFTP) and then executes it. The PXE boot procedure is depicted in Exhibit A.

Exhibit A	 PXE boot and installation process

DHCP request (includes PXE options)

DHCP response (points to TFTP boot server)

Request boot image via TFTP

Serve boot image and con�guration

Request installation image via HTTP/NFS/other

Serve installation �les

Netboot
client

Netboot
server

The DHCP, TFTP, and file servers can all be located on different hosts. The TFTP-pro-
vided boot file includes a menu with pointers to the available OS boot images,
which can then be retrieved from the file server with HTTP, FTP, NFS, or some
other network protocol.

PXE booting is most commonly used in conjunction with unattended installation
tools such as Red Hat’s kickstart or Debian’s preseeding system, as discussed in the
upcoming sections. You can also use PXE to boot diskless systems such as thin clients.

Cobbler, discussed on page 161, includes some glue that makes netbooting much
easier. However, you will still need a working knowledge of the tools that underlie
Cobbler, beginning with PXE.

Setting up PXE
The most widely used PXE boot system is H. Peter Anvin’s PXELINUX, which
is part of his SYSLINUX suite of boot loaders for every occasion. Check it out at
syslinux.org. Another option is iPXE (ipxe.org), which supports additional boot-
strapping modes, including support for wireless networks.

PXELINUX supplies a boot file that you install in the TFTP server’s tftpboot di-
rectory. To boot from the network, a PC downloads the PXE boot loader and its
configuration from the TFTP server. The configuration file lists one or more op-
tions for operating systems to boot. The system can boot through to a specific OS
installation without any user intervention, or it can display a custom boot menu.

See page 402 for
more information
about DHCP.

http://syslinux.org
http://ipxe.org

156	 Chapter 6	 Software Installation and Management	

PXELINUX uses the PXE API for its downloads and is therefore hardware inde-
pendent all the way through the boot process. Despite the name, PXELINUX is not
limited to booting Linux. You can deploy PXELINUX to install FreeBSD and other
operating systems, including Windows.

On the DHCP side, ISC’s (the Internet Systems Consortium’s) DHCP server is your
best bet for serving PXE information. Alternatively, try Dnsmasq (goo.gl/FNk7a),
a lightweight server with DNS, DHCP, and netboot support. Or simply use Cob-
bler, discussed below.

Using kickstart, the automated installer for Red Hat and CentOS
Kickstart is a Red Hat-developed tool for performing automated installations. It is
really just a scripting interface to the standard Red Hat installer software, Anacon-
da, and depends both on the base distribution and on RPM packages. Kickstart is
flexible and quite smart about autodetecting the system’s hardware, so it works well
for bare-metal and virtual machines alike. Kickstart installs can be performed from
optical media, the local hard drive, NFS, FTP, or HTTP.

Setting up a kickstart configuration file
Kickstart’s behavior is controlled by a single configuration file, generally called
ks.cfg. The format of this file is straightforward. If you’re visually inclined, Red
Hat’s handy GUI tool system-config-kickstart lets you point and click your way
to ks.cfg nirvana.

A kickstart config file consists of three ordered parts. The first part is the command
section, which specifies options such as language, keyboard, and time zone. This
section also specifies the source of the distribution with the url option. In the fol-
lowing example, it’s a host called installserver.

Here’s an example of a complete command section:

text
lang en_US # lang is used during the installation...
langsupport en_US # ...and langsupport at run time
keyboard us # Use an American keyboard
timezone --utc America/EST # --utc means hardware clock is on GMT
mouse
rootpw --iscrypted 6NaCl$X5jRlREy9DqNTCXjHp075/
reboot # Reboot after installation. Always wise.
bootloader --location=mbr # Install default boot loader in the MBR
install # Install a new system, don't upgrade
url --url http://installserver/redhat
clearpart --all --initlabel # Clear all existing partitions
part / --fstype ext3 --size 4096
part swap --size 1024
part /var --fstype ext3 -size 1 --grow
network --bootproto dhcp

See page 403 for more
information about
DHCP server software.

RHEL

http://goo.gl/FNk7a

	 Operating system installation	 157

So
ft

w
ar

e

auth --useshadow --enablemd5
firewall --disabled
xconfig --defaultdesktop=GNOME --startxonboot --resolution 1280x1024

--depth 24

Kickstart uses graphical mode by default, which defeats the goal of unattended in-
stallation. The text keyword at the top of the example fixes this.

The rootpw option sets the new machine’s root password. The default is to spec-
ify the password in cleartext, which presents a serious security problem. Always
use the --iscrypted flag to specify a hashed password. To encrypt a password for
use with kickstart, use openssl passwd -1. Still, this option leaves all your systems
with the same root password. Consider running a postboot process to change the
password at build time.

The clearpart and part directives specify a list of disk partitions and their sizes.
You can include the --grow option to expand one of the partitions to fill any re-
maining space on the disk. This feature makes it easy to accommodate systems that
have different sizes of hard disk. Advanced partitioning options, such as the use of
LVM, are supported by kickstart but not by the system-config-kickstart tool. Re-
fer to Red Hat’s on-line documentation for a complete list of disk layout options.

The second section is a list of packages to install. It begins with a %packages direc-
tive. The list can contain individual packages, collections such as @ GNOME, or the
notation @ Everything to include the whole shebang. When selecting individual
packages, specify only the package name, not the version or the .rpm extension.
Here’s an example:

%packages
@ Networked Workstation
@ X Window System
@ GNOME
mylocalpackage

In the third section of the kickstart configuration file, you can specify arbitrary
shell commands for kickstart to execute. There are two possible sets of commands:
one introduced with %pre that runs before installation, and one introduced with
%post that runs afterward. Both sections have some restrictions on the ability of
the system to resolve hostnames, so it’s safest to use IP addresses if you want to
access the network. In addition, the postinstall commands are run in a chrooted
environment, so they cannot access the installation media.

The ks.cfg file is quite easy to generate programmatically. One option is to use the
pykickstart Python library, which can read and write kickstart configurations.

For example, suppose you wanted to install different sets of packages on servers and
clients and that you also have two separate physical locations that require slightly
different customizations. You could use pykickstart to write a script that transforms
a master set of parameters into a set of four separate configuration files, one for
servers and one for clients in each office.

158	 Chapter 6	 Software Installation and Management	

Changing the complement of packages would then be just a matter of changing
the master configuration file rather than of changing every possible configuration
file. There may even be cases in which you need to generate individualized config-
uration files for specific hosts. In this situation, you would certainly want the final
ks.cfg files to be automatically generated.

Building a kickstart server
Kickstart expects its installation files, called the installation tree, to be laid out
as they are on the distribution media, with packages stored in a directory called
RedHat/RPMS on the server. If you’re installing over the network via FTP, NFS,
or HTTP, you can either copy the contents of the distribution (leaving the tree in-
tact), or you can simply use the distribution’s ISO images. You can also add your
own packages to this directory. There are, however, a couple of issues to be aware of.

First, if you tell kickstart to install all packages (with an @ Everything in the pack-
ages section of your ks.cfg), it installs add-on packages in alphabetical order once
all the base packages have been laid down. If your package depends on other pack-
ages that are not in the base set, you might want to call your package something
like zzmypackage.rpm to make sure that it’s installed last.

If you don’t want to install all packages, either list your supplemental packages indi-
vidually in the %packages section of the ks.cfg file or add your packages to one or
more of the collection lists. Collection lists are specified by entries such as @ GNOME
and stand for a predefined set of packages whose members are enumerated in the
file RedHat/base/comps on the server. The collections are the lines that begin with
0 or 1; the number specifies whether the collection is selected by default.

In general, it’s not a good idea to tamper with the standard collections. Leave them
as Red Hat defined them and explicitly name all your supplemental packages in
the ks.cfg file.

Pointing kickstart at your config file
Once you’ve created a config file, you have a couple of ways to get kickstart to use
it. The officially sanctioned method is to boot from external media (USB or DVD)
and ask for a kickstart installation by specifying linux inst.ks at the initial boot:
prompt. PXE boot is also an option.

If you don’t specify additional arguments, the system determines its network address
with DHCP. It then obtains the DHCP boot server and boot file options, attempts
to mount the boot server with NFS, and uses the value of the boot file option as its
kickstart configuration file. If no boot file has been specified, the system looks for
a file called /kickstart/host_ip_address-kickstart.

See page 155 for
more information
about PXE.

	 Operating system installation	 159

So
ft

w
ar

e

Alternatively, you can tell kickstart to get its configuration file in some other way
by supplying a path as an argument to the inst.ks option.1 There are several possi-
bilities. For example, the instruction

boot: linux inst.ks=http:server:/path

tells kickstart to use HTTP to download the file instead of NFS.

To eliminate the use of boot media entirely, you’ll need to graduate to PXE. See
page 154 for more information about that.

Automating installation for Debian and Ubuntu
Debian and Ubuntu can use the debian-installer for “preseeding,” the recommended
method for automated installation. As with Red Hat’s kickstart, a preconfiguration
file answers questions asked by the installer.

All the interactive parts of the Debian installer use the debconf utility to decide
which questions to ask and what default answers to use. By giving debconf a data-
base of preformulated answers, you fully automate the installer. You can either
generate the database by hand (it’s a text file), or you can perform an interactive
installation on an example system and then dump out your debconf answers with
the following commands:

$ sudo debconf-get-selections --installer > preseed.cfg
$ sudo debconf-get-selections >> preseed.cfg

Make the config file available on the net and then pass it to the kernel at installation
time with the following kernel argument:

preseed/url=http://host/path/to/preseed

The syntax of the preseed file, usually called preseed.cfg, is simple and is remi-
niscent of Red Hat’s ks.cfg. The sample below has been shortened for simplicity.

d-i debian-installer/locale string en_US
d-i console-setup/ask_detect boolean false
d-i console-setup/layoutcode string us
d-i netcfg/choose_interface select auto
d-i netcfg/get_hostname string unassigned-hostname
d-i netcfg/get_domain string unassigned-domain
...
d-i partman-auto/disk string /dev/sda
d-i partman-auto/method string lvm
d-i partman-auto/choose_recipe select atomic
...
d-i passwd/user-fullname string Daffy Duck
d-i passwd/username string dduck
d-i passwd/user-password-crypted password 6/mkq9/$G//i6tN.

x6670.95lVSM/

	 1.	 Prior to RHEL 7, the option was ks. Both are understood for now, but future versions may drop ks.

160	 Chapter 6	 Software Installation and Management	

d-i user-setup/encrypt-home boolean false
tasksel tasksel/first multiselect ubuntu-desktop
d-i grub-installer/only_debian boolean true
d-i grub-installer/with_other_os boolean true
d-i finish-install/reboot_in_progress note
xserver-xorg xserver-xorg/autodetect_monitor boolean true
...

Several options in this list simply disable dialogs that would normally require user
interaction. For example, the console-setup/ask_detect clause disables manual
keymap selection.

This configuration tries to identify a network interface that’s actually connected
to a network (choose_interface select auto) and obtains network information
through DHCP. The system hostname and domain values are presumed to be fur-
nished by DHCP and are not overridden.

Preseeded installations cannot use existing partitions; they must either use exist-
ing free space or repartition the entire disk. The partman* lines in the code above
are evidence that the partman-auto package is being used for disk partitioning.
You must specify a disk to install to unless the system has only one. In this case,
/dev/sda is used.

Several partitioning recipes are available.

•	 atomic puts all the system’s files in one partition.
•	 home creates a separate partition for /home.
•	 multi creates separate partitions for /home, /usr, /var, and /tmp.

You can create users with the passwd series of directives. As with kickstart config-
uration, we strongly recommend the use of encrypted (hashed) password values.
Preseed files are often stored on HTTP servers and are apt to be discovered by cu-
rious users. (Of course, a hashed password is still subject to brute force attack. Use
a long, complex password.)

The task selection (tasksel) option chooses the type of Ubuntu system to install.
Available values include standard, ubuntu-desktop, dns-server, lamp-server,
kubuntu-desktop, edubuntu-desktop, and xubuntu-desktop.

The sample preseed file shown above comes from the Ubuntu installation docu-
mentation found at help.ubuntu.com. This guide contains full documentation for
the syntax and usage of the preseed file.

Although Ubuntu does not descend from the Red Hat lineage, it has grafted com-
patibility with kickstart control files onto its own underlying installer. Ubuntu also
includes the system-config-kickstart tool for creating these files. However, the kick-
start functionality in Ubuntu’s installer is missing a number of important features
that are supported by Red Hat’s Anaconda, such as LVM and firewall configuration.
We recommend sticking with the Debian installer unless you have a good reason
to choose kickstart (e.g., to maintain compatibility with your Red Hat systems).

http://help.ubuntu.com

	 Operating system installation	 161

So
ft

w
ar

e

Netbooting with Cobbler, the open source Linux provisioning server
By far the easiest way to bring netbooting services to your network is with Cobbler, a
project originally written by Michael DeHaan, prolific open source developer. Cobbler
enhances kickstart to remove some of its most tedious and repetitive administra-
tive elements. It bundles all the important netboot features, including DHCP, DNS,
and TFTP, and helps you manage the OS images used to build physical and virtual
machines. Cobbler includes command-line and web interfaces for administration.

Templates are perhaps Cobbler’s most interesting and useful feature. You’ll fre-
quently need different kickstart and preseed settings for different host profiles. For
example, you might have web servers in two data centers that, apart from network
settings, require the same configuration. You can use Cobbler “snippets” to share
sections of the configuration between the two types of hosts.

A snippet is just a collection of shell commands. For example, this snippet adds a
public key to the authorized SSH keys for the root user:

mkdir -p --mode=700 /root/.ssh
cat >> /root/.ssh/authorized_keys << EOF
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDKErzVdarNkL4bzAZotSzU/
... Rooy2R6TCzc1Bt/oqUK1RlkuV
EOF
chmod 600 /root/.ssh/authorized_keys

You save the snippet to Cobbler’s snippet directory, then refer to it in a kickstart
template. For example, if you saved the snippet above as root_pubkey_snippet,
you could refer to it in a template as follows.

%post
SNIPPET::root_pubkey_snippet
$kickstart_done

Use Cobbler templates to customize disk partitions, conditionally install packages,
customize time zones, add custom package repositories, and perform any other
kind of localization requirement.

Cobbler can also create new virtual machines under a variety of hypervisors. It can
integrate with a configuration management system to provision machines once
they boot.

Cobbler packages are available in the standard repositories for our sample Linux
distributions. You can also obtain packages and documentation from the Cobbler
GitHub project at cobbler.github.io.

Automating FreeBSD installation
The FreeBSD bsdinstall utility is a text-based installer that kicks off when you boot
a computer from a FreeBSD installation CD or DVD. Its automation facilities are
rudimentary compared to Red Hat’s kickstart or Debian’s preseed, and the docu-
mentation is limited. The best source of information is the bsdinstall man page.

http://cobbler.github.io

162	 Chapter 6	 Software Installation and Management	

Creating a customized, unattended installation image is a tedious affair that in-
volves the following steps.

1.	 Download the latest installation ISO (CD image) from ftp.freebsd.org.

2.	 Unpack the ISO image to a local directory.

3.	 Make any desired edits in the cloned directory.

4.	 Create a new ISO image from your customized layout and burn it to
media, or create a PXE boot image for netbooting.

FreeBSD’s version of tar understands ISO format in addition to many other formats,
so you can simply extract the CD image files to a scratch directory. Create a sub-
directory before extracting, because the ISO file unpacks to the current directory.

freebsd$ sudo mkdir FreeBSD
freebsd$ sudo tar xpCf FreeBSD FreeBSD-11.0.iso

Once you’ve extracted the contents of the image, you can customize them to re-
flect your desired installation settings. For example, you could add custom DNS
resolvers by editing FreeBSD/etc/resolv.conf to include your own name servers.

bsdinstall normally requires users to select settings such as the type of terminal
in use, the keyboard mapping, and the desired style of disk partitioning. You can
bypass the interactive questions by putting a file called installerconfig in the etc
directory of the system image.

This file’s format is described in the bsdinstall man page. It has two sections:

•	 The preamble, which sets certain installation settings
•	 A shell script which executes after installation completes

We refer you to the man page rather than regurgitate its contents here. Among
other settings, it contains options for installing directly to a ZFS root and to other
custom partitioning schemes.

Once your customizations are complete, you can create a new ISO file with the
mkisofs command. Create a PXE image or burn the ISO to optical media for an
unattended installation.

The mfsBSD project (mfsbsd.vx.sk) is a set of scripts that generate a PXE-friendly
ISO image. The basic FreeBSD 11 image weighs in at a lean 47MiB. See the source
scripts at github.com/mmatuska/mfsbsd.

6.2	 Managing packages
UNIX and Linux software assets (source code, build files, documentation, and con-
figuration templates) were traditionally distributed as compressed archives, usual-
ly gzipped tarballs (.tar.gz or .tgz files). This was OK for developers but inconve-
nient for end users and administrators. These source archives had to be manually

http://ftp.freebsd.org
http://github.com/mmatuska/mfsbsd

	 Managing packages 	 163

So
ft

w
ar

e

compiled and built for each system on each release of the software, a tedious and
error prone process.

Packaging systems emerged to simplify and facilitate the job of software manage-
ment. Packages include all the files needed to run a piece of software, including
precompiled binaries, dependency information, and configuration file templates
that can be customized by administrators. Perhaps most importantly, packaging
systems try to make the installation process as atomic as possible. If an error oc-
curs during installation, a package can be backed out or reapplied. New versions
of software can be installed with a simple package update.

Package installers are typically aware of configuration files and will not normally
overwrite local customizations made by a system administrator. They either back up
existing config files that they change or supply example config files under a different
name. If you find that a newly installed package breaks something on your system,
you can, theoretically, back it out to restore your system to its original state. Of course,
theory != practice, so don’t try this on a production system without testing it first.

Packaging systems define a dependency model that allows package maintainers to
ensure that the libraries and support infrastructure on which their applications de-
pend are properly installed. Unfortunately, the dependency graphs are sometimes
imperfect. Unlucky administrators can find themselves in package dependency hell,
a state where it’s impossible to update a package because of version incompatibilities
among its dependencies. Fortunately, recent versions of packaging software seem
to be less susceptible to this effect.

Packages can run scripts at various points during the installation, so they can do
much more than just disgorge new files. Packages frequently add new users and
groups, run sanity checks, and customize settings according to the environment.

Confusingly, package versions do not always correspond directly to the versions
of the software that they install. For example, consider the following RPM package
for docker-engine:

$ rpm -qa | grep -i docker
docker-engine-1.13.0-1.el7.centos.x86_64
$ docker version | grep Version
Version: 1.13.1

The package itself claims version 1.13.0, but the docker binary reports version 1.13.1.
In this case, the distribution maintainers backported changes and incremented the
minor package version. Be aware that the package version string is not necessarily
an accurate indication of the software version that is actually installed.

You can create packages to facilitate the distribution of your own localizations or
software. For example, you can create a package that, when installed, reads local-
ization information for a machine (or gets it from a central database) and uses that
information to set up local configuration files.

164	 Chapter 6	 Software Installation and Management	

You can also bundle local applications as packages (complete with dependencies)
or create packages for third party applications that aren’t normally distributed in
package format. You can version your packages and use the dependency mecha-
nism to upgrade machines automatically when a new version of your localization
package is released. We refer you to fpm, the Effing Package Manager, which is the
easiest way to get started building packages for multiple platforms. You can find it
at github.com/jordansissel/fpm.

You can also use the dependency mechanism to create groups of packages. For
example, you can create a package that installs nothing of its own but depends on
many other packages. Installing the package with dependencies turned on results
in all the packages being installed in a single step.

6.3	 Linux package management systems
Two package formats are in common use on Linux systems. Red Hat, CentOS,
SUSE, Amazon Linux, and several other distributions use RPM, a recursive acronym
that expands to “RPM Package Manager.” Debian and Ubuntu use the separate but
equally popular .deb format. The two formats are functionally similar.

Both the RPM and .deb packaging systems now function as dual-layer soup-to-
nuts configuration management tools. At the lowest level are the tools that install,
uninstall, and query packages: rpm for RPM and dpkg for .deb.

On top of these commands are systems that know how to find and download
packages from the Internet, analyze interpackage dependencies, and upgrade all
the packages on a system. yum, the Yellowdog Updater, Modified, works with the
RPM system. APT, the Advanced Package Tool, originated in the .deb universe but
works well with both .deb and RPM packages.

On the next couple of pages, we review the low-level commands rpm and dpkg. In
the section High-level Linux package management systems starting on page 166,
we discuss the comprehensive update systems APT and yum, which build on these
low-level facilities. Your day-to-day administration activities will usually involve
the high-level tools, but you’ll occasionally need to wade into the deep end of the
pool with rpm and dpkg.

rpm: manage RPM packages
The rpm command installs, verifies, and queries the status of packages. It formerly
built them as well, but this function has now been relegated to a separate command
called rpmbuild. rpm options have complex interactions and can be used together
only in certain combinations. It’s most useful to think of rpm as if it were several
different commands that happen to share the same name.

The mode you tell rpm to enter (such as -i or -q) specifies which of rpm’s multiple
personalities you are hoping to access. rpm --help lists all the options broken down

RHEL

http://github.com/jordansissel/fpm

	 Linux package management systems 	 165

So
ft

w
ar

e

by mode, but it’s worth your time to read the man page in some detail if you will
frequently be dealing with RPM packages.

The bread-and-butter options are -i (install), -U (upgrade), -e (erase), and -q (que-
ry). The -q option is a bit tricky; you must supply an additional command-line flag
to pose a specific question. For example, the command rpm -qa lists all the pack-
ages installed on the system.

Let’s look at an example. We need to install a new version of OpenSSH because of
a recent security fix. Once we’ve downloaded the package, we’ll run rpm -U to re-
place the older version with the newer.

redhat$ sudo rpm -U openssh-6.6.1p1-33.el7_2.x86_64.rpm
error: failed dependencies:
openssh = 6.6.1p1-23 is needed by openssh-clients-6.6.1p1-23
openssh = 6.6.1p1-23 is needed by openssh-server-6.6.1p1-23

D’oh! Perhaps it’s not so simple after all. Here we see that the currently installed
version of OpenSSH, 6.6.1p1-23, is required by several other packages. rpm won’t
let us upgrade OpenSSH to 6.6.1p1-33 because the change might affect the oper-
ation of these other packages. This type of conflict happens all the time, and it’s a
major motivation for the development of systems like APT and yum. In real life
we wouldn’t attempt to untangle the dependencies by hand, but let’s continue with
rpm alone for the purpose of this example.

We could force the upgrade with the --force option, but that’s usually a bad idea. The
dependency information is there to save time and trouble, not just to get in the way.
There’s nothing like a broken SSH on a remote system to ruin a sysadmin’s morning.

Instead, we’ll grab updated versions of the dependent packages as well. If we were
smart, we could have determined that other packages depended on OpenSSH be-
fore we even attempted the upgrade:

redhat$ rpm -q --whatrequires openssh
openssh-server-6.6.1p1-23.el7_2.x86_64
openssh-clients-6.6.1p1-23.el7_2.x86_64

Suppose that we’ve obtained updated copies of all the packages. We could install them
one at a time, but rpm is smart enough to handle them all at once. If multiple RPMs
are listed on the command line, rpm sorts them by dependency before installation.

redhat$ sudo rpm -U openssh-*
...
redhat$ rpm -q openssh
openssh-6.6.1p1-33.el7_3

Cool! Looks like it succeeded. Note that rpm understands which package we are
talking about even though we didn’t specify the package’s full name or version. (Un-
fortunately, rpm does not restart sshd after the installation. You’d need to manually
restart it to complete the upgrade.)

166	 Chapter 6	 Software Installation and Management	

dpkg: manage .deb packages
Just as RPM packages have the all-in-one rpm command, Debian packages have
the dpkg command. Useful options include --install, ‑-remove, and -l to list the
packages that have been installed on the system. A dpkg --install of a package that’s
already on the system removes the previous version before installing.

Running dpkg -l | grep package is a convenient way to determine if a particular
package is installed. For example, to search for an HTTP server, try

ubuntu$ dpkg -l | grep -i http
ii lighttpd 1.4.35-4+deb8u1 amd64 fast webserver with minimal

memory footprint

This search found the lighttpd software, an excellent, open source, lightweight web
server. The leading ii indicates that the software is installed.

Suppose that the Ubuntu security team recently released a fix to nvi to patch a po-
tential security problem. After grabbing the patch, we run dpkg to install it. As you
can see, it’s much chattier than rpm and tells us exactly what it’s doing.

ubuntu$ sudo dpkg --install ./nvi_1.81.6-12_amd64.deb
(Reading database ... 24368 files and directories currently installed.)
Preparing to replace nvi 1.79-14 (using ./nvi_1.81.6-12_amd64.deb) ...
Unpacking replacement nvi ...
Setting up nvi (1.81.6-12) ...
Checking available versions of ex, updating links in /etc/alternatives ...
(You may modify the symlinks there yourself if desired - see 'man ln'.)
Leaving ex (/usr/bin/ex) pointing to /usr/bin/nex.
Leaving ex.1.gz (/usr/share/man/man1/ex.1.gz) pointing to /usr/share/

man/man1/nex.1.gz.
...

We can now use dpkg -l to verify that the installation worked. The -l flag accepts
an optional prefix pattern to match, so we can just search for nvi.

ubuntu$ dpkg -l nvi
 Name Version Description
ii nvi 1.81.6-12 4.4BSD re-implementation of vi.

Our installation seems to have gone smoothly.

6.4	 High-level Linux package management systems
Metapackage management systems such as APT and yum share several goals:

•	 To simplify the task of locating and downloading packages
•	 To automate the process of updating or upgrading systems
•	 To facilitate the management of interpackage dependencies

	 High-level Linux package management systems	 167

So
ft

w
ar

e

Clearly, these systems include more than just client-side commands. They all re-
quire that distribution maintainers organize their offerings in an agreed-on way so
that the software can be accessed and reasoned about by clients.

Since no single supplier can encompass the entire “world of Linux software,” the
systems all allow for the existence of multiple software repositories. Repositories
can be local to your network, so these systems make a dandy foundation for creat-
ing your own internal software distribution system.

The Red Hat Network is closely tied to Red Hat Enterprise Linux. It’s a commer-
cial service that costs money and offers more in terms of attractive GUIs, site-wide
system management, and automation ability than do APT and yum. It is a shiny,
hosted version of Red Hat’s expensive and proprietary Satellite Server. The client
side can reference yum and APT repositories, and this ability has allowed distribu-
tions such as CentOS to adapt the client GUI for nonproprietary use.

APT is better documented than the Red Hat Network, is significantly more por-
table, and is free. It’s also more flexible in terms of what you can do with it. APT
originated in the world of Debian and dpkg, but it has been extended to encompass
RPMs, and versions that work with all our example distributions are available. It’s the
closest thing we have at this point to a universal standard for software distribution.

yum is an RPM-specific analog of APT. It’s included by default on Red Hat Enter-
prise Linux and CentOS, although it runs on any RPM-based system, provided that
you can point it toward appropriately formatted repositories.

We like APT and consider it a solid choice if you run Debian or Ubuntu and want
to set up your own automated package distribution network. See the section APT:
the Advanced Package Tool on page 169 for more information.

Package repositories
Linux distributors maintain software repositories that work hand-in-hand with their
chosen package management systems. The default configuration for the package
management system usually points to one or more well-known web or FTP servers
that are under the distributor’s control.

However, it isn’t immediately obvious what such repositories should contain. Should
they include only the sets of packages blessed as formal, major releases? Formal
releases plus current security updates? Up-to-date versions of all the packages that
existed in the formal releases? Useful third party software not officially support-
ed by the distributor? Source code? Binaries for multiple hardware architectures?
When you run apt upgrade or yum upgrade to bring the system up to date, what
exactly should that mean?

RHEL

168	 Chapter 6	 Software Installation and Management	

In general, package management systems must answer all these questions and must
make it easy for sites to select the cross-sections they want to include in their soft-
ware “world.” The following concepts help structure this process.

•	 A “release” is a self-consistent snapshot of the package universe. Before
the Internet era, named OS releases were more or less immutable and
were associated with one specific time; security patches were made avail-
able separately. These days, a release is a more nebulous concept. Releases
evolve over time as packages are updated. Some releases, such as Red Hat
Enterprise Linux, are specifically designed to evolve slowly; by default,
only security updates are incorporated. Other releases, such as beta ver-
sions, change frequently and dramatically. But in all cases, the release is
the baseline, the target, the “thing I want to update my system to look like.”

•	 A “component” is a subset of the software within a release. Distributions
partition themselves differently, but one common distinction is that be-
tween core software blessed by the distributor and extra software made
available by the broader community. Another distinction that’s common
in the Linux world is the one between the free, open source portions of
a release and the parts that are tainted by some kind of restrictive licens-
ing agreement.

 	Of particular note from an administrative standpoint are minimally active
components that include only security fixes. Some releases allow you to
combine a security component with an immutable baseline component
to create a relatively stable version of the distribution, even though the
mainline distribution may evolve much faster.

•	 An “architecture” represents a class of hardware. The expectation is that
machines within an architecture class are similar enough that they can
all run the same binaries. Architectures are instances of releases, for ex-
ample, “Ubuntu Xenial Xerus for x86_64.” Since components are subdi-
visions of releases, there’s a corresponding architecture-specific instance
for each of them as well.

•	 Individual packages are the elements that make up components, and there-
fore, indirectly, releases. Packages are usually architecture-specific and are
versioned independently of the main release and of other packages. The
correspondence between packages and releases is implicit in the way the
network repository is set up.

The existence of components that aren’t maintained by the distributor (e.g., Ubun-
tu’s “universe” and “multiverse”) raises the question of how these components relate
to the core OS release. Can they really be said to be “a component” of the specific
release, or are they some other kind of animal entirely?

From a package management perspective, the answer is clear: extras are a true com-
ponent. They are associated with a specific release, and they evolve in tandem with

	 High-level Linux package management systems	 169

So
ft

w
ar

e

it. The separation of control is interesting from an administrative standpoint, but
it doesn’t affect the package distribution systems, except that multiple repositories
might need to be manually added by the administrator.

RHN: the Red Hat Network
With Red Hat having gracefully departed from the consumer Linux business, the
Red Hat Network has become the system management platform for Red Hat En-
terprise Linux. You purchase the right to access the Red Hat Network by subscrib-
ing. At its simplest, you can use the Red Hat Network as a glorified web portal and
mailing list. Used in this way, the Red Hat Network is not much different from the
patch notification mailing lists that have been run by various UNIX vendors for
years. But more features are available if you’re willing to pay for them. For current
pricing and features, see rhn.redhat.com.

The Red Hat Network presents a web-based interface for downloading new pack-
ages as well as a command-line alternative. Once you register, your machines get
all the patches and bug fixes that they need without your ever having to intervene.

The downside of automatic registration is that Red Hat decides what updates you
need. You might consider how much you really trust Red Hat (and the software
maintainers whose products they package) not to screw things up.

A reasonable compromise might be to sign up one machine in your organization
for automatic updates. You can take snapshots from that machine at periodic in-
tervals to test as possible candidates for internal releases.

APT: the Advanced Package Tool
APT is one of the most mature package management systems. It’s possible to up-
grade an entire system full of software with a single apt command or even (as with
the Red Hat Network) to have your boxes continuously keep themselves up to date
without human intervention.

The first rule of using APT on Ubuntu systems (and indeed all management of
Debian packages) is to ignore the existence of dselect, which acts as a front end for
the Debian package system. It’s not a bad idea, but the user interface is poor and
can be intimidating to the novice user. Some documentation will try to steer you
toward dselect, but stay strong and stick with apt.

If you are using APT to manage a stock Ubuntu installation from a standard re-
pository mirror, the easiest way to see the available packages is to visit the master
list at packages.ubuntu.com. The web site includes a nice search interface. If you
set up your own APT server (see page 172), then of course you will know what
packages you have made available and you can list them in whatever way you want.

Distributions commonly include dummy packages that exist only to claim other
packages as prerequisites. apt downloads and upgrades prerequisite packages as
needed, so the dummy packages make it easy to install or upgrade several packages

RHEL

http://rhn.redhat.com
http://packages.ubuntu.com

170	 Chapter 6	 Software Installation and Management	

as a block. For example, installing the gnome-desktop-environment package ob-
tains and installs all the packages necessary to run the GNOME UI.

APT includes a suite of low-level commands like apt-get and apt-cache that are
wrapped for most purposes by an omnibus apt command. The wrapper is a lat-
er addition to the system, so you’ll still see occasional references to the low-level
commands on the web and in documentation. To a first approximation, commands
that look similar are in fact the same command. There’s no difference between apt
install and apt-get install, for example.

Once you have set up your /etc/apt/sources.list file (described in detail below) and
know the name of a package that you want, the only remaining task is to run apt
update to refresh apt’s cache of package information. After that, just run apt install
package-name as a privileged user to install the package. The same command up-
dates a package that has already been installed.

Suppose you want to install a new version of the sudo package that fixes a security
bug. First, it’s always wise to do an apt update:

debian$ sudo apt update
Get:1 http://http.us.debian.org stable/main Packages [824kB]
Get:2 http://non-us.debian.org stable/non-US/main Release [102B]
...

Now you can actually fetch the package. Note the use of sudo to fetch the new sudo
package—apt can even upgrade packages that are in use!

debian$ sudo apt install sudo
Reading Package Lists... Done
Building Dependency Tree... Done
1 packages upgraded, 0 newly installed, 0 to remove and 191 not upgraded.
Need to get 0B/122kB of archives. After unpacking 131kB will be used.
(Reading database ... 24359 files and directories currently installed.)
Preparing to replace sudo 1.6.2p2-2 (using .../sudo_1.8.10p3-1+deb8u3_

amd64.deb) ...
Unpacking replacement sudo ...
Setting up sudo (1.8.10p3-1+deb8u3) ...
Installing new version of config file /etc/pam.d/sudo ...

Repository configuration
Configuring APT is straightforward; pretty much everything you need to know
can be found in Ubuntu’s community documentation on package management:

	 help.ubuntu.com/community/AptGet/Howto

The most important configuration file is /etc/apt/sources.list, which tells APT
where to get its packages. Each line specifies the following:

•	 A type of package, currently deb or deb-src for Debian-style packages or
rpm or rpm-src for RPMs

http://help.ubuntu.com/community/AptGet/Howto

	 High-level Linux package management systems	 171

So
ft

w
ar

e

•	 A URL that points to a file, HTTP server, or FTP server from which to
fetch packages

•	 A “distribution” (really, a release name) that lets you deliver multiple ver-
sions of packages 2

•	 A potential list of components (categories of packages within a release)

Unless you want to set up your own APT repository or cache, the default config-
uration generally works fine. Source packages are downloaded from the entries
beginning with deb-src.

On Ubuntu systems, you’ll almost certainly want to include the “universe” com-
ponent, which accesses the larger world of Linux open source software. The “mul-
tiverse” packages include non-open-source content, such as some VMware tools
and components.

As long as you’re editing the sources.list file, you may want to retarget the indi-
vidual entries to point to your closest mirror. A full list of Ubuntu mirrors can be
found at launchpad.net/ubuntu/+archivemirrors. This is a dynamic (and long) list
of mirrors that changes regularly, so be sure to keep an eye on it between releases.

Make sure that security.ubuntu.com is listed as a source so that you have access to
the latest security patches.

An example /etc/apt/sources.list file
The following example uses archive.ubuntu.com as a package source for the “main”
components of Ubuntu (those that are fully supported by the Ubuntu team). In ad-
dition, this sources.list file includes unsupported but open source “universe” pack-
ages, and non-free, unsupported packages in the “multiverse” component. There is
also a repository for updates or bug-fixed packages in each component. Finally, the
last six lines are for security updates.

General format: type uri distribution [ components ]
deb http://archive.ubuntu.com/ubuntu xenial main restricted
deb-src http://archive.ubuntu.com/ubuntu xenial main restricted
deb http://archive.ubuntu.com/ubuntu xenial-updates main restricted
deb-src http://archive.ubuntu.com/ubuntu xenial-updates main restricted
deb http://archive.ubuntu.com/ubuntu xenial universe
deb-src http://archive.ubuntu.com/ubuntu xenial universe
deb http://archive.ubuntu.com/ubuntu xenial-updates universe
deb-src http://archive.ubuntu.com/ubuntu xenial-updates universe
deb http://archive.ubuntu.com/ubuntu xenial multiverse
deb-src http://archive.ubuntu.com/ubuntu xenial multiverse
deb http://archive.ubuntu.com/ubuntu xenial-updates multiverse
deb-src http://archive.ubuntu.com/ubuntu xenial-updates multiverse
deb http://archive.ubuntu.com/ubuntu xenial-backports main restricted

	 2.	 Distributors use the “distribution” field to identify major releases, but you can use it however you
want for internal distribution systems.

http://launchpad.net/ubuntu/
http://security.ubuntu.com
http://archive.ubuntu.com

172	 Chapter 6	 Software Installation and Management	

universe multiverse
deb-src http://archive.ubuntu.com/ubuntu xenial-backports main restricted

universe multiverse
deb http://security.ubuntu.com/ubuntu xenial-security main restricted
deb-src http://security.ubuntu.com/ubuntu xenial-security main restricted
deb http://security.ubuntu.com/ubuntu xenial-security universe
deb-src http://security.ubuntu.com/ubuntu xenial-security universe
deb http://security.ubuntu.com/ubuntu xenial-security multiverse
deb-src http://security.ubuntu.com/ubuntu xenial-security multiverse

The distribution and components fields help APT navigate the filesystem hierarchy
of the Ubuntu repository, which has a standardized layout. The root distribution is
the working title given to each release, such as trusty, xenial, or yakkety. The avail-
able components are typically called main, universe, multiverse, and restricted.
Add the universe and multiverse repositories only if you are comfortable having
unsupported (and license-restricted, in the case of multiverse) software in your
environment.

After you update the sources.list file, run apt-get update to force APT to react to
your changes.

Creation of a local repository mirror
If you plan to use apt on a large number of machines, you will probably want to
cache packages locally. Downloading a copy of each package for every machine is
not a sensible use of external bandwidth. A mirror of the repository is easy to con-
figure and convenient for local administration. Just make sure to keep it updated
with the latest security patches.

The best tool for the job is the handy apt-mirror package, which is available from
apt-mirror.github.io. You can also install the package from the universe component
with sudo apt install apt-mirror.

Once installed, apt-mirror drops a file called mirror.list in /etc/apt. It’s a shadow
version of sources.list, but it’s used only as a source for mirroring operations. By
default, mirror.list conveniently contains all the repositories for the running ver-
sion of Ubuntu.

To actually mirror the repositories in mirror.list, just run apt-mirror as root:

ubuntu$ sudo apt-mirror
Downloading 162 index files using 20 threads...
Begin time: Sun Feb 5 22:34:58 2017
[20]... [19]... [18]... [17]... [16]... [15]... [14]...

By default, apt-mirror puts its repository copies in /var/spool/apt-mirror. Feel
free to change this by uncommenting the set base_path directive in mirror.list,
but be aware that you must then create mirror, skel, and var subdirectories under
the new mirror root.

http://apt-mirror.github.io

	 High-level Linux package management systems	 173

So
ft

w
ar

e

apt-mirror takes a long time to run on its first pass because it is mirroring many
gigabytes of data (currently ~40GB per Ubuntu release). Subsequent executions are
faster and should be run automatically out of cron. You can run the clean.sh script
from the var subdirectory of your mirror to clean out obsolete files.

To start using your mirror, share the base directory through HTTP, using a web
server of your choice. We like to use symbolic links to the web root. For instance:

ln -s /var/spool/apt-mirror/us.archive.ubuntu.com/ubuntu /var/www/ubuntu

To make clients use your local mirror, edit their sources.list files just as if you were
selecting a nonlocal mirror.

APT automation
Use cron to schedule regular apt runs. Even if you don’t install packages automat-
ically, you may want to run apt update regularly to keep your package summaries
up to date.

apt upgrade downloads and installs new versions of any packages that are currently
installed on the local machine. Note that apt upgrade is defined slightly different-
ly from the low-level command apt-get upgrade, but apt upgrade is usually what
you want. (It’s equivalent to apt-get dist-upgrade --with-new-pkgs.) apt upgrade
might want to delete some packages that it views as irreconcilably incompatible
with the upgraded system, so be prepared for potential surprises.

If you really want to play with fire, have machines perform the upgrade in an un-
attended fashion by including the -y option to apt upgrade. It answers any confir-
mation questions that apt might ask with an enthusiastic “Yes!” Be aware that some
updates, such as kernel packages, might not take effect until after a system reboot.

It’s probably not a good idea to perform automated upgrades directly from a dis-
tribution’s mirror. However, in concert with your own APT servers, packages, and
release control system, this is a perfect way to keep clients in sync. A one-liner like
the following keeps a box up to date with its APT server.

apt update && apt upgrade -y

Use this command in a cron job if you want it to run on a regular schedule. You
can also refer to it from a system startup script to make the machine update at boot
time. See page 109 for more information about cron; see Chapter 2, Booting
and System Management Daemons, for more information about startup scripts.

If you run updates out of cron on many machines, it’s a good idea to use time ran-
domization to make sure that everyone doesn’t try to update at once.

If you don’t quite trust your source of packages, consider automatically downloading
all changed packages without installing them. Use apt’s --download-only option
to request this behavior, then review the packages by hand and install the ones you
want to update. Downloaded packages are put in /var/cache/apt, and over time this

http://ln-s/var/spool/apt-mirror/us.archive.ubuntu.com/ubuntu/var/www/ubuntu

174	 Chapter 6	 Software Installation and Management	

directory can grow to be quite large. Clean out the unused files from this directory
with apt-get autoclean.

yum: release management for RPM
yum, the Yellowdog Updater, Modified, is a metapackage manager based on RPM.
It may be a bit unfair to call yum an APT clone, but it’s thematically and implemen-
tationally similar, although cleaner and slower in practice.

On the server-side, the yum-arch command compiles a database of header infor-
mation from a large set of packages (often an entire release). The header database is
then shared along with the packages through HTTP. Clients use the yum command
to fetch and install packages; yum figures out dependency constraints and does
whatever additional work is needed to complete the installation of the requested
packages. If a requested package depends on other packages, yum downloads and
installs those packages as well.

The similarities between apt and yum extend to the command-line options they
understand. For example, yum install foo downloads and installs the most recent
version of the foo package (and its dependencies, if necessary). There is at least one
treacherous difference, though: apt update refreshes apt’s package information
cache, but yum update updates every package on the system (it’s analogous to apt
upgrade). To add to the confusion, yum upgrade is the same as yum update but
with obsolescence processing enabled.

yum does not match on partial package names unless you include globbing charac-
ters (such as * and ?) to explicitly request this behavior. For example, yum update
'lib*' refreshes all packages whose name starts with “lib”. Remember to quote the
globbing characters so the shell doesn’t interfere with them.

Unlike apt, yum defaults to validating its package information cache against the
contents of the network repository every time you run it. Use the -C option to pre-
vent the validation and yum makecache to update the local cache (it takes awhile
to run). Unfortunately, the -C option doesn’t do much to improve yum’s sluggish
performance.

yum’s configuration file is /etc/yum.conf. It includes general options and pointers
to package repositories. Multiple repositories can be active at once, and each re-
pository can be associated with multiple URLs.

A replacement for yum called DNF (for Dandified Yum) is under active develop-
ment. It’s already the default package manager for Fedora and will eventually replace
yum completely. DNF sports better dependency resolution and an improved API,
among other features. Visit dnf.baseurl.org to learn more.

http://dnf.baseurl.org

	 FreeBSD software management	 175

So
ft

w
ar

e

6.5	 FreeBSD software management
FreeBSD has had packaging facilities for several releases, but it’s only now transi-
tioning to a completely package-centric distribution model in which most elements
of the core OS are defined as packages. FreeBSD’s recent releases have segregated
software into three general categories:

•	 A “base system,” which includes a bundled set of core software and utilities

•	 A set of binary packages managed with the pkg command

•	 A separate “ports” system which downloads source code, applies FreeBSD-​
specific patches, then builds and installs it

As of FreeBSD 11, the lines between these territories have become even more mud-
dled. The base system has been packagized, but the old scheme for managing the
base system as one unit is still in place, too. Many software packages can be installed
either as binary packages or as ports, with essentially similar results but different
implications for future updates. However, cross-coverage is not complete; some
things can only be installed as a port or as a package.

Part of the project definition for FreeBSD 12 is to shift the system more decisively
toward universal package management. The base system and ports may both con-
tinue to exist in some form (it’s currently too early to tell exactly how things will
work out), but the future direction is clear.

Accordingly, try to manage add-on software with pkg to the extent possible. Avoid
ports unless the software you want has no packagized version or you need to cus-
tomize compile-time options.

Another peculiar remnant of the big-iron UNIX era is FreeBSD’s insistence that add-
on packages are “local,” even though they are compiled by FreeBSD and released
as part of an official package repository. Packages install binaries under /usr/local,
and most configuration files end up in /usr/local/etc rather than /etc.

The base system
The base system is updated as a single unit and is functionally distinct from any
add-on packages (at least in theory). The base system is maintained in a Subver-
sion repository. You can browse the source tree, including all the source branches,
at svnweb.freebsd.org.

Several development branches are defined:

•	 The CURRENT branch is meant only for active development purposes.
It is the first to receive new features and fixes but is not widely tested by
the user community.

http://svnweb.freebsd.org

176	 Chapter 6	 Software Installation and Management	

•	 The STABLE branch is regularly updated with improvements intended
for the next major release. It includes new features but maintains pack-
age compatibility and undergoes some testing. It may introduce bugs or
breaking changes and is recommended only for the adventurous.

•	 The RELEASE branch is forked from STABLE when a release target is
achieved. It remains mostly static. The only updates to RELEASE are se-
curity fixes and fixes for serious bugs. Official ISO images derive from the
RELEASE branch, and that branch is the only one recommended for use
on production systems.

View your system’s current branch with uname -r.

$ uname -r
11.0-RELEASE

Run the freebsd-update command to keep your system updated with the latest
packages. Fetching updates and installing them are separate operations, but you
can combine the two into a single command line:

$ sudo freebsd-update fetch install

This command retrieves and installs the latest base binaries. It’s available only for the
RELEASE branch; binaries are not built for the STABLE and CURRENT branches.
You can use the same tool to upgrade between releases of the system. For example:

$ sudo freebsd-update -r 11.1-RELEASE upgrade

pkg: the FreeBSD package manager
pkg is intuitive and fast. It’s the easiest way to install software that isn’t already in-
cluded in the base system. Use pkg help for a quick reference on the available sub-
commands, or pkg help command to display the man page for a particular subcom-
mand. Table 6.2 lists some of the most frequently used subcommands.

When you install packages with pkg install, pkg consults the local package catalog, then
downloads the requested package from the repository at pkg.FreeBSD.org. Once the
package is installed, it’s registered in a SQLite database kept in /var/db/pkg/local.sqlite.
Take care not to delete this file lest your system lose track of which packages have
been installed. Create backups of the database with the pkg backup subcommand.

pkg version, a subcommand for comparing package versions, has an idiosyncratic
syntax. It uses the =, <, and > characters to show packages that are current, older
than the latest available version, or newer than the current version. Use the follow-
ing command to list packages that have updates:

freebsd$ pkg version -vIL=
dri-11.2.2,2 < needs updating (index has 13.0.4,2)
gbm-11.2.2 < needs updating (index has 13.0.4)
harfbuzz-1.4.1 < needs updating (index has 1.4.2)
libEGL-11.2.2 < needs updating (index has 13.0.4_1)

 	

http://FreeBSD.org

	 FreeBSD software management	 177

So
ft

w
ar

e

This command compares all installed packages to the index (-I), looking for those
that are not (-L) the current version (=), and printing verbose information (-v).

pkg search is faster than Google for finding packages. For example, pkg search
dns finds all packages with “dns” in their names. The search term is a regular ex-
pression, so you can search for something like pkg search ^apache. See pkg help
search for details.

The ports collection
FreeBSD ports are a collection of all the software that FreeBSD can build from source.
After the ports tree is initialized, you’ll find all the available software in categorized
subdirectories of /usr/ports. To initialize the ports tree, use the portsnap utility:

freebsd$ portsnap fetch extract

To update the ports tree in one command, use portsnap fetch update.

It takes some time to download the ports metadata. The download includes point-
ers to the source code for all the ports, plus any associated patches for FreeBSD
compatibility. When installation of the metadata is complete, you can search for
software, then build and install anything you need.

For example, the zsh shell is not included in the FreeBSD base. Use the whereis
utility to search for zsh, then build and install from the ports tree:

freebsd$ whereis zsh
bash: /usr/ports/shells/zsh
freebsd$ cd /usr/ports/shells/zsh
freebsd$ make install clean

	

	

Table 6.2	 Example pkg subcommands

Command What it does

pkg install -y package Installs without asking any “are you sure?” questions
pkg backup Makes a backup of the local package database
pkg info Lists all installed packages
pkg info package Shows extended information for a package
pkg search -i package Searches package repository (case insensitive)
pkg audit -F Shows packages with known security vulnerabilities
pkg which file Shows which package owns the named file
pkg autoremove Removes unused packages
pkg delete package Uninstalls a package (same as remove)
pkg clean -ay Removes cached packages from /var/cache/pkg
pkg update Updates local copy of the package catalog
pkg upgrade Upgrades packages to the latest version

178	 Chapter 6	 Software Installation and Management	

To remove software installed through the ports system, run make deinstall from
the appropriate directory.

There’s more than one way to update ports, but we prefer the portmaster utility.
First install portmaster from the ports collection:

freebsd$ cd /usr/ports/ports-mgmt/portmaster
freebsd$ make install clean

Run portmaster -L to see all the ports having updates available, and update them
all at once with portmaster -a.

You can also install ports through the portmaster. In fact, it’s somewhat more con-
venient than the typical make-based process because you don’t need to leave your
current directory. To install zsh:

freebsd$ portmaster shells/zsh

If you need to free up some disk space, clean up the ports’ working directories with
portmaster -c.

6.6	 Software localization and configuration
Adapting systems to your local (or cloud) environment is one of the prime battle-
grounds of system administration. Addressing localization issues in a structured and
reproducible way helps avoid the creation of snowflake systems that are impossible
to recover after a major incident.

We have more to say in this book about these issues. In particular, Chapter 23,
Configuration Management, and Chapter 26, Continuous Integration and Deliv-
ery, discuss tools that structure these tasks. Configuration management systems are
your go-to tools for installing and configuring software in a reproducible manner.
They are the master key to sane localization.

Implementation issues aside, how do you know if your local environment is prop-
erly designed? Here are a few points to consider:

•	 Nonadministrators should not have root privileges. Any need for root
privileges in the course of normal operations is suspicious and probably
indicates that something is fishy with your local configuration.

•	 Systems should facilitate work and not get in users’ way. Users do not
wreck the system intentionally. Design internal security so that it guards
against unintentional errors and the widespread dissemination of admin-
istrative privileges.

•	 Misbehaving users are learning opportunities. Interview them before you
chastise them for not following proper procedures. Users frequently re-
spond to inefficient administrative procedures by working around them,
so always consider the possibility that noncompliance is an indication of
architectural problems.

	 Software localization and configuration	 179

So
ft

w
ar

e

•	 Be customer-centered. Talk to users and ask them which tasks they find dif-
ficult in your current configuration. Find ways to make these tasks simpler.

•	 Your personal preferences are yours. Let your users have their own. Offer
choices wherever possible.

•	 When administrative decisions affect users’ experience of the system, be
aware of the reasons for your decisions. Let your reasons be known.

•	 Keep your local documentation up to date and easily accessible. See page
1115 for more information on this topic.

Organizing your localization
If your site has a thousand computers and each computer has its own configura-
tion, you will spend a major portion of your working time figuring out why one
box has a particular problem and another doesn’t. Clearly, the solution is to make
every computer the same…right? But real-world constraints and the varying needs
of users typically make this solution impossible.

There’s a big difference in administrability between multiple configurations and
countless configurations. The trick is to split your setup into manageable bits. Some
parts of the localization apply to all managed hosts, others apply to only a few, and
still others are specific to individual boxes. Even with the convenience of configu-
ration management tools, try not to allow too much drift among systems.

However you design your localization system, make sure that all original data is kept
in a revision control system. This precaution lets you keep track of which changes
have been thoroughly tested and are ready for deployment. In addition, it lets you
identify the originator of any problematic changes. The more people involved in
the process, the more important this last consideration becomes.

Structuring updates
In addition to performing initial installations, you will also need to continually roll
out updates. This remains one of the most important security tasks. Keep in mind,
though, that different hosts have different needs for concurrency, stability, and uptime.

Do not roll out new software releases en masse. Instead, stage rollouts according to
a gradual plan that accommodates other groups’ needs and allows time for problems
to be discovered while their potential to cause damage is still limited. This some-
times referred to as a “canary” release process, named for the fabled “canary in the
coal mine.” In addition, never update critical servers until you have some confidence
in the changes you are contemplating. Avoid rolling out changes on Fridays unless
you’re prepared for a long weekend in front of the terminal.

It’s usually advantageous to separate the base OS release from the localization release.
Depending on the stability needs of your environment, you might choose to use
minor local releases only for bug fixing. However, we have found that adding new

180	 Chapter 6	 Software Installation and Management	

features in small doses yields a smoother operation than queuing up changes into
“horse pill” releases that risk a major disruption of service. This principle is closely
related to the idea of continuous integration and deployment; see Chapter 26.

Limiting the field of play
It’s often a good idea to specify a maximum number of “releases” you are willing to
have in play at any given time. Some administrators see no reason to fix software
that isn’t broken. They point out that gratuitously upgrading systems costs time
and money and that “cutting edge” all too often means “bleeding edge.” Those who
put these principles into practice must be willing to collect an extensive catalog of
active releases.

By contrast, the “lean and mean” crowd point to the inherent complexity of releases
and the difficulty of comprehending (let alone managing) a random collection of
releases dating years into the past. Their trump cards are security patches, which
must typically be applied universally and on a strict schedule. Patching outdated
versions of the operating system is often infeasible, so administrators are faced
with the choice of skipping updates on some computers or crash-upgrading these
machines to a newer internal release. Not good.

Neither of these perspectives is provably correct, but we tend to side with those
who favor a limited number of releases. Better to perform your upgrades on your
own schedule rather than one dictated by an external emergency.

Testing
It’s important to test changes before unleashing them on the world. At a minimum,
this means that you need to test your own local configuration changes. However,
you should really test the software that your vendor releases as well. A major UNIX
vendor once released a patch that performed an rm -rf /. Imagine installing this
patch throughout your organization without testing it first.

Testing is an especially pertinent issue if you use a service that offers an automatic
patching capability, such as most of the packaging systems discussed in this chap-
ter. Never connect mission-critical systems directly to a vendor-sponsored update
service. Instead, point most of your systems to an internal mirror that you control,
and test updates on noncritical systems first.

If you foresee that an update might cause user-visible problems or changes, notify
users well in advance and give them a chance to communicate with you if they have
concerns regarding your intended changes or timing. Make sure that users have an
easy way to report bugs.

If your organization is geographically distributed, make sure that other offices help
with testing. International participation is particularly valuable in multilingual en-
vironments. If no one in the U.S. office speaks Japanese, for example, you had better
get the Tokyo office to test anything that might affect Unicode support. A surprising

See page 1111 for more
information about
trouble tracking.

	 Recommended reading	 181

So
ft

w
ar

e

number of system parameters vary with location. Does the new version of software
you’re installing break UTF-8 encoding, rendering text illegible for some languages?

6.7	 Recommended reading
Intel Corporation and SystemSoft. Preboot Execution Environment (PXE)
Specification, v2.1. 1999. pix.net/software/pxeboot/archive/pxespec.pdf

Lawson, Nolan. What it feels like to be an open-source maintainer. wp.me/p1t8Ca-1ry

PXELinux Questions. syslinux.zytor.com/wiki/index.php/PXELINUX

Rodin, Josip. Debian New Maintainers’ Guide. debian.org/doc/maint-guide
This document contains good information about .deb packages. See also Chapter 7
of the Debian FAQ and Chapter 2 of the Debian reference manual.

http://pix.net/software/pxeboot/archive/pxespec.pdf
http://syslinux.zytor.com/wiki/index.php/PXELINUX
http://debian.org/doc/maint-guide

182

A scalable approach to system management requires that administrative changes be
structured, reproducible, and replicable across multiple computers. In the real world,
that means those changes should be mediated by software rather than performed
by administrators working from checklists—or worse, from memory.

Scripts standardize administrative chores and free up admins’ time for more im-
portant and more interesting tasks. Scripts also serve as a kind of low-rent docu-
mentation in that they record the steps needed to complete a particular task.

Sysadmins’ main alternative to scripting is to use the configuration management
systems described in Chapter 23. These systems offer a structured approach to
administration that scales well to the cloud and to networks of machines. However,
they are more complex, more formal, and less flexible than plain-vanilla scripting.
In practice, most administrators use a combination of scripting and configuration
management. Each approach has its strengths, and they work well together.

This chapter takes a quick look at sh, Python, and Ruby as languages for scripting.
We cover some basic tips for using the shell and also discuss regular expressions
as a general technology.

7 Scripting and the Shell

	 Scripting philosophy	 183

Sc
rip

tin
g

/ S
he

ll

7.1	 Scripting philosophy
This chapter includes a variety of scripting tidbits and language particulars. That
information is useful, but more important than any of those details is the broader
question of how to incorporate scripting (or more generally, automation) into your
mental model of system administration.

Write microscripts
New sysadmins often wait to learn scripting until they’re confronted with a par-
ticularly complex or tedious chore. For example, maybe it’s necessary to automate
a particular type of backup so that it’s done regularly and so that the backup data
is stored in two different data centers. Or perhaps there’s a cloud server configura-
tion that would be helpful to create, initialize, and deploy with a single command.

These are perfectly legitimate scripting projects, but they can leave the impression
that scripting is an elephant gun to be unboxed only when big game is on the hori-
zon. After all, that first 100-line script probably took several days to write and de-
bug. You can’t be spending days on every little task…can you?

Actually, you achieve most efficiencies by saving a few keystrokes here and a few
commands there. Marquee-level scripts that are part of your site’s formal proce-
dures are just the visible portion of a much larger iceberg. Below the waterline lie
many smaller forms of automation that are equally useful for sysadmins. As a gen-
eral rule, approach every chore with the question, “How can I avoid having to deal
with this issue again in the future?”

Most admins keep a selection of short scripts for personal use (aka scriptlets) in their
~/bin directories. Use these quick-and-dirty scripts to address the pain points you
encounter in day-to-day work. They are usually short enough to read at a glance,
so they don’t need documentation beyond a simple usage message. Keep them up-
dated as your needs change.

For shell scripts, you also have the option of defining functions that live inside your
shell configuration files (e.g., .bash_profile) rather than in freestanding script files.
Shell functions work similarly to stand-alone scripts, but they are independent of
your search path and automatically travel with you wherever you take your shell
environment.

Just as a quick illustration, here’s a simple Bash function that backs up files accord-
ing to a standardized naming convention:

function backup () {
	 newname=$1.`date +%Y-%m-%d.%H%M.bak`;
	 mv $1 $newname;
	 echo "Backed up $1 to $newname.";
	 cp -p $newname $1;
}

184	 Chapter 7	 Scripting and the Shell	

Despite the function-like syntax, you use it just like a script or any other command:

$ backup afile
Backed up afile to afile.2017-02-05.1454.bak.

The main disadvantage of shell functions is that they’re stored in memory and have
to be reparsed every time you start a new shell. But on modern hardware, these
costs are negligible.

At a smaller scale still are aliases, which are really just an extra-short variety of
scriptlet. These can be defined either with shell functions or with your shell’s built-
in aliasing feature (usually called alias). Most commonly, they set default argu-
ments for individual commands. For example,

alias ls='ls -Fh'

makes the ls command punctuate the names of directories and executables and
requests human-readable file sizes for long listings (e.g., 2.4M).

Learn a few tools well
System administrators encounter a lot of software. They can’t be experts at every-
thing, so they usually become skilled at skimming documentation, running exper-
iments, and learning just enough about new software packages to configure them
for the local environment. Laziness is a virtue.

That said, some topics are valuable to study in detail because they amplify your
power and effectiveness. In particular, you should know a shell, a text editor, and
a scripting language thoroughly.1 Read the manuals from front to back, then regu-
larly read books and blogs. There’s always more to learn.

Enabling technologies like these reward up-front study for a couple of reasons. As
tools, they are fairly abstract; it’s hard to envision all the things they’re capable of
doing without reading about the details. You can’t use features you’re not aware of.

Another reason these tools reward exploration is that they’re “made of meat”; most
features are potentially valuable to most administrators. Compare that with the
average server daemon, where your main challenge is often to identify the 80% of
features that are irrelevant to your situation.

A shell or editor is a tool you use constantly. Every incremental improvement in your
proficiency with these tools translates not only into increased productivity but also
into greater enjoyment of the work. No one likes to waste time on repetitive details.

Automate all the things
Shell scripts aren’t system administrators’ only opportunity to benefit from automa-
tion. There’s a whole world of programmable systems out there—just keep an eye

	 1.	 Not to spoil the rest of this chapter, but these should probably be Bash, vim, and Python.

	 Scripting philosophy	 185

Sc
rip

tin
g

/ S
he

ll

out for them. Exploit these facilities aggressively and use them to impedance-match
your tools to your workflow.

For example, we created this book in Adobe InDesign, which is ostensibly a GUI
application. However, it’s also scriptable in JavaScript, so we created a library of
InDesign scripts to implement and enforce many of our conventions.

Such opportunities are everywhere:

•	 Microsoft Office apps are programmable in Visual Basic or C#. If your work
involves analysis or reporting, make those TPS reports write themselves.

•	 Most Adobe applications are scriptable.

•	 If your responsibilities include database wrangling, you can automate
many routine tasks with SQL stored procedures. Some databases even
support additional languages; for example, PostgreSQL speaks Python.

•	 PowerShell is the mainstream scripting tool for Microsoft Windows sys-
tems. Third party add-ons like AutoHotKey go a long way toward facili-
tating the automation of Windows apps.

•	 On macOS systems, some applications can be controlled through Apple-
Script. At the system level, use the Automator app, the Services system,
and folder actions to automate various chores and to connect traditional
scripting languages to the GUI.

Within the world of system administration specifically, a few subsystems have their
own approaches to automation. Many others play well with general-purpose auto-
mation systems such as Ansible, Salt, Chef, and Puppet, described in Chapter 23,
Configuration Management. For everything else, there’s general-purpose scripting.

Don’t optimize prematurely
There’s no real distinction between “scripting” and “programming.” Language de-
velopers sometimes take offense when their babies are lumped into the “scripting”
category, not just because the label suggests a certain lack of completeness, but also
because some scripting languages of the past have earned reputations for poor design.

We still like the term “scripting,” though; it evokes the use of software as a kind of
universal glue that binds various commands, libraries, and configuration files into
a more functional whole.

Administrative scripts should emphasize programmer efficiency and code clarity
rather than computational efficiency. This is not an excuse to be sloppy, but simply
a recognition that it rarely matters whether a script runs in half a second or two
seconds. Optimization can have an amazingly low return on investment, even for
scripts that run regularly out of cron.

186	 Chapter 7	 Scripting and the Shell	

Pick the right scripting language
For a long time, the standard language for administrative scripts was the one defined
by the sh shell. Shell scripts are typically used for light tasks such as automating a
sequence of commands or assembling several filters to process data.

The shell is always available, so shell scripts are relatively portable and have few de-
pendencies other than the commands they invoke. Whether or not you choose the
shell, the shell might choose you: most environments include a hefty complement
of existing sh scripts, and administrators frequently need to read, understand, and
tweak those scripts.

As a programming language, sh is somewhat inelegant. The syntax is idiosyncratic,
and the shell lacks the advanced text processing features of modern languages—
features that are often of particular use to system administrators.

Perl, designed in the late 1980s, was a major step forward for script-writing ad-
ministrators. Its permissive syntax, extensive library of user-written modules, and
built-in support of regular expressions made it an administrative favorite for many
years. Perl permits (and some would say, encourages) a certain “get it done and
damn the torpedoes” style of coding. Opinions differ on whether that’s an advan-
tage or a drawback.

These days, Perl is known as Perl 5 to distinguish it from the redesigned and incom-
patible Perl 6, which has finally reached general release after 15 years of gestation.
Unfortunately, Perl 5 is showing its age in comparison with newer languages, and
use of Perl 6 isn’t yet widespread enough for us to recommend it as a safe choice. It
might be that the world has moved on from Perl entirely. We suggest avoiding Perl
for new work at this point.

JavaScript and PHP are best known as languages for web development, but they can
be arm-twisted into service as general-purpose scripting tools, too. Unfortunately,
both languages have design flaws that limit their appeal, and they lack many of the
third party libraries that system administrators rely on.

If you come from the web development world, you might be tempted to apply your
existing PHP or JavaScript skills to system administration. We recommend against
this. Code is code, but living in the same ecosystem as other sysadmins brings a
variety of long-term benefits. (At the very least, avoiding PHP means you won’t
have to endure the ridicule of your local sysadmin Meetup.)

Python and Ruby are modern, general-purpose programming languages that are
both well suited for administrative work. These languages incorporate a couple
of decades’ worth of language design advancements relative to the shell, and their
text processing facilities are so powerful that sh can only weep and cower in shame.

The main drawback to both Python and Ruby is that their environments can be a
bit fussy to set up, especially when you start to use third party libraries that have
compiled components written in C. The shell skirts this particular issue by having
no module structure and no third party libraries.

	 Scripting philosophy	 187

Sc
rip

tin
g

/ S
he

ll

In the absence of outside constraints, Python is the most broadly useful scripting
language for system administrators. It’s well designed, widely used, and widely sup-
ported by other packages. Table 7.1 shows some general notes on other languages.

Table 7.1	 Scripting language cheat sheet

Language Designer When to use it

Bourne shell Stephen Bourne Simple series of commands, portable scripts
bash Brian Fox Like Bourne shell; nicer but less portable
C shell Bill Joy Never for scripting; see footnote on page 189
JavaScript Brendan Eich Web development, app scripting
Perl Larry Wall Quick hacks, one-liners, text processing
PHP Rasmus Lerdorf You’ve been bad and deserve punishment
Python Guido van Rossum General-purpose scripting, data wrangling
Ruby “Matz” Matsumoto General-purpose scripting, web

Follow best practices
Although the code fragments in this chapter contain few comments and seldom
print usage messages, that’s only because we’ve skeletonized each example to make
specific points. Real scripts should behave better. There are whole books on best
practices for coding, but here are a few basic guidelines:

•	 When run with inappropriate arguments, scripts should print a usage
message and exit. For extra credit, implement --help this way, too.

•	 Validate inputs and sanity-check derived values. Before doing an rm -rf
on a calculated path, for example, you might have the script double-check
that the path conforms to the pattern you expect.

•	 Return a meaningful exit code: zero for success and nonzero for failure.
You needn’t necessarily give every failure mode a unique exit code, how-
ever; consider what callers will actually want to know.

•	 Use appropriate naming conventions for variables, scripts, and routines.
Conform to the conventions of the language, the rest of your site’s code
base, and most importantly, the other variables and functions defined in
the current project. Use mixed case or underscores to make long names
readable.2

•	 	Assign variable names that reflect the values they store, but keep them
short. number_of_lines_of_input is way too long; try n_lines.

	 2.	 The naming of the scripts themselves is important, too. In this context, dashes are more common
than underscores for simulating spaces, as in system-config-printer.

188	 Chapter 7	 Scripting and the Shell	

•	 Consider developing a style guide so you and your colleagues can write
code according to the same conventions. A guide makes it easier for you
to read other people’s code and for them to read yours.3

•	 Start every script with a comment block that tells what the script does and
what parameters it takes. Include your name and the date. If the script
requires nonstandard tools, libraries, or modules to be installed on the
system, list those as well.

•	 Comment at the level you yourself will find helpful when you return to
the script after a month or two. Some useful points to comment on are
the following: choices of algorithm, web references used, reasons for not
doing things in a more obvious way, unusual paths through the code, any-
thing that was a problem during development.

•	 Don’t clutter code with useless comments; assume intelligence and lan-
guage proficiency on the part of the reader.

•	 It’s OK to run scripts as root, but avoid making them setuid; it’s tricky to
make setuid scripts completely secure. Use sudo to implement appropri-
ate access control policies instead.

•	 Don’t script what you don’t understand. Administrators often view scripts
as authoritative documentation of how a particular procedure should be
handled. Don’t set a misleading example by distributing half-baked scripts.

•	 Feel free to adapt code from existing scripts for your own needs. But don’t
engage in “copy, paste, and pray” programming when you don’t under-
stand the code. Take the time to figure it out. This time is never wasted.

•	 With bash, use -x to echo commands before they are executed and -n to
check commands for syntax without executing them.

•	 	Remember that in Python, you are in debug mode unless you explicitly
turn it off with a -0 argument on the command line. You can test the spe-
cial __debug__ variable before printing diagnostic output.

Tom Christiansen suggests the following five golden rules for producing useful
error messages:

•	 Error messages should go to STDERR, not STDOUT (see page 190).
•	 Include the name of the program that’s issuing the error.
•	 State what function or operation failed.
•	 If a system call fails, include the perror string.
•	 Exit with some code other than 0.

	 3.	 On the other hand, style guide construction can absorb a contentious team’s attention for weeks.
Don’t fight over the style guide; cover the areas of agreement and avoid long negotiations over the
placement of braces and commas. The main thing is to make sure everyone’s on board with a consis-
tent set of naming conventions.

	 Shell basics	 189

Sc
rip

tin
g

/ S
he

ll

7.2	 Shell basics
UNIX has always offered users a choice of shells, but some version of the Bourne
shell, sh, has been standard on every UNIX and Linux system. The code for the
original Bourne shell never made it out of AT&T licensing limbo, so these days
sh is most commonly manifested in the form of the Almquist shell (known as ash,
dash, or simply sh) or the “Bourne-again” shell, bash.

The Almquist shell is a reimplementation of the original Bourne shell without extra
frills. By modern standards, it’s barely usable as a login shell. It exists only to run
sh scripts efficiently.

bash focuses on interactive usability. Over the years, it has absorbed most of the
useful features pioneered by other shells. It still runs scripts designed for the orig-
inal Bourne shell, but it’s not particularly tuned for scripting. Some systems (e.g.,
the Debian lineage) include both bash and dash. Others rely on bash for both
scripting and interactive use.

The Bourne shell has various other offshoots, notably ksh (the Korn shell) and ksh’s
souped-up cousin zsh. zsh features broad compatibility with sh, ksh, and bash, as
well as many interesting features of its own, including spelling correction and en-
hanced globbing. It’s not used as any system’s default shell (as far as we are aware),
but it does have something of a cult following.

Historically, BSD-derived systems favored the C shell, csh, as an interactive shell.
It’s now most commonly seen in an enhanced version called tcsh. Despite the for-
merly widespread use of csh as a login shell, it is not recommended for use as a
scripting language.4

tcsh is a fine and widely available shell, but it’s not an sh derivative. Shells are com-
plex; unless you’re a shell connoisseur, there’s not much value in learning one shell
for scripting and a second one—with different features and syntax—for daily use.
Stick to a modern version of sh and let it do double duty.

Among the sh options, bash is pretty much the universal standard these days. To
move effortlessly among different systems, standardize your personal environment
on bash.

FreeBSD retains tcsh as root’s default and does not ship bash as part of the base
system. But that’s easily fixed: run sudo pkg install bash to install bash, and use
chsh to change your shell or the shell of another user. You can set bash as the de-
fault for new users by running adduser -C.5

Before taking up the details of shell scripting, we should review some of the basic
features and syntax of the shell.

	 4.	 For a detailed explanation of why this is so, see Tom Christiansen’s classic rant, “Csh Programming
Considered Harmful.” It’s widely reproduced on the web. One copy is harmful.cat-v.org/software/csh.

	 5.	 Changing the default might seem presumptuous, but standard FreeBSD relegates new users to the
Almquist sh. There’s nowhere to go but up.

http://harmful.cat-v.org/software/csh

190	 Chapter 7	 Scripting and the Shell	

The material in this section applies to the major interactive shells in the sh lineage
(including bash and ksh, but not csh or tcsh), regardless of the exact platform you
are using. Try out the forms you’re not familiar with and experiment!

Command editing
We’ve watched too many people edit command lines with the arrow keys. You
wouldn’t do that in your text editor, right?

If you like emacs, all the basic emacs commands are available to you when you’re
editing history. <Control-E> goes to the end of the line and <Control-A> to the
beginning. <Control-P> steps backward through recently executed commands and
recalls them for editing. <Control-R> searches incrementally through your history
to find old commands.

If you like vi/vim, put your shell’s command-line editing into vi mode like this:

$ set -o vi

As in vi, editing is modal; however, you start in input mode. Press <Esc> to leave
input mode and “i” to reenter it. In edit mode, “w” takes you forward a word, “fX”
finds the next X in the line, and so on. You can walk through past command history
entries with <Esc> k. Want emacs editing mode back again?

$ set -o emacs

Pipes and redirection
Every process has at least three communication channels available to it: standard
input (STDIN), standard output (STDOUT), and standard error (STDERR). Pro-
cesses initially inherit these channels from their parents, so they don’t necessarily
know where they lead. They might connect to a terminal window, a file, a network
connection, or a channel belonging to another process, to name a few possibilities.

UNIX and Linux have a unified I/O model in which each channel is named with a
small integer called a file descriptor. The exact number assigned to a channel is not
usually significant, but STDIN, STDOUT, and STDERR are guaranteed to corre-
spond to file descriptors 0, 1, and 2, so it’s safe to refer to these channels by number.
In the context of an interactive terminal window, STDIN normally reads from the
keyboard and both STDOUT and STDERR write their output to the screen.

Many traditional UNIX commands accept their input from STDIN and write their
output to STDOUT. They write error messages to STDERR. This convention lets
you string commands together like building blocks to create composite pipelines.

The shell interprets the symbols <, >, and >> as instructions to reroute a command’s
input or output to or from a file. A < symbol connects the command’s STDIN to
the contents of an existing file. The > and >> symbols redirect STDOUT; > replac-
es the file’s existing contents, and >> appends to them. For example, the command

	 Shell basics	 191

Sc
rip

tin
g

/ S
he

ll

$ grep bash /etc/passwd > /tmp/bash-users

copies lines containing the word “bash” from /etc/passwd to /tmp/bash-users, cre-
ating the file if necessary. The command below sorts the contents of that file and
prints them to the terminal.

$ sort < /tmp/bash-users 6
root:x:0:0:root:/root:/bin/bash
...

To redirect both STDOUT and STDERR to the same place, use the >& symbol. To
redirect STDERR only, use 2>.

The find command illustrates why you might want separate handling for STDOUT
and STDERR because it tends to produce output on both channels, especially when
run as an unprivileged user. For example, a command such as

$ find / -name core

usually results in so many “permission denied” error messages that genuine hits
get lost in the clutter. To discard all the error messages, use

$ find / -name core 2> /dev/null

In this version, only real matches (where the user has read permission on the par-
ent directory) come to the terminal window. To save the list of matching paths to
a file, use

$ find / -name core > /tmp/corefiles 2> /dev/null

This command line sends matching paths to /tmp/corefiles, discards errors, and
sends nothing to the terminal window.

To connect the STDOUT of one command to the STDIN of another, use the | sym-
bol, commonly known as a pipe. For example:

$ find / -name core 2> /dev/null | less

The first command runs the same find operation as the previous example, but sends
the list of discovered files to the less pager rather than to a file. Another example:

$ ps -ef | grep httpd

This one runs ps to generate a list of processes and pipes it to the grep command,
which selects lines that contain the word httpd. The output of grep is not redirected,
so the matching lines come to the terminal window.

$ cut -d: -f7 < /etc/passwd | sort -u

Here, the cut command picks out the path to each user’s shell from /etc/passwd. The
list of shells is then sent through sort -u to produce a sorted list of unique values.

	 6.	 Truth be told, the sort command accepts filenames, so the < symbol is optional in this context. It’s
used here for illustration.

192	 Chapter 7	 Scripting and the Shell	

To execute a second command only if its precursor completes successfully, you can
separate the commands with an && symbol. For example,

$ mkdir foo && cd foo

attempts to create a directory called foo, and if the directory was successfully created,
executes cd. Here, the success of the mkdir command is defined as its yielding an
exit code of zero, so the use of a symbol that suggests “logical AND” for this purpose
might be confusing if you’re accustomed to short-circuit evaluation in other pro-
gramming languages. Don’t think about it too much; just accept it as a shell idiom.

Conversely, the || symbol executes the following command only if the preceding
command fails (that is, it produces a nonzero exit status). For example,

$ cd foo || echo "No such directory"

In a script, you can use a backslash to break a command onto multiple lines. This
feature can help to distinguish error-handling code from the rest of a command
pipeline:

cp --preserve --recursive /etc/* /spare/backup \
|| echo "Did NOT make backup"

For the opposite effect—multiple commands combined onto one line—you can use
a semicolon as a statement separator:

$ mkdir foo; cd foo; touch afile

Variables and quoting
Variable names are unmarked in assignments but prefixed with a dollar sign when
their values are referenced. For example:

$ etcdir='/etc'
$ echo $etcdir
/etc

Omit spaces around the = symbol; otherwise, the shell mistakes your variable
name for a command name and treats the rest of the line as a series of arguments
to that command.

When referencing a variable, you can surround its name with curly braces to clarify
to the parser and to human readers where the variable name stops and other text
begins; for example, ${etcdir} instead of just $etcdir. The braces are not normally
required, but they can be useful when you want to expand variables inside dou-
ble-quoted strings. Often, you’ll want the contents of a variable to be followed by
literal letters or punctuation. For example,

$ echo "Saved ${rev}th version of mdadm.conf."
Saved 8th version of mdadm.conf.

There’s no standard convention for the naming of shell variables, but all-caps names
typically suggest environment variables or variables read from global configuration

	 Shell basics	 193

Sc
rip

tin
g

/ S
he

ll

files. More often than not, local variables are all-lowercase with components sepa-
rated by underscores. Variable names are case sensitive.

The shell treats strings enclosed in single and double quotes similarly, except that
double-quoted strings are subject to globbing (the expansion of filename-matching
metacharacters such as * and ?) and variable expansion. For example:

$ mylang="Pennsylvania Dutch"
$ echo "I speak ${mylang}."
I speak Pennsylvania Dutch.
$ echo 'I speak ${mylang}.'
I speak ${mylang}.

Backquotes, also known as backticks, are treated similarly to double quotes, but they
have the additional effect of executing the contents of the string as a shell command
and replacing the string with the command’s output. For example,

$ echo "There are `wc -l < /etc/passwd` lines in the passwd file."
There are 28 lines in the passwd file.

Environment variables
When a UNIX process starts up, it receives a list of command-line arguments and
also a set of  “environment variables.” Most shells show you the current environment
in response to the printenv command:

$ printenv
EDITOR=vi
USER=garth
ENV=/home/garth/.bashrc
LSCOLORS=exfxgxgxdxgxgxbxbxcxcx
PWD=/mega/Documents/Projects/Code/spl
HOME=/home/garth
... <total of about 50>

By convention, environment variables have all-caps names, but that is not techni-
cally required.

Programs that you run can consult these variables and change their behavior ac-
cordingly. For example, vipw checks the EDITOR environment variable to deter-
mine which text editor to run for you.

Environment variables are automatically imported into sh’s variable namespace, so
they can be set and read with the standard syntax. Use export varname to promote
a shell variable to an environment variable. You can also combine this syntax with
a value assignment, as seen here:

$ export EDITOR=nano
$ vipw
<starts the nano editor>

194	 Chapter 7	 Scripting and the Shell	

Despite being called “environment” variables, these values don’t exist in some ab-
stract, ethereal place outside of space and time. The shell passes a snapshot of the
current values to any program you run, but no ongoing connection exists. Moreover,
every shell or program—and every terminal window—has its own distinct copy of
the environment that can be separately modified.

Commands for environment variables that you want to set up at login time should
be included in your ~/.profile or ~/.bash_profile file. Other environment variables,
such as PWD for the current working directory, are automatically maintained by
the shell.

Common filter commands
Any well-behaved command that reads STDIN and writes STDOUT can be used
as a filter (that is, a component of a pipeline) to process data. In this section we
briefly review some of the more widely used filter commands (including some used
in passing above), but the list is practically endless. Filter commands are so team
oriented that it’s sometimes hard to show their use in isolation.

Most filter commands accept one or more filenames on the command line. Only if
you do not specify a file do they read their standard input.

cut: separate lines into fields
The cut command prints selected portions of its input lines. It most commonly ex-
tracts delimited fields, as in the example on page 196, but it can return segments
defined by column boundaries as well. The default delimiter is <Tab>, but you can
change delimiters with the -d option. The -f options specifies which fields to in-
clude in the output.

For an example of the use of cut, see the section on uniq, below.

sort: sort lines
sort sorts its input lines. Simple, right? Well, maybe not—there are a few potential
subtleties regarding the exact parts of each line that are sorted (the “keys”) and the
collation order to be imposed. Table 7.2 shows a few of the more common options,
but check the man page for others.

The commands below illustrate the difference between numeric and dictionary
sorting, which is the default. Both commands use the -t: and -k3,3 options to sort
the /etc/group file by its third colon-separated field, the group ID. The first sorts
numerically and the second alphabetically.

 	

	 Shell basics	 195

Sc
rip

tin
g

/ S
he

ll

Table 7.2	 sort options

Opt Meaning

-b Ignore leading whitespace
-f Sort case-insensitively
-h Sort “human readable” numbers (e.g., 2MB)
-k Specify the columns that form the sort key
-n Compare fields as integer numbers
-r Reverse sort order
-t Set field separator (the default is whitespace)
-u Output only unique records

$ sort -t: -k3,3 -n /etc/group7

root:x:0:
bin:x:1:daemon
daemon:x:2:
...

$ sort -t: -k3,3 /etc/group
root:x:0:
bin:x:1:daemon
users:x:100:
...

Also useful is the -h option, which implements a numeric sort that understands
suffixes such as M for mega and G for giga. For example, the following command
correctly sorts the sizes of directories under /usr while maintaining the legibility
of the output:

$ du -sh /usr/* | sort -h
16K		 /usr/locale
128K	 /usr/local
648K	 /usr/games
15M		 /usr/sbin
20M		 /usr/include
117M	 /usr/src
126M	 /usr/bin
845M	 /usr/share
1.7G	 /usr/lib

uniq: print unique lines
uniq is similar in spirit to sort -u, but it has some useful options that sort does not
emulate: -c to count the number of instances of each line, -d to show only duplicated

	 7.	 sort accepts the key specification -k3 (rather than -k3,3), but it probably doesn’t do what you expect.
Without the terminating field number, the sort key continues to the end of the line.

196	 Chapter 7	 Scripting and the Shell	

lines, and -u to show only nonduplicated lines. The input must be presorted, usu-
ally by being run through sort.

For example, the command below shows that 20 users have /bin/bash as their login
shell and that 12 have /bin/false. (The latter are either pseudo-users or users whose
accounts have been disabled.)

$ cut -d: -f7 /etc/passwd | sort | uniq -c
 20 /bin/bash
 12 /bin/false

wc: count lines, words, and characters
Counting the number of lines, words, and characters in a file is another common
operation, and the wc (word count) command is a convenient way of doing this.
Run without options, it displays all three counts:

$ wc /etc/passwd
 32 77 2003 /etc/passwd

In the context of scripting, it is more common to supply a -l, -w, or -c option to
make wc’s output consist of a single number. This form is most commonly seen
inside backquotes so that the result can be saved or acted on.

tee: copy input to two places
A command pipeline is typically linear, but it’s often helpful to tap into the data
stream and send a copy to a file or to the terminal window. You can do this with
the tee command, which sends its standard input both to standard out and to a
file that you specify on the command line. Think of it as a tee fixture in plumbing.

The device /dev/tty is a synonym for the current terminal window. For example,

$ find / -name core | tee /dev/tty | wc -l

prints both the pathnames of files named core and a count of the number of core
files that were found.

A common idiom is to terminate a pipeline that will take a long time to run with a
tee command. That way, output goes both to a file and to the terminal window for
inspection. You can preview the initial results to make sure everything is working
as you expected, then leave while the command runs, knowing that the results will
be saved.

head and tail: read the beginning or end of a file
Reviewing lines from the beginning or end of a file is a common administrative
operation. These commands display ten lines of content by default, but you can use
the -n numlines option to specify more or fewer.

	 Shell basics	 197

Sc
rip

tin
g

/ S
he

ll

For interactive use, head is more or less obsoleted by the less command, which
paginates files for display. But head still finds plenty of use within scripts.

tail also has a nifty -f option that’s particularly useful for sysadmins. Instead of
exiting immediately after printing the requested number of lines, tail -f waits for
new lines to be added to the end of the file and prints them as they appear—great
for monitoring log files. Be aware, however, that the program writing the file might
be buffering its own output. Even if lines are being added at regular intervals from
a logical perspective, they might only become visible in chunks of 1KiB or 4KiB.8

head and tail accept multiple filenames on the command line. Even tail -f allows
multiple files, and this feature can be quite handy; when new output appears, tail
prints the name of the file in which it appeared.

Type <Control-C> to stop monitoring.

grep: search text
grep searches its input text and prints the lines that match a given pattern. Its name
derives from the g/regular-expression/p command in the ed editor, which came with
the earliest versions of UNIX (and is still present on current systems).

“Regular expressions” are text-matching patterns written in a standard and
well-characterized pattern-matching language. They’re a universal standard used
by most programs that do pattern matching, although there are minor variations
among implementations. The odd name stems from regular expressions’ origins
in theory-of-computation studies. We discuss regular expression syntax in more
detail starting on page 209.

Like most filters, grep has many options, including -c to print a count of matching
lines, -i to ignore case when matching, and -v to print nonmatching (rather than
matching) lines. Another useful option is -l (lower case L), which makes grep print
only the names of matching files rather than printing each line that matches. For
example, the command

$ sudo grep -l mdadm /var/log/*
/var/log/auth.log
/var/log/syslog.0

shows that log entries from mdadm have appeared in two different log files.

grep is traditionally a fairly basic regular expression engine, but some versions per-
mit the selection of other dialects. For example, grep -P on Linux selects Perl-style
expressions, though the man page warns darkly that they are “highly experimental.”
If you need full power, just use Ruby, Python, or Perl.

	 8.	 See Units on page 13 for an introduction to these units.

198	 Chapter 7	 Scripting and the Shell	

If you filter the output of tail -f with grep, add the --line-buffered option to make
sure you see each matching line as soon as it becomes available:

$ tail -f /var/log/messages | grep --line-buffered ZFS
May 8 00:44:00 nutrient ZFS: vdev state changed, pool_

guid=10151087465118396807 vdev_guid=7163376375690181882
...

7.3	 sh scripting
sh is great for simple scripts that automate things you’d otherwise be typing on the
command line. Your command-line skills carry over to sh scripting, and vice ver-
sa, which helps you extract maximum value from the learning time you invest in
sh derivatives. But once an sh script gets above 50 lines or when you need features
that sh doesn’t have, it’s time to move on to Python or Ruby.

For scripting, there’s some value in limiting yourself to the dialect understood by the
original Bourne shell, which is both an IEEE and a POSIX standard. sh-compatible
shells often supplement this baseline with additional language features. It’s fine to
use these extensions if you do so deliberately and are willing to require a specific
interpreter. But more commonly, scripters end up using these extensions inadver-
tently and are then surprised when their scripts don’t run on other systems.

In particular, don’t assume that the system’s version of sh is always bash, or even
that bash is available. Ubuntu replaced bash with dash as the default script inter-
preter in 2006, and as part of that conversion process they compiled a handy list
of bashisms to watch out for. You can find it at wiki.ubuntu.com/DashAsBinSh.

Execution
sh comments start with a sharp (#) and continue to the end of the line. As on the
command line, you can break a single logical line onto multiple physical lines by
escaping the newline with a backslash. You can also put more than one statement
on a line by separating the statements with semicolons.

An sh script can consist of nothing but a series of command lines. For example, the
following helloworld script simply does an echo.

#!/bin/sh
echo "Hello, world!"

The first line is known as the “shebang” statement and declares the text file to be a
script for interpretation by /bin/sh (which might itself be a link to dash or bash).
The kernel looks for this syntax when deciding how to execute the file. From the per-
spective of the shell spawned to execute the script, the shebang line is just a comment.

In theory, you would need to adjust the shebang line if your system’s sh was in a
different location. However, so many existing scripts assume /bin/sh that systems
are compelled to support it, if only through a link.

http://wiki.ubuntu.com/DashAsBinSh

Sc
rip

tin
g

/ S
he

ll

	 sh scripting	 199

If you need your script to run under bash or another interpreter that might not have
the same command path on every system, you can use /usr/bin/env to search your
PATH environment variable for a particular command.9 For example,

#!/usr/bin/env ruby

is a common idiom for starting Ruby scripts. Like /bin/sh, /usr/bin/env is such a
widely-relied-on path that all systems are obliged to support it.

To prepare a script for running, just turn on its execute bit (see page 136).

$ chmod +x helloworld
$./helloworld 10
Hello, world!

You can also invoke the shell as an interpreter directly:

$ sh helloworld
Hello, world!
$ source helloworld
Hello, world!

The first command runs helloworld in a new instance of sh, and the second makes
your existing login shell read and execute the contents of the file. The latter option is
useful when the script sets up environment variables or makes other customizations
that apply only to the current shell. It’s commonly used in scripting to incorporate
the contents of a configuration file written as a series of variable assignments.11

If you come from the Windows world, you might be accustomed to a file’s exten-
sion indicating what type of file it is and whether it can be executed. In UNIX and
Linux, the file permission bits determine whether a file can be executed, and if so,
by whom. If you wish, you can give your shell scripts a .sh suffix to remind you
what they are, but you’ll then have to type out the .sh when you run the command,
since UNIX doesn’t treat extensions specially.

From commands to scripts
Before we jump into sh’s scripting features, a note about methodology. Most people
write sh scripts the same way they write Python or Ruby scripts: with a text editor.
However, it’s more productive to think of your regular shell command prompt as
an interactive script development environment.

	 9.	 Path searching has security implications, particularly when running scripts under sudo. See page
74 for more information about sudo’s handling of environment variables.

	 10.	 If your shell understands the command helloworld without the ./ prefix, that means the current di-
rectory (.) is in your search path. This is bad because it gives other users the opportunity to lay traps
for you in the hope that you’ll try to execute certain commands while cd’ed to a directory on which
they have write access.

	 11.	 The “dot” command is a synonym for source, e.g., . helloworld.

See page 132 for
more information
about permission bits.

200	 Chapter 7	 Scripting and the Shell	

For example, suppose you have log files named with the suffixes .log and .LOG
scattered throughout a directory hierarchy and that you want to change them all
to the uppercase form. First, find all the files:

$ find . -name '*log'
.do-not-touch/important.log
admin.com-log/
foo.log
genius/spew.log
leather_flog
...

Oops, it looks like you need to include the dot in the pattern and to leave out di-
rectories as well. Do a <Control-P> to recall the command and then modify it:

$ find . -type f -name '*.log'
.do-not-touch/important.log
foo.log
genius/spew.log
...

OK, this looks better. That .do-not-touch directory looks dangerous, though; you
probably shouldn’t mess around in there:

$ find . -type f -name '*.log' | grep -v .do-not-touch
foo.log
genius/spew.log
...

All right, that’s the exact list of files that need renaming. Try generating some new
names:

$ find . -type f -name '*.log' | grep -v .do-not-touch | while read fname
> do
> echo mv $fname `echo $fname | sed s/.log/.LOG/`
> done
mv foo.log foo.LOG
mv genius/spew.log genius/spew.LOG
...

Yup, those are the commands to run to perform the renaming. So how to do it for
real? You could recall the command and edit out the echo, which would make
sh execute the mv commands instead of just printing them. However, piping the
commands to a separate instance of sh is less error prone and requires less editing
of the previous command.

When you do a <Control-P>, you’ll find that bash has thoughtfully collapsed your
mini-script into a single line. To this condensed command line, simply add a pipe
that sends the output to sh -x.

http://admin.com-log/foo.log
http://admin.com-log/foo.log

Sc
rip

tin
g

/ S
he

ll

	 sh scripting	 201

$ find . -type f -name '*.log' | grep -v .do-not-touch | while read fname;
do echo mv $fname `echo $fname | sed s/.log/.LOG/`; done | sh -x

+ mv foo.log foo.LOG
+ mv genius/spew.log genius/spew.LOG
...

The -x option to sh prints each command before executing it.

That completes the actual renaming, but save the script for future reuse. bash’s
built-in command fc is a lot like <Control-P>, but instead of returning the last
command to the command line, it transfers the command to your editor of choice.
Add a shebang line and usage comment, write the file to a plausible location (~/bin
or /usr/local/bin, perhaps), make the file executable, and you have a script.

To summarize this approach:

1.	 Develop the script (or script component) as a pipeline, one step at a time,
entirely on the command line. Use bash for this process even though the
eventual interpreter might be dash or another sh variant.

2.	 Send output to standard output and check to be sure it looks right.

3.	 At each step, use the shell’s command history to recall pipelines and the
shell’s editing features to tweak them.

4.	 Until the output looks right, you haven’t actually done anything, so there’s
nothing to undo if the command is incorrect.

5.	 Once the output is correct, execute the actual commands and verify that
they worked as you intended.

6.	 Use fc to capture your work, then clean it up and save it.

In the example above, the command lines were printed and then piped to a subshell
for execution. This technique isn’t universally applicable, but it’s often helpful. Al-
ternatively, you can capture output by redirecting it to a file. No matter what, wait
until you see the right stuff in the preview before doing anything that’s potentially
destructive.

Input and output
The echo command is crude but easy. For more control over your output, use printf.
It is a bit less convenient because you must explicitly put newlines where you want
them (use “\n”), but it gives you the option to use tabs and enhanced number for-
matting in your the output. Compare the output from the following two commands:

$ echo "\taa\tbb\tcc\n"
\taa\tbb\tcc\n
$ printf "\taa\tbb\tcc\n"
 aa bb cc

202	 Chapter 7	 Scripting and the Shell	

Some systems have OS-level printf and echo commands, usually in /usr/bin and
/bin, respectively. Although the commands and the shell built-ins are similar, they
may diverge subtly in their specifics, especially in the case of printf. Either adhere
to sh’s syntax or call the external printf with a full pathname.

You can use the read command to prompt for input. Here’s an example:

#!/bin/sh

echo -n "Enter your name: "
read user_name

if [-n "$user_name"]; then
	 echo "Hello $user_name!"
	 exit 0
else
	 echo "Greetings, nameless one!"
	 exit 1
fi

The -n in the echo command suppresses the usual newline, but you could also have
used printf here. We cover the if statement’s syntax shortly, but its effect should
be obvious here. The -n in the if statement evaluates to true if its string argument
is not null. Here’s what the script looks like when run:

$ sh readexample
Enter your name: Ron
Hello Ron!

Spaces in filenames
The naming of files and directories is essentially unrestricted, except that names
are limited in length and must not contain slash characters or nulls. In particular,
spaces are permitted. Unfortunately, UNIX has a long tradition of separating com-
mand-line arguments at whitespace, so legacy software tends to break when spaces
appear within filenames.

Spaces in filenames were once found primarily on filesystems shared with Macs
and PCs, but they have now metastasized into UNIX culture and are found in some
standard software packages as well. There are no two ways about it: administrative
scripts must be prepared to deal with spaces in filenames (not to mention apostro-
phes, asterisks, and various other menacing punctuation marks).

In the shell and in scripts, spaceful filenames can be quoted to keep their pieces
together. For example, the command

$ less "My spacey file"

preserves My spacey file as a single argument to less. You can also escape individ-
ual spaces with a backslash:

$ less My\ spacey\ file

Sc
rip

tin
g

/ S
he

ll

	 sh scripting	 203

The filename completion feature of most shells (usually bound to the <Tab> key)
normally adds the backslashes for you.

When you are writing scripts, a useful weapon to know about is find’s -print0 op-
tion. In combination with xargs -0, this option makes the find/xargs combination
work correctly regardless of the whitespace contained within filenames. For exam-
ple, the command

$ find /home -type f -size +1M -print0 | xargs -0 ls -l

prints a long ls listing of every file beneath /home that’s over one megabyte in size.

Command-line arguments and functions
Command-line arguments to a script become variables whose names are num-
bers. $1 is the first command-line argument, $2 is the second, and so on. $0 is the
name by which the script was invoked. That could be a strange construction such
as ../bin/example.sh, so it doesn’t necessarily have the same value each time the
script is run.

The variable $# contains the number of command-line arguments that were supplied,
and the variable $* contains all the arguments at once. Neither of these variables
includes or counts $0. Here’s an example of the use of arguments:

#!/bin/sh

show_usage() {
	 echo "Usage: $0 source_dir dest_dir" 1>&2
	 exit 1
}

Main program starts here

if [$# -ne 2]; then
	 show_usage
else # There are two arguments
	 if [-d $1]; then
		 source_dir=$1
	 else
		 echo 'Invalid source directory' 1>&2
		 show_usage
	 fi
	 if [-d $2]; then
		 dest_dir=$2
	 else
		 echo 'Invalid destination directory' 1>&2
		 show_usage
	 fi
fi

printf "Source directory is ${source_dir}\n"
printf "Destination directory is ${dest_dir}\n"

204	 Chapter 7	 Scripting and the Shell	

If you call a script without arguments or with inappropriate arguments, the script
should print a short usage message to remind you how to use it. The example script
above accepts two arguments, validates that the arguments are both directories, and
prints their names. If the arguments are invalid, the script prints a usage message
and exits with a nonzero return code. If the caller of the script checks the return
code, it will know that this script failed to execute correctly.

We created a separate show_usage function to print the usage message. If the script
were later updated to accept additional arguments, the usage message would have
to be changed in only one place. The 1>&2 notation on lines that print error mes-
sages makes the output go to STDERR.

$ mkdir aaa bbb
$ sh showusage aaa bbb
Source directory is aaa
Destination directory is bbb
$ sh showusage foo bar
Invalid source directory
Usage: showusage source_dir dest_dir

Arguments to sh functions are treated like command-line arguments. The first argu-
ment becomes $1, and so on. As you can see above, $0 remains the name of the script.

To make the example more robust, we could make the show_usage routine accept an
error code as an argument. That would allow a more definitive code to be returned
for each different type of failure. The next code excerpt shows how that might look.

show_usage() {
	 echo "Usage: $0 source_dir dest_dir" 1>&2
	 if [$# -eq 0]; then
		 exit 99 # Exit with arbitrary nonzero return code
	 else
		 exit $1
	 fi
}

In this version of the routine, the argument is optional. Within a function, $#
tells you how many arguments were passed in. The script exits with code 99 if no
more-specific code is designated. But a specific value, for example,

show_usage 5

makes the script exit with that code after printing the usage message. (The shell
variable $? contains the exit status of the last command executed, whether used
inside a script or at the command line.)

The analogy between functions and commands is strong in sh. You can define use-
ful functions in your ~/.bash_profile file (~/.profile for vanilla sh) and then use
them on the command line as if they were commands. For example, if your site
has standardized on network port 7988 for the SSH protocol (a form of “security
through obscurity”), you might define

Sc
rip

tin
g

/ S
he

ll

	 sh scripting	 205

ssh() {
	 /usr/bin/ssh -p 7988 $*
}

in your ~/.bash_profile to make sure ssh is always run with the option -p 7988.

Like many shells, bash has an aliasing mechanism that can reproduce this limited
example even more concisely, but functions are more general and more powerful.

Control flow
We’ve seen several if-then and if-then-else forms in this chapter already; they do
pretty much what you’d expect. The terminator for an if statement is fi. To chain
your if clauses, you can use the elif keyword to mean “else if.” For example:

if [$base -eq 1] && [$dm -eq 1]; then
	 installDMBase
elif [$base -ne 1] && [$dm -eq 1]; then
	 installBase
elif [$base -eq 1] && [$dm -ne 1]; then
	 installDM
else
	 echo '==> Installing nothing'
fi

Both the peculiar [] syntax for comparisons and the command-line-optionlike
names of the integer comparison operators (e.g., -eq) are inherited from the orig-
inal Bourne shell’s channeling of /bin/test. The brackets are actually a shorthand
way of invoking test and are not a syntactic requirement of the if statement.12

Table 7.3 shows the sh comparison operators for numbers and strings. sh uses tex-
tual operators for numbers and symbolic operators for strings.

Table 7.3	 Elementary sh comparison operators

String Numeric True if

x = y x -eq y x is equal to y
x != y x -ne y x is not equal to y
x < a y x -lt y x is less than y
n/a x -le y x is less than or equal to y
x > a y x -gt y x is greater than y
n/a x -ge y x is greater than or equal to y
-n x n/a x is not null
-z x n/a x is null

a.	 Must be backslash-escaped or double bracketed to prevent in-
terpretation as an input or output redirection character.

	 12.	 In reality, these operations are now built into the shell and do not actually run /bin/test.

206	 Chapter 7	 Scripting and the Shell	

sh shines in its options for evaluating the properties of files (once again, courtesy
of its /bin/test legacy). Table 7.4 shows a few of sh’s many file testing and file com-
parison operators.

Table 7.4	 sh file evaluation operators

Operator True if

-d file file exists and is a directory
-e file file exists
-f file file exists and is a regular file
-r file User has read permission on file
-s file file exists and is not empty
-w file User has write permission on file

file1 -nt  file2 file1 is newer than file2
file1 -ot  file2 file1 is older than file2

Although the elif form is useful, a case selection is often a better choice for clarity.
Its syntax is shown below in a sample routine that centralizes logging for a script.
Of particular note are the closing parenthesis after each condition and the two
semicolons that follow the statement block to be executed when a condition is met
(except for the last condition). The case statement ends with esac.

The log level is set in the global variable LOG_LEVEL. The choices
are, from most to least severe, Error, Warning, Info, and Debug.

logMsg() {
	 message_level=$1
	 message_itself=$2
	 if [$message_level -le $LOG_LEVEL]; then
		 case $message_level in
			 0) message_level_text="Error" ;;
			 1) message_level_text="Warning" ;;
			 2) message_level_text="Info" ;;
			 3) message_level_text="Debug" ;;
			 *) message_level_text="Other"
		 esac
		 echo "${message_level_text}: $message_itself"
	 fi
}

This routine illustrates the common “log level” paradigm used by many administra-
tive applications. The code of the script generates messages at many different levels
of detail, but only the ones that pass a globally set threshold, $LOG_LEVEL, are ac-
tually logged or acted on. To clarify the importance of each message, the message
text is preceded by a label that denotes its associated log level.

Sc
rip

tin
g

/ S
he

ll

	 sh scripting	 207

Loops
sh’s for…in construct makes it easy to take some action for a group of values or
files, especially when combined with filename globbing (the expansion of simple
pattern-matching characters such as * and ? to form filenames or lists of filenames).
The *.sh pattern in the for loop below returns a list of matching filenames in the
current directory. The for statement then iterates through that list, assigning each
filename in turn to the variable script.

#!/bin/sh

suffix=BACKUP--`date +%Y-%m-%d-%H%M`

for script in *.sh; do
	 newname="$script.$suffix"
	 echo "Copying $script to $newname..."
	 cp -p $script $newname
done

The output looks like this:

$ sh forexample
Copying rhel.sh to rhel.sh.BACKUP--2017-01-28-2228...
Copying sles.sh to sles.sh.BACKUP--2017-01-28-2228...
...

The filename expansion is not magic in this context; it works exactly as it does on
the command line. Which is to say, the expansion happens first and the line is then
processed by the interpreter in its expanded form.13 You could just as well have en-
tered the filenames statically, as in the line

for script in rhel.sh sles.sh; do

In fact, any whitespace-separated list of things, including the contents of a variable,
works as a target of for…in. You can also omit the list entirely (along with the in
keyword), in which case the loop implicitly iterates over the script’s command-line
arguments (if at the top level) or the arguments passed to a function:

#!/bin/sh

for file; do
	 newname="${file}.backup"
	 echo "Copying $file to $newname..."
	 cp -p $file $newname
done

bash, but not vanilla sh, also has the more familiar for loop from traditional program-
ming languages in which you specify starting, increment, and termination clauses.

	 13.	 More accurately, the filename expansion is a little bit magical in that it does maintain a notion of the
atomicity of each filename. Filenames that contain spaces go through the for loop in a single pass.

208	 Chapter 7	 Scripting and the Shell	

For example:

bash-specific
for ((i=0 ; i < $CPU_COUNT ; i++)); do
	 CPU_LIST="$CPU_LIST $i"
done

The next example illustrates sh’s while loop, which is useful for processing com-
mand-line arguments and for reading the lines of a file.

#!/bin/sh

exec 0<$1
counter=1
while read line; do
	 echo "$counter: $line"
	 counter=$((counter + 1))
done

Here’s what the output looks like:

$ sh whileexample /etc/passwd
1: root:x:0:0:Superuser:/root:/bin/bash
2: bin:x:1:1:bin:/bin:/bin/bash
3: daemon:x:2:2:Daemon:/sbin:/bin/bash
...

This scriptlet has a couple of interesting features. The exec statement redefines the
script’s standard input to come from whatever file is named by the first command-line
argument.14 The file must exist or the script generates an error.

The read statement within the while clause is a shell built-in, but it acts like an
external command. You can put external commands in a while clause as well; in
that form, the while loop terminates when the external command returns a non-
zero exit status.

The $((counter + 1)) expression is an odd duck, indeed. The $((…)) notation forc-
es numeric evaluation. It also makes optional the use of $ to mark variable names.
The expression is replaced with the result of the arithmetic calculation.

The $((…)) shenanigans work in the context of double quotes, too. In bash, which
supports C’s ++ postincrement operator, the body of the loop can be collapsed
down to one line.

while read line; do
	 echo "$((counter++)): $line"
done

	 14.	 Depending on the invocation, exec can also have the more familiar meaning “stop this script and
transfer control to another script or expression.” It’s yet another shell oddity that both functions are
accessed through the same statement.

	 Regular expressions	 209

Sc
rip

tin
g

/ S
he

ll

Arithmetic
All sh variables are string valued, so sh does not distinguish between the number 1
and the character string “1” in assignments. The difference lies in how the variables
are used. The following code illustrates the distinction:

#!/bin/sh

a=1
b=$((2))

c=$a+$b
d=$((a + b))

echo "$a + $b = $c \t(plus sign as string literal)"
echo "$a + $b = $d \t(plus sign as arithmetic addition)"

This script produces the output

1 + 2 = 1+2	(plus sign as string literal)
1 + 2 = 3	 (plus sign as arithmetic addition)

Note that the plus sign in the assignment to $c does not act as a concatenation op-
erator for strings. It’s just a literal character. That line is equivalent to

c="$a+$b"

To force numeric evaluation, you enclose an expression in $((…)), as shown with
the assignment to $d above. But even this precaution does not result in $d receiving
a numeric value; the result of the calculation is the string “3”.

sh has the usual assortment of arithmetic, logical, and relational operators; see the
man page for details.

7.4	 Regular expressions
As we mentioned on page 197, regular expressions are standardized patterns that
parse and manipulate text. For example, the regular expression

I sent you a che(que|ck) for the gr[ae]y-colou?red alumini?um.

matches sentences that use either American or British spelling conventions.

Regular expressions are supported by most modern languages, though some take
them more to heart than others. They’re also used by UNIX commands such as grep
and vi. They are so common that the name is usually shortened to “regex.” Entire
books have been written about how to harness their power.15

The filename matching and expansion performed by the shell when it interprets
command lines such as wc -l *.pl is not a form of regular expression matching. It’s
a different system called “shell globbing,” and it uses a different and simpler syntax.

	 15.	 You can find citations for two of them at the end of this chapter.

210	 Chapter 7	 Scripting and the Shell	

Regular expressions are not themselves a scripting language, but they’re so useful
that they merit featured coverage in any discussion of scripting; hence, this section.

The matching process
Code that evaluates a regular expression attempts to match a single given text string
to a single given pattern. The “text string” to match can be very long and can contain
embedded newlines. It’s sometimes convenient to use a regex to match the contents
of an entire file or document.

For the matcher to declare success, the entire search pattern must match a contigu-
ous section of the search text. However, the pattern can match at any position. After
a successful match, the evaluator returns the text of the match along with a list of
matches for any specially delimited subsections of the pattern.

Literal characters
In general, characters in a regular expression match themselves. So the pattern

I am the walrus

matches the string “I am the walrus” and that string only. Since it can match any-
where in the search text, the pattern can be successfully matched to the string

	 I am the egg man. I am the walrus. Koo koo ka-choo!

However, the actual match is limited to the “I am the walrus” portion. Matching
is case sensitive.

Special characters
Table 7.5 shows the meanings of some common special symbols that can appear in
regular expressions. These are just the basics—there are many more.

Many special constructs, such as + and |, affect the matching of the “thing” to
their left or right. In general, a “thing” is a single character, a subpattern enclosed
in parentheses, or a character class enclosed in square brackets. For the | charac-
ter, however, thingness extends indefinitely to both left and right. If you want to
limit the scope of the vertical bar, enclose the bar and both things in their own set
of parentheses. For example,

I am the (walrus|egg man)\.

matches either “I am the walrus.” or “I am the egg man.”. This example also demon-
strates escaping of special characters (here, the dot). The pattern

(I am the (walrus|egg man)\. ?){1,2}

matches any of the following:

•	 I am the walrus.
•	 I am the egg man.

 	

  

   
   

   

	

	 Regular expressions	 211

Sc
rip

tin
g

/ S
he

ll

	

	
	

Table 7.5	 Special characters in regular expressions (common ones)

Symbol What it matches or does

. Matches any character
[chars] Matches any character from a given set
[^chars] Matches any character not in a given set

^ Matches the beginning of a line
$ Matches the end of a line
\w Matches any “word” character (same as [A-Za-z0-9_])
\s Matches any whitespace character (same as [\f\t\n\r]) a

\d Matches any digit (same as [0-9])

| Matches either the element to its left or the one to its right
(expr) Limits scope, groups elements, allows matches to be captured

? Allows zero or one match of the preceding element
* Allows zero, one, or many matches of the preceding element
+ Allows one or more matches of the preceding element

{ n } Matches exactly n instances of the preceding element
{ min, } Matches at least min instances (note the comma)

{ min,max } Matches any number of instances from min to max

a.	 That is, a space, a form feed, a tab, a newline, or a return

•	 I am the walrus. I am the egg man.
•	 I am the egg man. I am the walrus.
•	 I am the egg man. I am the egg man.
•	 I am the walrus. I am the walrus.

It also matches “I am the walrus. I am the egg man. I am the walrus.”, even though
the number of repetitions is explicitly capped at two. That’s because the pattern
need not match the entire search text. Here, the regex matches two sentences and
terminates, declaring success. It doesn’t care that another repetition is available.

It is a common error to confuse the regular expression metacharacter * (the zero-
or-more quantifier) with the shell’s * globbing character. The regex version of the
star needs something to modify; otherwise, it won’t do what you expect. Use .* if
any sequence of characters (including no characters at all) is an acceptable match.

Example regular expressions
In the United States, postal (“zip”) codes have either five digits or five digits fol-
lowed by a dash and four more digits. To match a regular zip code, you must match
a five-digit number. The following regular expression fits the bill:

^\d{5}$

212	 Chapter 7	 Scripting and the Shell	

The ^ and $ match the beginning and end of the search text but do not actually cor-
respond to characters in the text; they are “zero-width assertions.” These characters
ensure that only texts consisting of exactly five digits match the regular expression—
the regex will not match five digits within a larger string. The \d escape matches a
digit, and the quantifier {5} says that there must be exactly five one-digit matches.

To accommodate either a five-digit zip code or an extended zip+4, add an optional
dash and four additional digits:

^\d{5}(-\d{4})?$

The parentheses group the dash and extra digits together so that they are consid-
ered one optional unit. For example, the regex won’t match a five-digit zip code
followed by a dash. If the dash is present, the four-digit extension must be present
as well or there is no match.

A classic demonstration of regex matching is the following expression,

M[ou]'?am+[ae]r ([AEae]l[-])?[GKQ]h?[aeu]+([dtz][dhz]?){1,2}af[iy]

which matches most of the variant spellings of the name of former Libyan head of
state Moammar Gadhafi, including

•	 Muammar al-Kaddafi	 (BBC)
•	 Moammar Gadhafi		 (Associated Press)
•	 Muammar al-Qadhafi	 (Al-Jazeera)
•	 Mu’ammar Al-Qadhafi	 (U.S. Department of State)

Do you see how each of these would match the pattern? 16

This regular expression also illustrates how quickly the limits of legibility can be
reached. Most regex systems support an x option that ignores literal whitespace in
the pattern and enables comments, allowing the pattern to be spaced out and split
over multiple lines. You can then use whitespace to separate logical groups and clar-
ify relationships, just as you would in a procedural language. For example, here’s a
more readable version of that same Moammar Gadhafi regex:

M [ou] '? a m+ [ae] r	 # First name: Mu'ammar, Moamar, etc.
\s 						 # Whitespace; can't use a literal space here
(# Group for optional last name prefix
	 [AEae] l 			 # Al, El, al, or el
	 [-\s]				 # Followed by either a dash or whitespace
)?
[GKQ] h? [aeu]+			 # Initial syllable of last name: Kha, Qua, etc.
(# Group for consonants at start of 2nd syllable
	 [dtz] [dhz]?			 # dd, dh, etc.
){1,2}					 # Group might occur twice, as in Quadhdhafi
af [iy]					 # Final afi or afy

	 16.	 Note that this regular expression is designed to be liberal in what it matches. Many patterns that ar-
en’t legitimate spellings also match: for example, “Mo’ammer el Qhuuuzzthaf ”.

	 Regular expressions	 213

Sc
rip

tin
g

/ S
he

ll

This helps a bit, but it’s still pretty easy to torture later readers of your code. So be
kind: if you can, use hierarchical matching and multiple small matches instead of
trying to cover every possible situation in one large regular expression.

Captures
When a match succeeds, every set of parentheses becomes a “capture group” that
records the actual text that it matched. The exact manner in which these pieces are
made available to you depends on the implementation and context. In most cases,
you can access the results as a list, array, or sequence of numbered variables.

Since parentheses can nest, how do you know which match is which? Easy: the
matches arrive in the same order as the opening parentheses. There are as many
captures as there are opening parentheses, regardless of the role (or lack of role)
that each parenthesized group played in the actual matching. When a parenthe-
sized group is not used (e.g., Mu(')?ammar when matched against “Muammar”),
its corresponding capture is empty.

If a group is matched more than once, the contents of only the last match are re-
turned. For example, with the pattern

(I am the (walrus|egg man)\. ?){1,2}

matching the text

I am the egg man. I am the walrus.

there are two results, one for each set of parentheses:

I am the walrus.
walrus

Both capture groups actually matched twice. However, only the last text to match
each set of parentheses is actually captured.

Greediness, laziness, and catastrophic backtracking
Regular expressions match from left to right. Each component of the pattern matches
the longest possible string before yielding to the next component, a characteristic
known as greediness.

If the regex evaluator reaches a state from which a match cannot be completed, it
unwinds a bit of the candidate match and makes one of the greedy atoms give up
some of its text. For example, consider the regex a*aa being matched against the
input text “aaaaaa”.

At first, the regex evaluator assigns the entire input to the a* portion of the regex
because the a* is greedy. When there are no more a’s to match, the evaluator goes
on to try to match the next part of the regex. But oops, it’s an a, and there is no
more input text that can match an a; time to backtrack. The a* has to give up one
of the a’s it has matched.

214	 Chapter 7	 Scripting and the Shell	

Now the evaluator can match a*a, but it still cannot match the last a in the pattern.
So it backtracks again and takes away a second a from the a*. Now the second and
third a’s in the pattern both have a’s to pair with, and the match is complete.

This simple example illustrates some important general points. First, greedy match-
ing plus backtracking makes it expensive to match apparently simple patterns such
as <img.*></tr> when processing entire files.17 The .* portion starts by matching
everything from the first <img to the end of the input, and only through repeated
backtracking does it contract to fit the local tags.

Furthermore, the ></tr> that this pattern binds to is the last possible valid match in
the input, which is probably not what you want. More likely, you meant to match an
 tag followed immediately by a </tr> tag. A better way to write this pattern is
<img[^>]*>\s*</tr>, which allows the initial wild card match to expand only to
the end of the current tag, because it cannot cross a right-angle-bracket boundary.

You can also use lazy (as opposed to greedy) wild card operators: *? instead of *,
and +? instead of +. These versions match as few characters of the input as they
can. If that fails, they match more. In many situations, these operators are more
efficient and closer to what you want than the greedy versions.

Note, however, that they can produce matches different from those of the greedy
operators; the difference is more than just one of implementation. In our HTML
example, the lazy pattern would be <img.*?></tr>. But even here, the .*? could
eventually grow to include unwanted >’s because the next tag after an might
not be a </tr>. Again, probably not what you want.

Patterns with multiple wild card sections can cause exponential behavior in the
regex evaluator, especially if portions of the text can match several of the wild card
expressions and especially if the search text does not match the pattern. This situ-
ation is not as unusual as it might sound, especially when pattern matching with
HTML. Often, you’ll want to match certain tags followed by other tags, possibly
separated by even more tags, a recipe that might require the regex evaluator to try
many possible combinations.

Regex guru Jan Goyvaerts calls this phenomenon “catastrophic backtracking” and
writes about it in his blog; see regular-expressions.info/catastrophic.html for details
and some good solutions.

A couple of take-home points from all this:

•	 If you can do pattern matching line-by-line rather than file-at-a-time,
there is much less risk of poor performance.

	 17.	 Although this section shows HTML excerpts as examples of text to be matched, regular expressions
are not really the right tool for this job. Our external reviewers were uniformly aghast. Ruby and
Python both have excellent add-ons that parse HTML documents the proper way. You can then ac-
cess the portions you’re interested in with XPath or CSS selectors. See the Wikipedia page for XPath
and the respective languages’ module repositories for details.

http://regular-expressions.info/catastrophic.html

	 Python programming	 215

Sc
rip

tin
g

/ S
he

ll

•	 Even though regex notation makes greedy operators the default, they
probably shouldn’t be. Use lazy operators.

•	 All uses of .* are inherently suspicious and should be scrutinized.

7.5	 Python programming
Python and Ruby are interpreted languages with a pronounced object-oriented
inflection. Both are widely used as general-purpose scripting languages and have
extensive libraries of third party modules. We discuss Ruby in more detail starting
on page 223.

Python offers a straightforward syntax that’s usually pretty easy to follow, even when
reading other people’s code.

We recommend that all sysadmins become fluent in Python. It’s the modern era’s
go-to language for both system administration and general-purpose scripting. It’s
also widely supported as a glue language for use within other systems (e.g., the
PostgreSQL database and Apple’s Xcode development environment). It interfaces
cleanly with REST APIs and has well-developed libraries for machine learning, data
analysis, and numeric computation.

The passion of Python 3
Python was already well on its way to becoming the world’s default scripting lan-
guage when Python 3 was released in 2008. For this release, the developers chose
to forgo backward compatibility with Python 2 so that a group of modest but fun-
damental changes and corrections could be made to the language, particularly in
the area of internationalized text processing.18

Unfortunately, the rollout of Python 3 proved to be something of a debacle. The
language updates are entirely sensible, but they’re not must-haves for the aver-
age Python programmer with an existing code base to maintain. For a long time,
scripters avoided Python 3 because their favorite libraries didn’t support it, and li-
brary authors didn’t support Python 3 because their clients were still using Python 2.

Even in the best of circumstances, it’s difficult to push a large and interdependent
user community past this sort of discontinuity. In the case of Python 3, early en-
trenchments persisted for the better part of a decade. However, as of 2017, that
situation finally seems to be changing.

Compatibility libraries that allow the same Python code to run under either ver-
sion of the language have helped ease the transition, to some extent. But even now,
Python 3 remains less common in the wild than Python 2.

	 18.	 The exact list of changes in Python 3 isn’t relevant to this brief discussion, but you can find a summa-
ry at docs.python.org/3.0/whatsnew/3.0.html.

docs.python.org/3.0/whatsnew/3.0.html.

216	 Chapter 7	 Scripting and the Shell	

As of this writing, py3readiness.org reports that only 17 of the top 360 Python
libraries remain incompatible with Python 3. But the long tail of unported soft-
ware is more sobering: only a tad more than 25% of the libraries warehoused at
pypi.python.org (the Python Package Index, aka PyPI) run under Python 3.19 Of
course, many of these projects are older and no longer maintained, but 25% is still
a concerningly low number.

Python 2 or Python 3?
The world’s solution to the slowly unfolding Python transition has been to treat
Pythons 2 and 3 as separate languages. You needn’t consecrate your systems to one
or the other; you can run both simultaneously without conflict.

All our example systems ship Python 2 by default, usually as /usr/bin/python2
with a symbolic link from /usr/bin/python. Python 3 can typically be installed as
a separate package; the binary is called python3.

Although the Fedora project is working to make Python 3 its system default, Red
Hat and CentOS are far behind and do not even define a prebuilt package for
Python 3. However, you can pick one up from Fedora’s EPEL (Extra Packages for
Enterprise Linux) repository. See the FAQ at fedoraproject.org/wiki/EPEL for in-
structions on accessing this repository. It’s easy to set up, but the exact commands
are version-dependent.

For new scripting work or for those new to Python altogether, it makes sense to jump
directly to Python 3. That’s the syntax we show in this chapter, though in fact it’s only
the print lines that vary between Python 2 and Python 3 in our simple examples.

For existing software, use whichever version of Python the software prefers. If your
choice is more complicated than simply new vs. old code, consult the Python wiki
at wiki.python.org/moin/Python2orPython3 for an excellent collection of issues,
solutions, and recommendations.

Python quick start
For a more thorough introduction to Python than we can give here, Mark Pilgrim’s
Dive Into Python 3 is a great place to start. It’s available for reading or for download
(without charge) at diveintopython3.net, or as a printed book from Apress. A com-
plete citation can be found on page 242.

To start, here’s a quick “Hello, world!” script:

#!/usr/bin/python3
print("Hello, world!")

	 19.	 See caniusepython3.com for up-to-date statistics.

RHEL

http://py3readiness.org
http://pypi.python.org
http://fedoraproject.org/wiki/EPEL
http://wiki.python.org/moin/Python2orPython3
http://diveintopython3.net
http://caniusepython3.com

	 Python programming	 217

Sc
rip

tin
g

/ S
he

ll

To get it running, set the execute bit or invoke the python3 interpreter directly:

$ chmod +x helloworld
$./helloworld
Hello, world!

Python’s most notable break with tradition is that indentation is logically signifi-
cant. Python does not use braces, brackets, or begin and end to delineate blocks.
Statements at the same level of indentation automatically form blocks. The exact
indentation style (spaces or tabs, depth of indentation) does not matter.

Python blocking is best shown by example. Consider this simple if-then-else statement:

import sys

a = sys.argv[1]

if a == "1":
	 print('a is one')
	 print('This is still the then clause of the if statement.')
else:
	 print('a is', a)
	 print('This is still the else clause of the if statement.')

print('This is after the if statement.')

The first line imports the sys module, which contains the argv array. The two paths
through the if statement both have two lines, each indented to the same level. (Co-
lons at the end of a line are normally a clue that the line introduces and is associ-
ated with an indented block that follows it.) The final print statement lies outside
the context of the if statement.

$ python3 blockexample 1
a is one
This is still the then clause of the if statement.
This is after the if statement.

$ python3 blockexample 2
a is 2
This is still the else clause of the if statement.
This is after the if statement.

Python’s indentation convention is less flexibile for the formatting of code, but it
does reduce clutter in the form of braces and semicolons. It’s an adjustment for those
accustomed to traditional delimiters, but most people ultimately find that they like it.

Python’s print function accepts an arbitrary number of arguments. It inserts a
space between each pair of arguments and automatically supplies a newline. You
can suppress or modify these characters by adding end= or sep= options to the end
of the argument list.

218	 Chapter 7	 Scripting and the Shell	

For example, the line

print("one", "two", "three", sep="-", end="!\n")

produces the output

one-two-three!

Comments are introduced with a sharp (#) and last until the end of the line, just
as in sh, Perl, and Ruby.

You can split long lines by backslashing the end of line breaks. When you do this,
the indentation of only the first line is significant. You can indent the continuation
lines however you like. Lines with unbalanced parentheses, square brackets, or
curly braces automatically signal continuation even in the absence of backslashes,
but you can include the backslashes if doing so clarifies the structure of the code.

Some cut-and-paste operations convert tabs to spaces, and unless you know what
you’re looking for, this can drive you nuts. The golden rule is never to mix tabs and
spaces; use one or the other for indentation. A lot of software makes the traditional
assumption that tabs fall at 8-space intervals, which is too much indentation for
readable code. Most in the Python community seem to prefer spaces and 4-char-
acter indentation.

However you decide to attack the indentation problem, most editors have options
that can help save your sanity, either by outlawing tabs in favor of spaces or by dis-
playing spaces and tabs differently. As a last resort, you can translate tabs to spaces
with the expand command.

Objects, strings, numbers, lists, dictionaries, tuples, and files
All data types in Python are objects, and this gives them more power and flexibility
than they have in most languages.

In Python, lists are enclosed in square brackets and indexed from zero. They are
essentially similar to arrays, but can hold objects of any type.20

Python also has “tuples,” which are essentially immutable lists. Tuples are faster
than lists and are helpful for representing constant data. The syntax for tuples is
the same as for lists, except that the delimiters are parentheses instead of square
brackets. Because (thing) looks like a simple algebraic expression, tuples that con-
tain only a single element need a marker comma to disambiguate them: (thing,).

Here’s some basic variable and data type wrangling in Python:

name = 'Gwen'
rating = 10
characters = ['SpongeBob', 'Patrick', 'Squidward']
elements = ('lithium', 'carbon', 'boron')

	 20.	 A homogeneous and more efficient array type is implemented in the array module, but for most pur-
poses, stick with lists.

	 Python programming	 219

Sc
rip

tin
g

/ S
he

ll

print("name:\t%s\nrating:\t%d" % (name, rating))
print("characters:\t%s" % characters)
print("hero:\t%s" % characters[0])
print("elements:\t%s" % (elements,))

This example produces the following output:

$ python3 objects
name:		 Gwen
rating:		 10
characters:	 ['SpongeBob', 'Patrick', 'Squidward']
hero:		 SpongeBob
elements:	 ('lithium', 'carbon', 'boron')

Note that the default string conversion for list and tuple types represents them as
they would be found in source code.

Variables in Python are not syntactically marked or declared by type, but the objects
to which they refer do have an underlying type. In most cases, Python does not
automatically convert types for you, but individual functions or operators may do
so. For example, you cannot concatenate a string and a number (with the + opera-
tor) without explicitly converting the number to its string representation. However,
formatting operators and statements coerce everything to string form.

Every object has a string representation, as can be seen in the output above. Dictio-
naries, lists, and tuples compose their string representations recursively by stringi-
fying their constituent elements and combining these strings with the appropriate
punctuation.

The string formatting operator % is a lot like the sprintf function from C, but it can
be used anywhere a string can appear. It’s a binary operator that takes the string
on its left and the values to be inserted on its right. If more than one value is to be
inserted, the values must be presented as a tuple.

A Python dictionary (also known as a hash or an associative array) represents a
set of key/value pairs. You can think of a hash as an array whose subscripts (keys)
are arbitrary values; they do not have to be numbers. But in practice, numbers and
strings are common keys.

Dictionary literals are enclosed in curly braces, with each key/value pair being sepa-
rated by a colon. In use, dictionaries work much like lists, except that the subscripts
(keys) can be objects other than integers.

ordinal = { 1 : 'first', 2 : 'second', 3 : 'third' }
print("The ordinal dictionary contains", ordinal)
print("The ordinal of 1 is", ordinal[1])

$ python3 dictionary
The ordinal array contains {1: 'first', 2: 'second', 3: 'third'}
The ordinal of 1 is first

220	 Chapter 7	 Scripting and the Shell	

Python handles open files as objects with associated methods. True to its name, the
readline method reads a single line, so the example below reads and prints two
lines from the /etc/passwd file.

f = open('/etc/passwd', 'r')
print(f.readline(), end="")
print(f.readline(), end="")
f.close()

$ python3 fileio
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

The newlines at the end of the print calls are suppressed with end="" because each
line already includes a newline character from the original file. Python does not
automatically strip these.

Input validation example
Our scriptlet below shows a general scheme for input validation in Python. It also
demonstrates the definition of functions and the use of command-line arguments,
along with a couple of other Pythonisms.

import sys
import os

def show_usage(message, code = 1):
	 print(message)
	 print("%s: source_dir dest_dir" % sys.argv[0])
	 sys.exit(code)

if len(sys.argv) != 3:
	 show_usage("2 args required; you supplied %d" % (len(sys.argv) - 1))
elif not os.path.isdir(sys.argv[1]):
	 show_usage("Invalid source directory")
elif not os.path.isdir(sys.argv[2]):
	 show_usage("Invalid destination directory")

source, dest = sys.argv[1:3]

print("Source directory is", source)
print("Destination directory is", dest)

In addition to importing the sys module, we also import the os module to gain
access to the os.path.isdir routine. Note that import doesn’t shortcut your access
to any symbols defined by modules; you must use fully qualified names that start
with the module name.

The definition of the show_usage routine supplies a default value for the exit code
in case the caller does not specify this argument explicitly. Since all data types are
objects, function arguments are effectively passed by reference.

	 Python programming	 221

Sc
rip

tin
g

/ S
he

ll

The sys.argv list contains the script name in the first position, so its length is one
greater than the number of command-line arguments that were actually supplied.
The form sys.argv[1:3] is a list slice. Curiously, slices do not include the element
at the far end of the specified range, so this slice includes only sys.argv[1] and
sys.argv[2]. You could simply say sys.argv[1:] to include the second and sub-
sequent arguments.

Like sh, Python has a dedicated “else if ” condition; the keyword is elif. There is
no explicit case or switch statement.

The parallel assignment of the source and dest variables is a bit different from some
languages in that the variables themselves are not in a list. Python allows parallel
assignments in either form.

Python uses the same comparison operators for numeric and string values. The
“not equal” comparison operator is !=, but there is no unary ! operator; use not for
this. The Boolean operators and and or are also spelled out.

Loops
The fragment below uses a for…in construct to iterate through the range 1 to 10.

for counter in range(1, 10):
	 print(counter, end=" ")
print() 						 # Add final newline

As with the array slice in the previous example, the right endpoint of the range is
not actually included. The output includes only the numbers 1 through 9:

1 2 3 4 5 6 7 8 9

This is Python’s only type of for loop, but it’s a powerhouse. Python’s for has several
features that distinguish it from for in other languages:

•	 Nothing is special about numeric ranges. Any object can support Python’s
iteration model, and most common objects do. You can iterate through a
string (by character), a list, a file (by character, line, or block), a list slice, etc.

•	 Iterators can yield multiple values, and you can have multiple loop vari-
ables. The assignment at the top of each iteration acts just like Python’s
regular multiple assignments. This feature is particularly nice for iterating
through dictionaries.

•	 Both for and while loops can have else clauses at the end. The else clause
is executed only if the loop terminates normally, as opposed to exiting
through a break statement. This feature may initially seem counterintui-
tive, but it handles certain use cases quite elegantly.

The example script below accepts a regular expression on the command line and
matches it against a list of Snow White’s dwarves and the colors of their dwarf suits.

222	 Chapter 7	 Scripting and the Shell	

The first match is printed, with the portions that match the regex surrounded by
underscores.

import sys
import re

suits = {
	 'Bashful':'yellow', 'Sneezy':'brown', 'Doc':'orange', 'Grumpy':'red',
	 'Dopey':'green', 'Happy':'blue', 'Sleepy':'taupe'
}
pattern = re.compile("(%s)" % sys.argv[1])

for dwarf, color in suits.items():
	 if pattern.search(dwarf) or pattern.search(color):
		 print("%s's dwarf suit is %s." %
			 (pattern.sub(r"_\1_", dwarf), pattern.sub(r"_\1_", color)))
		 break
else:
	 print("No dwarves or dwarf suits matched the pattern.")

Here’s some sample output:

$ python3 dwarfsearch '[aeiou]{2}'
Sl_ee_py's dwarf suit is t_au_pe.

$ python3 dwarfsearch 'ga|gu'
No dwarves or dwarf suits matched the pattern.

The assignment to suits demonstrates Python’s syntax for encoding literal dictio-
naries. The suits.items() method is an iterator for key/value pairs—note that we’re
extracting both a dwarf name and a suit color on each iteration. If you wanted to
iterate through only the keys, you could just say for dwarf in suits.

Python implements regular expression handling through its re module. No regex
features are built into the language itself, so regex-wrangling with Python is a bit
clunkier than with, say, Perl. Here, the regex pattern is initially compiled from the
first command-line argument surrounded by parentheses (to form a capture group).
Strings are then tested and modified with the search and sub methods of the regex
object. You can also call re.search et al. directly as functions, supplying the regex
to use as the first argument.

The \1 in the substitution string is a back-reference to the contents of the first
capture group. The strange-looking r prefix that precedes the substitution string
(r"_\1_") suppresses the normal substitution of escape sequences in string con-
stants (r stands for “raw”). Without this, the replacement pattern would consist of
two underscores surrounding a character with numeric code 1.

One thing to note about dictionaries is that they have no defined iteration order. If
you run the dwarf search a second time, you may well receive a different answer:

$ python3 dwarfsearch '[aeiou]{2}'
Dopey's dwarf suit is gr_ee_n.

	 Ruby programming	 223

Sc
rip

tin
g

/ S
he

ll

7.6	 Ruby programming
Ruby, designed and maintained by Japanese developer Yukihiro “Matz” Matsumoto,
shares many features with Python, including a pervasive “everything’s an object”
approach. Although initially released in the mid-1990s, Ruby did not gain promi-
nence until a decade later with the release of the Rails web development platform.

Ruby is still closely associated with the web in many people’s minds, but there’s
nothing web-specific about the language itself. It works well for general-purpose
scripting. However, Python is probably a better choice for a primary scripting lan-
guage, if only because of its wider popularity.

Although Ruby is roughly equivalent to Python in many ways, it is philosophically
more permissive. Ruby classes remain open for modification by other software, for
example, and the Rubyist community attaches little or no shame to extensions that
modify the standard library.

Ruby appeals to those with a taste for syntactic sugar, features that don’t really change
the basic language but that permit code to be expressed more concisely and clearly.
In the Rails environment, for example, the line

due_date = 7.days.from_now

creates a Time object without referencing the names of any time-related classes or
doing any explicit date-and-time arithmetic. Rails defines days as an extension to
Fixnum, the Ruby class that represents integers. This method returns a Duration
object that acts like a number; used as a value, it’s equivalent to 604,800, the number
of seconds in seven days. Inspected in the debugger, it describes itself as “7 days.”21

Ruby makes it easy for developers to create “domain-specific languages” (aka DSLs),
mini-languages that are in fact Ruby but that read like specialized configuration
systems. Ruby DSLs are used to configure both Chef and Puppet, for example.

Installation
Some systems have Ruby installed by default and some do not. However, it’s always
available as a package, often in several versions.

To date (version 2.3), Ruby has maintained relatively good compatibility with old
code. In the absence of specific warnings, it’s generally best to install the most re-
cent version.

Unfortunately, most systems’ packages lag several releases behind the Ruby trunk.
If your package library doesn’t include the current release (check ruby-lang.org to
determine what that is), install the freshest version through RVM; don’t try to do
it yourself.

	 21.	 This form of polymorphism is common to both Ruby and Python. It’s often called “duck typing”; if an
object walks like a duck and quacks like a duck, you needn’t worry about whether it’s actually a duck.

See Chapter 23 for
more information
about Chef and Puppet.

See page 232 for
more about RVM.

http://ruby-lang.org

224	 Chapter 7	 Scripting and the Shell	

Ruby quick start
Since Ruby is so similar to Python, here a perhaps-eerily-familiar look at some
Ruby snippets modeled on those from the Python section earlier in this chapter.

#!/usr/bin/env ruby

print "Hello, world!\n\n"

name = 'Gwen'
rating = 10
characters = ['SpongeBob', 'Patrick', 'Squidward']
elements = { 3 => 'lithium', 7 => 'carbon', 5 => 'boron' }

print "Name:\t", name, "\nRating:\t", rating, "\n"
print "Characters:\t#{characters}\n"
print "Elements:\t#{elements}\n\n"

element_names = elements.values.sort!.map(&:upcase).join(', ')
print "Element names:\t", element_names, "\n\n"

elements.each do |key, value|
	 print "Atomic number #{key} is #{value}.\n"
end

The output is as follows:

Hello, world!

Name:			 Gwen
Rating:			 10
Characters:		 ["SpongeBob", "Patrick", "Squidward"]
Elements:		 {3=>"lithium", 7=>"carbon", 5=>"boron"}

Element names:	 BORON, CARBON, LITHIUM

Atomic number 3 is lithium.
Atomic number 7 is carbon.
Atomic number 5 is boron.

Like Python, Ruby uses brackets to delimit arrays and curly braces to delimit dic-
tionary literals. (Ruby calls them “hashes.”) The => operator separates each hash
key from its corresponding value, and the key/value pairs are separated from each
other by commas. Ruby does not have tuples.

Ruby’s print is a function (or more accurately, a global method), just like that of
Python 3. However, if you want newlines, you must specify them explicitly.22 In
addition, the parentheses normally seen around the arguments of function calls
are optional in Ruby. Developers don’t normally include them unless they help to
clarify or disambiguate the code. (Note that some of these calls to print do include
multiple arguments separated by commas.)

	 22.	 There’s also a puts function that adds newlines for you, but it’s perhaps a bit too smart. If you try to
add an extra newline of your own, puts won’t insert its own newline.

	 Ruby programming	 225

Sc
rip

tin
g

/ S
he

ll

In several cases, we’ve used #{} brackets to interpolate the values of variables into
double-quoted strings. Such brackets can contain arbitrary Ruby code; whatever
value the code produces is automatically converted to string type and inserted into
the outer string. You can also concatenate strings with the + operator, but interpo-
lation is typically more efficient.

The line that calculates element_names illustrates several more Ruby tropes:

element_names = elements.values.sort!.map(&:upcase).join(', ')

This is a series of method calls, each of which operates on the result returned by the
previous method, much like a series of pipes in the shell. For example, elements’
values method produces an array of strings, which sort! then orders alphabetically.23
This array’s map method calls the upcase method on each element, then reassem-
bles all the results back into a new array. Finally, join concatenates the elements of
that array, interspersed with commas, to produce a string.

Blocks
In the code on page 224, the text between do and end is a block, also commonly
known in other languages as a lambda function, a closure, or an anonymous function: 24

elements.each do |key, value|
	 print "Atomic number #{key} is #{value}.\n"
end

This particular block takes two arguments, which it calls key and value. It prints
the values of both.

each looks like it might be a language feature, but it’s just a method defined by hashes.
each accepts the block as an argument and calls it once for each key/value pair the
hash contains. This type of iteration function used in combination with a block is
highly characteristic of Ruby code. each is the standard name for generic iterators,
but many classes define more specific versions such as each_line or each_character.

Ruby has a second syntax for blocks that uses curly braces instead of do...end as
delimiters. It means exactly the same thing, but it looks more at home as part of
an expression. For example,

characters.map {|c| c.reverse} # ["boBegnopS", "kcirtaP", "drawdiuqS"]

This form is functionally identical to characters.map(&:reverse), but instead of
just telling map what method to call, we included an explicit block that calls the
reverse method.

	 23.	 The bang at the end of sort! warns you that there’s something to be wary of when using this meth-
od. It isn’t significant to Ruby; it’s just part of the method’s name. In this case, the issue of note is that
sort! sorts the array in place. There’s also a sort method (without the !) that returns the elements in a
new, sorted array.

	 24.	 Ruby actually has three entities of this general type, known as blocks, procs, and lambdas. The differ-
ences among them are subtle and not important for this overview.

226	 Chapter 7	 Scripting and the Shell	

The value of a block is the value of the last expression it evaluates before complet-
ing. Conveniently, pretty much everything in Ruby is an expression (meaning “a
piece of code that can be evaluated to produce a value”), including control struc-
tures such as case (analogous to what most languages call switch) and if-else.
The values of these expressions mirror the value produced by whichever case or
branch was activated.

Blocks have many uses other than iteration. They let a single function perform both
setup and takedown procedures on behalf of another section of code, so they often
represent multi-step operations such as database transactions or filesystem operations.

For example, the following code opens the /etc/passwd file and prints out the line
that defines the root account:

open '/etc/passwd', 'r' do |file|
	 file.each_line do |line|
		 print line if line.start_with? 'root:'
	 end
end

The open function opens the file and passes its IO object to the outer block. Once
the block has finished running, open automatically closes the file. There’s no need
for a separate close operation (although it does exist if you want to use it), and the
file is closed no matter how the outer block terminates.

The postfix if construct used here might be familiar to those who have used Perl. It’s
a nice way to express simple conditionals without obscuring the primary action. Here,
it’s clear at a glance that the inner block is a loop that prints out some of the lines.

In case the structure of that print line is not clear, here it is again with the optional
parentheses included. The if has the lowest precedence, and it has a single meth-
od call on either side:

		 print(line) if line.start_with?('root:')

As with the sort! method we saw on page 225, the question mark is just a naming
convention for methods that return Boolean values.

The syntax for defining a named function is slightly different from that for a block:

def show_usage(msg = nil)
	 STDERR.puts msg if msg
	 STDERR.puts "Usage: #{$0} filename ..."
	 exit 1
end

The parentheses are still optional, but in practice, they are always shown in this con-
text unless the function takes no arguments. Here, the msg argument defaults to nil.

The global variable $0 is magic and contains the name by which the current program
was invoked. (Traditionally, this would be the first argument of the argv array. But
the Ruby convention is that ARGV contains only actual command-line arguments.)

	 Ruby programming	 227

Sc
rip

tin
g

/ S
he

ll

As in C, you can treat non-Boolean values as if they were Booleans, as illustrated
here in the form of if msg. The Ruby mapping for this conversion is a bit unusual,
though: everything except nil and false counts as true. In particular, 0 is true. (In
practice, this usually ends up being what you want.)

Symbols and option hashes
Ruby makes extensive use of an uncommon data type called a symbol, denoted with
a colon, e.g., :example. You can think of symbols as immutable strings. They’re
commonly used as labels or as well-known hash keys. Internally, Ruby implements
them as numbers, so they’re fast to hash and compare.

Symbols are so commonly used as hash keys that Ruby 2.0 defined an alternative
syntax for hash literals to reduce the amount of punctuation clutter. The standard-​
form hash

h = { :animal => 'cat', :vegetable => 'carrot', :mineral => 'zeolite' }

can be written in Ruby 2.0 style as

h = { animal: 'cat', vegetable: 'carrot', mineral: 'zeolite' }

Outside of this hash literal context, symbols retain their : prefixes wherever they
appear in the code. For example, here’s how to get specific values back out of a hash:

healthy_snack = h[:vegetable] # 'carrot'

Ruby has an idiosyncratic but powerful convention for handling options in function
calls. If a called function requests this behavior, Ruby collects trailing function-call
arguments that resemble hash pairs into a new hash. It then passes that hash to the
function as an argument. For example, in the Rails expression

file_field_tag :upload, accept: 'application/pdf', id: 'commentpdf'

the file_field_tag receives only two arguments: the :upload symbol, and a hash
containing the keys :accept and :id. Because hashes have no inherent order, it
doesn’t matter in what order the options appear.

This type of flexible argument processing is a Ruby standard in other ways, too.
Ruby libraries, including the standard library, generally do their best to accept the
broadest possible range of inputs. Scalars, arrays, and hashes are often equally valid
arguments, and many functions can be called with or without blocks.

Regular expressions in Ruby
Unlike Python, Ruby has a little bit of language-side sugar to help you deal with
regular expressions. Ruby supports the traditional /…/ notation for regular ex-
pression literals, and the contents can include #{} escape sequences, much like
double-quoted strings.

228	 Chapter 7	 Scripting and the Shell	

Ruby also defines the =~ operator (and its negation, !~) to test for a match between
a string and a regular expression. It evaluates either to the index of the first match
or to nil if there is no match.

"Hermann Hesse" =~ /H[aeiou]/ # => 0

To access the components of a match, explicitly invoke the regular expression’s
match method. It returns either nil (if no match) or an object that can be accessed
as an array of components.

if m = /(^H\w*)\s/.match("Heinrich Hoffmeyer headed this heist")
 puts m[0] # 'Heinrich'
end

Here’s a look at a Ruby version of the dwarf-suit example from page 222:

suits = {
	 Bashful: 'yellow', Sneezy: 'brown', Doc: 'orange', Grumpy: 'red',
	 Dopey: 'green', Happy: 'blue', Sleepy: 'taupe'
}

abort "Usage: #{$0} pattern" unless ARGV.size == 1
pat = /(#{ARGV[0]})/

matches = suits.lazy.select {|dwarf, color| pat =~ dwarf || pat =~ color}

if matches.any?
	 dwarf, color = matches.first
	 print "%s\'s dwarf suit is %s.\n" %
		 [dwarf.to_s.sub(pat, '_\1_'), color.sub(pat, '_\1_')]
else
	 print "No dwarves or dwarf suits matched the pattern.\n"
end

The select method on a collection creates a new collection that includes only the
elements for which the supplied block evaluates to true. In this case, matches is a
new hash that includes only pairs for which either the key or the value matches the
search pattern. Since we made the starting hash lazy, the filtering won’t actually
occur until we try to extract values from the result. In fact, this code checks only
as many pairs as are needed to find a match.

Did you notice that the =~ pattern-matching operator was used on the symbols
that represent the dwarves’ names? It works because =~ is smart enough to con-
vert the symbols to strings before matching. Unfortunately, we have to perform the
conversion explicitly (with the to_s method) when applying the substitution pat-
tern; sub is only defined on strings, so we need a real, live string on which to call it.

Note also the parallel assignment of dwarf and color. matches.first returns a
two-element array, which Ruby automatically unpacks.

	 Library and environment management for Python and Ruby	 229

Sc
rip

tin
g

/ S
he

ll

The % operator for strings works similarly to the same operator in Python; it’s the
Ruby version of sprintf. Here there are two components to fill in, so we pass in the
values as a two-element array.

Ruby as a filter
You can use Ruby without a script by putting isolated expressions on the command
line. This is an easy way to do quick text transformations (though truth be told, Perl
is still much better at this role).

Use the -p and -e command-line options to loop through STDIN, run a simple
expression on each line (represented as the variable $_), and print the result. For
example, the following command translates /etc/passwd to upper case:

$ ruby -pe '$_.tr!("a-z", "A-Z")' /etc/passwd
NOBODY:*:-2:-2:UNPRIVILEGED USER:/VAR/EMPTY:/USR/BIN/FALSE
ROOT:*:0:0:SYSTEM ADMINISTRATOR:/VAR/ROOT:/BIN/SH
...

ruby -a turns on autosplit mode, which separates input lines into fields that are
stored in the array named $F. Whitespace is the default field separator, but you can
set another separator pattern with the -F option.

Autosplit is handy to use in conjunction with -p or its nonautoprinting variant, -n.
The command below uses ruby -ane to produce a version of the passwd file that
includes only usernames and shells.

$ ruby -F: -ane 'print $F[0], ":", $F[-1]' /etc/passwd
nobody:/usr/bin/false
root:/bin/sh
...

The truly intrepid can use -i in conjunction with -pe to edit files in place; Ruby reads
in the files, presents their lines for editing, and saves the results out to the original
files. You can supply a pattern to -i that tells Ruby how to back up the original ver-
sion of each file. For example, -i.bak backs up passwd as passwd.bak. Beware—if
you don’t supply a backup pattern, you don’t get backups at all. Note that there’s no
space between the -i and the suffix.

7.7	 Library and environment management for Python and Ruby
Languages have many of the same packaging and version control issues that oper-
ating systems do, and they often resolve them in analogous ways. Python and Ruby
are similar in this area, so we discuss them together in this section.

Finding and installing packages
The most basic requirement is some kind of easy and standardized way to discov-
er, obtain, install, update, and distribute add-on software. Both Ruby and Python

230	 Chapter 7	 Scripting and the Shell	

have centralized warehouses for this purpose, Ruby’s at rubygems.org and Python’s
at pypi.python.org.

In the Ruby world, packages are called “gems,” and the command that wrangles
them is called gem as well. gem search regex shows the available gems with match-
ing names, and gem install gem-name downloads and installs a gem. You can use
the --user-install option to install a private copy instead of modifying the system’s
complement of gems.

The Python equivalent is called pip (or pip2 or pip3, depending on which Python
versions are installed). Not all systems include pip by default. Those that don’t typ-
ically make it available as a separate (OS-level) package. As with gem, pip search
and pip install are the mainstay commands. A --user option installs packages into
your home directory.

Both gem and pip understand dependencies among packages, at least at a basic
level. When you install a package, you’re implicitly asking for all the packages it
depends on to be installed as well (if they are not already present).

In a basic Ruby or Python environment, only a single version of a package can be
installed at once. If you reinstall or upgrade a package, the old version is removed.

You often have the choice to install a gem or pip package through the standard
language mechanism (gem or pip) or through an OS-level package that’s stocked
in your vendor’s standard repository. OS packages are more likely to be installed
and run without issues, but they are less likely to be up to date. Neither option is
clearly superior.

Creating reproducible environments
Programs, libraries, and languages develop complex webs of dependencies as they
evolve together over time. A production-level server might depend on tens or hun-
dreds of these components, each of which has its own expectations about the in-
stallation environment. How do you identify which combination of library versions
will create a harmonious environment? How do you make sure the configuration
you tested in the development lab is the same one that gets deployed to the cloud?
More basically, how do you make sure that managing all these parts isn’t a big hassle?

Both Python and Ruby have a standardized way for packages to express their de-
pendencies. In both systems, package developers create a text file at the root of
the project that lists its dependencies. For Ruby, the file is called Gemfile, and for
Python, requirements.txt. Both formats support flexible version specifications for
dependencies, so it’s possible for packages to declare that they’re compatible with

“any release of simplejson version 3 or higher” or “Rails 3, but not Rails 4.” It’s also
possible to specify an exact version requirement for any dependency.

Both file formats allow a source to be specified for each package, so dependencies
need not be distributed through the language’s standard package warehouse. All
common sources are supported, from web URLs to local files to GitHub repositories.

http://rubygems.org
http://pypi.python.org

	 Library and environment management for Python and Ruby	 231

Sc
rip

tin
g

/ S
he

ll

You install a batch of Python dependencies with pip install -r requirements.txt.
Although pip does a fine job of resolving individual version specifications, it’s un-
fortunately not able to solve complex dependency relationships among packages on
its own. Developers sometimes have to tweak the order in which packages are men-
tioned in the requirements.txt file to achieve a satisfactory result. It’s also possible,
though uncommon, for new package releases to disturb the version equilibrium.

pip freeze prints out Python’s current package inventory in requirements.txt for-
mat, specifying an exact version for each package. This feature can be helpful for
replicating the current environment on a production server.

In the Ruby world, gem install -g Gemfile is a fairly direct analog of pip -r. In most
circumstances, though, it’s better to use the Bundler gem to manage dependencies.
Run gem install bundler to install it (if it’s not already on the system), then run
bundle install from the root directory of the project you’re setting up.25

Bundler has several nice tricks up its sleeve:

•	 It does true recursive dependency management, so if there’s a set of gems
that are mutually compatible and that satisfy all constraints, Bundler can
find it without help.

•	 It automatically records the results of version calculations in a file called
Gemfile.lock. Maintaining this context information lets Bundler handle
updates to the Gemfile conservatively and efficiently. Bundler modifies only
the packages it needs to when migrating to a new version of the Gemfile.

•	 Because Gemfile.lock is sticky in this way, running bundle install on a
deployment server automatically reproduces the package environment
found in the development environment.26

•	 In deployment mode (bundle install --deployment), Bundler installs
missing gems into the local project directory, helping isolate the project
from any future changes to the system’s package complement. You can
then use bundle exec to run specific commands within this hybrid gem
environment.27

Multiple environments
pip and bundle handle dependency management for individual Python and Ruby
programs, but what if two programs on the same server have conflicting require-
ments? Ideally, every program in a production environment would have its own
library environment that was independent of the system and of all other programs.

	 25.	 Ruby gems can include shell-level commands. They don’t typically have man pages, though; run
bundle help for details, or see bundler.io for complete documentation.

	 26.	 Or at least, that’s the default behavior. It’s easy to specify different requirements for development and
deployment environments in the Gemfile if you need to.

	 27.	 Some software packages, such as Rails, are Bundler-aware and will use the locally installed packages
even without a bundle exec command.

http://bundler.io

232	 Chapter 7	 Scripting and the Shell	

virtualenv: virtual environments for Python
Python’s virtualenv package creates virtual environments that live within their own
directories.28 After installing the package, just run the virtualenv command with a
pathname to set up a new environment:

$ virtualenv myproject
New python executable in /home/ulsah/myproject/bin/python
Installing setuptools, pip, wheel...done.

Each virtual environment has a bin/ directory that includes binaries for Python
and PIP. When you run one of those binaries, you’re automatically placed in the
corresponding virtual environment. Install packages into the environment as usual
by running the virtual environment’s copy of pip.

To start a virtualized Python program from cron or from a system startup script,
explicitly specify the path to the proper copy of python. (Alternatively, put the path
in the script’s shebang line.)

When working interactively in the shell, you can source a virtual environment’s
bin/activate script to set the virtual environment’s versions of python and pip as
the defaults. The script rearranges your shell’s PATH variable. Use deactivate to
leave the virtual environment.

Virtual environments are tied to specific versions of Python. At the time a virtual
environment is created, you can set the associated Python binary with virtualenv’s

--python option. The Python binary must already be installed and functioning.

RVM: the Ruby enVironment Manager
Things are similar in the Ruby world, but somewhat more configurable and more
complicated. You saw on page 231 that Bundler can cache local copies of Ruby
gems on behalf of a specific application. This is a reasonable approach when mov-
ing projects into production, but it isn’t so great for interactive use. It also assumes
that you want to use the system’s installed version of Ruby.

Those who want a more general solution should investigate RVM, a complex and
rather unsightly environment virtualizer that uses a bit of shell hackery. To be fair,
RVM is an extremely polished example of the “unsightly hack” genus. In practice,
it works smoothly.

RVM manages both Ruby versions and multiple gem collections, and it lets you
switch among all these on the fly. For example, the command

$ rvm ruby-2.3.0@ulsah

	 28.	 As with other Python-related commands, there are numeric-suffixed versions of the virtualenv com-
mand that go with particular Python versions.

	 Library and environment management for Python and Ruby	 233

Sc
rip

tin
g

/ S
he

ll

activates Ruby version 2.3.0 and the gemset called ulsah. References to ruby or gem
now resolve to the specified versions. This magic also works for programs installed
by gems, such as bundle and rails. Best of all, gem management is unchanged; just
use gem or bundle as you normally would, and any newly installed gems automat-
ically end up in the right place.

RVM’s installation procedure involves fetching a Bash script from the web and ex-
ecuting it locally. Currently, the commands are

$ curl -o /tmp/install -sSL https://get.rvm.io
$ sudo bash /tmp/install stable

but check rvm.io for the current version and a cryptographic signature.29 Be sure to
install with sudo as shown here; if you don’t, RVM sets up a private environment in
your home directory. (That works fine, but nothing on a production system should
refer to your home directory.) You’ll also need to add authorized RVM users to the
rvm UNIX group.

After the initial RVM installation, don’t use sudo when installing gems or changing
RVM configurations. RVM controls access through membership in the rvm group.

Under the covers, RVM does its magic by manipulating the shell’s environment
variables and search path. Ergo, it has to be invited into your environment like a
vampire by running some shell startup code at login time. When you install RVM
at the system level, RVM drops an rvm.sh scriptlet with the proper commands
into /etc/profile.d. Some shells automatically run this stub. Those that don’t just
need an explicit source command, which you can add to your shell’s startup files:

source /etc/profile.d/rvm.sh

RVM doesn’t modify the system’s original Ruby installation in any way. In partic-
ular, scripts that start with a

#!/usr/bin/ruby

shebang continue to run under the system’s default Ruby and to see only system-in-
stalled gems. The following variant is more liberal:

#!/usr/bin/env ruby

It locates the ruby command according to the RVM context of the user that runs it.

rvm install installs new versions of Ruby. This RVM feature makes it quite painless
to install different versions of Ruby, and it should generally be used in preference
to your OS’s native Ruby packages, which are seldom up to date. rvm install down-
loads binaries if they are available. If not, it installs the necessary OS packages and
then builds Ruby from source code.

	 29.	 Also see page 24 for some comments on why our example commands don’t exactly match RVM’s
recommendations.

http://rvm.io

234	 Chapter 7	 Scripting and the Shell	

Here’s how we might set up for deployment a Rails application known to be com-
patible with Ruby 2.2.1:

$ rvm install ruby-2.2.1
Searching for binary rubies, this might take some time.
No binary rubies available for: ubuntu/15.10/x86_64/ruby-2.2.1.
Continuing with compilation. Please read 'rvm help mount' to get more

information on binary rubies.
Checking requirements for ubuntu.
Installing required packages: gawk, libreadline6-dev, zlib1g-dev,

libncurses5-dev, automake, libtool, bison, libffi-dev................
Requirements installation successful.
Installing Ruby from source to: /usr/local/rvm/rubies/ruby-2.2.1, this

may take a while depending on your cpu(s)...
...

If you installed RVM as described above, the Ruby system is installed underneath
/usr/local/rvm and is accessible to all accounts on the system.

Use rvm list known to find out which versions of Ruby RVM knows how to down-
load and build. Rubies shown by rvm list have already been installed and are avail-
able for use.

$ cd myproject.rails
$ rvm ruby-2.2.1@myproject --create --default --ruby-version
ruby-2.2.1 - #gemset created /usr/local/rvm/gems/ruby-2.2.1@myproject
ruby-2.2.1 - #generating myproject wrappers..........
$ gem install bundler
Fetching: bundler-1.11.2.gem (100%)
Successfully installed bundler-1.11.2
1 gem installed
$ bundle
Fetching gem metadata from https://rubygems.org/...........
Fetching version metadata from https://rubygems.org/...
Fetching dependency metadata from https://rubygems.org/..
Resolving dependencies......
...

The ruby-2.2.1@myproject line specifies both a Ruby version and a gemset. The
--create flag creates the gemset if it doesn’t already exist. --default makes this com-
bination your RVM default, and --ruby-version writes the names of the Ruby in-
terpreter and gemset to .ruby-version and .ruby-gemset in the current directory.

If the .*-version files exist, RVM automatically reads and honors them when deal-
ing with scripts in that directory. This feature allows each project to specify its
own requirements and frees you from the need to remember what goes with what.

To run a package in its requested environment (as documented by .ruby-version
and .ruby-gemset), run the command

rvm in /path/to/dir do startup-cmd startup-arg ...

	 Revision control with Git	 235

Sc
rip

tin
g

/ S
he

ll

This is a handy syntax to use when running jobs out of startup scripts or cron. It
doesn’t depend on the current user having set up RVM or on the current user’s
RVM configuration.

Alternatively, you can specify an explicit environment for the command, as in

rvm ruby-2.2.1@myproject do startup-cmd startup-arg ...

Yet a third option is to run a ruby binary from within a wrapper maintained by
RVM for this purpose. For example, running

/usr/local/rvm/wrappers/ruby-2.2.1@myproject/ruby ...

automatically transports you into the Ruby 2.2.1 world with the myproject gemset.

7.8	 Revision control with Git
Mistakes are a fact of life. It’s important to keep track of configuration and code
changes so that when these changes cause problems, you can easily revert to a
known-good state. Revision control systems are software tools that track, archive,
and grant access to multiple revisions of files.

Revision control systems address several problems. First, they define an organized
way to trace the history of modifications to a file such that changes can be under-
stood in context and so that earlier versions can be recovered. Second, they extend
the concept of versioning beyond the level of individual files. Related groups of
files can be versioned together, taking into account their interdependencies. Fi-
nally, revision control systems coordinate the activities of multiple editors so that
race conditions cannot cause anyone’s changes to be permanently lost30 and so that
incompatible changes from multiple editors do not become active simultaneously.

By far the most popular system in use today is Git, created by the one and only Li-
nus Torvalds. Linus created Git to manage the Linux kernel source code because of
his frustration with the version control systems that existed at the time. It is now as
ubiquitous and influential as Linux. It’s difficult to tell which of Linus’s inventions
has had a greater impact on the world.

Most modern software is developed with help from Git, and as result, adminis-
trators encounter it daily. You can find, download, and contribute to open source
projects on GitHub, GitLab, and other social development sites. You can also use
Git to track changes to scripts, configuration management code, templates, and any
other text files that need to be tracked over time. We use Git to track the contents
of this book. It’s well suited to collaboration and sharing, making it an essential tool
for sites that embrace DevOps.

	 30.	 For example, suppose that sysadmins Alice and Bob both edit the same file and that each makes some
changes. Alice saves first. When Bob saves his copy of the file, it overwrites Alice’s version. If Alice
has quit from the editor, her changes are completely gone and unrecoverable.

See page 1106 for
more information
about DevOps.

236	 Chapter 7	 Scripting and the Shell	

Git’s shtick is that it has no distinguished central repository. To access a repository,
you clone it (including its entire history) and carry it around with you like a her-
mit crab lugging its shell. Your commits to the repository are local operations, so
they’re fast and you don’t have to worry about communicating with a central server.
Git uses an intelligent compression system to reduce the cost of storing the entire
history, and in most cases this system is quite effective.

Git is great for developers because they can pile their source code onto a laptop
and work without being connected to a network while still reaping all the benefits
of revision control. When the time comes to integrate multiple developers’ work,
their changes can be integrated from one copy of the repository to another in any
fashion that suits the organization’s workflow. It’s always possible to unwind two
copies of a repository back to their common ancestor state, no matter how many
changes and iterations have occurred after the split.

Git’s use of a local repository is a big leap forward in revision control—or perhaps
more accurately, it’s a big leap backward, but in a good way. Early revision control
systems such as RCS and CVS used local repositories but were unable to handle
collaboration, change merging, and independent development. Now we’ve come
full circle to a point where putting files under revision control is once again a fast,
simple, local operation. At the same time, all Git’s advanced collaboration features
are available for use in situations that require them.

Git has hundreds of features and can be quite puzzling in advanced use. However,
most Git users get by with only a handful of simple commands. Special situations
are best handled by searching Google for a description of what you want to do (e.g.,

“git undo last commit”). The top result is invariably a Stack Overflow discussion
that addresses your exact situation. Above all, don’t panic. Even if it looks like you
screwed up the repository and deleted your last few hours of work, Git very likely
has a copy stashed away. You just need the reflog fairy to go and fetch it.

Before you start using Git, set your name and email address:

$ git config --global user.name "John Q. Ulsah"
$ git config --global user.email "ulsah@admin.com"

These commands create the ini-formatted Git config file ~/.gitconfig if it doesn’t
already exist. Later git commands look in this file for configuration settings. Git
power users make extensive customizations here to match their desired workflow.

A simple Git example
We’ve contrived for you a simple example repository for maintaining some shell
scripts. In practice, you can use Git to track configuration management code, infra-
structure templates, ad hoc scripts, text documents, static web sites, and anything
else you need to work on over time.

mailto:"ulsah@admin.com"

	 Revision control with Git	 237

Sc
rip

tin
g

/ S
he

ll

The following commands create a new Git repository and populate its baseline:

$ pwd
/home/bwhaley
$ mkdir scripts && cd scripts
$ git init
Initialized empty Git repository in /home/bwhaley/scripts/.git/
$ cat > super-script.sh << EOF
> #!/bin/sh
> echo "Hello, world"
> EOF
$ chmod +x super-script.sh
$ git add .
$ git commit -m "Initial commit"
[master (root-commit) 9a4d90c] super-script.sh
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100755 super-script.sh

In the sequence above, git init creates the repository’s infrastructure by creating a
.git directory in /home/bwhaley/scripts. Once you set up an initial “hello, world”
script, the command git add . copies it to Git’s “index,” which is a staging area for
the upcoming commit.

The index is a not just a list of files to commit; it’s a bona fide file tree that’s every bit
as real as the current working directory and the contents of the repository. Files in
the index have contents, and depending on what commands you run, those contents
may end up being different from both the repository and the working directory. git
add really just means “cp from the working directory to the index.”

git commit enters the contents of the index into the repository. Every commit needs
a log message. The -m flag lets you include the message on the command line. If
you leave it out, git starts up an editor for you.

Now make a change and check it into the repository.

$ vi super-script.sh
$ git commit super-script.sh -m "Made the script more super"
[master 67514f1] Made the script more super
 1 file changed, 1 insertions(+), 0 deletions(-)

Naming the modified files on the git commit command line bypasses Git’s normal
use of the index and creates a revision that includes only changes to the named
files. The existing index remains unchanged, and Git ignores any other files that
may have been modified.

If a change involves multiple files, you have a couple of options. If you know exactly
which files were changed, you can always list them on the command line as shown
above. If you’re lazy, you can run git commit -a to make Git add all modified files to
the index before doing the commit. This last option has a couple of pitfalls, however.

238	 Chapter 7	 Scripting and the Shell	

First, there may be modified files that you don’t want to include in the commit. For
example, if super-script.sh had a config file and you had modified that config file for
debugging, you might not want to commit the modified file back to the repository.

The second issue is that git commit -a picks up only changes to files that are cur-
rently under revision control. It does not pick up new files that you may have cre-
ated in the working directory.

For an overview of Git’s state, you can run git status. This command informs you
of new files, modified files, and staged files all at once. For example, suppose that
you added more-scripts/another-script.sh. Git might show the following:

$ git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

	 modified: super-script.sh

Untracked files:
 (use "git add <file>..." to include in what will be committed)

	 more-scripts/
 tmpfile

no changes added to commit (use "git add" and/or "git commit -a")

another-script.sh is not listed by name because Git doesn’t yet see beneath the
more-scripts directory that contains it. You can see that super-script.sh has been
modified, and you can also see a spurious tmpfile that probably shouldn’t be in-
cluded in the repository. You can run git diff super-script.sh to see the changes
made to the script. git helpfully suggests commands for the next operations you
may want to perform.

Suppose you want to track the changes to super-script.sh separately from your
new another-script.sh.

$ git commit super-script.sh -m "The most super change yet"
Created commit 6f7853c: The most super change yet
 1 files changed, 1 insertions(+), 0 deletions(-)

To eradicate tmpfile from Git’s universe, create or edit a .gitignore file and put
the filename inside it. This makes Git ignore the tmpfile now and forever. Patterns
work, too.

$ echo tmpfile >> .gitignore

	 Revision control with Git	 239

Sc
rip

tin
g

/ S
he

ll

Finally, commit all the outstanding changes:

$ git add .
$ sudo git commit -m "Ignore tmpfile; Add another-script.sh to the repo"
Created commit 32978e6: Ignore tmpfile; add another-script.sh to the repo
 2 files changed, 2 insertions(+), 0 deletions(-)
 create mode 100644 .gitignore
 create mode 100755 more-scripts/another-script.sh

Note that the .gitignore file itself becomes part of the managed set of files, which is
usually what you want. It’s fine to re-add files that are already under management,
so git add . is an easy way to say “I want to make the new repository image look like
the working directory minus anything listed in .gitignore.” You couldn’t just do a git
commit -a in this situation because that would pick up neither another-script.sh
nor .gitignore; these files are new to Git and so must be explicitly added.

Git caveats
In an effort to fool you into thinking that it manages files’ permissions as well as
their contents, Git shows you file modes when adding new files to the repository.
It’s lying; Git does not track modes, owners, or modification times.

Git does track the executable bit. If you commit a script with the executable bit set,
any future clones will also be executable. But don’t expect Git to track ownership
or read-only status. A corollary is that you can’t count on using Git to recover com-
plex file hierarchies in situations where ownerships and permissions are important.

Another corollary is that you should never include plain text passwords or other
secrets in a Git repository. Not only are they open to inspection by anyone with
access to the repository, but they may also be inadvertently unpacked in a form
that’s accessible to the world.

Social coding with Git
The emergence and rapid growth of social development sites such as GitHub and
GitLab is one of the most important trends in recent computing history. Millions
of open source software projects are built and managed transparently by huge com-
munities of developers who use every conceivable language. Software has never
been easier to create and distribute.

GitHub and GitLab are, in essence, hosted Git repositories with a lot of added fea-
tures that relate to communication and workflow. Anyone can create a repository.
Repositories are accessible both through the git command and on the web. The web
UI is friendly and offers features to support collaboration and integration.

240	 Chapter 7	 Scripting and the Shell	

The social coding experience can be somewhat intimidating for neophytes, but in
fact it isn’t complicated once some basic terms and methodology are understood.

•	“master” is the default name assigned to the first branch in a new repository.
Most software projects use this default as their main line of development,
although some may not have a master branch at all. The master branch is
usually managed to contain current but functional code; bleeding-edge
development happens elsewhere. The latest commit is known as the tip
or head of the master branch.

•	 On GitHub, a fork is a snapshot of a repository at a specific point in time.
Forks happen when a user doesn’t have permission to modify the main
repository but wants to make changes, either for future integration with
the primary project or to create an entirely separate development path.

•	 A pull request is a request to merge changes from one branch or fork to
another. They’re read by the maintainers of the target project and can be
accepted to incorporate code from other users and developers. Every pull
request is also a discussion thread, so both principals and kibitzers can
comment on prospective code updates.

•	 A committer or maintainer is an individual who has write access to a
repository. For large open source projects, this highly coveted status is
given only to trusted developers who have a long history of contributions.

You’ll often land in a GitHub or GitLab repository when trying to locate or update
a piece of software. Make sure you’re looking at the trunk repository and not some
random person’s fork. Looked for a “forked from” indication and follow it.

Be cautious when evaluating new software from these sites. Below are a few ques-
tions to ponder before rolling out a random piece of new software at your site:

•	 How many contributors have participated in development?
•	 Does the commit history indicate recent, regular development?
•	 What is the license, and is it compatible with your organization’s needs?
•	 What language is the software written in, and do you know how to manage it?
•	 Is the documentation complete enough for effective use of the software?

Most projects have a particular branching strategy that they rely on to track changes
to the software. Some maintainers insist on rigorous enforcement of their chosen
strategy, and others are more lenient. One of the most widely used is the Git Flow
model developed by Vincent Driessen; see goo.gl/GDaF for details. Before con-
tributing to a project, familiarize yourself with its development practices to help
out the maintainers.

Above all, remember that open source developers are often unpaid. They appreciate
your patience and courtesy when engaging through code contributions or opening
support issues.

http://goo.gl/GDaF

	 Recommended reading	 241

Sc
rip

tin
g

/ S
he

ll

7.9	 Recommended reading
Brooks, Frederick P., Jr. The Mythical Man-Month: Essays on Software Engineer-
ing. Reading, MA: Addison-Wesley, 1995.

Chacon, Scott, and Straub, Ben. Pro Git, 2nd edition. 2014. git-scm.com/book/en/v2
The complete Pro Git book, released for free under a Creative Commons license.

Shells and shell scripting
Robbins, Arnold, and Nelson H. F. Beebe. Classic Shell Scripting. Sebastopol, CA:
O’Reilly Media, 2005. This book addresses the traditional (and portable) Bourne
shell dialect. It also includes quite a bit of good info on sed and awk.

Powers, Shelley, Jerry Peek, Tim O’Reilly, and Mike Loukides. Unix Power
Tools, (3rd Edition), Sebastopol, CA: O’Reilly Media, 2002. This classic UNIX book
covers a lot of ground, including sh scripting and various feats of command-line-fu.
Some sections are not aging gracefully, but the shell-related material remains relevant.

Sobell, Mark G. A Practical Guide to Linux Commands, Editors, and Shell Pro-
gramming. Upper Saddle River, NJ: Prentice Hall, 2012. This book is notable for its
inclusion of tcsh as well as bash.

Shotts, William E., Jr. The Linux Command Line: A Complete Introduction. San
Francisco, CA: No Starch Press, 2012. This book is specific to bash, but it’s a nice
combination of interactive and programming material, with some extras thrown
in. Most of the material is relevant to UNIX as well as Linux.

Blum, Richard, and Christine Bresnahan. Linux Command Line and Shell
Scripting Bible (3rd Edition). Indianapolis, IN: John Wiley & Sons, Inc. 2015. This
book focuses a bit more specifically on the shell than does the Shotts book, though
it’s also bash-specific.

Cooper, Mendel. Advanced Bash-Scripting Guide. www.tldp.org/LDP/abs/html.
A free and very good on-line book. Despite the title, it’s safe and appropriate for
those new to bash as well. Includes lots of good example scripts.

Regular expressions
Friedl, Jeffrey. Mastering Regular Expressions (3rd Edition), Sebastopol, CA:
O’Reilly Media, 2006.

Goyvaerts, Jan, and Steven Levithan. Regular Expressions Cookbook. Sebasto-
pol, CA: O’Reilly Media, 2012.

Goyvaerts, Jan. regular-expressions.info. A detailed on-line source of information
about regular expressions in all their various dialects.

Krumins, Peteris. Perl One-Liners: 130 Programs That Get Things Done. San Fran-
cisco, CA: No Starch Press, 2013.

http://git-scm.com/book/en/v2
http://www.tldp.org/LDP/abs/html
http://regular-expressions.info

242	 Chapter 7	 Scripting and the Shell	

Python
Sweigart, Al. Automate the Boring Stuff with Python: Practical Programming for
Total Beginners. San Francisco, CA: No Starch Press, 2015. This is an approachable
introductory text for Python 3 and programming generally. Examples include com-
mon administrative tasks.

Pilgrim, Mark. Dive Into Python. Berkeley, CA: Apress, 2004. This classic book
on Python 2 is also available for free on the web at diveintopython.net.

Pilgrim, Mark. Dive Into Python 3. Berkeley, CA: Apress, 2009. Dive Into Python
updated for Python 3. Also available to read free on the web at diveintopython3.net.

Ramalho, Luciano. Fluent Python. Sebastopol, CA: O’Reilly Media, 2015. Ad-
vanced, idiomatic Python 3.

Beazley, David, and Brian K. Jones. Python Cookbook (3rd Edition), Sebastopol,
CA: O’Reilly Media, 2013. Covers Python 3.

Gift, Noah, and Jeremy M. Jones. Python for Unix and Linux System Adminis-
trators, Sebastopol, CA: O’Reilly Media, 2008.

Ruby
Flanagan, David, and Yukihiro Matsumoto. The Ruby Programming Language.
Sebastopol, CA: O’Reilly Media, 2008. This classic, concise, and well-written summa-
ry of Ruby comes straight from the horse’s mouth. It’s relatively matter-of-fact and
does not cover Ruby 2.0 and beyond; however, the language differences are minor.

Black, David A. The Well-Grounded Rubyist (2nd Edition). Shelter Island, NY:
Manning Publications, 2014. Don’t let the title scare you off if you don’t have prior
Ruby experience; this is a good, all-around introduction to Ruby 2.1.

Thomas, Dave. Programming Ruby 1.9 & 2.0: The Pragmatic Programmer’s Guide
(4th Edition). Pragmatic Bookshelf, 2013. Classic and frequently updated.

Fulton, Hal. The Ruby Way: Solutions and Techniques in Ruby Programming (3rd
Edition). Upper Saddle River, NJ: Addison-Wesley, 2015. Another classic and up-
to-date guide to Ruby, with a philosophical bent.

http://diveintopython.net
http://diveintopython3.net

Us
er

 M
an

ag
em

en
t

			 243

Modern computing environments span physical hardware, cloud systems, and virtual
hosts. Along with the flexibility of this hybrid infrastructure comes an increasing
need for centralized and structured account management. System administrators
must understand both the traditional account model used by UNIX and Linux and
the ways in which this model has been extended to integrate with directory services
such as LDAP and Microsoft’s Active Directory.

Account hygiene is a key determinant of system security. Infrequently used accounts
are prime targets for attackers, as are accounts with easily guessed passwords. Even
if you use your system’s automated tools to add and remove users, it’s important to
understand the changes the tools are making. For this reason, we start our discus-
sion of account management with the flat files you would modify to add users to a
stand-alone machine. In later sections, we examine the higher-level user manage-
ment commands that come with our example operating systems and the configu-
ration files that control their behavior.

Most systems also have simple GUI tools for adding and removing users, but these
tools don’t usually support advanced features such as a batch mode or advanced
localization. The GUI tools are simple enough that we don’t think it’s helpful to
review their operation in detail, so in this chapter we stick to the command line.

8 User Management

244	 Chapter 8	 User Management	

This chapter focuses fairly narrowly on adding and removing users. Many topics
associated with user management actually live in other chapters and are referenced
here only indirectly. For example,

•	 Pluggable authentication modules (PAM) for password encryption and
the enforcement of strong passwords are covered in Chapter 17, Single
Sign-On. See the material starting on page 590.

•	 Password vaults for managing passwords are described in Chapter 27,
Security (see page 993).

•	 Directory services such as OpenLDAP and Active Directory are outlined
in Chapter 17, Single Sign-On, starting on page 580.

•	 Policy and regulatory issues are major topics of Chapter 31, Methodol-
ogy, Policy, and Politics.

8.1	 Account mechanics
A user is really nothing more than a number. Specifically, an unsigned 32-bit integer
known as the user ID or UID. Almost everything related to user account manage-
ment revolves around this number.

The system defines an API (through standard C library routines) that maps UID
numbers back and forth into more complete sets of information about users. For
example, getpwuid() accepts a UID as an argument and returns a corresponding
record that includes information such as the associated login name and home di-
rectory. Likewise, getpwnam() looks up this same information by login name.

Traditionally, these library calls obtained their information directly from a text file,
/etc/passwd. As time went on, they began to support additional sources of informa-
tion such as network information databases (e.g., LDAP) and read-protected files
in which encrypted passwords could be stored more securely.

These layers of abstraction (which are often configured in the nsswitch.conf file)
enable higher-level processes to function without direct knowledge of the underlying
account management method in use. For example, when you log in as “dotty”, the
logging-in process (window server, login, getty, or whatever) does a getpwnam()
on dotty and then validates the password you supply against the encrypted passwd
record returned by the library, regardless of its actual origin.

We start with the /etc/passwd file approach, which is still supported everywhere.
The other options emulate this model in spirit if not in form.

See page 590 for more
details regarding the
nsswitch.conf file.

Us
er

 M
an

ag
em

en
t

	 The /etc/passwd file	 245

8.2	 The /etc/passwd file
/etc/passwd is a list of users recognized by the system. It can be extended or re-
placed by one or more directory services, so it’s complete and authoritative only
on stand-alone systems.

Historically, each user’s encrypted password was also stored in the /etc/passwd file,
which is world-readable. However, the onset of more powerful processors made it
increasingly feasible to crack these exposed passwords. In response, UNIX and Li-
nux moved the passwords to a separate file (/etc/master.passwd on FreeBSD and
/etc/shadow on Linux) that is not world-readable. These days, the passwd file itself
contains only a pro-forma entry to mark the former location of the password field
(x on Linux and * on FreeBSD).

The system consults /etc/passwd at login time to determine a user’s UID and home
directory, among other things. Each line in the file represents one user and contains
seven fields separated by colons:

•	 Login name
•	 Encrypted password placeholder (see page 246)
•	 UID (user ID) number
•	 Default GID (group ID) number
•	 Optional “GECOS” information: full name, office, extension, home phone
•	 Home directory
•	 Login shell

For example, the following lines are all valid /etc/passwd entries:

root:x:0:0:The System,,x6096,:/:/bin/sh
jl:!:100:0:Jim Lane,ECOT8-3,,:/staff/jl:/bin/sh
dotty:x:101:20:: /home/dotty:/bin/tcsh

If user accounts are shared through a directory service such as LDAP, you might
see special entries in the passwd file that begin with + or -. These entries tell the
system how to integrate the directory service’s data with the contents of the passwd
file. This integration can also be set up in the /etc/nsswitch.conf file.

The following sections discuss the /etc/passwd fields in more detail.

Login name
Login names (also known as usernames) must be unique and, depending on the
operating system, may have character set restrictions. All UNIX and Linux flavors
currently limit logins to 32 characters.

Login names can never contain colons or newlines, because these characters are
used as field separators and entry separators in the passwd file, respectively. De-
pending on the system, other character restrictions may also be in place. Ubuntu
is perhaps the most lax, as it allows logins starting with—or consisting entirely

See page 590 for more
information about the
nsswitch.conf file.

246	 Chapter 8	 User Management	

of—numbers and other special characters.1 For reasons too numerous to list, we
recommend sticking with alphanumeric characters for logins, using lower case, and
starting login names with a letter.

Login names are case sensitive. We are not aware of any problems caused by mixed-
case login names, but lowercase names are traditional and also easier to type. Con-
fusion could ensue if the login names john and John were different people.

Login names should be easy to remember, so random sequences of letters do not
make good login names. Since login names are often used as email addresses, it’s
useful to establish a standard way of forming them. It should be possible for users
to make educated guesses about each other’s login names. First names, last names,
initials, or some combination of these make reasonable naming schemes. Keep in
mind that some email systems treat addresses as being case insensitive, which is yet
another good reason to standardize on lowercase login names.2

Any fixed scheme for choosing login names eventually results in duplicate names,
so you sometimes have to make exceptions. Choose a standard way of dealing with
conflicts, such as adding a number to the end.

It’s common for large sites to implement a full-name email addressing scheme (e.g.,
John.Q.Public@mysite.com) that hides login names from the outside world. This is
a good idea, but it doesn’t obviate any of the naming advice given above. If for no
other reason than the sanity of administrators, it’s best if login names have a clear
and predictable correspondence to users’ actual names.

Finally, a user should have the same login name on every machine. This rule is
mostly for convenience, both yours and the user’s.

Encrypted password
Historically, systems encrypted users’ passwords with DES. As computing power
increased, those passwords became trivial to crack. Systems then moved to hidden
passwords and to MD5-based cryptography. Now that significant weaknesses have
been discovered in MD5, salted SHA-512-based password hashes have become the
current standard. See the Guide to Cryptography document at owasp.org for up-
to-date guidance.

Our example systems support a variety of encryption algorithms, but they all de-
fault to SHA-512. You shouldn’t need to update the algorithm choice unless you are
upgrading systems from much older releases.

On FreeBSD, the default algorithm can be modified through the /etc/login.conf file.

	 1.	 For some unfortunate reason, the permissible character set even includes Unicode emoticons. That
makes us .

	 2.	 RFC5321 requires that the local portion of an address (that is, the part before the @ sign) be treated
as case sensitive. The remainder of the address is handled according to the standards of DNS, which
is case insensitive. Unfortunately, this distinction is subtle, and it is not universally implemented. Re-
member also that many legacy email systems predate the authority of the IETF.

mailto:Q.Public@mysite.com
http://owasp.org

Us
er

 M
an

ag
em

en
t

	 The /etc/passwd file	 247

On Debian and Ubuntu, the default was formerly managed through /etc/login.defs,
but this practice has since been obsoleted by Pluggable Authentication Modules
(PAM). Default password policies, including the hashing algorithm to use, can be
found in /etc/pam.d/common-passwd.

On Red Hat and CentOS, the password algorithm can still be set in /etc/login.defs
or through the authconfig command, as shown here:

$ sudo authconfig --passalgo=sha512 --update

Changing the password algorithm does not update existing passwords, so users
must manually update their passwords before the new algorithm can take effect.
To invalidate a user’s password and force an update, use

$ chage -d 0 username

Password quality is another important issue. In theory, longer passwords are more
secure, as are passwords that include a range of different character types (e.g., up-
percase letters, punctuation marks, and numbers).

Most systems let you impose password construction standards on your users, but
keep in mind that users can be adept at skirting these requirements if they find
them excessive or burdensome. Table 8.1 shows the default standards used by our
example systems.

Table 8.1	 Password quality standards

System Default requirements Where set

Red Hat
CentOS

8+ characters, complexity enforced /etc/login.defs
/etc/security/pwquality.conf
/etc/pam.d/system-auth

Debian
Ubuntu

6+ characters, complexity enforced /etc/login.defs
/etc/pam.d/common-password

FreeBSD No constraints /etc/login.conf

Password quality requirements are a matter of debate, but we recommend that you
prioritize length over complexity.3 Twelve characters is the minimal length for a
future-proof password; note that this is significantly longer than any system’s de-
fault. Your site may also have organization-wide standards for password quality. If
it does, defer to those settings.

If you choose to bypass your system’s tools for adding users and instead modify
/etc/passwd by hand (by running the vipw command—see page 256) to create a
new account, put a * (FreeBSD) or an x (Linux) in the encrypted password field.

	 3.	 See xkcd.com/comics/password_strength.png for more commentary on this concept.

RHEL

See page 992 for
more comments on
password selection.

http://xkcd.com/comics/password_strength.png

248	 Chapter 8	 User Management	

This measure prevents unauthorized use of the account until you or the user has
set a real password.

Encrypted passwords are of constant length (86 characters for SHA-512, 34 char-
acters for MD5, and 13 characters for DES) regardless of the length of the unen-
crypted password. Passwords are encrypted in combination with a random “salt”
so that a given password can correspond to many different encrypted forms. If two
users happen to select the same password, this fact usually cannot be discovered
by inspection of the encrypted passwords.

MD5-encrypted password fields in the shadow password file always start with 1
or $md5$. Blowfish passwords start with 2, SHA-256 passwords with 5, and
SHA-512 passwords with 6.

UID (user ID) number
By definition, root has UID 0. Most systems also define pseudo-users such as bin and
daemon to be the owners of commands or configuration files. It’s customary to put
such fake logins at the beginning of the /etc/passwd file and to give them low UIDs
and a fake shell (e.g., /bin/false) to prevent anyone from logging in as those users.

To allow plenty of room for nonhuman users you might want to add in the future,
we recommend that you assign UIDs to real users starting at 1000 or higher. (The
desired range for new UIDs can be specified in the configuration files for useradd.)
By default, our Linux reference systems start UIDs at 1000 and go up from there.
FreeBSD starts the first user at UID 1001 and then adds one for each additional user.

Do not recycle UIDs, even when users leave your organization and you delete their
accounts. This precaution prevents confusion if files are later restored from backups,
where users may be identified by UID rather than by login name.

UIDs should be kept unique across your entire organization. That is, a particular
UID should refer to the same login name and the same person on every machine
that person is authorized to use. Failure to maintain distinct UIDs can result in se-
curity problems with systems such as NFS and can also result in confusion when a
user moves from one workgroup to another.

It can be hard to maintain unique UIDs when groups of machines are administered
by different people or organizations. The problems are both technical and political.
The best solution is to have a central database or directory server that contains a
record for each user and enforces uniqueness.

A simpler scheme is to assign each group within an organization its own range of
UIDs and to let each group manage its own range. This solution keeps the UID
spaces separate but does not address the parallel issue of unique login names. Re-
gardless of your scheme, consistency of approach is the primary goal. If consistency
isn’t feasible, UID uniqueness is the second-best target.

See page 67 for
a description of
the root account.

Us
er

 M
an

ag
em

en
t

	 The /etc/passwd file	 249

The Lightweight Directory Access Protocol (LDAP) is a popular system for manag-
ing and distributing account information and works well for large sites. It is briefly
outlined in this chapter starting on page 267 and is covered more thoroughly in
Chapter 17, Single Sign-On, starting on page 580.

Default GID (group ID) number
Like a UID, a group ID number is a 32-bit integer. GID 0 is reserved for the group
called root, system, or wheel. As with UIDs, the system uses several predefined
groups for its own housekeeping. Alas, there is no consistency among vendors. For
example, the group “bin” has GID 1 on Red Hat and CentOS, GID 2 on Ubuntu
and Debian, and GID 7 on FreeBSD.

In ancient times, when computing power was expensive, groups were used for ac-
counting purposes so that the right department could be charged for your seconds
of CPU time, minutes of login time, and kilobytes of disk used. Today, groups are
used primarily to share access to files.

The /etc/group file defines the groups, with the GID field in /etc/passwd providing
a default (or “effective”) GID at login time. The default GID is not treated specially
when access is determined; it is relevant only to the creation of new files and di-
rectories. New files are normally owned by your effective group; to share files with
others in a project group, you must manually change the files’ group owner.

To facilitate collaboration, you can set the setgid bit (02000) on a directory or mount
filesystems with the grpid option. Both of these measures make newly created files
default to the group of their parent directory.

GECOS field
The GECOS field is sometimes used to record personal information about each user.
The field is a relic from a much earlier time when some early UNIX systems used
General Electric Comprehensive Operating Systems for various services. It has no
well-defined syntax. Although you can use any formatting conventions you like,
conventionally, comma-separated GECOS entries are placed in the following order:

•	 Full name (often the only field used)
•	 Office number and building
•	 Office telephone extension
•	 Home phone number

The chfn command lets users change their own GECOS information. chfn is useful
for keeping things like phone numbers up to date, but it can be misused. For exam-
ple, a user can change the information to be obscene or incorrect. Some systems
can be configured to restrict which fields chfn can modify; most college campus-
es disable it entirely. On most systems, chfn understands only the passwd file, so
if you use LDAP or some other directory service for login information, chfn may
not work at all.

See page 133 for more
information about
setgid directories.

See page 580 for
more information
about LDAP.

250	 Chapter 8	 User Management	

Home directory
A user’s home directory is his or her default directory at login time. Home direc-
tories are where login shells look for account-specific customizations such as shell
aliases and environment variables, as well as SSH keys, server fingerprints, and
other program state.

Be aware that if home directories are mounted over a network filesystem, they may
be unavailable in the event of server or network problems. If the home directory
is missing at login time, the system might print a message such as “no home di-
rectory” and put the user in /.4 Alternatively, it might disallow the login entirely,
depending on the system configuration. Home directories are covered in more
detail on page 257.

Login shell
The login shell is normally a command interpreter, but it can be any program. A
Bourne-shell compatible sh is the default for FreeBSD, and bash (the GNU “Bourne
again” shell) is the default for Linux.

Some systems permit users to change their shell with the chsh command, but as
with chfn, this command might not work if you are using LDAP or some other
directory service to manage login information. If you use the /etc/passwd file, a
sysadmin can always change a user’s shell by editing the passwd file with vipw.

8.3	 The Linux /etc/shadow file
On Linux, the shadow password file is readable only by the superuser and serves to
keep encrypted passwords safe from prying eyes and password cracking programs.
It also includes some additional account information that wasn’t provided for in
the original /etc/passwd format. These days, shadow passwords are the default on
all systems.

The shadow file is not a superset of the passwd file, and the passwd file is not gen-
erated from it. You must maintain both files or use tools such as useradd that main-
tain both files on your behalf. Like /etc/passwd, /etc/shadow contains one line for
each user. Each line contains nine fields, separated by colons:

•	 Login name
•	 Encrypted password
•	 Date of last password change
•	 Minimum number of days between password changes
•	 Maximum number of days between password changes
•	 Number of days in advance to warn users about password expiration

	 4.	 This message appears when you log in on the console or on a terminal, but not when you log in
through a display manager such as xdm, gdm, or kdm. Not only will you not see the message, but
you will generally be logged out immediately because of the display manager’s inability to write to the
proper directory (e.g., ~/.gnome).

See page 189 for
more information
about shells.

Us
er

 M
an

ag
em

en
t

	 The Linux /etc/shadow file	 251

•	 Days after password expiration that account is disabled
•	 Account expiration date
•	 A field reserved for future use which is currently always empty

Only the values for the username and password are required. Absolute date fields
in /etc/shadow are specified in terms of days (not seconds) since Jan 1, 1970, which
is not a standard way of reckoning time on UNIX or Linux systems.5

A typical shadow entry looks like this:

millert:6iTEFbMTM$CXmxPwErbEef9RUBvf1zv8EgXQdaZg2eOd5uXyvt4sFzi6G4l
IqavLilTQgniAHm3Czw/LoaGzoFzaMm.YwOl/:16971:0:180:14:::

Here is a more complete description of each field:

•	 The login name is the same as in /etc/passwd. This field connects a user’s
passwd and shadow entries.

•	 The encrypted password is identical in concept and execution to the one
previously stored in /etc/passwd.

•	 The last change field records the time at which the user’s password was
last changed. This field is filled in by the passwd command.

•	 The fourth field sets the number of days that must elapse between pass-
word changes. The idea is to force authentic changes by preventing users
from immediately reverting to a familiar password after a required change.
However, this feature can be somewhat dangerous in the aftermath of a
security intrusion. We suggest setting this field to 0.

•	 The fifth field sets the maximum number of days allowed between pass-
word changes. This feature allows the administrator to enforce password
aging; see page 995 for more information. Under Linux, the actual en-
forced maximum number of days is the sum of this field and the seventh
(grace period) field.

•	 The sixth field sets the number of days before password expiration when
login should begin to warn the user of the impending expiration.

•	 The eighth field specifies the day (in days since Jan 1, 1970) on which the
user’s account will expire. The user cannot log in after this date until the
field has been reset by an administrator. If the field is left blank, the ac-
count never expires.

	 You can use usermod to set the expiration field. It accepts dates in the
format yyyy-mm-dd.

•	 The ninth field is reserved for future use.6

	 5.	 To convert between the date in seconds and in days run: expr `date+%s` / 86400
	 6.	 Or, at this rate, may never be used…

252	 Chapter 8	 User Management	

Let’s look again at our example shadow line:

millert:6iTEFbMTM$CXmxPwErbEef9RUBvf1zv8EgXQdaZg2eOd5uXyvt4sFzi6G4l
IqavLilTQgniAHm3Czw/LoaGzoFzaMm.YwOl/:17336:0:180:14:::

In this example, the user millert last changed his password on June 19, 2017. The
password must be changed again within 180 days, and millert will receive warnings
that the password needs to be changed for the last two weeks of this period. The
account does not have an expiration date.

Use the pwconv utility to reconcile the contents of the shadow file and those of
the passwd file, picking up any new additions and deleting users that are no longer
listed in passwd.

8.4	 FreeBSD's /etc/master.passwd and /etc/login.conf files
The adoption of PAM and the availability of similar user management commands
on FreeBSD and Linux have made account administration relatively consistent
across platforms, at least at the topmost layer. However, a few differences do exist
in the underlying implementation.

The /etc/master.passwd file
On FreeBSD, the “real” password file is /etc/master.passwd, which is readable only
by root. The /etc/passwd file exists for backward compatibility and does not contain
any passwords (instead, it has * characters as placeholders).

To edit the password file, run the vipw command. This command invokes your
editor on a copy of /etc/master.passwd, then installs the new version and regener-
ates the /etc/passwd file to reflect any changes. (vipw is standard on all UNIX and
Linux systems, but it’s particularly important to use on FreeBSD because the dual
password files need to stay synchronized. See page 256.)

In addition to containing all the fields of the passwd file, the master.passwd file
contains three bonus fields. Unfortunately, they’re squeezed in between the default
GID field and the GECOS field, so the file formats are not directly compatible. The
extra three fields are

•	 Login class
•	 Password change time
•	 Expiration time

The login class (if one is specified) refers to an entry in the /etc/login.conf file. The
class determines resource consumption limits and controls a variety of other set-
tings. See the next section for specifics.

The password change time field implements password aging. It contains the time in
seconds since the UNIX epoch after which the user will be forced to change his or her
password. You can leave this field blank, indicating that the password never expires.

Us
er

 M
an

ag
em

en
t

	 FreeBSD’s /etc/master.passwd and /etc/login.conf files	 253

The account expiration time gives the time and date (in seconds, as for password
expiration) at which the user’s account will expire. The user cannot log in after this
date unless the field is reset by an administrator. If this field is left blank, the ac-
count will not expire.

The /etc/login.conf file
FreeBSD’s /etc/login.conf file sets account-related parameters for users and groups
of users. Its format consists of colon-delimited key/value pairs and Boolean flags.

When a user logs in, the login class field of /etc/master.passwd determines which
entry in /etc/login.conf to apply. If the user’s master.passwd entry does not specify
a login class, the default class is used.

A login.conf entry can set any of the following:

•	 Resource limits (maximum process size, maximum file size, number of
open files, etc.)

•	 Session accounting limits (when logins are allowed, and for how long)
•	 Default environment variables
•	 Default paths (PATH, MANPATH, etc.)
•	 Location of the “message of the day” file
•	 Host and TTY-based access control
•	 Default umask
•	 Account controls (mostly superseded by the PAM module pam_passwdqc)

The following example overrides several of the default values. It’s intended for as-
signment to system administrators.

sysadmin:\
	 :ignorenologin:\
	 :requirehome@:\
	 :maxproc=unlimited:\
	 :openfiles=unlimited:\
	 :tc=default:

Users in the sysadmin login class are allowed to log in even when /var/run/nologin
exists, and they need not have a working home directory (this option permits logins
when NFS is not working). Sysadmin users can start any number of processes and
open any number of files.7 The last line pulls in the contents of the default entry.

Although FreeBSD has reasonable defaults, you might be interested in updating the
/etc/login.conf file to set idle timeout and password expiration warnings. For ex-
ample, to set the idle timeout to 15 minutes and enable warnings seven days before
passwords expire, you would add the following clauses to the definition of default:

	 :warnpassword=7d:\
	 :idletime=15m:\

	 7.	 There is still a technical limit on the total number of processes and open files that the kernel can sup-
port, but no artificial limit is imposed.

254	 Chapter 8	 User Management	

When you modify the /etc/login.conf file, you must also run the following com-
mand to compile your changes into the hashed version of the file that the system
actually refers to in daily operation:

$ cap_mkdb /etc/login.conf

8.5	 The /etc/group file
The /etc/group file contains the names of UNIX groups and a list of each group’s
members. Here’s a portion of the group file from a FreeBSD system:

wheel:*:0:root
sys:*:3:root,bin
operator:*:5:root
bin:*:7:root
ftp:*:14:dan
staff:*:20:dan,ben,trent
nobody:*:65534:lpd

Each line represents one group and contains four fields:

•	 Group name
•	 Encrypted password or a placeholder
•	 GID number
•	 List of members, separated by commas (be careful not to add spaces)

As in /etc/passwd, fields are separated by colons. Group names should be limited to
eight characters for compatibility, although many systems do not actually require this.

It’s possible to set a group password that allows arbitrary users to enter the group
with the newgrp command. However, this feature is rarely used. The group pass-
word can be set with gpasswd, which under Linux stores the encrypted password
in the /etc/gshadow file.

As with usernames and UIDs, group names and GIDs should be kept consistent
among machines that share files through a network filesystem. Consistency can be
hard to maintain in a heterogeneous environment because different operating sys-
tems use different GIDs for standard system groups.

If a user defaults to a particular group in /etc/passwd but does not appear to be
in that group according to /etc/group, /etc/passwd wins the argument. The group
memberships granted at login time are the union of those found in the passwd
and group files.

Some older systems limit the number of groups a user can belong to. There is no
real limit on current Linux and FreeBSD kernels.

Much as with UIDs, we recommend minimizing the potential for GID collisions
by starting local groups at GID 1000 or higher.

	 Manual steps for adding users	 255

Us
er

 M
an

ag
em

en
t

The UNIX tradition was originally to add new users to a group that represented
their general category such as “students” or “finance.” However, this convention in-
creases the likelihood that users will be able to read one another’s files because of
slipshod permission settings, even if that is not really the intention of the files’ owner.

To avoid this problem, system utilities such as useradd and adduser now default to
putting each user in his or her own personal group (that is, a group named after the
user and which includes only that user). This convention is much easier to maintain
if personal groups’ GIDs match their corresponding users’ UIDs.

To let users share files by way of the group mechanism, create separate groups for
that purpose. The idea behind personal groups is not to discourage the use of groups
per se—it’s simply to establish a more restrictive default group for each user so that
files are not inadvertently shared. You can also limit access to newly created files
and directories by setting your user’s default umask in a default startup file such as
/etc/profile or /etc/bashrc (see page 258).

Group membership can also serve as a marker for other contexts or privileges. For
example, rather than entering the username of each system administrator into the
sudoers file, you can configure sudo so that everyone in the “admin” group auto-
matically has sudo privileges.

Linux supplies the groupadd, groupmod, and groupdel commands to create,
modify, and delete groups.

FreeBSD uses the pw command to perform all these functions. To add the user “dan”
to the group “staff ” and then verify that the change was properly implemented, you
would run the following commands:

$ sudo pw groupmod staff -m dan
$ pw groupshow staff
staff:*:20:dan,evi,garth,trent,ben

8.6	 Manual steps for adding users
Before you create an account for a new user at a corporate, government, or ed-
ucational site, it’s important that the user sign and date a copy of your local user
agreement and policy statement. (What?! You don’t have a user agreement and
policy statement? See page 1132 for more information about why you need one
and what to put in it.)

Users have no particular reason to want to sign a policy agreement, so it’s to your
advantage to secure their signatures while you still have some leverage. We find that
it takes extra effort to secure a signed agreement after an account has been released.
If your process allows for it, have the paperwork precede the creation of the account.

Mechanically, the process of adding a new user consists of several steps required
by the system and a few more that establish a useful environment for the new user
and incorporate the user into your local administrative system.

See page 70 for
more information
about sudo.

256	 Chapter 8	 User Management	

Required:

•	 Edit the passwd and shadow files (or the master.passwd file on FreeBSD)
to define the user’s account.

•	 Add the user to the /etc/group file (not really necessary, but nice).
•	 Set an initial password.
•	 Create, chown, and chmod the user’s home directory.
•	 Configure roles and permissions (if you use RBAC; see page 259).

For the user:

•	 Copy default startup files to the user’s home directory.

For you:

•	 Have the new user sign your policy agreement.
•	 Verify that the account is set up correctly.
•	 Document the user’s contact information and account status.

This list cries out for a script or tool, and fortunately, each of our example systems
includes at least a partial off-the-shelf solution in the form of an adduser or useradd
command. We take a look at these tools starting on page 260.

Editing the passwd and group files
Manual maintenance of the passwd and group files is error prone and inefficient, so
we recommend the slightly higher-level tools such as useradd, adduser, usermod,
pw, and chsh as daily drivers.

If you do have to make manual changes, use the vipw command to edit the passwd
and shadow files (or on FreeBSD, the master.passwd file). Although it sounds
vi-centric, it actually invokes your favorite editor as defined in the EDITOR envi-
ronment variable.8 More importantly, it locks the files so that editing sessions (or
your editing and a user’s password change) cannot collide.

After you run vipw, our Linux reference systems remind you to edit the shadow
file after you have edited the passwd file. Use vipw -s to do so.

Under FreeBSD, vipw edits the master.passwd file instead of /etc/passwd. After
installing your changes, vipw runs pwd_mkdb to generate the derived passwd
file and two hashed versions of master.passwd (one that contains the encrypted
passwords and is readable only by root, and another that lacks the passwords and
is world-readable).

For example, running vipw and adding the following line would define an account
called whitney:

whitney:*:1003:1003::0:0:Whitney Sather, AMATH 3-27, x7919,:
/home/staff/whitney:/bin/sh

	 8.	 When you first run vipw (or vigr), Ubuntu and Debian ask you to select one of vim.basic, vim.tiny,
nano, and ed. If you change your mind after the fact, run select-editor.

	 Manual steps for adding users	 257

Us
er

 M
an

ag
em

en
t

Note the star in the encrypted password field. This prevents use of the account until
a real password is set with the passwd command (see the next section).

Next, edit /etc/group by running vigr. Add a line for the new personal group if
your site uses them, and add the user’s login name to each of the groups in which
the user should have membership.

As with vipw, using vigr ensures that the changes made to the /etc/group file are
sane and atomic. After an edit session, vigr should prompt you to run vigr -s to
edit the group shadow (gshadow) file as well. Unless you want to set a password
for the group—which is unusual—you can skip this step.

On FreeBSD, use pw groupmod to make changes to the /etc/group file.

Setting a password
Set a password for a new user with

$ sudo passwd newusername

You’ll be prompted for the actual password.

Some automated systems for adding new users do not require you to set an initial
password. Instead, they force the user to set a password on first login. Although
this feature is convenient, it’s a giant security hole: anyone who can guess new login
names (or look them up in /etc/passwd) can swoop down and hijack accounts be-
fore the intended users have had a chance to log in.

Among many other functions, FreeBSD’s pw command can also generate and set
random user passwords:

$ sudo pw usermod raphael -w random
	 Password for 'raphael' is: 1n3tcYu1s

We’re generally not fans of random passwords for ongoing use. However, they are
a good option for transitional passwords that are only intended to last until the
account is actually used.

Creating the home directory and installing startup files
useradd and adduser create new users’ home directories for you, but you’ll likely
want to double-check the permissions and startup files for new accounts.

There’s nothing magical about home directories. If you neglected to include a home
directory when setting up a new user, you can create it with a simple mkdir. You
need to set ownerships and permissions on the new directory as well, but this is
most efficiently done after you’ve installed any local startup files.

Startup files traditionally begin with a dot and end with the letters rc, short for
“run command,” a relic of the CTSS operating system. The initial dot causes ls to
hide these “uninteresting” files from directory listings unless the -a option is used.

See page 992 for
tips on selecting
good passwords.

258	 Chapter 8	 User Management	

We recommend that you include default startup files for each shell that is popular
on your systems so that users continue to have a reasonable default environment
even if they change shells. Table 8.2 lists a variety of common startup files.

Table 8.2	 Common startup files and their uses

Target Filename Typical uses

all shells .login_conf Sets user-specific login defaults (FreeBSD)

sh .profile Sets search path, terminal type, and environment

bash a .bashrc Sets the terminal type (if needed)
Sets biff and mesg switches

.bash_profile Sets up environment variables
Sets command aliases
Sets the search path
Sets the umask value to control permissions
Sets CDPATH for filename searches
Sets the PS1 (prompt) and HISTCONTROL variables

csh/tcsh .login Read by “login” instances of csh
.cshrc Read by all instances of csh

vi/vim .vimrc/.viminfo Sets vi/vim editor options
emacs .emacs Sets emacs editor options and key bindings

git .gitconfig Sets user, editor, color, and alias options for Git

GNOME .gconf GNOME user configuration via gconf
.gconfpath Path for additional user configuration via gconf

KDE .kde/ Directory of configuration files

a.	 bash also reads .profile or /etc/profile in emulation of sh. The .bash_profile file is read by login
shells, and the .bashrc file is read by interactive, non-login shells.

Sample startup files are traditionally kept in /etc/skel. If you customize your sys-
tems’ startup file examples, /usr/local/etc/skel is a reasonable place to put the
modified copies.

The entries in Table 8.2 for the GNOME and KDE window environments are re-
ally just the beginning. In particular, take a look at gconf, which is the tool that
stores application preferences for GNOME programs in a manner analogous to
the Windows registry.

Make sure that the default shell files you give to new users set a reasonable default
value for umask; we suggest 077, 027, or 022, depending on the friendliness and
size of your site. If you do not assign new users to individual groups, we recom-

See page 138 for
details on umask.

	 Manual steps for adding users	 259

Us
er

 M
an

ag
em

en
t

mend umask 077, which gives the owner full access but the group and the rest of
the world no access.

Depending on the user’s shell, /etc may contain system-wide startup files that
are processed before the user’s own startup files. For example, bash and sh read
/etc/profile before processing ~/.profile and ~/.bash_profile. These files are a good
place in which to put site-wide defaults, but bear in mind that users can override
your settings in their own startup files. For details on other shells, see the man page
for the shell in question.

By convention, Linux also keeps fragments of startup files in the /etc/profile.d di-
rectory. Although the directory name derives from sh conventions, /etc/profile.d
can actually include fragments for several different shells. The specific shells being
targeted are distinguished by filename suffixes (*.sh, *.csh, etc.). There’s no magic
profile.d support built into the shells themselves; the fragments are simply execut-
ed by the default startup script in /etc (e.g., /etc/profile in the case of sh or bash).

Separating the default startup files into fragments facilitates modularity and al-
lows software packages to include their own shell-level defaults. For example, the
colorls.* fragments coach shells on how to properly color the output of ls so as to
make it unreadable on dark backgrounds.

Setting home directory permissions and ownerships
Once you’ve created a user’s home directory and copied in a reasonable default en-
vironment, turn the directory over to the user and make sure that the permissions
on it are appropriate. The command

$ sudo chown -R newuser:newgroup ~newuser

sets ownerships properly. Note that you cannot use

$ sudo chown newuser:newgroup ~newuser/.*

to chown the dot files because newuser would then own not only his or her own files
but also the parent directory “..” as well. This is a common and dangerous mistake.

Configuring roles and administrative privileges
Role-based access control (RBAC) allows system privileges to be tailored for indi-
vidual users and is available on many of our example systems. RBAC is not a tra-
ditional part of the UNIX or Linux access control model, but if your site uses it,
role configuration must be a part of the process of adding users. RBAC is covered
in detail starting on page 85 in the Access Control and Rootly Powers chapter.

Legislation such as the Sarbanes-Oxley Act, the Health Insurance Portability and
Accountability Act (HIPAA), and the Gramm-Leach-Bliley Act in the United States
has complicated many aspects of system administration in the corporate arena,
including user management. Roles might be your only viable option for fulfilling
some of the SOX, HIPAA, and GLBA requirements.

See Chapter 31 for
more information
about SOX and GLBA

260	 Chapter 8	 User Management	

Finishing up
To verify that a new account has been properly configured, first log out, then log
in as the new user and execute the following commands:

$ pwd		 # To verify the home directory
$ ls -la		 # To check owner/group of startup files

You need to notify new users of their login names and initial passwords. Many sites
send this information by email, but that’s generally not a secure choice. Better options
are to do it in person, over the phone, or through a text message. (If you are adding
500 new freshmen to the campus’s CS-1 machines, punt the notification problem to
the instructor!) If you must distribute account passwords by email, make sure the
passwords expire in a couple of days if they are not used and changed.

If your site requires users to sign a written policy agreement or appropriate use
policy, be sure this step has been completed before you release a new account.
This check prevents oversights and strengthens the legal basis of any sanctions you
might later need to impose. This is also the time to point users toward additional
documentation on local customs.

Remind new users to change their passwords immediately. You can enforce this
by setting the password to expire within a short time. Another option is to have a
script check up on new users and be sure their encrypted passwords have changed.9

In environments where you know users personally, it’s relatively easy to keep track
of who’s using a system and why. But if you manage a large and dynamic user base,
you need a more formal way to keep track of accounts. Maintaining a database of
contact information and account statuses helps you figure out, once the act of creating
the account has faded from memory, who people are and why they have an account.

8.7	 Scripts for adding users: useradd, adduser, and newusers
Our example systems all come with a useradd or adduser script that implements
the basic procedure outlined above. However, these scripts are configurable, and
you will probably want to customize them to fit your environment. Unfortunately,
each system has its own idea of what you should customize, where you should im-
plement the customizations, and what the default behavior should be. Accordingly,
we cover these details in vendor-specific sections.

Table 8.3 is a handy summary of commands and configuration files related to man-
aging users.

	 9.	 Because the same password can have many encrypted representations, this method verifies only that
the user has reset the password, not that it has actually been changed to a different password.

See page 1132 for more
information about
written user contracts.

Us
er

 M
an

ag
em

en
t

	 Scripts for adding users: useradd, adduser, and newusers	 261

Table 8.3	 Commands and configuration files for user management

System Commands Configuration files

All Linux useradd, usermod, userdel /etc/login.defs
/etc/default/useradd

Debian/Ubuntu a adduser, deluser /etc/adduser.conf
/etc/deluser.conf

FreeBSD adduser, rmuser /etc/login.conf

a.	 This suite wraps the standard Linux version and includes a few more features.

useradd on Linux
Most Linux distributions include a basic useradd suite that draws its configuration
parameters from both /etc/login.defs and /etc/default/useradd.

The login.defs file addresses issues such as password aging, choice of encryption
algorithms, location of mail spool files, and the preferred ranges of UIDs and GIDs.
You maintain the login.defs file by hand. The comments do a good job of explain-
ing the various parameters.

Parameters stored in the /etc/default/useradd file include the location of home
directories and the default shell for new users. You set these defaults through the
useradd command itself. useradd -D prints the current values, and -D in com-
bination with various other flags sets the values of specific options. For example,

$ sudo useradd -D -s /bin/bash

sets bash as the default shell.

Typical defaults are to put new users in individual groups, to use SHA-512 encryp-
tion for passwords, and to populate new users’ home directories with startup files
from /etc/skel.

The basic form of the useradd command accepts the name of the new account on
the command line:

$ sudo useradd hilbert

This command creates an entry similar to this one in /etc/passwd, along with a
corresponding entry in the shadow file:

hilbert:x:1005:20::/home/hilbert:/bin/sh

useradd disables the new account by default. You must assign a real password to
make the account usable.

262	 Chapter 8	 User Management	

A more realistic example is shown below. We specify that hilbert’s primary group
should be “hilbert” and that he should also be added to the “faculty” group. We
override the default home directory location and shell and ask useradd to create
the home directory if it does not already exist:

$ sudo useradd -c "David Hilbert" -d /home/math/hilbert -g hilbert
-G faculty -m -s /bin/tcsh hilbert

This command creates the following passwd entry:

hilbert:x:1005:30:David Hilbert:/home/math/hilbert:/bin/tcsh

The assigned UID is one higher than the highest UID on the system, and the cor-
responding shadow entry is

hilbert:!:14322:0:99999:7:0::

The password placeholder character(s) in the passwd and shadow file vary depend-
ing on the operating system. useradd also adds hilbert to the appropriate groups
in /etc/group, creates the directory /home/math/hilbert with proper ownerships,
and populates it from the /etc/skel directory.

adduser on Debian and Ubuntu
In addition to the useradd family of commands, the Debian lineage also supplies
somewhat higher-level wrappers for these commands in the form of adduser and
deluser. These add-on commands are configured in /etc/adduser.conf, where you
can specify options such as these:

•	 Rules for locating home directories: by group, by username, etc.
•	 Permission settings for new home directories
•	 UID and GID ranges for system users and general users
•	 An option to create individual groups for each user
•	 Disk quotas (Boolean only, unfortunately)
•	 Regex-based matching of user names and group names

Other typical useradd parameters, such as rules for passwords, are set as parameters
to the PAM module that does regular password authentication. (See page 590 for a
discussion of PAM, aka Pluggable Authentication Modules.) adduser and deluser
have twin cousins addgroup and delgroup.

adduser on FreeBSD
FreeBSD comes with adduser and rmuser shell scripts that you can either use as
supplied or modify to fit your needs. The scripts are built on top of the facilities
provided by the pw command.

adduser can be used interactively if you prefer. By default, it creates user and group
entries and a home directory. You can point the script at a file containing a list of
accounts to create with the -f flag, or enter in each user interactively.

Us
er

 M
an

ag
em

en
t

	 Scripts for adding users: useradd, adduser, and newusers	 263

For example, the process for creating a new user “raphael” looks like this:

$ sudo adduser
Username: raphael
Full name: Raphael Dobbins
Uid (Leave empty for default): <return>
Login group [raphael]: <return>
Login group is raphael. Invite raphael into other groups? []: <return>
Login class [default]: <return>
Shell (sh csh tcsh bash rbash nologin) [sh]: bash
Home directory [/home/raphael]: <return>
Home directory permissions (Leave empty for default): <return>
Use password-based authentication? [yes]: <return>
Use an empty password? (yes/no) [no]: <return>
Use a random password? (yes/no) [no]: yes
Lock out the account after creation? [no]: <return>
Username	 : raphael
Password 	 : <random>
Full Name 	 : Raphael Dobbins
Uid 			 : 1004
Class 		 :
Groups 		 : raphael
Home 		 : /home/raphael
Home Mode 	 :
Shell 		 : /usr/local/bin/bash
Locked 		 : no
OK? (yes/no): yes
adduser: INFO: Successfully added (raphael) to the user database.
adduser: INFO: Password for (raphael) is: RSCAds5fy0vxOt
Add another user? (yes/no): no
Goodbye!

newusers on Linux: adding in bulk
Linux’s newusers command creates multiple accounts at one time from the con-
tents of a text file. It’s pretty gimpy, but it can be handy when you need to add a lot
of users at once, such as when creating class-specific accounts. newusers expects
an input file of lines just like the /etc/passwd file, except that the password field
contains the initial password in clear text. Oops… better protect that file.

newusers honors the password aging parameters set in the /etc/login.defs file, but
it does not copy in the default startup files as does useradd. The only startup file
it copies in is .xauth.

At a university, what’s really needed is a batch adduser script that can use a list of
students from enrollment or registration data to generate the input for newusers,
with usernames formed according to local rules and guaranteed to be locally unique,
with strong passwords randomly generated, and with UIDs and GIDs increasing

264	 Chapter 8	 User Management	

for each user. You’re probably better off writing your own wrapper for useradd in
Python than trying to get newusers to do what you need.

8.8	 Safe removal of a user’s account and files
When a user leaves your organization, that user’s login account and files must
be removed from the system. If possible, don’t do that chore by hand; instead, let
userdel or rmuser handle it. These tools ensure the removal of all references to
the login name that were added by you or your useradd program. Once you’ve
removed the remnants, use the following checklist to verify that all residual user
data has been removed:

•	 Remove the user from any local user databases or phone lists.
•	 Remove the user from the mail aliases database, or add a forwarding address.
•	 Remove the user’s crontab file and any pending at jobs or print jobs.
•	 Kill any of the user’s processes that are still running.
•	 Remove the user from the passwd, shadow, group, and gshadow files.
•	 Remove the user’s home directory.
•	 Remove the user’s mail spool (if mail is stored locally).
•	 Clean up entries on shared calendars, room reservation systems, etc.
•	 Delete or transfer ownership of any mailing lists run by the deleted user.

Before you remove someone’s home directory, be sure to relocate any files that are
needed by other users. You usually can’t be sure which files those might be, so it’s
always a good idea to make an extra backup of the user’s home directory before
deleting it.

Once you have removed all traces of a user, you may want to verify that the user’s
old UID no longer owns files on the system. To find the paths of orphaned files,
you can use the find command with the -nouser argument. Because find has a way
of “escaping” onto network servers if you’re not careful, it’s usually best to check
filesystems individually with -xdev:

$ sudo find filesystem -xdev -nouser

If your organization assigns individual workstations to users, it’s generally simplest
and most efficient to re-image the entire system from a master template before
turning the system over to a new user. Before you do the reinstallation, however,
it’s a good idea to back up any local files on the system’s hard disk in case they are
needed in the future.10

Although all our example systems come with commands that automate the pro-
cess of removing user presence, they probably do not do as thorough a job as you
might like unless you have religiously extended them as you expanded the number
of places in which user-related information is stored.

	 10.	 Think license keys!

	 User login lockout	 265

Us
er

 M
an

ag
em

en
t

Debian and Ubuntu’s deluser is a Perl script that calls the usual userdel; it undoes
all the things adduser does. It runs the script /usr/local/sbin/deluser.local, if it
exists, to facilitate easy localization. The configuration file /etc/deluser.conf lets
you set options such as these:

•	 Whether to remove the user’s home directory and mail spool
•	 Whether to back up the user’s files, and where to put the backup
•	 Whether to remove all files on the system owned by the user
•	 Whether to delete a group if it now has no members

Red Hat supports a userdel.local script but no pre- and post-execution scripts to
automate sequence-sensitive operations such as backing up an about-to-be-re-
moved user’s files.

FreeBSD’s rmuser script does a good job of removing instances of the user’s files
and processes, a task that other vendors’ userdel programs do not even attempt.

8.9	 User login lockout
On occasion, a user’s login must be temporarily disabled. A straightforward way
to do this is to put a star or some other character in front of the user’s encrypted
password in the /etc/shadow or /etc/master.passwd file. This measure prevents
most types of password-regulated access because the password no longer decrypts
to anything sensible.

FreeBSD lets you lock accounts with the pw command. A simple

$ sudo pw lock someuser

puts the string *LOCKED* at the start of the password hash, making the account
unusable. Unlock the account by running

$ sudo pw unlock someuser

On all our Linux distributions, the usermod -L user and usermod -U user com-
mands define an easy way to lock and unlock passwords. They are just shortcuts for
the password twiddling described above: the -L puts an ! in front of the encrypted
password in the /etc/shadow file, and the -U removes it.

Unfortunately, modifying a user’s password simply makes logins fail. It does not
notify the user of the account suspension or explain why the account no longer
works. In addition, commands such as ssh that do not necessarily check the system
password may continue to function.

An alternative way to disable logins is to replace the user’s shell with a program that
prints an explanatory message and supplies instructions for rectifying the situation.
The program then exits, terminating the login session.

This approach has both advantages and disadvantages. Any forms of access that
check the password but do not pay attention to the shell will not be disabled. To

RHEL

266	 Chapter 8	 User Management	

facilitate the “disabled shell” trick, many daemons that afford nonlogin access to the
system (e.g., ftpd) check to see if a user’s login shell is listed in /etc/shells and deny
access if it is not. This is the behavior you want. Unfortunately, it’s not universal,
so you may have to do some fairly comprehensive testing if you decide to use shell
modification as a way of disabling accounts.

Another issue is that your carefully written explanation of the suspended account
might never be seen if the user tries to log in through a window system or through
a terminal emulator that does not leave output visible after a logout.

8.10	 Risk reduction with PAM
Pluggable Authentication Modules (PAM) is covered in the Single Sign-On chapter
starting on page 590. PAM centralizes the management of the system’s authenti-
cation facilities through standard library routines. That way, programs like login,
sudo, passwd, and su need not supply their own tricky authentication code. An
organization can easily expand its authentication methods beyond passwords to
options such as Kerberos, one-time passwords, ID dongles, or fingerprint readers.
PAM reduces the risk inherent in writing secured software, allows administrators
to set site-wide security policies, and defines an easy way to add new authentica-
tion methods to the system.

Adding and removing users doesn’t involve tweaking the PAM configuration, but the
tools involved operate under PAM’s rules and constraints. In addition, many of the
PAM configuration parameters are similar to those used by useradd or usermod.
If you change a parameter as described in this chapter and useradd doesn’t seem
to be paying attention to it, check to be sure the system’s PAM configuration isn’t
overriding your new value.

8.11	 Centralized account management
Some form of centralized account management is essential for medium-to-large
enterprises of all types, be they corporate, academic, or governmental. Users need
the convenience and security of a single login name, UID, and password across the
site. Administrators need a centralized system that allows changes (such as account
revocations) to be instantly propagated everywhere.

Such centralization can be achieved in a variety of ways, most of which (including
Microsoft’s Active Directory system) involve LDAP, the Lightweight Directory Ac-
cess Protocol, in some capacity. Options range from bare-bones LDAP installations
based on open source software to elaborate commercial identity management sys-
tems that come with a hefty price tag.

	 Centralized account management	 267

Us
er

 M
an

ag
em

en
t

LDAP and Active Directory
LDAP is a generalized, database-like repository that can store user management
data as well as other types of data. It uses a hierarchical client/server model that
supports multiple servers as well as multiple simultaneous clients. One of LDAP’s
big advantages as a site-wide repository for login data is that it can enforce unique
UIDs and GIDs across systems. It also plays well with Windows, although the re-
verse is only marginally true.

Microsoft’s Active Directory uses LDAP and Kerberos and can manage many kinds
of data, including user information. It’s a bit egotistical and wants to be the boss if
it is interacting with UNIX or Linux LDAP repositories. If you need a single au-
thentication system for a site that includes Windows desktops as well as UNIX and
Linux systems, it is probably easiest to let Active Directory be in control and to use
your UNIX LDAP databases as secondary servers.

See Chapter 17, Single Sign-On, for more information on integrating UNIX or
Linux with LDAP, Kerberos, and Active Directory.

Application-level single sign-on systems
Application-level single sign-on systems balance user convenience with security.
The idea is that a user can sign on once (to a login prompt, web page, or Windows
box) and be authenticated at that time. The user then obtains authentication cre-
dentials (usually implicitly, so that no active management is required) which can
be used to access other applications. The user only has to remember one login and
password sequence instead of many.

This scheme allows credentials to be more complex since the user does not need to
remember or even deal with them. That theoretically increases security. However,
the impact of a compromised account is greater because one login gives an attack-
er access to multiple applications. These systems make your walking away from a
desktop machine while still logged in a significant vulnerability. In addition, the
authentication server becomes a critical bottleneck. If it’s down, all useful work
grinds to a halt across the enterprise.

Although application-level SSO is a simple idea, it implies a lot of back-end com-
plexity because the various applications and machines that a user might want to
access must understand the authentication process and SSO credentials.

Several open source SSO systems exist:

•	 JOSSO, an open source SSO server written in Java
•	 CAS, the Central Authentication Service, from Yale (also Java)
•	 Shibboleth, an open source SSO distributed under the Apache 2 license

A host of commercial systems are also available, most of them integrated with iden-
tity management suites, which are covered in the next section.

See the section starting
on page 580 for more
information about
LDAP and LDAP
implementations.

268	 Chapter 8	 User Management	

Identity management systems
“Identity management” (sometimes referred to as IAM, for “identity and access man-
agement”) is a common buzzword in user management. In plain language, it means
identifying the users of your systems, authenticating their identities, and granting
privileges according to those authenticated identities. The standardization efforts
in this realm are led by the World Wide Web Consortium and by The Open Group.

Commercial identity management systems combine several key UNIX concepts
into a warm and fuzzy GUI replete with marketing jargon. Fundamental to all such
systems is a database of user authentication and authorization data, often stored in
LDAP format. Control is achieved with concepts such as UNIX groups, and lim-
ited administrative privileges are enforced through tools such as sudo. Most such
systems have been designed with an eye toward regulations that mandate account-
ability, tracking, and audit trails.

There are many commercial systems in this space: Oracle’s Identity Management,
Courion, Avatier Identity Management Suite (AIMS), VMware Identity Manager,
and SailPoint’s IdentityIQ, to name a few. In evaluating identity management sys-
tems, look for capabilities in the following areas:

Oversight:

•	 Implement a secure web interface for management that’s accessible both
inside and outside the enterprise.

•	 Support an interface through which hiring managers can request that ac-
counts be provisioned according to role.

•	 Coordinate with a personnel database to automatically remove access for
employees who are terminated or laid off.

Account management:

•	 Generate globally unique user IDs.

•	 Create, change, and delete user accounts across the enterprise, on all types
of hardware and operating systems.

•	 Support a workflow engine; for example, tiered approvals before a user is
given certain privileges.

•	 Make it easy to display all users who have a certain set of privileges. Ditto
for the privileges granted to a particular user.

•	 Support role-based access control, including user account provisioning by
role. Allow exceptions to role-based provisioning, including a workflow
for the approval of exceptions.

•	 Configure logging of all changes and administrative actions. Similarly,
configure reports generated from logging data (by user, by day, etc.).

	 Centralized account management	 269

Us
er

 M
an

ag
em

en
t

Ease of use:

•	 Let users change (and reset) their own passwords, with enforcement of
rules for picking strong passwords.

•	 Enable users to change their passwords globally in one operation.

Consider also how the system is implemented at the point where authorizations
and authentications actually take place. Does the system require a custom agent to
be installed everywhere, or does it conform itself to the underlying systems?

270

Cloud computing is the practice of leasing computer resources from a pool of
shared capacity. Users of cloud services provision resources on demand and pay a
metered rate for whatever they consume. Businesses that embrace the cloud enjoy
faster time to market, greater flexibility, and lower capital and operating expenses
than businesses that run traditional data centers.

The cloud is the realization of “utility computing,” first conceived by the late com-
puter scientist John McCarthy, who described the idea in a talk at MIT in 1961.
Many technological advances since McCarthy’s prescient remarks have helped to
bring the idea to fruition. To name just a few:

•	 Virtualization software reliably allocates CPU, memory, storage, and net-
work resources on demand.

•	 Robust layers of security isolate users and virtual machines from each
other, even as they share underlying hardware.

•	 Standardized hardware components enable the construction of data cen-
ters with vast power, storage, and cooling capacities.

•	 A reliable global network connects everything.

9 Cloud Computing

	 The cloud in context	 271

Cl
ou

d

Cloud providers capitalize on these innovations and many others. They offer myr-
iad services ranging from hosted private servers to fully managed applications.
The leading cloud vendors are competitive, highly profitable, and growing rapidly.

This chapter introduces the motivations for moving to the cloud, fills in some back-
ground on a few major cloud providers, introduces some of the most important
cloud services, and offers tips for controlling costs. As an even briefer introduction,
the section Clouds: VPS quick start by platform starting on page 283, shows how
to create cloud servers from the command line.

Several other chapters in this book include sections that relate to the management
of cloud servers. Table 9.1 lists some pointers.

Table 9.1	 Cloud topics covered elsewhere in this book

Page Heading

62 Recovery of cloud systems (bootstrapping-related issues for the cloud)
448 Cloud networking (TCP/IP networking for cloud platforms)
694 Web hosting in the cloud
911 Packer (using Packer to build OS images for the cloud)
942 Container clustering and management (especially the section on AWS ECS)
964 CI/CD in practice (a CI/CD pipeline example that uses cloud services)

1060 Commercial application monitoring tools (monitoring tools for the cloud)

In addition, Chapter 23, Configuration Management, is broadly applicable to the
management of cloud systems.

9.1	 The cloud in context
The transition from servers in private data centers to the now-ubiquitous cloud has
been rapid and dramatic. Let’s take a look at the reasons for this stampede.

Cloud providers create technically advanced infrastructure that most businesses
cannot hope to match. They locate their data centers in areas with inexpensive
electric power and copious networking cross-connects. They design custom server
chassis that maximize energy efficiency and minimize maintenance. They use pur-
pose-built network infrastructure with custom hardware and software fine-tuned
to their internal networks. They automate aggressively to allow rapid expansion
and reduce the likelihood of human error.

Because of all this engineering effort (not to mention the normal economies of scale),
the cost of running distributed computing services is much lower for a cloud pro-
vider than for a typical business with a small data center. Cost savings are reflected
both in the price of cloud services and in the providers’ profits.

272	 Chapter 9	 Cloud Computing	

Layered on top of this hardware foundation are management features that simplify
and facilitate the configuration of infrastructure. Cloud providers offer both APIs
and user-facing tools that control the provisioning and releasing of resources. As
a result, the entire life cycle of a system—or group of systems distributed on a vir-
tual network—can be automated. This concept goes by the name “infrastructure
as code,” and it contrasts starkly with the manual server procurement and provi-
sioning processes of times past.

Elasticity is another major driver of cloud adoption. Because cloud systems can be
programmatically requested and released, any business that has cyclic demand can
optimize operating costs by adding more resources during periods of peak usage
and removing extra capacity when it is no longer needed. The built-in autoscaling
features available on some cloud platforms streamline this process.

Cloud providers have a global presence. With some planning and engineering ef-
fort, businesses can reach new markets by releasing services in multiple geographic
areas. In addition, disaster recovery is easier to implement in the cloud because
redundant systems can be run in separate physical locations.

All these characteristics pair well with the DevOps approach to system adminis-
tration, which emphasizes agility and repeatability. In the cloud, you’re no longer
restricted by slow procurement or provisioning processes, and nearly everything
can be automated.

Still, a certain mental leap is required when you don’t control your own hardware.
One industry metaphor captures the sentiment neatly: servers should be treated
as cattle, not as pets. A pet is named, loved, and cared for. When the pet is sick, it’s
taken to a veterinarian and nursed back to health. Conversely, cattle are commod-
ities that are herded, traded, and managed in large quantities. Sick cattle are shot.

A cloud server is just one member of a herd, and to treat it otherwise is to ignore
a basic fact of cloud computing: cloud systems are ephemeral, and they can fail at
any time. Plan for that failure and you’ll be more successful at running a resilient
infrastructure.

Despite all its advantages, the cloud is not a panacea for quickly reducing costs
or improving performance. Directly migrating an existing enterprise application
from a data center to a cloud provider (a so-called “lift and shift”) is unlikely to be
successful without careful planning. Operational processes for the cloud are dif-
ferent, and they entail training and testing. Furthermore, most enterprise software
is designed for static environments, but individual systems in the cloud should be
treated as short-lived and unreliable. A system is said to be cloud native if it is re-
liable even in the face of unanticipated events.

See page 1106 for
more information
about DevOps.

	 Cloud platform choices	 273

Cl
ou

d

9.2	 Cloud platform choices
Multiple factors influence a site’s choice of cloud provider. Cost, past experience,
compatibility with existing technology, security, or compliance requirements, and
internal politics are all likely to play a role. The selection process can also be swayed
by reputation, provider size, features, and of course, marketing.

Fortunately, there are a lot of cloud providers out there. We’ve chosen to focus on
just three of the major public cloud providers: Amazon Web Services (AWS), Goo-
gle Cloud Platform (GCP), and DigitalOcean (DO). In this section we mention a
few additional options for you to consider. Table 9.2 enumerates the major players
in this space.

Table 9.2	 The most widely used cloud platforms

Provider Notable qualities

Amazon Web Services 900lb gorilla. Rapid innovation. Can be expensive. Complex.

DigitalOcean Simple and reliable. Lovable API. Good for development.

Google Cloud Platform Technically sophisticated and improving quickly. Emphasizes
performance. Comprehensive big-data services.

IBM Softlayer More like hosting than cloud. Has a global private network.

Microsoft Azure A distant second in size. Has a history of outages. Possibly
worth consideration for Microsoft shops.

OpenStack Modular DIY open source platform for building private
clouds. AWS-compatible APIs.

Rackspace Public and private clouds running OpenStack. Offers
managed services for AWS and Azure. Fanatical support.

VMware vCloud Air Buzzword-laden service for public, private, and hybrid
clouds. Uses VMware technology. Probably doomed.

Public, private, and hybrid clouds
In a public cloud, the vendor controls all the physical hardware and affords access
to systems over the Internet. This setup relieves users of the burden of installing
and maintaining hardware, but at the expense of less control over the features and
characteristics of the platform. AWS, GCP, and DO are all public cloud providers.

274	 Chapter 9	 Cloud Computing	

Private cloud platforms are similar, but are hosted within an organization’s own
data center or managed by a vendor on behalf of a single customer. Servers in a pri-
vate cloud are single-tenant, not shared with other customers as in a public cloud.

Private clouds offer flexibility and programmatic control, just as public clouds do.
They appeal to organizations that already have significant capital invested in hard-
ware and engineers, especially those that value full control of their environment.

OpenStack is the leading open source system used to create private clouds. It re-
ceives financial and engineering support from enterprises such as AT&T, IBM, and
Intel. Rackspace itself is one of the largest contributors to OpenStack.

A combination of public and private clouds is called a hybrid cloud. Hybrids can
be useful when an enterprise is first migrating from local servers to a public cloud,
for adding temporary capacity to handle peak loads, and for a variety of other or-
ganization-specific scenarios. Administrators beware: operating two distinct cloud
presences in tandem increases complexity more than proportionally.

VMware’s vSphere Air cloud, based on vSphere virtualization technology, is a seam-
less hybrid cloud for customers that already use VMware virtualization in their
on-premises data center. Those users can move applications to and from vCloud
Air infrastructure quite transparently.

The term “public cloud” is a bit unfortunate, connoting as it does the security and
hygiene standards of a public toilet. In fact, customers of public clouds are isolated
from each other by multiple layers of hardware and software virtualization. A pri-
vate cloud offers little or no practical security benefit over a public cloud.

In addition, operating a private cloud is an intricate and expensive prospect that
should not be undertaken lightly. Only the largest and most committed organi-
zations have the engineering resources and wallet needed to implement a robust,
secure private cloud. And once implemented, a private cloud’s features usually fall
short of those offered by commercial public clouds.

For most organizations, we recommend the public cloud over the private or hybrid
options. Public clouds offer the highest value and easiest administration. For the
remainder of this book, our cloud coverage is limited to public options The next
few sections present a quick overview of each of our example platforms.

Amazon Web Services
AWS offers scores of services, ranging from virtual servers (EC2) to managed da-
tabases and data warehouses (RDS and Redshift) to serverless functions that exe-
cute in response to events (Lambda). AWS releases hundreds of updates and new
features each year. It has the largest and most active community of users. AWS is
by far the largest cloud computing business.

From the standpoint of most users, AWS has essentially unlimited capacity. How-
ever, new accounts come with limits that control how much compute power you

	 Cloud platform choices	 275

Cl
ou

d

can requisition. These restrictions protect both Amazon and you, since costs can
quickly spiral out of control if services aren’t properly managed. To increase your
limits, you complete a form on the AWS support site. The service limit documen-
tation itemizes the constraints associated with each service.

The on-line AWS documentation located at aws.amazon.com/documentation is
authoritative, comprehensive, and well organized. It should be the first place you
look when researching a particular service. The white papers that discuss security,
migration paths, and architecture are invaluable for those interested in construct-
ing robust cloud environments.

Google Cloud Platform
If AWS is the reigning champion of the cloud, Google is the would-be usurper. It
competes for customers through nefarious tricks such as lowering prices and di-
rectly addressing customers’ AWS pain points.

The demand for engineers is so fierce that Google has been known to poach em-
ployees from AWS. In they past, they’ve hosted parties in conjunction with the AWS
re:Invent conference in Las Vegas in an attempt to lure both talent and users. As
the cloud wars unfold, customers ultimately benefit from this competition in the
form of lower costs and improved features.

Google runs the most advanced global network in the world, a strength that benefits
its cloud platform. Google data centers are technological marvels that feature many
innovations to improve energy efficiency and reduce operational costs.1 Google is
relatively transparent about its operations, and their open source contributions
help advance the cloud industry.

Despite its technical savvy, in some ways Google is a follower in the public cloud,
not a leader. When it launched in 2011 or 2012,2 GCP was already late to the game.
Its services have many of the same features (and often the same names) as their
AWS equivalents. If you’re familiar with AWS, you’ll find the GCP web interface
to be somewhat different on the surface. However, the functionality underneath
is strikingly similar.

We anticipate that GCP will gain market share in the years to come as it improves
its products and builds customer trust. It has hired some of the brightest minds in
the industry, and they’re bound to develop some innovative technologies. As con-
sumers, we all stand to benefit.

DigitalOcean
DigitalOcean is a different breed of public cloud. Whereas AWS and GCP compete
to serve the large enterprises and growth-focused startups, DigitalOcean courts

	 1.	 See google.com/about/datacenters for photos and facts about how Google’s data centers operate.
	 2.	 Google had released other cloud products as early as 2008, including App Engine, the first platform-

as-a-service product. But Google’s strategy and the GCP brand were not apparent until 2012.

http://aws.amazon.com/documentation
http://google.com/about/datacenters

276	 Chapter 9	 Cloud Computing	

small customers with simpler needs. Minimalism is the name of the game. We like
DigitalOcean for experiments and proof-of-concept projects.

DigitalOcean offers data centers in North America, Europe, and Asia. There are
several centers in each of these regions, but they are not directly connected and so
cannot be considered availability zones (see page 278). As a result, it’s considerably
more difficult to build global, highly available production services on DigitalOcean
than on AWS or Google.

DigitalOcean servers are called droplets. They are simple to provision from the com-
mand line or web console, and they boot quickly. DigitalOcean supplies images for
all our example operating systems except Red Hat. It also has a handful of images for
popular open source applications such as Cassandra, Drupal, Django, and GitLab.

DigitalOcean also has load balancer and block storage services. In Chapter 26,
Continuous Integration and Delivery, we include an example of provisioning a Dig-
italOcean load balancer with two droplets using HashiCorp’s Terraform infrastruc-
ture provisioning tool.

9.3	 Cloud service fundamentals
Cloud services are loosely grouped into three categories:

•	 Infrastructure-as-a-Service (IaaS), in which users request raw compute,
memory, network, and storage resources. These are typically delivered in
the form of virtual private servers, aka VPSs. Under IaaS, users are re-
sponsible for managing everything above the hardware: operating systems,
networking, storage systems, and their own software.

•	 Platform-as-a-Service (PaaS), in which developers submit their custom
applications packaged in a format specified by the vendor. The vendor
then runs the code on the user’s behalf. In this model, users are respon-
sible for their own code, while the vendor manages the OS and network.

•	 Software-as-a-Service (SaaS), the broadest category, in which the vendor
hosts and manages software and users pay some form of subscription fee
for access. Users maintain neither the operating system nor the applica-
tion. Almost any hosted web application (think WordPress) falls into the
SaaS category.

Table 9.3 shows how each of these abstract models breaks down in terms of the
layers involved in a complete deployment.

Of these options, IaaS is the most pertinent to system administration. In addition
to defining virtual computers, IaaS providers virtualize the hardware elements that
are typically connected to them, such as disks (now described more generally as

“block storage devices”) and networks. Virtual servers can inhabit virtual networks

 	

    

	 	 	
	 	
	 	
	 	

	 Cloud service fundamentals	 277

Cl
ou

d

	

	

	

	

Table 9.3	 Which layers are you responsible for managing?

Layer   Local a IaaS PaaS SaaS

Application ✔ ✔ ✔

Databases ✔ ✔ ✔

Application runtime ✔ ✔ ✔

Operating system ✔ ✔

Virtual network, storage, and servers ✔ ✔

Virtualization platform ✔

Physical servers ✔

Storage systems ✔

Physical network ✔

Power, space, and cooling ✔

a.	 	Local:	 local servers and network
	 Iaas:	 Infrastructure-as-a-Service (virtual servers)
	 PaaS:	 Platform-as-a-Service (e.g., Google App Engine)
	 Saas:	 Software-as-a-Service (e.g., most web-based services)

for which you specify the topology, routes, addressing, and other characteristics.
In most cases, these networks are private to your organization.

IaaS can also include other core services such as such as databases, queues, key/value
stores, and compute clusters. These features combine to create a complete replace-
ment for (and in many cases, an improvement over) the traditional data center.

PaaS is an area of great promise that is not yet fully realized. Current offerings such
as AWS Elastic Beanstalk, Google App Engine, and Heroku come with environmen-
tal constraints or nuances that render them impractical (or incomplete) for use in
busy production environments. Time and again we’ve seen business outgrow these
services. However, new services in this area are receiving a lot of attention. We an-
ticipate dramatic improvements in the coming years.

Cloud providers differ widely in terms of their exact features and implementation
details, but conceptually, many services are quite similar. The following sections
describe cloud services generally, but because AWS is the front-runner in this space,
we sometimes adopt its nomenclature and conventions as defaults.

Access to the cloud
Most cloud providers’ primary interface is some kind of web-based GUI. New sys-
tem administrators should use this web console to create an account and to con-
figure their first few resources.

Cloud providers also define APIs that access the same underlying functionality as
that of the web console. In most cases, they also have a standard command-line
wrapper, portable to most systems, for those APIs.

278	 Chapter 9	 Cloud Computing	

Even veteran administrators make frequent use of web GUIs. However, it’s also im-
portant to get friendly with the command-line tools because they lend themselves
more readily to automation and repeatability. Use scripts to avoid the tedious and
sluggish process of requesting everything through a browser.

Cloud vendors also maintain software development kits (SDKs) for many popu-
lar languages to help developers use their APIs. Third party tools use the SDKs to
simplify or automate specific sets of tasks. You’ll no doubt encounter these SDKs
if you write your own tools.

You normally use SSH with public key authentication to access UNIX and Linux
systems running in the cloud. See SSH, the Secure SHell starting on page 1016 for
more information about the effective use of SSH.

Some cloud providers let you access a console session through a web browser, which
can be especially helpful if you mistakenly lock yourself out with a firewall rule or
broken SSH configuration. It’s not a representation of the system’s actual console,
though, so you can’t use this feature to debug bootstrapping or BIOS issues.

Regions and availability zones
Cloud providers maintain data centers around the world. A few standard terms
describe geography-related features.

A “region” is a location in which a cloud provider maintains data centers. In most
cases, regions are named after the territory of intended service even though the
data centers themselves are more concentrated. For example, Amazon’s us-east-1
region is served by data centers in north Virginia.3

Some providers also have “availability zones” (or simply “zones”) which are col-
lections of data centers within a region. Zones within a region are peered through
high-bandwidth, low-latency, redundant circuits, so inter-zone communication
is fast, though not necessarily cheap. Anecdotally, we’ve experienced inter-zone
latency of less than 1ms.

Zones are typically designed to be independent of one another in terms of power
and cooling, and they’re geographically dispersed so that a natural disaster that af-
fects one zone has a low probability of affecting others in the same region.

Regions and zones are fundamental to building highly available network services.
Depending on availability requirements, you can deploy in multiple zones and
regions to minimize the impact of a failure within a data center or geographic
area. Availability zone outages can occur, but are rare; regional outages are rarer
still. Most services from cloud vendors are aware of zones and use them to achieve
built-in redundancy.

	 3.	 It takes about 5ms for a fiber optic signal to travel 1,000km, so regions the size of the U.S. east coast
are fine from a performance standpoint. The network connectivity available to a data center is more
important than its exact location.

	 Cloud service fundamentals	 279

Cl
ou

d

Exhibit A	 Servers distributed among multiple regions and zones

Inter-zone communication is
private but incurs a cost per GB.

Intra-zone tra�c
is free.

Regions connect through the
Internet or through private

circuits; fees apply either way.

U.S. west region

U.S. east region

Multiregion deployments are more complex because of the physical distances be-
tween regions and the associated higher latency. Some cloud vendors have faster
and more reliable inter-region networks than others. If your site serves users around
the world, the quality of your cloud vendor’s network is paramount.

Choose regions according to geographic proximity to your user base. For scenari-
os in which the developers and users are in different geographic regions, consider
running your development systems close to the developers and production systems
closer to the users.

For sites that deliver services to a global user base, running in multiple regions can
substantially improve performance for end users. Requests can be routed to each
client’s regional servers by exploitation of geographic DNS resolution, which de-
termines clients’ locations by their source IP addresses.

Most cloud platforms have regions for North America, South America, Europe, and
the Asia Pacific countries. Only AWS and Azure have a direct presence in China.
Some platforms, notably AWS and vCloud, have regions compatible with strict U.S.
federal ITAR requirements.

Virtual private servers
The flagship service of the cloud is the virtual private server, a virtual machine
that runs on the provider’s hardware. Virtual private servers are sometimes called
instances. You can create as many instances as you need, running your preferred
operating system and applications, then shut the instances down when they’re no
longer needed. You pay only for what you use, and there’s typically no up-front cost.

280	 Chapter 9	 Cloud Computing	

Because instances are virtual machines, their CPU power, memory, disk size, and
network settings can be customized when the instance is created and even adjusted
after the fact. Public cloud platforms define preset configurations called instance
types. They range from single-CPU nodes with 512MiB of memory to large sys-
tems with many CPU cores and multiple TiB of memory. Some instance types are
balanced for general use, and others are specialized for CPU-, memory-, disk-, or
network-intensive applications. Instance configurations are one area in which cloud
vendors compete vigorously to match market needs.

Instances are created from “images,” the saved state of an operating system that
contains (at minimum) a root filesystem and a boot loader. An image might also
include disk volumes for additional filesystems and other custom settings. You can
easily create custom images with your own software and settings.

All our example operating systems are widely used, so cloud platforms typically
supply official images for them.4 Many third party software vendors also maintain
cloud images that have their software preinstalled to facilitate adoption by custom-
ers. It’s also easy to create your own custom images. Learn more about how to create
virtual machine images in Packer starting on page 911.

Networking
Cloud providers let you create virtual networks with custom topologies that isolate
your systems from each other and from the Internet. On platforms that offer this
feature, you can set the address ranges of your networks, define subnets, configure
routes, set firewall rules, and construct VPNs to connect to external networks. Ex-
pect some network-related operational overhead and maintenance when building
larger, more complex cloud deployments.

You can make your servers accessible to the Internet by leasing publicly routable ad-
dresses from your provider—all providers have a large pool of such addresses from
which users can draw. Alternatively, servers can be given only a private RFC1918
address within the address space you selected for your network, rendering them
publicly inaccessible.

Systems without public addresses are not directly accessible from the Internet, even
for administrative attention. You can access such hosts through a jump server or
bastion host that is open to the Internet, or through a VPN that connects to your
cloud network. For security, the smaller the external-facing footprint of your vir-
tual empire, the better.

Although this all sounds promising, you have even less control over virtual net-
works than you do over traditional networks, and you’re subject to the whims and
vagaries of the feature set made available by your chosen provider. It’s particularly
maddening when new features launch but can’t interact with your private network.
(We’re looking at you, Amazon!)

	 4.	 Currently, you must build your own FreeBSD image if you use Google Compute Engine.

See page 1030 for
more information
about VPNs.

See page 392 for
more information
about RFC1918
private addresses.

	 Cloud service fundamentals	 281

Cl
ou

d

Skip to page 448 for the details on TCP/IP networking in the cloud.

Storage
Data storage is a major part of cloud computing. Cloud providers have the largest
and most advanced storage systems on the planet, so you’ll be hard pressed to match
their capacity and capabilities in a private data center. The cloud vendors bill by
the amount of data you store. They are highly motivated to give you as many ways
as possible to ingest your data.5

Here are a few of the most important ways to store data in the cloud:

•	  “Object stores” contain collections of discrete objects (files, essentially)
in a flat namespace. Object stores can accommodate a virtually unlimit-
ed amount of data with exceptionally high reliability but relatively slow
performance. They are designed for a read-mostly access pattern. Files in
an object store are accessed over the network through HTTPS. Examples
include AWS S3 and Google Cloud Storage.

•	 Block storage devices are virtualized hard disks. They can be requisitioned
at your choice of capacities and attached to a virtual server, much like
SAN volumes on a traditional network. You can move volumes among
nodes and customize their I/O profiles. Examples include AWS EBS and
Google persistent disks.

•	 Ephemeral storage is local disk space on a VPS that is created from disk
drives on the host server. These are normally fast and capacious, but the
data is lost when you delete the VPS. Therefore, ephemeral storage is best
used for temporary files. Examples include instance store volumes on AWS
and local SSDs on GCP.

In addition to these raw storage services, cloud providers usually offer a variety
of freestanding database services that you can access over the network. Relation-
al databases such as MySQL, PostgreSQL, and Oracle run as services on the AWS
Relational Database Service. They offer built-in multizone redundancy and en-
cryption for data at rest.

Distributed analytics databases such as AWS Redshift and GCP BigQuery offer in-
credible ROI; both are worth a second look before you build your own expensive
data warehouse. Cloud vendors also offer the usual assortment of in-memory and
NoSQL databases such as Redis and memcached.

Identity and authorization
Administrators, developers, and other technical staff all need to manage cloud ser-
vices. Ideally, access controls should conform to the principle of least privilege: each

	 5.	 Case in point: AWS offers on-site visits from the AWS Snowmobile, a 45-foot long shipping container
towed by a semi truck than can transfer 100 PiB from your data center to the cloud.

282	 Chapter 9	 Cloud Computing	

principal can access only the entities that are relevant to it, and nothing more. De-
pending on the context, such access control specifications can become quite elaborate.

AWS is exceptionally strong in this area. Their service, called Identity and Access
Management (IAM), defines not only users and groups but also roles for systems. A
server can be assigned policies, for example, to allow its software to start and stop
other servers, store and retrieve data in an object store, or interact with queues—
all with automatic key rotation. IAM also has an API for key management to help
you store secrets safely.

Other cloud platforms have fewer authorization features. Unsurprisingly, Azure’s
service is based on Microsoft’s Active Directory. It pairs well with sites that have
an existing directory to integrate with. Google’s access control service, also called
IAM, is relatively coarse-grained and incomplete in comparison with Amazon’s.

Automation
The APIs and CLI tools created by cloud vendors are the basic building blocks of
custom automation, but they’re often clumsy and impractical for orchestrating
larger collections of resources. For example, what if you need to create a new net-
work, launch several VPS instances, provision a database, configure a firewall, and
finally, connect all these components? Written in terms of a raw cloud API, that
would make for a complex script.

AWS CloudFormation was the first service to address this problem. It accepts a
template in JSON or YAML format that describes the desired resources and their
associated configuration details. You submit the template to CloudFormation, which
checks it for errors, sorts out dependencies among resources, and creates or updates
the cloud configuration according to your specifications.

CloudFormation templates are powerful but error prone in human hands because
of their strict syntax requirements. A complete template is unbearably verbose and
a challenge for humans to even read. Instead of writing these templates by hand,
we prefer to automatically render them with a Python library called Troposphere
from Mark Peek (see github.com/cloudtools/troposphere).

Third party services also target this problem. Terraform, from the open source
company HashiCorp, is a cloud-agnostic tool for constructing and changing infra-
structure. As with CloudFormation, you describe resources in a custom template
and then let Terraform make the proper API calls to implement your configura-
tion. You can then check your configuration file into version control and manage
the infrastructure over time.

Serverless functions
One of the most innovative features in the cloud since its emergence are the cloud
function services, sometimes called functions-as-a-service, also referred to as “server-
less” features. Cloud functions are a model of code execution that do not require

http://github.com/cloudtools/troposphere

	 Clouds: VPS quick start by platform	 283

Cl
ou

d

any long-lived infrastructure. Functions execute in response to an event, such as
the arrival of a new HTTP request or an object being uploaded to a storage location.

For example, consider a traditional web server. HTTP requests are forwarded by the
networking stack of the operating system to a web server, which routes them appro-
priately. When the response completes, the web server continues to wait for requests.

Contrast this with the serverless model. An HTTP request arrives, and it triggers
the cloud function to handle the response. When complete, the cloud function ter-
minates. The owner pays for the period of time that the function executes. There
is no server to maintain and no operating system to manage.

AWS introduced Lambda, their cloud function service, at a conference in 2014.
Google followed shortly with a Cloud Functions service. Several cloud function
implementations exist for projects like OpenStack, Mesos, and Kubernetes.

Serverless functions hold great promise for the industry. A massive ecosystem of
tools is emerging to support simpler and more powerful use of the cloud. We’ve
found many uses for these short-lived, serverless functions in our day-to-day ad-
ministrative duties. We anticipate rapid advances in this area in the coming years.

9.4	 Clouds: VPS quick start by platform
The cloud is an excellent sandbox in which to learn UNIX and Linux. This short
section helps you get up and running with virtual servers on AWS, GCP, or Dig-
italOcean. As system administrators, we rely extensively on the command line (as
opposed to web GUIs) for interacting with the cloud, so we illustrate the use of
those tools here.

Amazon Web Services
To use AWS, first set up an account at aws.amazon.com. Once you create the ac-
count, immediately follow the guidance in the AWS Trusted Advisor to configure
your account according to the suggested best practices. You can then navigate to
the individual service consoles for EC2, VPC, etc.

Each AWS service has a dedicated user interface. When you log in to the web console,
you’ll see the list of services at the top. Within Amazon, each service is managed
by an independent team, and the UI unfortunately reflects this fact. Although this
decoupling has helped AWS services grow, it does lead to a somewhat fragmented
user experience. Some interfaces are more refined and intuitive than others.

To protect your account, enable multifactor authentication (MFA) for the root user,
then create a privileged IAM user for day-to-day use. We also generally configure an
alias so that users can access the web console without entering an account number.
This option is found on the landing page for IAM.

http://aws.amazon.com

284	 Chapter 9	 Cloud Computing	

In the next section we introduce the official aws CLI tool written in Python. New
users might also benefit from Amazon’s Lightsail quick start service, which aims
to start an EC2 instance with minimum fuss.

aws: control AWS subsystems
aws is a unified command-line interface to AWS services. It manages instances,
provisions storage, edits DNS records, and performs most of the other tasks shown
in the web console. The tool relies on the exceptional Boto library, a Python SDK
for the AWS API, and it runs on any system with a working Python interpreter.
Install it with pip:

$ pip install awscli

To use aws, first authenticate it to the AWS API by using a pair of random strings
called the “access key ID” and the “secret access key.” You generate these credentials
in the IAM web console and then copy-and-paste them locally.

Running aws configure prompts you to set your API credentials and default region:

$ aws configure
AWS Access Key ID: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [us-east-1]: <return>
Default output format [None]: <return>

These settings are saved to ~/.aws/config. As long as you’re setting up your envi-
ronment, we also recommend that you configure the bash shell’s autocompletion
feature so that subcommands are easier to discover. See the AWS CLI docs for
more information.

The first argument to aws names the specific service you want to manipulate; for
example, ec2 for actions that control the Elastic Compute Cloud. You can add the
keyword help at the end of any command to see instructions. For example, aws help,
aws ec2 help, and aws ec2 describe-instances help all produce useful man pages.

Creating an EC2 instance
Use aws ec2 run-instances to create and launch EC2 instances. Although you can
create multiple instances with a single command (by using the --count option),
the instances must all share the same configuration. Here’s a minimal example of
a complete command:

$ aws ec2 run-instances --image-id ami-d440a6e7
--instance-type t2.nano --associate-public-ip-address
--key-name admin-key

output shown on page 285

See page 229 for more
information about pip.

	 Clouds: VPS quick start by platform	 285

Cl
ou

d

This example specifies the following configuration details:

•	 The base system image is an Amazon-supplied version of CentOS 7 named
ami-d440a6e7. (AWS calls their images AMIs, for Amazon Machine Imag-
es.) Like other AWS objects, the image names are unfortunately not mne-
monic; you must look up IDs in the EC2 web console or on the command
line (aws ec2 describe-images) to decode them.

•	 The instance type is t2.nano, which is currently the smallest instance type.
It has one CPU core and 512MiB of RAM. Details about the available in-
stance types can be found in the EC2 web console.

•	 A preconfigured key pair is also assigned to control SSH access. You can
generate a key pair with the ssh-keygen command (see page 1019), then
upload the public key to the AWS EC2 console.

The output of that aws ec2 run-instances command is shown below. It’s JSON, so
it’s easily consumed by other software. For example, after launching an instance, a
script could extract the instance’s IP address and configure DNS, update an inven-
tory system, or coordinate the launch of multiple servers.

$ aws ec2 run-instances ... # Same command as above
{
	 "OwnerId": "188238000000",
	 "ReservationId": "r-83a02346",
	 "Instances": [
		 ...
		 "PrivateIpAddress": "10.0.0.27",
		 "InstanceId": "i-c4f60303",
		 "ImageId": "ami-d440a6e7",
		 "PrivateDnsName": "ip-10-0-0-27.us-west-2.compute.internal",
		 "KeyName": "admin-key",
		 "SecurityGroups": [
			 {
				 "GroupName": "default",
				 "GroupId": "sg-9eb477fb"
			 }
],
		 "SubnetId": "subnet-ef67938a",
		 "InstanceType": "t2.nano",
	 ...

}

By default, EC2 instances in VPC subnets do not have public IP addresses attached,
rendering them accessible only from other systems within the same VPC. To reach
instances directly from the Internet, use the --associate-public-ip-address option, as
shown in our example command. You can discover the assigned IP address after the
fact with aws ec2 describe-instances or by finding the instance in the web console.

286	 Chapter 9	 Cloud Computing	

Firewalls in EC2 are known as “security groups.” Because we didn’t specify a security
group here, AWS assumes the “default” group, which allows no access. To connect
to the instance, adjust the security group to permit SSH from your IP address. In
real-world scenarios, security group structure should be carefully planned during
network design. We discuss security groups in Security groups and NACLs starting
on page 450.

aws configure sets a default region, so you need not specify a region for the instance
unless you want something other than the default. The AMI, key pair, and subnet
are all region-specific, and aws complains if they don’t exist in the region you specify.
(In this particular case, the AMI, key pair, and subnet are from the us-east-1 region.)

Take note of the InstanceId field in the output, which is a unique identifier for the
new instance. You can use aws ec2 describe-instances --instance-id id to show
details about an existing instance, or just use aws ec2 describe-instances to dump
all instances in the default region.

Once the instance is running and the default security group has been adjusted to pass
traffic on TCP port 22, you can use SSH to log in. Most AMIs are configured with
a nonroot account that has sudo privileges. For Ubuntu the username is ubuntu;
for CentOS, centos. FreeBSD and Amazon Linux both use ec2-user. The documen-
tation for your chosen AMI should specify the username if it’s not one of these.

Properly configured images allow only public keys for SSH authentication, not
passwords. Once you’ve logged in with the SSH private key, you’ll have full sudo
access with no password required. We recommend disabling the default user after
the first boot and creating personal, named accounts.

Viewing the console log
Debugging low-level problems such as startup issues and disk errors can be chal-
lenging without access to the instance’s console. EC2 lets you retrieve the console
output of an instance, which can be useful if the instance is in an error state or
appears to be hung. You can do this through the web interface or with aws ec2
get-console-output, as shown:

$ aws ec2 get-console-output --instance-id i-c4f60303
{
	 "InstanceId": "i-c4f60303",
	 "Timestamp": "2015-12-21T00:01:45.000Z",
	 "Output": "[0.000000] Initializing cgroup subsys cpuset\r\n[
		 0.000000] Initializing cgroup subsys cpu\r\n[0.000000]
		 Initializing cgroup subsys cpuacct\r\n[0.000000] Linux version
		 4.1.7-15.23.amzn1.x86_64 (mockbuild@gobi-build-60006)
		 (gcc version 4.8.3 20140911 (Red Hat 4.8.3-9)) #1 SMP Mon Sep

	 14 23:20:33 UTC 2015\r\n
	 ...
}

See Chapter 8
for more informa-
tion about user
management.

	 Clouds: VPS quick start by platform	 287

Cl
ou

d

The full log is of course much longer than this snippet. In the JSON dump, the con-
tents of the log are unhelpfully concatenated as a single line. For better readability,
clean it up with sed:

$ aws ec2 get-console-output --instance-id i-c4f60303 | sed
's/\\r\\n/\\n/g'

{
	 "InstanceId": "i-c4f60303",
	 "Timestamp": "2015-12-21T00:01:45.000Z",
	 "Output": "[0.000000] Initializing cgroup subsys cpuset
		 [0.000000] Initializing cgroup subsys cpu
		 [0.000000] Initializing cgroup subsys cpuacct
		 [0.000000] Linux version 4.1.7-15.23.amzn1.x86_64
			 (mockbuild@gobi-build-60006) (gcc version 4.8.3 20140911
			 (Red Hat 4.8.3-9)) #1 SMP Mon Sep 14 23:20:33 UTC 2015
	 ...
}

This log output comes directly from the Linux boot process. The example above
shows a few lines from the moment the instance was first initialized. In most cases,
you’ll find the most interesting information near the end of the log.

Stopping and terminating instances
When you’re finished with an instance, you can “stop” it to shut the instance down
but retain it for later use, or “terminate” it to delete the instance entirely. By default,
termination also releases the instance’s root disk into the ether. Once terminated,
an instance can never be resurrected, even by AWS.

$ aws ec2 stop-instances --instance-id i-c4f60303
{
	 "StoppingInstances": [
		 {
			 "InstanceId": "i-c4f60303",
			 "CurrentState": {
				 "Code": 64,
				 "Name": "stopping"
			 },
			 "PreviousState": {
				 "Code": 16,
				 "Name": "running"
			 }
		 }
]
}

Note that virtual machines don’t change state instantly; it takes a minute for the ham-
sters to reset. Hence the presence of transitional states such as “starting” and “stop-
ping.” Be sure to account for them in any instance-wrangling scripts you might write.

288	 Chapter 9	 Cloud Computing	

Google Cloud Platform
To get started with GCP, establish an account at cloud.google.com. If you already
have a Google identity, you can sign up using the same account.

GCP services operate within a compartment known as a project. Each project has
separate users, billing details, and API credentials, so you can achieve complete
separation between disparate applications or areas of business. Once you create
your account, create a project and enable individual GCP services according to
your needs. Google Compute Engine, the VPS service, is one of the first services
you might want to enable.

Setting up gcloud
gcloud, a Python application, is the CLI tool for GCP. It’s a component of the Goo-
gle Cloud SDK, which contains a variety of libraries and tools for interfacing with
GCP. To install it, follow the installation instructions at cloud.google.com/sdk.

Your first action should be to set up your environment by running gcloud init. This
command starts a small, local web server and then opens a browser link to display
the Google UI for authentication. After you authenticate yourself through the web
browser, gcloud asks you (back in the shell) to select a project profile, a default zone,
and other defaults. The settings are saved under ~/.config/gcloud/.

Run gcloud help for general information or gcloud -h for a quick usage summary.
Per-subcommand help is also available; for example, gcloud help compute shows
a man page for the Compute Engine service.

Running an instance on GCE
Unlike aws commands, which return immediately, gcloud compute operates syn-
chronously. When you run the create command to provision a new instance, for
example, gcloud makes the necessary API call, then waits until the instance is
actually up and running before it returns. This convention avoids the need to poll
for the state of an instance after you create it.6

To create an instance, first obtain the name or alias of the image you want to boot:

$ gcloud compute images list --regexp 'debian.*'
NAME PROJECT ALIAS DEPRECATED STATUS
debian-7-wheezy-v20160119 debian-cloud debian-7 READY
debian-8-jessie-v20160119 debian-cloud debian-8 READY

Then create and boot the instance, specifying its name and the image you want:

$ gcloud compute instances create ulsah --image debian-8
waits for instance to launch...
NAME		 ZONE	 MACHINE_TYPE	 INTERNAL_IP	 EXTERNAL_IP	 STATUS
ulsah	 us-central1-f	 n1-standard-1	 10.100.0.4	 104.197.65.218	 RUNNING

	 6.	 See aws ec2 wait for information on polling for events or states within AWS EC2.

http://cloud.google.com
http://cloud.google.com/sdk

	 Clouds: VPS quick start by platform	 289

Cl
ou

d

The output normally has a column that shows whether the instance is “preemptible,”
but in this case it was blank and we removed it to make the output fit on the page.
Preemptible instances are less expensive than standard instances, but they can run
for only 24 hours and can be terminated at any time if Google needs the resources
for another purpose. They’re meant for long-lived operations that can tolerate in-
terruptions, such as batch processing jobs.

Preemptible instances are similar in concept to EC2’s “spot instances” in that you
pay a discounted rate for otherwise-spare capacity. However, we’ve found Google’s
preemptible instances to be more sensible and simpler to manage than AWS’s spot
instances. Long-lived standard instances remain the most appropriate choice for
most tasks, however.

gcloud initializes the instance with a public and private IP address. You can use
the public IP with SSH, but gcloud has a helpful wrapper to simplify SSH logins:

$ gcloud compute ssh ulsah
Last login: Mon Jan 25 03:33:48 2016
ulsah:~$

Cha-ching!

DigitalOcean
With advertised boot times of 55 seconds, DigitalOcean’s virtual servers (“drop-
lets”) are the fastest route to a root shell. The entry level cost is $5 per month, so
they won’t break the bank, either.

Once you create an account, you can manage your droplets through DigitalOcean’s
web site. However, we find it more convenient to use tugboat, a command-line tool
written in Ruby that uses DigitalOcean’s published API. Assuming that you have
Ruby and its library manager, gem, installed on your local system, just run gem
install tugboat to install tugboat.

A couple of one-time setup steps are required. First, generate a pair of cryptographic
keys that you can use to control access to your droplets:

$ ssh-keygen -t rsa -b 2048 -f ~/.ssh/id_rsa_do
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase): <return>
Enter same passphrase again: <return>
Your identification has been saved in /Users/ben/.ssh/id_rsa_do.
Your public key has been saved in /Users/ben/.ssh/id_rsa_do.pub.

Copy the contents of the public key file and paste them into DigitalOcean’s web
console (currently under Settings → Security). As part of that process, assign a short
name to the public key.

Next, connect tugboat to DigitalOcean’s API by entering an access token that you
obtain from the web site. tugboat saves the token for future use in ~/.tugboat.

See page 229 for
more details on set-
ting up Ruby gems.

See page 1016 for
more about SSH.

290	 Chapter 9	 Cloud Computing	

$ tugboat authorize
Note: You can get your Access Token from https://cloud.digitalocean.com/

settings/tokens/new
Enter your access token: e9dff1a9a7ffdd8faf3…f37b015b3d459c2795b64
Enter your SSH key path (defaults to ~/.ssh/id_rsa): ~/.ssh/id_rsa_do
Enter your SSH user (optional, defaults to root):
Enter your SSH port number (optional, defaults to 22):
Enter your default region (optional, defaults to nyc1): sfo1
...
Authentication with DigitalOcean was successful.

To create and start a droplet, first identify the name of the system image you want
to use as a baseline. For example:

$ tugboat images | grep -i ubuntu
16.04.1 x64 (slug: , id: 21669205, distro: Ubuntu)
16.04.1 x64 (slug: , id: 22601368, distro: Ubuntu)
16.04.2 x64 (slug: ubuntu-16-04-x64, id: 23754420, distro: Ubuntu)
16.04.2 x32 (slug: ubuntu-16-04-x32, id: 23754441, distro: Ubuntu)
...

You also need DigitalOcean’s numeric ID for the SSH key you pasted into the web
console:

$ tugboat keys
SSH Keys:
Name: id_rsa_do, (id: 1587367), fingerprint:

bc:32:3f:4d:7d:b0:34:ac:2e:3f:01:f1:e1:ea:2e:da

This output shows that the numeric ID for the key named id_rsa_do is 1587367.
Create and start a droplet like this:

$ tugboat create -i ubuntu-16-04-x64 -k 1587367 ulsah-ubuntu
queueing creation of droplet 'ulsah-ubuntu'...Droplet created!

Here, the argument to -k is the SSH key ID, and the last argument is a short name
for the droplet that you can assign as you wish.

Once the droplet has had time to boot, you can log in with tugboat ssh:

$ tugboat ssh ulsah-ubuntu
Droplet fuzzy name provided. Finding droplet ID...done, 23754420

(ubuntu-16-04-x64)
Executing SSH on Droplet (ubuntu-16-04-x64)...
This droplet has a private IP, checking if you asked to use the Private IP...
You didn't! Using public IP for ssh...
Attempting SSH: root@45.55.1.165
Welcome to Ubuntu 16.04 ((GNU/Linux 4.4.0-28-generic x86_64)
root@ulsah-ubuntu:~#

You can create as many droplets as you need, but keep in mind that you’ll be billed
for each one, even if it’s powered down. To inactivate a droplet, power it down, use

https://cloud.digitalocean.com/settings/tokens/new
https://cloud.digitalocean.com/settings/tokens/new

	 Cost control	 291

Cl
ou

d

tugboat snapshot droplet-name snapshot-name to memorialize the state of the sys-
tem, and run tugboat destroy droplet-name to decommission the droplet. You can
later recreate the droplet by using the snapshot as a source image.

9.5	 Cost control
Cloud newcomers often naïvely anticipate that large-scale systems will be dramati-
cally cheaper to run in the cloud than in a data center. This expectation might stem
from the inverse sticker shock engendered by cloud platforms’ low, low price per
instance-hour. Or perhaps the idea is implanted by the siren songs of cloud mar-
keters, whose case studies always show massive savings.

Regardless of their source, it’s our duty to stamp out hope and optimism wherever
they are found. In our experience, new cloud customers are often surprised when
costs climb quickly.

Cloud tariffs generally consist of several components:

•	 The compute resources of virtual private servers, load balancers, and ev-
erything else that consumes CPU cycles to run your services. Pricing is
per hour of use.

•	 Internet data transfer (both ingress and egress), as well as traffic among
zones and regions. Pricing is per GiB or TiB transferred.

•	 Storage of all types: block storage volumes, object storage, disk snapshots,
and in some cases, I/O to and from the various persistence stores. Pricing
is per GiB or TiB stored per month.

For compute resources, the pay-as-you-go model, also known as “on-demand pric-
ing,” is the most expensive. On AWS and DigitalOcean, the minimum billing incre-
ment is one hour, and on GCP it’s a minute. Prices range from fractions of a cent
per hour (DigitalOcean’s smallest droplet type with 512MiB and one CPU core, or
AWS t2.nano instances) to several dollars per hour (an i2.8xlarge instance on AWS
with 32 cores, 104GiB RAM, and 8 × 800GB local SSDs).

You can realize substantial savings on virtual servers by paying up front for longer
terms. On AWS, this is called “reserved instance pricing.” Unfortunately, it’s unbear-
ably cumbersome and time-consuming to determine precisely what to purchase.
Reserved EC2 instances are tied to a specific instance family. If you decide later that
you need something different, your investment is lost. On the upside, if you reserve
an instance, you are guaranteed that it will be available for your use. With on-de-
mand instances, your desired type might not even be available when you go to pro-
vision it, depending on current capacity and demand. AWS continues to tweak its
pricing structure, so with luck the current system might be simplified in the future.

For number crunching workloads that can tolerate interruptions, AWS offers spot
pricing. The spot market is an auction. If your bid exceeds the current spot price,

292	 Chapter 9	 Cloud Computing	

you’ll be granted use of the instance type you requested until the price exceeds
your maximum bid, at which point your instance is terminated. The prices can be
deeply discounted compared to the EC2 on-demand and reserved prices, but the
use cases are limited.

Google Compute Engine pricing is refreshingly simple by comparison. Discounts
are automatically applied for sustained use, and you never pay up front. You pay the
full base price for the first week of the month, and the incremental price drops each
week by 20% of the base rate, to a maximum discount of 60%. The net discount on
a full month of use is 30%. That’s roughly comparable to the discount on a one-year
reserved EC2 instance, but you can change instances at any time.7

Network traffic can be even more difficult to predict reliably. The culprits commonly
found to be responsible for high data-transfer costs include

•	 Web sites that ingest and serve large media files (videos, images, PDFs,
and other large documents) directly from the cloud, rather than offload-
ing them to a CDN

•	 Inter-zone or inter-region traffic for database clusters that replicate for fault
tolerance; for example, software such as Cassandra, MongoDB, and Riak

•	 MapReduce or data warehouse clusters that span multiple zones

•	 Disk images and volume snapshots transferred between zones or regions
for backup (or by some other automated process)

In situations where replication among multiple zones is important for availability,
you’ll save on transfer expenses by limiting clusters to two zones rather than using
three or more. Some software offers tweaks such as compression that can reduce
the amount of replicated data.

One substantial source of expense on AWS is provisioned IOPS for EBS volumes.
Pricing for EBS is per GiB-month and IOPS-month. The price of a 200GiB EBS
volume with 5,000 IOPS is a few hundred dollars per month. A cluster of these just
might break the bank.

The best defense against high bills is to measure, monitor, and avoid overprovision-
ing. Use autoscaling features to remove capacity when it isn’t needed, lowering costs
at times of low demand. Use more, smaller instances for more fine-grained control.
Watch usage patterns carefully before spending a bundle on reserved instances or
high-bandwidth volumes. The cloud is flexible, and you can make changes to your
infrastructure as needed.

As environments grow, identifying where money is being spent can be a challenge.
Larger cloud accounts might benefit from third party services that analyze use and

	 7.	 For the persnickety and the thrifty: because the discount scheme is linked to your billing cycle, the
timing of transitions makes a difference. You can switch instance types at the start or end of a cycle
with no penalty. The worst case is to switch halfway through a billing cycle, which incurs a penalty of
about 20% of an instance’s monthly base rate.

See page 689 for
more information
about CDNs.

	 Recommended Reading	 293

Cl
ou

d

offer tracking and reporting features. The two that we’ve used are Cloudability and
CloudHealth. Both tap in to the billing features of AWS to break down reports by
user-defined tag, service, or geographic location.

9.6	 Recommended Reading
Wittig, Andreas, and Michael Wittig. Amazon Web Services In Action. Man-
ning Publications, 2015.

Google. cloudplatform.googleblog.com. The official blog for the Google Cloud
Platform.

Barr, Jeff, and others at Amazon Web Services. aws.amazon.com/blogs/aws.
The official blog of Amazon Web Services.

DigitalOcean. digitalocean.com/company/blog. Technical and product blog
from DigitalOcean.

Vogels, Werner. All Things Distributed. allthingsdistributed.com. The blog of
Werner Vogels, CTO at Amazon.

Wardley, Simon. Bits or pieces?  blog.gardeviance.org. The blog of researcher and
cloud trendsetter Simon Wardley. Analysis of cloud industry trends along with
occasional rants.

Bias, Randy. cloudscaling.com/blog. Randy Bias is a director at OpenStack and
has insightful info on the private cloud industry and its future.

Cantrill, Bryan. The Observation Deck. dtrace.org/blogs/bmc. Interesting views
and technical thoughts on general computing from the CTO of Joyent, a niche but
interesting cloud platform.

Amazon. youtube.com/AmazonWebServices. Conference talks and other video
content from AWS.

http://cloudplatform.googleblog.com
http://aws.amazon.com/blogs/aws
http://digitalocean.com/company/blog
http://allthingsdistributed.com
http://blog.gardeviance.org
http://cloudscaling.com/blog
http://dtrace.org/blogs/bmc
http://youtube.com/AmazonWebServices

294

System daemons, the kernel, and custom applications all emit operational data that
is logged and eventually ends up on your finite-sized disks. This data has a limited
useful life and may need to be summarized, filtered, searched, analyzed, compressed,
and archived before it is eventually discarded. Access and audit logs may need to
be managed closely according to regulatory retention rules or site security policies.

A log message is usually a line of text with a few properties attached, including a time
stamp, the type and severity of the event, and a process name and ID (PID). The
message itself can range from an innocuous note about a new process starting up to
a critical error condition or stack trace. It’s the responsibility of system administra-
tors to glean useful, actionable information from this ongoing torrent of messages.

This task is known generically as log management, and it can be divided into a few
major subtasks:

•	 Collecting logs from a variety of sources

•	 Providing a structured interface for querying, analyzing, filtering, and
monitoring messages

•	 Managing the retention and expiration of messages so that information is
kept as long as it is potentially useful or legally required, but not indefinitely

10 Logging

Lo
gg

in
g

	 ﻿Introduction to Logging	 295

UNIX has historically managed logs through an integrated but somewhat rudi-
mentary system, known as syslog, that presents applications with a standardized
interface for submitting log messages. Syslog sorts messages and saves them to files
or forwards them to another host over the network. Unfortunately, syslog tackles
only the first of the logging chores listed above (message collection), and its stock
configuration differs widely among operating systems.

Perhaps because of syslog’s shortcomings, many applications, network daemons,
startup scripts, and other logging vigilantes bypass syslog entirely and write to their
own ad hoc log files. This lawlessness has resulted in a complement of logs that
varies significantly among flavors of UNIX and even among Linux distributions.

Linux’s systemd journal represents a second attempt to bring sanity to the logging
madness. The journal collects messages, stores them in an indexed and compressed
binary format, and furnishes a command-line interface for viewing and filtering
logs. The journal can stand alone, or it can coexist with the syslog daemon with
varying degrees of integration, depending on the configuration.

A variety of third party tools (both proprietary and open source) address the more
complex problem of curating messages that originate from a large network of sys-
tems. These tools feature such aids as graphical interfaces, query languages, data
visualization, alerting, and automated anomaly detection. They can scale to han-
dle message volumes on the order of terabytes per day. You can subscribe to these
products as a cloud service or host them yourself on a private network.

Exhibit A on the next page depicts the architecture of a site that uses all the log
management services mentioned above. Administrators and other interested par-
ties can run a GUI against the centralized log cluster to review log messages from
systems across the network. Administrators can also log in to individual nodes
and access messages through the systemd journal or the plain text files written by
syslog. If this diagram raises more questions than answers for you, you’re reading
the right chapter.

When debugging problems and errors, experienced administrators turn to the logs
sooner rather than later. Log files often contain important hints that point toward
the source of vexing configuration errors, software bugs, and security issues. Logs
are the first place you should look when a daemon crashes or refuses to start, or
when a chronic error plagues a system that is trying to boot.

The importance of having a well-defined, site-wide logging strategy has grown
along with the adoption of formal IT standards such as PCI DSS, COBIT, and ISO
27001, as well as with the maturing of regulations for individual industries. Today,
these external standards may require you to maintain a centralized, hardened, en-
terprise-wide repository for log activity, with time stamps validated by NTP and
with a strictly defined retention schedule.1 However, even sites without regulatory
or compliance requirements can benefit from centralized logging.

	 1.	 Of course, accurate system time is essential even without the presence of regulations. We strongly rec-
ommend enabling NTP on all your systems.

296	 Chapter 10	 Logging	

Exhibit A	 Logging architecture for a site with centralized logging

Linux system

Apache httpd
SSH
NTP
cron

others...

Log sources systemd-journal syslog

Binary journal Plain text �les

FreeBSD system

Apache httpd
SSH
NTP
cron

others...

Log sources syslog

Plain text �les Centralized log cluster

This chapter covers the native log management software used on Linux and FreeBSD,
including syslog, the systemd journal, and logrotate. We also introduce some addi-
tional tools for centralizing and analyzing logs across the network. The chapter closes
with some general advice for setting up a sensible site-wide log management policy.

10.1	 Log locations
UNIX is often criticized for being inconsistent, and indeed it is. Just take a look at
a directory of log files and you’re sure to find some with names like maillog, some
like cron.log, and some that use various distribution- and daemon-specific naming
conventions. By default, most of these files are found in /var/log, but some renegade
applications write their log files elsewhere on the filesystem.

Table 10.1 compiles information about some of the more common log files on our
example systems. The table lists the following:

•	 The log files to archive, summarize, or truncate
•	 The program that creates each
•	 An indication of how each filename is specified
•	 The frequency of cleanup that we consider reasonable
•	 The systems (among our examples) that use the log file
•	 A description of the file’s contents

	 Log locations	 297

Lo
gg

in
g

Filenames in Table 10.1 are relative to /var/log unless otherwise noted. Syslog
maintains many of the listed files, but others are written directly by applications.

Table 10.1	 Log files on parade

File Program W
he

re
 a

Fr
eq

 a

Sy
st

em
s a

Contents

apache2/* httpd F D D Apache HTTP server logs (v2)
apt* APT F M D Aptitude package installations
auth.log sudo, etc. b S M DF Authorizations
boot.log rc scripts F  M R Output from system startup scripts
cloud-init.log cloud-init F – – Output from cloud init scripts
cron, cron/log cron S W RF cron executions and errors
daemon.log various S W D* All daemon facility messages
debug* various S D F,D* Debugging output
dmesg kernel H – all Dump of kernel message buffer
dpkg.log dpkg F M D Package management log
faillog c login H W D* Failed login attempts
httpd/* httpd F D R Apache HTTP server logs
kern.log kernel S W D All kern facility messages
lastlog login H – R Last login time per user (binary)
mail* mail-related S W RF All mail facility messages
messages various S W R The main system log file
samba/* smbd, etc. F W – Samba (Windows/SMB file sharing)
secure sshd, etc.b S M R Private authorization messages
syslog* various S W D The main system log file
wtmp login H M RD Login records (binary)
xen/* Xen F 1m RD Xen virtual machine information
Xorg.n.log Xorg F W R X Windows server errors
yum.log yum F M R Package management log

a.	 Where: F = Configuration file, H = Hardwired, S = Syslog
Frequency: D = Daily, M = Monthly, NNm = Size-based (in MB, e.g., 1m), W = Weekly
Systems: D = Debian and Ubuntu (D* = Debian only), R = Red Hat and CentOS, F = FreeBSD

b.	passwd, sshd, login, and shutdown also write to the authorization log.
c.	 Binary file that must be read with the faillog utility

Log files are generally owned by root, although conventions for the ownership and
mode of log files vary. In some cases, a less privileged process such as httpd may
require write access to the log, in which case the ownership and mode should be set
appropriately. You might need to use sudo to view log files that have tight permissions.

298	 Chapter 10	 Logging	

Log files can grow quickly, especially the ones for busy services such as web, data-
base, and DNS servers. An out-of-control log file can fill up the disk and bring the
system to its knees. For this reason, it’s often helpful to define /var/log as a separate
disk partition or filesystem. (Note that this advice is just as relevant to cloud-based
instances and private virtual machines as it is to physical servers.)

Files not to manage
Most logs are text files to which lines are written as interesting events occur. But a
few of the logs listed in Table 10.1 have a rather different context.

wtmp (sometimes wtmpx) contains a record of users’ logins and logouts as well
as entries that record when the system was rebooted or shut down. It’s a fairly ge-
neric log file in that new entries are simply added to the end of the file. However,
the wtmp file is maintained in a binary format. Use the last command to decode
the information.

lastlog contains information similar to that in wtmp, but it records only the time
of last login for each user. It is a sparse, binary file that’s indexed by UID. It will stay
smaller if your UIDs are assigned in some kind of numeric sequence, although this
is certainly nothing to lose sleep over in the real world. lastlog doesn’t need to be
rotated because its size stays constant unless new users log in.

Finally, some applications (notably, databases) create binary transaction logs. Don’t
attempt to manage these files. Don’t attempt to view them, either, or you’ll be treat-
ed to a broken terminal window.

How to view logs in the systemd journal
For Linux distributions running systemd, the quickest and easiest way to view logs
is to use the journalctl command, which prints messages from the systemd journal.
You can view all messages in the journal, or pass the -u flag to view the logs for a
specific service unit. You can also filter on other constraints such as time window,
process ID, or even the path to a specific executable.

For example, the following output shows journal logs from the SSH daemon:

$ journalctl -u ssh
-- Logs begin at Sat 2016-08-27 23:18:17 UTC, end at Sat 2016-08-27

23:33:20 UTC. --
Aug 27 23:18:24 uxenial sshd[2230]: Server listening on 0.0.0.0 port 22.
Aug 27 23:18:24 uxenial sshd[2230]: Server listening on :: port 22.
Aug 27 23:18:24 uxenial systemd[1]: Starting Secure Shell server...
Aug 27 23:18:24 uxenial systemd[1]: Started OpenBSD Secure Shell server.
Aug 27 23:18:28 uxenial sshd[2326]: Accepted publickey for bwhaley from

10.0.2.2 port 60341 ssh2: RSA SHA256:aaRfGdl0untn758+UCpxL7gkSwcs
zkAYe/wukrdBATc

See page 742 for
an introduction to
disk partitioning.

See the sections start-
ing on page 44 for
more information
about systemd and
systemd units.

Lo
gg

in
g

	 The systemd journal	 299

Aug 27 23:18:28 uxenial sshd[2326]: pam_unix(sshd:session): session
opened for user bwhaley by (uid=0)

Aug 27 23:18:34 uxenial sshd[2480]: Did not receive identification string
from 10.0.2.2

Use journalctl -f to print new messages as they arrive. This is the systemd equivalent
of the much-beloved tail -f for following plain text files as they are being appended to.

The next section covers the systemd-journald daemon and its configuration.

10.2	 The systemd journal
In accordance with its mission to replace all other Linux subsystems, systemd in-
cludes a logging daemon called systemd-journald. It duplicates most of syslog’s
functions but can also run peacefully in tandem with syslog, depending on how you
or the system have configured it. If you’re leery of switching to systemd because
syslog has always “just worked” for you, spend some time to get to know systemd.
After a little practice, you may be pleasantly surprised.

Unlike syslog, which typically saves log messages to plain text files, the systemd
journal stores messages in a binary format. All message attributes are indexed auto-
matically, which makes the log easier and faster to search. As discussed above, you
can use the journalctl command to review messages stored in the journal.

The journal collects and indexes messages from several sources:

•	 The /dev/log socket, to harvest messages from software that submits mes-
sages according to syslog conventions

•	 The device file /dev/kmsg, to collect messages from the Linux kernel.
The systemd journal daemon replaces the traditional klogd process that
previously listened on this channel and formerly forwarded the kernel
messages to syslog.

•	 The UNIX socket /run/systemd/journal/stdout, to service software that
writes log messages to standard output

•	 The UNIX socket /run/systemd/journal/socket, to service software that
submits messages through the systemd journal API

•	 Audit messages from the kernel’s auditd daemon

Intrepid administrators can use the systemd-journal-remote utility (and its rela-
tives, systemd-journal-gateway and systemd-journal-upload,) to stream serialized
journal messages over the network to a remote journal. Unfortunately, this feature
does not come preinstalled on vanilla distributions. As of this writing, packages are
available for Debian and Ubuntu but not for Red Hat or CentOS. We expect this
lapse to be rectified soon; in the meantime, we recommend sticking with syslog if
you need to forward log messages among systems.

300	 Chapter 10	 Logging	

Configuring the systemd journal
The default journal configuration file is /etc/systemd/journald.conf; however, this
file is not intended to be edited directly. Instead, add your customized configurations
to the /etc/systemd/journald.conf.d directory. Any files placed there with a .conf
extension are automatically incorporated into the configuration. To set your own
options, create a new .conf file in this directory and include the options you want.

The default journald.conf includes a commented-out version of every possible op-
tion, along with each option’s default value, so you can see at a glance which options
are available. They include the maximum size of journal, the retention period for
messages, and various rate-limiting settings.

The Storage option controls whether to save the journal to disk. The possible val-
ues are somewhat confusing:

•	 volatile stores the journal in memory only.

•	 persistent saves the journal in /var/log/journal/, creating the directory
if it doesn’t already exist.

•	 auto saves the journal in /var/log/journal/ but does not create the direc-
tory. This is the default value.

•	 none discards all log data.

Most Linux distributions (including all our examples) default to the value auto and
do not come with a /var/log/journal directory. Hence, the journal is not saved be-
tween reboots by default, which is unfortunate.

You can modify this behavior either by creating the /var/log/journal directory or
by updating the journal to use persistent storage and restarting systemd-journald:

mkdir /etc/systemd/journald.conf.d/
cat << END > /etc/systemd/journald.conf.d/storage.conf
[Journal]
Storage=persistent
END
systemctl restart systemd-journald

This series of commands creates the custom configuration directory journald.conf.d,
creates a configuration file to set the Storage option to persistent, and restarts the
journal so that the new settings take effect. systemd-journald will now create the
directory and retain the journal. We recommend this change for all systems; it’s a
real handicap to lose all log data every time the system reboots.

One of the niftiest journal options is Seal, which enables Forward Secure Sealing
(FSS) to increase the integrity of log messages. With FSS enabled, messages submit-
ted to the journal cannot be altered without access to a cryptographic key pair. You
generate the key pair itself by running journalctl --setup-keys. Refer to the man
pages for journald.conf and journalctl for the full scoop on this option.

Lo
gg

in
g

	 The systemd journal	 301

Adding more filtering options for journalctl
We showed a quick example of a basic journalctl log search on page 298. In this
section, we show some additional ways to use journalctl to filter messages and
gather information about the journal.

To allow normal users to read from the journal without needing sudo permissions,
add them to the systemd-journal UNIX group.

The --disk-usage option shows the size of the journal on disk:

journalctl --disk-usage
Journals take up 4.0M on disk.

The --list-boots option shows a sequential list of system boots with numerical iden-
tifiers. The most recent boot is always 0. The dates at the end of the line show the
time stamps of the first and last messages generated during that boot.

journalctl --list-boots
-1 ce0... Sun 2016-11-13 18:54:42 UTC—Mon 2016-11-14 00:09:31
 0 844... Mon 2016-11-14 00:09:38 UTC—Mon 2016-11-14 00:12:56

You can use the -b option to restrict the log display to a particular boot session. For
example, to view logs generated by SSH during the current session:

journalctl -b 0 -u ssh

To show all the messages from yesterday at midnight until now:

journalctl --since=yesterday --until=now

To show the most recent 100 journal entries from a specific binary:

journalctl -n 100 /usr/sbin/sshd

You can use journalctl --help as a quick reference for these arguments.

Coexisting with syslog
Both syslog and the systemd journal are active by default on each of our example
Linux systems. Both packages collect and store log messages. Why would you want
both of them running, and how does that even work?

Unfortunately, the journal is missing many of the features that are available in syslog.
As the discussion starting on page 304 demonstrates, rsyslog can receive messages
from a variety of input plug-ins and forward them to a diverse set of outputs according
to filters and rules, none of which is possible when the systemd journal is used. The
systemd universe does include a remote streaming tool, systemd-journal-remote,
but it’s relatively new and untested in comparison with syslog. Administrators may
also find it convenient to keep certain log files in plain text, as syslog does, instead
of in the journal’s binary format.

302	 Chapter 10	 Logging	

We anticipate that over time, new features in the journal will usurp syslog’s respon-
sibilities. But for now, Linux distributions still need to run both systems to achieve
full functionality.

The mechanics of the interaction between the systemd journal and syslog are
somewhat convoluted. To begin with, systemd-journald takes over responsibility
for collecting log messages from /dev/log, the logging socket that was historically
controlled by syslog.2 For syslog to get in on the logging action, it must now access
the message stream through systemd. Syslog can retrieve log messages from the
journal in two ways:

•	 The systemd journal can forward messages to another socket (typically
/run/systemd/journal/syslog), from which the syslog daemon can read
them. In this mode of operation, systemd-journald simulates the original
message submitters and conforms to the standard syslog API. Therefore,
only the basic message parameters are forwarded; some systemd-specific
metadata is lost.

•	 Alternatively, syslog can consume messages directly from the journal API,
in the same manner as the journalctl command. This method requires
explicit support for cooperation on the part of syslogd, but it’s a more
complete form of integration that preserves the metadata for each message.3

Debian and Ubuntu default to the former method, but Red Hat and CentOS use the
latter. To determine which type of integration has been configured on your system,
inspect the ForwardToSyslog option in /etc/systemd/journald.conf. If its value is
yes, socket-forwarding is in use.

10.3	 Syslog
Syslog, originally written by Eric Allman, is a comprehensive logging system and
IETF-standard logging protocol.4 It has two important functions: to liberate pro-
grammers from the tedious mechanics of writing log files, and to give administra-
tors control of logging. Before syslog, every program was free to make up its own
logging policy. System administrators had no consistent control over what infor-
mation was kept or where it was stored.

Syslog is flexible. It lets administrators sort messages by source (“facility”) and im-
portance (“severity level”) and route them to a variety of destinations: log files, us-
ers’ terminals, or even other machines. It can accept messages from a wide variety
of sources, examine the attributes of the messages, and even modify their contents.
Its ability to centralize the logging for a network is one of its most valuable features.

	 2.	 More specifically, the journal links /dev/log to /run/systemd/journal/dev-log.
	 3.	 See man systemd.journal-fields for a rundown of the available metadata.
	 4.	 RFC5424 is the latest version of the syslog specification, but the previous version, RFC3164, may bet-

ter reflect the real-world installed base.

	 Syslog	 303

Lo
gg

in
g

On Linux systems, the original syslog daemon (syslogd) has been replaced with a
newer implementation called rsyslog (rsyslogd). Rsyslog is an open source project
that extends the capabilities of the original syslog but maintains backward API com-
patibility. It is the most reasonable choice for administrators working on modern
UNIX and Linux systems and is the only version of syslog we cover in this chapter.

Rsyslog is available for FreeBSD, and we recommend that you adopt it in preference
to the standard FreeBSD syslog unless you have simple needs. For instructions on
converting a FreeBSD system to use rsyslog, see wiki.rsyslog.com/index.php/FreeBSD.
If you decide to stick with FreeBSD’s traditional syslog, jump to page 307 for con-
figuration information.

Reading syslog messages
You can read plaintext messages from syslog with normal UNIX and Linux text
processing tools such as grep, less, cat, and awk. The snippet below shows typical
events in /var/log/syslog from a Debian host:

jessie# cat /var/log/syslog
Jul 16 19:43:01 jessie networking[244]: bound to 10.0.2.15 -- renewal in

42093 seconds.
Jul 16 19:43:01 jessie rpcbind[397]: Starting rpcbind daemon....
Jul 16 19:43:01 jessie nfs-common[412]: Starting NFS common utilities:

statd idmapd.
Jul 16 19:43:01 jessie cron[436]: (CRON) INFO (pidfile fd = 3)
Jul 16 19:43:01 jessie cron[436]: (CRON) INFO (Running @reboot jobs)
Jul 16 19:43:01 jessie acpid: starting up with netlink and the input layer
Jul 16 19:43:01 jessie docker[486]: time="2016-07-

16T19:43:01.972678480Z" level=info msg="Daemon has completed
initialization"

Jul 16 19:43:01 jessie docker[486]: time="2016-07-
16T19:43:01.972896608Z" level=info msg="Docker daemon"
commit=c3959b1 execdriver=native-0.2 graphdriver=aufs
version=1.10.2

Jul 16 19:43:01 jessie docker[486]: time="2016-07-
16T19:43:01.979505644Z" level=info msg="API listen on /var/run/
docker.sock"

The example contains entries from several different daemons and subsystems: net-
working, NFS, cron, Docker, and the power management daemon, acpid. Each
message contains the following space-separated fields:

•	 Time stamp
•	 System’s hostname, in this case jessie
•	 Name of the process and its PID in square brackets
•	 Message payload

Some daemons encode the payload to add metadata about the message. In the output
above, the docker process includes its own time stamp, a log level, and information

http://wiki.rsyslog.com/index.php/FreeBSD

304	 Chapter 10	 Logging	

about the configuration of the daemon itself. This additional information is entirely
up to the sending process to generate and format.

Rsyslog architecture
Think about log messages as a stream of events and rsyslog as an event-stream pro-
cessing engine. Log message “events” are submitted as inputs, processed by filters,
and forwarded to output destinations. In rsyslog, each of these stages is configurable
and modular. By default, rsyslog is configured in /etc/rsyslog.conf.

The rsyslogd process typically starts at boot and runs continuously. Programs that
are syslog aware write log entries to the special file /dev/log, a UNIX domain sock-
et. In a stock configuration for systems without systemd, rsyslogd reads messages
from this socket directly, consults its configuration file for guidance on how to route
them, and dispatches each message to an appropriate destination. It’s also possible
(and common) to configure rsyslogd to listen for messages on a network socket.

If you modify /etc/rsyslog.conf or any of its included files, you must restart the
rsyslogd daemon to make your changes take effect. A TERM signal makes the dae-
mon exit. A HUP signal causes rsyslogd to close all open log files, which is useful
for rotating (renaming and restarting) logs.

By longstanding convention, rsyslogd writes its process ID to /var/run/syslogd.pid,
so it’s easy to send signals to rsyslogd from a script.5 For example, the following
command sends a hangup signal:

$ sudo kill -HUP `/bin/cat /var/run/syslogd.pid`

Trying to compress or rotate a log file that rsyslogd has open for writing is not healthy
and has unpredictable results, so be sure to send a HUP signal before you do this.
Refer to page 319 for information on sane log rotation with the logrotate utility.

Rsyslog versions
Red Hat and CentOS use rsyslog version 7, but Debian and Ubuntu have updated
to version 8. FreeBSD users installing from ports can choose either version 7 or
version 8. As you might expect, the rsyslog project recommends using the most
recent version, and we defer to their advice. That said, it won’t make or break your
logging experience if your operating system of choice is a version behind the latest
and greatest.

Rsyslog 8 is a major rewrite of the core engine, and although a lot has changed
under the hood for module developers, the user-facing aspects remain mostly un-
changed. With a few exceptions, the configurations in the following sections are
valid for both versions.

	 5.	 On modern Linux systems, /var/run is a symbolic link to /run.

See page 94 for
more information
about signals.

	 Syslog	 305

Lo
gg

in
g

Rsyslog configuration
rsyslogd’s behavior is controlled by the settings in /etc/rsyslog.conf. All our example
Linux distributions include a simple configuration with sensible defaults that suit
most sites. Blank lines and lines beginning with a # are ignored. Lines in an rsyslog
configuration are processed in order from beginning to end, and order is significant.

At the top of the configuration file are global properties that configure the dae-
mon itself. These lines specify which input modules to load, the default format of
messages, ownerships and permissions of files, the working directory in which to
maintain rsyslog’s state, and other settings. The following example configuration
is adapted from the default rsyslog.conf on Debian Jessie:

Support local system logging
$ModLoad imuxsock

Support kernel logging
$ModLoad imklog

Write messages in the traditional time stamp format
$ActionFileDefaultTemplate RSYSLOG_TraditionalFileFormat

New log files are owned by root:adm
$FileOwner root
$FileGroup adm

Default permissions for new files and directories
$FileCreateMode 0640
$DirCreateMode 0755
$Umask 0022

Location in which to store rsyslog working files
$WorkDirectory /var/spool/rsyslog

Most distributions use the $IncludeConfig legacy directive to include additional
files from a configuration directory, typically /etc/rsyslog.d/*.conf. Because order
is important, distributions organize files by preceding file names with numbers. For
example, the default Ubuntu configuration includes the following files:

	 20-ufw.conf
	 21-cloudinit.conf
	 50-default.conf

rsyslogd interpolates these files into /etc/rsyslog.conf in lexicographic order to
form its final configuration.

Filters, sometimes called “selectors,” constitute the bulk of an rsyslog configuration.
They define how rsyslog sorts and processes messages. Filters are formed from ex-
pressions that select specific message criteria and actions that route selected mes-
sages to a desired destination.

306	 Chapter 10	 Logging	

Rsyslog understands three configuration syntaxes:

•	 Lines that use the format of the original syslog configuration file. This
format is now known as “sysklogd format,” after the kernel logging dae-
mon sysklogd. It’s simple and effective but has some limitations. Use it
to construct simple filters.

•	 Legacy rsyslog directives, which always begin with a $ sign. The syntax
comes from ancient versions of rsyslog and really ought to be obsolete.
However, not all options have been converted to the newer syntax, and
so this syntax remains authoritative for certain features.

•	 RainerScript, named for Rainer Gerhards, the lead author of rsyslog. This
is a scripting syntax that supports expressions and functions. You can use
it to configure most—but not all—aspects of rsyslog.

Many real-world configurations include a mix of all three formats, sometimes to
confusing effect. Although it has been around since 2008, RainerScript remains
slightly less common than the others. Fortunately, none of the dialects are partic-
ularly complex. In addition, many sites will have no need to do major surgery on
the vanilla configurations included with their stock distributions.

To migrate from a traditional syslog configuration, simply start with your existing
syslog.conf file and add options for the rsyslog features you want to activate.

Modules
Rsyslog modules extend the capabilities of the core processing engine. All inputs
(sources) and outputs (destinations) are configured through modules, and mod-
ules can even parse and mutate messages. Although most modules were written by
Rainer Gerhards, some were contributed by third parties. If you’re a C programmer,
you can write your own.

Module names follow a predictable prefix pattern. Those beginning with im are
input modules; om* are output modules, mm* are message modifiers, and so on.
Most modules have additional configuration options that customize their behavior.
The rsyslog module documentation is the complete reference.

The following list briefly describes some of the more common (or interesting) input
and output modules, along with a few nuggets of exotica:

•	 imjournal integrates with the systemd journal, as described in Coexisting
with syslog starting on page 301.

•	 imuxsock reads messages from a UNIX domain socket. This is the default
when systemd is not present.

•	 imklog understands how to read kernel messages on Linux and BSD.

	 Syslog	 307

Lo
gg

in
g

•	 imfile converts a plain text file to syslog message format. It’s useful for
importing log files generated by software that doesn’t have native syslog
support. Two modes exist: polling mode, which checks the file for updates
at a configurable interval, and notification mode (inotify), which uses the
Linux filesystem event interface. This module is smart enough to resume
where it left off whenever rsyslogd is restarted.

•	 imtcp and imudp accept network messages over TCP and UDP, respec-
tively. They allow you to centralize logging on a network. In combination
with rsyslog’s network stream drivers, the TCP module can also accept
mutually authenticated syslog messages through TLS. For Linux sites with
extremely high volume, see also the imptcp module.

•	 If the immark module is present, rsyslog produces time stamp messages
at regular intervals. These time stamps can help you figure out that your
machine crashed between 3:00 and 3:20 a.m., not just “sometime last
night.” This information is also a big help when you are debugging prob-
lems that seem to occur regularly. Use the MarkMessagePeriod option to
configure the mark interval.

•	 omfile writes messages to a file. This is the most commonly used output
module, and the only one configured in a default installation.

•	 omfwd forwards messages to a remote syslog server over TCP or UDP.
This is the module you’re looking for if your site needs centralized logging.

•	 omkafka is a producer implementation for the Apache Kafka data streaming
engine. Users at high-volume sites may benefit from being able to process
messages that have many potential consumers.

•	 Similarly to omkafka, omelasticsearch writes directly to an Elasticsearch
cluster. See page 321 for more information about the ELK log manage-
ment stack, which includes Elasticsearch as one of its components.

•	 ommysql sends messages to a MySQL database. The rsyslog source dis-
tribution includes an example schema. Combine this module with the
$MainMsgQueueSize legacy directive for better reliability.

Modules can be loaded and configured through either the legacy or RainerScript
configuration formats. We show some examples in the format-specific sections below.

sysklogd syntax
The sysklogd syntax is the traditional syslog configuration format. If you encounter
a standard syslogd, such as the version installed on stock FreeBSD, this is likely all
you’ll need to understand. (But note that the configuration file for the traditional
syslogd is /etc/syslog.conf, not /etc/rsyslog.conf.)

See page 1008 for
more informa-
tion about TLS.

308	 Chapter 10	 Logging	

This format is primarily intended for routing messages of a particular type to a de-
sired destination file or network address. The basic format is

selector			 action

The selector is separated from the action by one or more spaces or tabs. For exam-
ple, the line

auth.*			 /var/log/auth.log

causes messages related to authentication to be saved in /var/log/auth.log.

Selectors identify the source program (“facility”) that is sending a log message and
the message’s priority level (“severity”) with the syntax

facility.severity

Both facility names and severity levels must be chosen from a short list of defined
values; programs can’t make up their own. Facilities are defined for the kernel, for
common groups of utilities, and for locally written programs. Everything else is
classified under the generic facility “user.”

Selectors can contain the special keywords * and none, meaning all or nothing, re-
spectively. A selector can include multiple facilities separated by commas. Multiple
selectors can be combined with semicolons.

In general, selectors are ORed together: a message matching any selector is subject
to the line’s action. However, a selector with a level of none excludes the listed facil-
ities regardless of what other selectors on the same line might say.

Here are some examples of ways to format and combine selectors:

Apply action to everything from facility.level
facility.level					 action

Everything from facility1.level and facility2.level
facility1, facility2.level			 action

Only facility1.level1 and facility2.level2
facility1.level1; facility2.level2	 action

All facilities with severity level
*.level							 action

All facilities except badfacility
*.level;badfacility.none			 action

Table 10.2 lists the valid facility names. They are defined in syslog.h in the stan-
dard library.

	 Syslog	 309

Lo
gg

in
g

Table 10.2	 Syslog facility names

Facility Programs that use it

* All facilities except “mark”
auth Security- and authorization-related commands
authpriv Sensitive/private authorization messages 
cron The cron daemon
daemon System daemons
ftp The FTP daemon, ftpd (obsolete)
kern The kernel
local0-7 Eight flavors of local message
lpr The line printer spooling system
mail sendmail, postfix, and other mail-related software
mark Time stamps generated at regular intervals
news The Usenet news system (obsolete)
syslog syslogd internal messages
user User processes (the default if not specified)

Don’t take the distinction between auth and authpriv too seriously. All authoriza-
tion-related messages are sensitive, and none should be world-readable. sudo logs
use authpriv.

Table 10.3 lists the valid severity levels in order of descending importance.

Table 10.3	 Syslog severity levels (descending severity)

Level Approximate meaning

emerg Panic situations; system is unusable
alert Urgent situations; immediate action required
crit Critical conditions
err Other error conditions
warning Warning messages
notice Things that might merit investigation
info Informational messages
debug For debugging only

The severity level of a message specifies its importance. The distinctions between
the various levels are sometimes fuzzy. There’s a clear difference between notice and
warning and between warning and err, but the exact shade of meaning expressed
by alert as opposed to crit is a matter of conjecture.

310	 Chapter 10	 Logging	

Levels indicate the minimum importance that a message must have to be logged. For
example, a message from SSH at level warning would match the selector auth.warning
as well as the selectors auth.info, auth.notice, auth.debug, *.warning, *.notice,
*.info, and *.debug. If the configuration directs auth.info messages to a particular
file, auth.warning messages will go there also.

The format also allows the characters = and ! to be prefixed to priority levels to in-
dicate “this priority only” and “except this priority and higher,” respectively. Table
10.4 shows examples.

Table 10.4	 Examples of priority level qualifiers

Selector Meaning

auth.info Auth-related messages of info priority and higher
auth.=info Only messages at info priority
auth.info;auth.!err Only priorities info, notice, and warning
auth.debug;auth.!=warning All priorities except warning

The action field tells what to do with each message. Table 10.5 lists the options.

Table 10.5	 Common actions

Action Meaning

filename Appends the message to a file on the local machine
@hostname Forwards the message to the rsyslogd on hostname
@ipaddress Forwards the message to ipaddress on UDP port 514
@@ipaddress Forwards the message to ipaddress on TCP port 514
| fifoname Writes the message to the named pipe fifoname a

user1,user2,… Writes the message to the screens of users if they are logged in
* Writes the message to all users who are currently logged in
~ Discards the message
^program;template Formats the message according to the template specification

and sends it to program as the first argument b

a.	 See man mkfifo for more information.
b.	See man 5 rsyslog.conf for further details on templates.

If a filename (or fifoname) action is specified, the name should be an absolute path.
If you specify a nonexistent filename, rsyslogd will create the file when a message
is first directed to it. The ownership and permissions of the file are specified in the
global configuration directives as shown on page 305.

http://auth.info
http://*.info
http://auth.info
http://auth.info
http://auth.info;auth

	 Syslog	 311

Lo
gg

in
g

Here are a few configuration examples that use the traditional syntax:

Kernel messages to kern.log
kern.*							 -/var/log/kern.log

Cron messages to cron.log
cron.*							 /var/log/cron.log

Auth messages to auth.log
auth,authpriv.*					 /var/log/auth.log

All other messages to syslog
.;auth,authpriv,cron,kern.none	 -/var/log/syslog

You can preface a filename action with a dash to indicate that the filesystem should
not be synced after each log entry is written. syncing helps preserve as much log-
ging information as possible in the event of a crash, but for busy log files it can be
devastating in terms of I/O performance. We recommend including the dashes (and
thereby inhibiting syncing) as a matter of course. Remove the dashes only tempo-
rarily when investigating a problem that is causing kernel panics.

Legacy directives
Although rsyslog calls these “legacy” options, they remain in widespread use, and
you will find them in the majority of rsyslog configurations. Legacy directives can
configure all aspects of rsyslog, including global daemon options, modules, filter-
ing, and rules.

In practice, however, these directives are most commonly used to configure mod-
ules and the rsyslogd daemon itself. Even the rsyslog documentation warns against
using the legacy format for message-processing rules, claiming that it is “extremely
hard to get right.” Stick with the sysklogd or RainerScript formats for actually fil-
tering and processing messages.

Daemon options and modules are straightforward. For example, the options below
enable logging over UDP and TCP on the standard syslog port (514). They also
permit keep-alive packets to be sent to clients to keep TCP connections open; this
option reduces the cost of reconstructing connections that have timed out.

$ModLoad imudp
$UDPServerRun 514
$ModLoad imtcp
$InputTCPServerRun 514
$InputTCPServerKeepAlive on

To put these options into effect, you could add the lines to a new file to be included
in the main configuration such as /etc/rsyslog.d/10-network-inputs.conf. Then
restart rsyslogd. Any options that modify a module’s behavior must appear after
the module has been loaded.

Table 10.6 on the next page describes a few of the more common legacy directives.

312	 Chapter 10	 Logging	

Table 10.6	 Rsyslog legacy configuration options

Option Purpose

$MainMsgQueueSize Size of memory buffer between received and sent messages  a

$MaxMessageSize Defaults to 8kB; must precede loading of any input modules
$LocalHostName Overrides the local hostname
$WorkDirectory Specifies where to save rsyslog working files
$ModLoad Loads a module
$MaxOpenFiles Modifies the defaults system nofile limit for rsyslogd
$IncludeConfig Includes additional configuration files
$UMASK Sets the umask for new files created by rsyslogd

a.	 This option is useful for slow outputs such as database inserts.

RainerScript
The RainerScript syntax is an event-stream-processing language with filtering and
control-flow capabilities. In theory, you can also set basic rsyslogd options through
RainerScript. But since some legacy options still don’t have RainerScript equivalents,
why confuse things by using multiple option syntaxes?

RainerScript is more expressive and human-readable than rsyslogd’s legacy direc-
tives, but it has an unusual syntax that’s unlike any other configuration system we’ve
seen. In practice, it feels somewhat cumbersome. Nonetheless, we recommend it for
filtering and rule development if you need those features. In this section we discuss
only a subset of its functionality.

Of our example distributions, only Ubuntu uses RainerScript in its default con-
figuration files. However, you can use RainerScript format on any system running
rsyslog version 7 or newer.

You can set global daemon parameters by using the global() configuration object.
For example:

global(
 workDirectory="/var/spool/rsyslog"
 maxMessageSize="8192"
)

Most legacy directives have identically named RainerScript counterparts, such as
workDirectory and maxMessageSize in the lines above. The equivalent legacy syn-
tax for this configuration would be:

$WorkDirectory /var/spool/rsyslog
$MaxMessageSize 8192

	 Syslog	 313

Lo
gg

in
g

You can also load modules and set their operating parameters through RainerScript.
For example, to load the UDP and TCP modules and apply the same configuration
demonstrated on page 311, you’d use the following RainerScript:

module(load="imudp")
input(type="imudp" port="514")
module(load="imtcp" KeepAlive="on")
input(type="imtcp" port="514")

In RainerScript, modules have both “module parameters” and “input parameters.”
A module is loaded only once, and a module parameter (e.g., the KeepAlive option
in the imtcp module above) applies to the module globally. By contrast, input pa-
rameters can be applied to the same module multiple times. For example, we could
instruct rsyslog to listen on both TCP ports 514 and 1514:

module(load="imtcp" KeepAlive="on")
input(type="imtcp" port="514")
input(type="imtcp" port="1514")

Most of the benefits of RainerScript relate to its filtering capabilities. You can use
expressions to select messages that match a certain set of characteristics, then ap-
ply a particular action to the matching messages. For example, the following lines
route authentication-related messages to /var/log/auth.log:

if $syslogfacility-text == 'auth' then {
	 action(type="omfile" file="/var/log/auth.log")
}

In this example, $syslogfacility-text is a message property—that is, a part of the
message’s metadata. Properties are prefixed by a dollar sign to indicate to rsyslog
that they are variables. In this case, the action is to use the omfile output module
to write matching messages to auth.log.

Table 10.7 lists some of the most frequently used properties.

Table 10.7	 Commonly used rsyslog message properties

Property Meaning

$msg The text of the message, without metadata
$rawmsg The full message as received, including metadata
$hostname The hostname from the message
$syslogfacility Syslog facility in numerical form; see RFC3164
$syslogfacility-text Syslog facility in text form
$syslogseverity Syslog severity in numeric form; see RFC3164
$syslogseverity-text Syslog severity in text form
$timegenerated Time at which the message was received by rsyslogd
$timereported Time stamp from the message itself

314	 Chapter 10	 Logging	

A given filter can include multiple filters and multiple actions. The following frag-
ment targets kernel messages of critical severity. It logs the messages to a file and
sends email to alert an administrator of the problem.

module(load="ommail")

if $syslogseverity-text == 'crit' and $syslogfacility-text == 'kern' then {
	 action(type="omfile" file="/var/log/kern-crit.log")
	 action(type="ommail"
		 server="smtp.admin.com"
		 port="25"
		 mailfrom="rsyslog@admin.com"
		 mailto="ben@admin.com"
		 subject.text="Critical kernel error"
		 action.execonlyonceeveryinterval="3600"
)
}

Here, we’ve specified that we don’t want more than one email message generated
per hour (3,600 seconds).

Filter expressions support regular expressions, functions, and other sophisticated
techniques. Refer to the RainerScript documentation for complete details.

Config file examples
In this section we show three sample configurations for rsyslog. The first is a basic
but complete configuration that writes log messages to files. The second example
is a logging client that forwards syslog messages and httpd access and error logs to
a central log server. The final example is the corresponding log server that accepts
log messages from a variety of logging clients.

These examples rely heavily on RainerScript because it’s the suggested syntax for
the latest versions of rsyslog. A few of the options are valid only in rsyslog version
8 and include Linux-specific settings such as inotify.

Basic rsyslog configuration
The following file can serve as a generic RainerScript rsyslog.conf for any Linux
system:

module(load="imuxsock")				 # Local system logging
module(load="imklog")				 # Kernel logging
module(load="immark" interval="3600")	 # Hourly mark messages

http://"smtp.admin.com"
mailto:"rsyslog@admin.com"
mailto:"ben@admin.com"

	 Syslog	 315

Lo
gg

in
g

Set global rsyslogd parameters
global(
	 workDirectory = "/var/spool/rsyslog"
	 maxMessageSize = "8192"
)

The output file module does not need to be explicitly loaded,
but we can load it ourselves to override default parameter values.

module(load="builtin:omfile"
	 # Use traditional timestamp format
	 template="RSYSLOG_TraditionalFileFormat"

	 # Set the default permissions for all log files.
	 fileOwner="root"
	 fileGroup="adm"
	 dirOwner="root"
	 dirGroup="adm"
	 fileCreateMode="0640"
	 dirCreateMode="0755"
)

Include files from /etc/rsyslog.d; there's no RainerScript equivalent
$IncludeConfig /etc/rsyslog.d/*.conf

This example begins with a few default log collection options for rsyslogd. The de-
fault file permissions of 0640 for new log files is more restrictive than the omfile
default of 0644.

Network logging client
This logging client forwards system logs and the Apache access and error logs to a
remote server over TCP.

Send all syslog messages to the server; this is sysklogd syntax
.				 @@logs.admin.com

imfile reads messages from a file
inotify is more efficient than polling
It's the default, but noted here for illustration
module(load="imfile" mode="inotify")

Import Apache logs through the imfile module
input(type="imfile"
	 Tag="apache-access"
	 File="/var/log/apache2/access.log"
	 Severity="info"
)

mailto:@logs.admin.com

316	 Chapter 10	 Logging	

input(type="imfile"
	 Tag="apache-error"
	 File="/var/log/apache2/error.log"
	 Severity="info"
)

Send Apache logs to the central log host
if $programname contains 'apache' then {
	 action(type="omfwd"
		 Target="logs.admin.com"
		 Port="514"
		 Protocol="tcp"
)
}

Apache httpd does not write messages to syslog by default, so the access and error
logs are read from text files with imfile.6 The messages are tagged for later use in
a filter expression.

At the end of the file, the if statement is a filter expression that searches for Apache
messages and forwards those to logs.admin.com, the central log server. Logs are
sent over TCP, which although more reliable than UDP still can potentially drop
messages. You can use RELP (the Reliable Event Logging Protocol), a nonstandard
output module, to guarantee log delivery.

In a real-world scenario, you might render the Apache-related portion of this con-
figuration to /etc/rsyslog.d/55-apache.conf as part of the configuration manage-
ment setup for the server.

Central logging host
The configuration of the corresponding central log server is straightforward: listen
for incoming logs on TCP port 514, filter by log type, and write to files in the site-
wide logging directory.

Load the TCP input module and listen on port 514
Do not accept more than 500 simultaneous clients
module(load="imtcp" MaxSessions="500")
input(type="imtcp" port="514")

Save to different files based on the type of message
if $programname == 'apache-access' then {
	 action(type="omfile" file="/var/log/site/apache/access.log")
} else if $programname == 'apache-error' then {
	 action(type="omfile" file="/var/log/site/apache/error.log")
} else {
	 # Everything else goes to a site-wide syslog file
	 action(type="omfile" file="/var/log/site/syslog")
}

	 6.	 httpd can log directly to syslog with mod_syslog, but we use imfile here for illustration.

See Chapter 23 for
more about configu-
ration management.

http://"logs.admin.com"
http://logs.admin.com

	 Syslog	 317

Lo
gg

in
g

The central logging host generates a time stamp for each message as it writes out
the message. Apache messages include a separate time stamp that was generated
when httpd logged the message. You’ll find both of these time stamps in the site-
wide log files.

Syslog message security
Rsyslog can send and receive log messages over TLS, a layer of encryption and authen-
tication that runs on top of TCP. See page 1008 for general information about TLS.

The example below assumes that the certificate authority, public certificates, and
keys have already been generated. See page 1007 for details on public key infra-
structure and certificate generation.

This configuration introduces a new option: the network stream driver, a module
that operates at a layer between the network and rsyslog. It typically implements
features that enhance basic network capabilities. TLS is enabled by the gtls net-
stream driver.

The following example enables the gtls driver for a log server. The gtls driver re-
quires a CA certificate, a public certificate, and the server’s private key. The imtcp
module then enables the gtls stream driver.

global(
	 defaultNetstreamDriver="gtls"
	 defaultNetstreamDriverCAFile="/etc/ssl/ca/admin.com.pem"
	 defaultNetstreamDriverCertFile="/etc/ssl/certs/server.com.pem"
	 defaultNetstreamDriverKeyFile="/etc/ssl/private/server.com.key"
)
module(
	 load="imtcp"
	 streamDriver.name="gtls"
	 streamDriver.mode="1"
	 streamDriver.authMode="x509/name"
)
input(type="imtcp" port="6514")

The log server listens on the TLS version of the standard syslog port, 6514. The
authMode option tells syslog what type of validation to perform. x509/name, the
default, checks that the certificate is signed by a trusted authority and also validates
the subject name that binds a certificate to a specific client through DNS.

Configuration for the client side of the TLS connection is similar. Use the client
certificate and private key, and use the gtls netstream driver for the log forward-
ing output module.

http://"/etc/ssl/ca/admin.com.pem"
http://"/etc/ssl/certs/server.com.pem"
http://"/etc/ssl/private/server.com.key"

318	 Chapter 10	 Logging	

global(
	 defaultNetstreamDriver="gtls"
	 defaultNetstreamDriverCAFile="/etc/ssl/ca/admin.com.pem"
	 defaultNetstreamDriverCertFile="/etc/ssl/certs/client.com.pem"
	 defaultNetstreamDriverKeyFile="/etc/ssl/private/client.com.key"
)

.		 action(type="omfwd"
			 Protocol="tcp"
			 Target="logs.admin.com"
			 Port="6514"
			 StreamDriverMode="1"
			 StreamDriver="gtls"
			 StreamDriverAuthMode="x509/name"
)

In this case, we forward all log messages with a sort of Frankenstein version of the
sysklogd syntax: the action component is a RainerScript form instead of one of the
standard sysklogd-native options. If you need to be pickier about which messages
to forward (or you need to send different classes of message to different destina-
tions), you can use RainerScript filter expressions, as demonstrated in several of
the examples earlier in this chapter.

Syslog configuration debugging
The logger command is useful for submitting log entries from shell scripts or the
command line. You can also use it to test changes to rsyslog’s configuration. For
example, if you have just added the line

local5.warning		 /tmp/evi.log

and want to verify that it is working, run the command

$ logger -p local5.warning "test message"

A line containing “test message” should be written to /tmp/evi.log. If this doesn’t
happen, perhaps you’ve forgotten to restart rsyslogd?

10.4	 Kernel and boot-time logging
The kernel and the system startup scripts present some special challenges in the
domain of logging. In the case of the kernel, the problem is to create a permanent
record of the boot process and kernel operation without building in dependencies
on any particular filesystem or filesystem organization. For startup scripts, the chal-
lenge is to capture a coherent and accurate narrative of the startup process without
permanently tying any system daemons to a startup log file, interfering with any

http://"/etc/ssl/ca/admin.com.pem"
http://"/etc/ssl/certs/client.com.pem"
http://"/etc/ssl/private/client.com.key"
http://"logs.admin.com"

	 Management and rotation of log files	 319

Lo
gg

in
g

programs’ own logging, or gooping up the startup scripts with glue that serves only
to capture boot-time messages.

For kernel logging at boot time, kernel log entries are stored in an internal buffer
of limited size. The buffer is large enough to accommodate messages about all the
kernel’s boot-time activities. When the system is up and running, a user process
accesses the kernel’s log buffer and disposes of its contents.

On Linux systems, systemd-journald reads kernel messages from the kernel buf-
fer by reading the device file /dev/kmsg. You can view these messages by running
journalctl -k or its alias, journalctl --dmesg. You can also use the traditional
dmesg command.

On FreeBSD and older Linux systems, the dmesg command is the best way to view
the kernel buffer; the output even contains messages that were generated before
init started.

Another issue related to kernel logging is the appropriate management of the system
console. As the system is booting, it’s important for all output to come to the con-
sole. However, once the system is up and running, console messages may be more
an annoyance than a help, especially if the console is used for logins.

Under Linux, dmesg lets you set the kernel’s console logging level with a com-
mand-line flag. For example,

ubuntu$ sudo dmesg -n 2

Level 7 is the most verbose and includes debugging information. Level 1 includes
only panic messages; the lower-numbered levels are the most severe. All kernel
messages continue to go to the central buffer (and thence, to syslog) regardless of
whether they are forwarded to the console.

10.5	 Management and rotation of log files
Erik Troan’s logrotate utility implements a variety of log management policies and
is standard on all our example Linux distributions. It also runs on FreeBSD, but
you’ll have to install it from the ports collection. By default, FreeBSD uses a differ-
ent log rotation package, called newsyslog; see page 321 for details.

logrotate: cross-platform log management
A logrotate configuration consists of a series of specifications for groups of log files
to be managed. Options that appear outside the context of a log file specification
(such as errors, rotate, and weekly in the following example) apply to all subsequent
specifications. They can be overridden within the specification for a particular file
and can also be respecified later in the file to modify the defaults.

320	 Chapter 10	 Logging	

Here’s a somewhat contrived example that handles several different log files:

Global options
errors errors@book.admin.com
rotate 5
weekly

Logfile rotation definitions and options
/var/log/messages {
	 postrotate
		 /bin/kill -HUP `cat /var/run/syslogd.pid`
	 endscript
}

/var/log/samba/*.log {
	 notifempty
	 copytruncate
	 sharedscripts
	 postrotate
		 /bin/kill -HUP `cat /var/lock/samba/*.pid`
	 endscript
}

This configuration rotates /var/log/messages every week. It keeps five versions of
the file and notifies rsyslog each time the file is reset. Samba log files (there might
be several) are also rotated weekly, but instead of being moved aside and restarted,
they are copied and then truncated. The Samba daemons are sent HUP signals only
after all log files have been rotated.

Table 10.8 lists the most useful logrotate.conf options.

Table 10.8	 logrotate options

Option Meaning

compress Compresses all noncurrent versions of the log file
daily, weekly, monthly Rotates log files on the specified schedule
delaycompress Compresses all versions but current and next-most-recent
endscript Marks the end of a prerotate or postrotate script
errors emailaddr Emails error notifications to the specified emailaddr
missingok Doesn’t complain if the log file does not exist
notifempty Doesn’t rotate the log file if it is empty
olddir dir Specifies that older versions of the log file be placed in dir
postrotate Introduces a script to run after the log has been rotated
prerotate Introduces a script to run before any changes are made
rotate n Includes n versions of the log in the rotation scheme
sharedscripts Runs scripts only once for the entire log group
size logsize Rotates if log file size > logsize (e.g., 100K, 4M)

mailto:errors@book.admin.com

	 Management of logs at scale	 321

Lo
gg

in
g

logrotate is normally run out of cron once a day. Its standard configuration file
is /etc/logrotate.conf, but multiple configuration files (or directories containing
configuration files) can appear on logrotate’s command line.

This feature is used by Linux distributions, which define the /etc/logrotate.d direc-
tory as a standard place for logrotate config files. logrotate-aware software packages
(there are many) can drop in log management instructions as part of their instal-
lation procedure, thus greatly simplifying administration.

The delaycompress option is worthy of further explanation. Some applications
continue to write to the previous log file for a bit after it has been rotated. Use
delaycompress to defer compression for one additional rotation cycle. This option
results in three types of log files lying around: the active log file, the previously ro-
tated but not yet compressed file, and compressed, rotated files.

In addition to logrotate, Ubuntu has a simpler program called savelog that manag-
es rotation for individual files. It’s more straightforward than logrotate and doesn’t
use (or need) a config file. Some packages prefer to use their own savelog config-
urations rather than logrotate.

newsyslog: log management on FreeBSD
The misleadingly named newsyslog—so named because it was originally intended
to rotate files managed by syslog—is the FreeBSD equivalent of logrotate. Its syntax
and implementation are entirely different from those of logrotate, but aside from
its peculiar date formatting, the syntax of a newsyslog configuration is actually
somewhat simpler.

The primary configuration file is /etc/newsyslog.conf. See man newsyslog for the
format and syntax. The default /etc/newsyslog.conf has examples for standard log files.

Like logrotate, newsyslog runs from cron. In a vanilla FreeBSD configuration,
/etc/crontab includes a line that runs newsyslog once per hour.

10.6	 Management of logs at scale
It’s one thing to capture log messages, store them on disk, and forward them to
a central server. It’s another thing entirely to handle logging data from hundreds
or thousands of servers. The message volumes are simply too high to be managed
effectively without tools designed to function at this scale. Fortunately, multiple
commercial and open source tools are available to address this need.

The ELK stack
The clear leader in the open source space—and indeed, one of the better software
suites we’ve had the pleasure of working with—is the formidable “ELK” stack con-
sisting of Elasticsearch, Logstash, and Kibana. This combination of tools helps you
sort, search, analyze, and visualize large volumes of log data generated by a global

322	 Chapter 10	 Logging	

network of logging clients. ELK is built by Elastic (elastic.co), which also offers
training, support, and enterprise add-ons for ELK.

Elasticsearch is a scalable database and search engine with a RESTful API for que-
rying data. It’s written in Java. Elasticsearch installations can range from a single
node that handles a low volume of data to several dozen nodes in a cluster that
indexes many thousands of events each second. Searching and analyzing log data
is one of the most popular applications for Elasticsearch.

If Elasticsearch is the hero of the ELK stack, Logstash is its sidekick and trusted
partner. Logstash accepts data from many sources, including queueing systems such
as RabbitMQ and AWS SQS. It can also read data directly from TCP or UDP sock-
ets and from the traditional logging stalwart, syslog. Logstash can parse messages
to add additional structured fields and can filter out unwanted or nonconformant
data. Once messages have been ingested, Logstash can write them to a wide variety
of destinations, including, of course, Elasticsearch.

You can send log entries to Logstash in a variety of ways. You can configure a sys-
log input for Logstash and use the rsyslog omfwd output module, as described in
Rsyslog configuration on page 305. You can also use a dedicated log shipper. Elas-
tic’s own version is called Filebeat and can ship logs either to Logstash or directly
to Elasticsearch.

The final ELK component, Kibana, is a graphical front end for Elasticsearch. It gives
you a search interface through which to find the entries you need among all the
data that has been indexed by Elasticsearch. Kibana can create graphs and visu-
alizations that help to generate new insights about your applications. It’s possible,
for example, to plot log events on a map to see geographically what’s happening
with your systems. Other plug-ins add alerting and system monitoring interfaces.

Of course, ELK doesn’t come without operational burden. Building a large scale
ELK stack with a custom configuration is no simple task, and managing it takes
time and expertise. Most administrators we know (present company included!)
have accidentally lost data because of bugs in the software or operational errors. If
you choose to deploy ELK, be aware that you’re signing up for substantial admin-
istrative overhead.

We are aware of at least one service, logz.io, that offers production-grade ELK-as-
a-service. You can send log messages from your network over encrypted channels
to an endpoint that logz.io provides. There, the messages are ingested, indexed,
and made available through Kibana. This is not a low-cost solution, but it’s worth
evaluating. As with many cloud services, you may find that it’s ultimately more ex-
pensive to replicate the service locally.

Graylog
Graylog is the spunky underdog to ELK’s pack leader. It resembles the ELK stack
in several ways: it keeps data in Elasticsearch, and it can accept log messages either

http://elastic.co
http://logz.io
http://logz.io

	 Logging policies	 323

Lo
gg

in
g

directly or through Logstash, just as in the ELK stack. The real differentiator is the
Graylog UI, which many users proclaim to be superior and easier to use.

Some of the enterprise (read: paid) features of ELK are included in the Graylog open
source product, including support for role-based access control and LDAP integra-
tion. Graylog is certainly worthy of inclusion in a bake-off when you’re choosing
a new logging infrastructure.

Logging as a service
Several commercial log management offerings are available. Splunk is the most
mature and trusted; both hosted and on-premises versions are available. Some of
the largest corporate networks rely on Splunk, not only as a log manager but also
as a business analytics system. But if you choose Splunk, be prepared to pay dearly
for the privilege.

Alternative SaaS options include Sumo Logic, Loggly, and Papertrail, all of which
have native syslog integration and a reasonable search interface. If you use AWS,
Amazon’s CloudWatch Logs service can collect log data both from AWS services
and from your own applications.

10.7	 Logging policies
Over the years, log management has emerged from the realm of system admin-
istration minutiae to become a formidable enterprise management challenge in
its own right. IT standards, legislative edicts, and provisions for security-incident
handling may all impose requirements on the handling of log data. A majority of
sites will eventually need to adopt a holistic and structured approach to the man-
agement of this data.

Log data from a single system has a relatively inconsequential effect on storage, but
a centralized event register that covers hundreds of servers and dozens of applica-
tions is a different story entirely. Thanks in large part to the mission-critical nature
of web services, application and daemon logs have become as important as those
generated by the operating system.

Keep these questions in mind when designing your logging strategy:

•	 How many systems and applications will be included?
•	 What type of storage infrastructure is available?
•	 How long must logs be retained?
•	 What types of events are important?

The answers to these questions depend on business requirements and on any appli-
cable standards or regulations. For example, one standard from the Payment Card
Industry Security Standards Council requires that logs be retained on easy-access
media (e.g., a locally mounted hard disk) for three months and archived to long-term

See pages 85 and
580 for more in-
formation about
RBAC and LDAP.

324	 Chapter 10	 Logging	

storage for at least one year. The same standard also includes guidance about the
types of data that must be included.

Of course, as one of our reviewers mentioned, you can’t be subpoenaed for log data
you do not possess. Some sites do not collect (or intentionally destroy) sensitive
log data for this reason. You might or might not be able get away with this kind of
approach, depending on the compliance requirements that apply to you.

However you answer the questions above, be sure to gather input from your infor-
mation security and compliance departments if your organization has them.

For most applications, consider capturing at least the following information:

•	 Username or user ID
•	 Event success or failure
•	 Source address for network events
•	 Date and time (from an authoritative source, such as NTP)
•	 Sensitive data added, altered, or removed
•	 Event details

A log server should have a carefully considered storage strategy. For example, a
cloud-based system might offer immediate access to 90 days of data, with a year of
older data being rolled over to an object storage service and three additional years
being saved to an archival storage solution. Storage requirements evolve over time,
so a successful implementation must adapt easily to changing conditions.

Limit shell access to centralized log servers to trusted system administrators and
personnel involved in addressing compliance and security issues. These log ware-
house systems have no real role in the organization’s daily business beyond satis-
fying auditability requirements, so application administrators, end users, and the
help desk have no business accessing them. Access to log files on the central servers
should itself be logged.

Centralization takes work, and at smaller sites it may not represent a net benefit.
We suggest twenty servers as a reasonable threshold for considering centralization.
Below that size, just ensure that logs are rotated properly and are archived frequent-
ly enough to avoid filling up a disk. Include log files in a monitoring solution that
alerts you if a log file stops growing.

See page 753 for in-
formation about RAID.

D
riv

er
s /

 K
er

ne
l

			 325

The kernel is the central government of a UNIX or Linux system. It’s responsible
for enforcing rules, sharing resources, and providing the core services that user
processes rely on.

We don’t usually think too much about what the kernel is doing. That’s fortunate,
because even a simple command such as cat /etc/passwd entails a complex series
of underlying actions. If the system were an airliner, we’d want to think in terms of
commands such as “increase altitude to 35,000 feet” rather than having to worry
about the thousands of tiny internal steps that were needed to manage the airplane’s
control surfaces.

The kernel hides the details of the system’s hardware underneath an abstract,
high-level interface. It’s akin to an API for application programmers: a well-de-
fined interface that provides useful facilities for interacting with the system. This
interface provides five basic features:

•	 	Management and abstraction of hardware devices
•	 Processes and threads (and ways to communicate among them)
•	 	Management of memory (virtual memory and memory-space protection)
•	 	I/O facilities (filesystems, network interfaces, serial interfaces, etc.)
•	 	Housekeeping functions (startup, shutdown, timers, multitasking, etc.)

11 Drivers and the Kernel

326	 Chapter 11	 Drivers and the Kernel	

Only device drivers are aware of the specific capabilities and communication pro-
tocols of the system’s hardware. User programs and the rest of the kernel are largely
independent of that knowledge. For example, a filesystem on disk is very different
from a network filesystem, but the kernel’s VFS layer makes them look the same
to user processes and to other parts of the kernel. You don’t need to know whether
the data you’re writing is headed to block 3,829 of disk device #8 or whether it’s
headed for Ethernet interface e1000e wrapped in a TCP packet. All you need to
know is that it will go to the file descriptor you specified.

Processes (and threads, their lightweight cousins) are the mechanisms through which
the kernel implements CPU time sharing and memory protection. The kernel fluidly
switches among the system’s processes, giving each runnable thread a small slice of
time in which to get work done. The kernel prevents processes from reading and
writing each other’s memory spaces unless they have explicit permission to do so.

The memory management system defines an address space for each process and cre-
ates the illusion that the process owns an essentially unlimited region of contiguous
memory. In reality, different processes’ memory pages are jumbled together in the
system’s physical memory. Only the kernel’s bookkeeping and memory protection
schemes keep them sorted out.

Layered on top of the hardware device drivers, but below most other parts of the
kernel, are the I/O facilities. These consist of filesystem services, the networking
subsystem, and various other services that are used to get data into and out from
the system.

11.1	 Kernel chores for system administrators
Nearly all of the kernel’s multilayered functionality is written in C, with a few dabs
of assembly language code thrown in to give access to CPU features that are not ac-
cessible through C compiler directives (e.g., the atomic read-modify-write instruc-
tions defined by many CPUs). Fortunately, you can be a perfectly effective system
administrator without being a C programmer and without ever touching kernel code.

That said, it’s inevitable that at some point you’ll need to make some tweaks. These
can take several forms.

Many of the kernel’s behaviors (such as network-packet forwarding) are controlled
or influenced by tuning parameters that are accessible from user space. Setting
these values appropriately for your environment and workload is a common ad-
ministrative task.

Another common kernel-related task is the installation of new device drivers. New
models and types of hardware (video cards, wireless devices, specialized audio cards,
etc.) appear on the market constantly, and vendor-distributed kernels aren’t always
equipped to take advantage of them.

	 Kernel version numbering	 327

D
riv

er
s /

 K
er

ne
l

In some cases, you may even need to build a new version of the kernel from source
code. Sysadmins don’t have to build kernels as frequently as they used to, but it still
makes sense in some situations. It’s easier than it sounds.

Kernels are tricky. It’s surprisingly easy to destabilize the kernel even through mi-
nor changes. Even if the kernel boots, it may not run as well as it should. What’s
worse, you may not even realize that you’ve hurt performance unless you have a
structured plan for assessing the results of your work. Be conservative with kernel
changes, especially on production systems, and always have a backup plan for re-
verting to a known-good configuration.

11.2	 Kernel version numbering
Before we dive into the depths of kernel wrangling, it’s worth spending a few words
to discuss kernel versions and their relationship to distributions.

The Linux and FreeBSD kernels are under continuous active development. Over
time, defects are fixed, new features added, and obsolete features removed.

Some older kernels continue to be supported for an extended period of time. Like-
wise, some distributions choose to emphasize stability and so run the older, more
tested kernels. Other distributions try to offer the most recent device support and
features but might be a bit less stable as a result. It’s incumbent upon you as an ad-
ministrator to select among these options in a manner that accommodates your
users’ needs. No single solution is appropriate for every context.

Linux kernel versions
The Linux kernel and the distributions based on it are developed separately from
one other, so the kernel has its own versioning scheme. Some kernel releases do
achieve a sort of iconic popularity, so it’s not unusual to find that several indepen-
dent distributions are all using the same kernel. You can check with uname -r to
see what kernel a given system is running.

Linux kernels are named according to the rules of so-called semantic versioning,
that is, they include three components: a major version, a minor version, and a
patch level. At present, there is no predictable relationship between a version num-
ber and its intended status as a stable or development kernel; kernels are blessed
as stable when the developers decide that they’re stable. In addition, the kernel’s
major version number has historically been incremented somewhat capriciously.

Many stable versions of the Linux kernel can be under long-term maintenance
at one time. The kernels shipped by major Linux distributions often lag the latest
releases by a substantial margin. Some distributions even ship kernels that are for-
mally out of date.

You can install newer kernels by compiling and installing them from the kernel
source tree. However, we don’t recommend that you do this. Different distributions

See semver.org for
more information
about semantic
versioning.

http://semver.org

328	 Chapter 11	 Drivers and the Kernel	

have different goals, and they select kernel versions appropriate to those goals. You
never know when a distribution has avoided a newer kernel because of some subtle
but specific concern. If you need a more recent kernel, install a distribution that’s
designed around that kernel rather than trying to shoehorn the new kernel into
an existing system.

FreeBSD kernel versions
FreeBSD takes a fairly straightforward approach to versions and releases. The proj-
ect maintains two major production versions, which as of this writing are versions
10 and 11. The kernel has no separate versioning scheme; it’s released as part of the
complete operating system and shares its version number.

The older of the two major releases (in this case, FreeBSD 10) can be thought of as
a maintenance version. It doesn’t receive sweeping new features, and it’s maintained
with a focus on stability and security updates.

The more recent version (FreeBSD 11, right now) is where active development occurs.
Stable releases intended for general use are issued from this tree as well. However,
the kernel code is always going to be newer and somewhat less battle-tested than
that of the previous major version.

In general, dot releases occur about every four months. Major releases are explicitly
supported for five years, and the dot releases within them are supported for three
months after the next dot release comes out. That’s not an extensive lifetime for old
dot releases; FreeBSD expects you to stay current with patches.

11.3	 Devices and their drivers
A device driver is an abstraction layer that manages the system’s interaction with a
particular type of hardware so that the rest of the kernel doesn’t need to know its
specifics. The driver translates between the hardware commands understood by the
device and a stylized programming interface defined (and used) by the kernel. The
driver layer helps keep the majority of the kernel device-independent.

Given the remarkable pace at which new hardware is developed, it is practically
impossible to keep main-line OS distributions up to date with the latest hardware.
Hence, you will occasionally need to add a device driver to your system to support
a new piece of hardware.

Device drivers are system-specific, and they are often specific to a particular range
of kernel revisions as well. Drivers for other operating systems (e.g., Windows) do
not work on UNIX and Linux, so keep this in mind when you purchase new hard-
ware. In addition, devices vary in their degree of compatibility and functionality
when used with various Linux distributions, so it’s wise to pay some attention to
the experiences that other sites have had with any hardware you are considering.

	 Devices and their drivers	 329

D
riv

er
s /

 K
er

ne
l

Hardware vendors are attracted to the FreeBSD and Linux markets and often publish
appropriate drivers for their products. In the optimal case, your vendor furnishes
you with both a driver and installation instructions. Occasionally, you might find
the driver you need only on some sketchy-looking and uncommented web page.
Caveat emptor.

Device files and device numbers
In most cases, device drivers are part of the kernel; they are not user processes.
However, a driver can be accessed both from within the kernel and from user space,
usually through “device files” that live in the /dev directory. The kernel maps op-
erations on these files into calls to the code of the driver.

Most non-network devices have one or more corresponding files in /dev. Complex
servers may support hundreds of devices. By virtue of being device files, the files in
/dev each have a major and minor device number associated with them. The ker-
nel uses these numbers to map device-file references to the corresponding driver.

The major device number identifies the driver with which the file is associated (in
other words, the type of device). The minor device number usually identifies which
particular instance of a given device type is to be addressed. The minor device num-
ber is sometimes called the unit number.

You can see the major and minor number of a device file with ls -l:

linux$ ls -l /dev/sda
brw-rw---- 1 root disk 8, 0 Jul 13 01:38 /dev/sda

This example shows the first SCSI/SATA/SAS disk on a Linux system. It has a major
number of 8 and a minor number of 0.

The minor device number is sometimes used by the driver to select or enable certain
characteristics particular to that device. For example, a tape drive can have one file
in /dev that rewinds the drive automatically when it’s closed and another file that
does not. The driver is free to interpret the minor device number in whatever way it
likes. Look up the man page for the driver to determine what convention it is using.

There are actually two types of device files: block device files and character device
files. A block device is read or written one block (a group of bytes, usually a mul-
tiple of 512) at a time; a character device can be read or written one byte at a time.
The character b at the start of the ls output above indicates that /dev/sda is a block
device; ls would show this character as a c if it were a character device.

Traditionally, certain devices could act as either block or character devices, and
separate device files existed to make them accessible in either mode. Disks and
tapes led dual lives, but most other devices did not. However, this parallel access
system is not used anymore. FreeBSD represents all formerly dual-mode devices
as character devices, and Linux represents them as block devices.

330	 Chapter 11	 Drivers and the Kernel	

It is sometimes convenient to implement an abstraction as a device driver even when
it controls no actual device. Such phantom devices are known as pseudo-devices.
For example, a user who logs in over the network is assigned a pseudo-TTY (PTY)
that looks, feels, and smells like a serial port from the perspective of high-level soft-
ware. This trick allows programs written in the days when everyone used a physical
terminal to continue to function in the world of windows and networks. /dev/zero,
/dev/null, and /dev/urandom are some other examples of pseudo-devices.

When a program performs an operation on a device file, the kernel intercepts the
reference, looks up the appropriate function name in a table, and transfers control
to the appropriate part of the driver.

To perform an operation that doesn’t have a direct analog in the filesystem model
(ejecting a DVD, for example), a program traditionally uses the ioctl system call
to pass a message directly from user space into the driver. Standard ioctl request
types are registered by a central authority in a manner similar to the way that net-
work protocol numbers are maintained by IANA.

FreeBSD continues to use the traditional ioctl system. Traditional Linux devices
also use ioctl, but modern networking code uses the more flexible Netlink sockets
system described in RFC3549. These sockets provide a more flexible messaging
system than ioctl without the need for a central authority.

Challenges of device file management
Device files have been a tricky problem for many years. When systems supported
only a few types of devices, manual maintenance of device files was manageable.
As the number of available devices grew, however, the /dev filesystem became clut-
tered, often with files irrelevant to the current system. Red Hat Enterprise Linux
version 3 included more than 18,000 device files, one for every possible device that
could be attached to the system! The creation of static device files quickly became
a crushing problem and an evolutionary dead end.

USB, FireWire, Thunderbolt, and other device interfaces introduce additional wrin-
kles. Ideally, a drive that is initially recognized as /dev/sda would remain available
as /dev/sda despite intermittent disconnections and regardless of the activity of
other devices and buses. The presence of other transient devices such as cameras,
printers, and scanners (not to mention other types of removable media) muddies
the waters and makes the persistent identity problem even worse.

Network interfaces have this same problem; they are devices but do not have device
files to represent them in /dev. For these devices, the modern approach is to use
the relatively simple Predictable Network Interface Names system, which assigns
interface names that are stable across reboots, changes in hardware, and changes in
drivers. Modern systems now have analogous methods for dealing with the names
of other devices, too.

	 Devices and their drivers	 331

D
riv

er
s /

 K
er

ne
l

Manual creation of device files
Modern systems manage their device files automatically. However, a few rare corner
cases may still require you to create devices manually with the mknod command.
So here’s how to do it:

	 mknod filename type major minor

Here, filename is the device file to be created, type is c for a character device or b
for a block device, and major and minor are the major and minor device numbers.
If you are creating a device file that refers to a driver that’s already present in your
kernel, check the documentation for the driver to find the appropriate major and
minor device numbers.

Modern device file management
Linux and FreeBSD both automate the management of device files. In classic UNIX
fashion, the systems are more or less the same in concept but entirely separate in
their implementations and in the formats of their configuration files. Let a thou-
sand flowers bloom!

When a new device is detected, both systems automatically create the device’s cor-
responding device files. When a device goes away (e.g., a USB thumb drive is un-
plugged), its device files are removed. For architectural reasons, both Linux and
FreeBSD isolate the “creating device files” part of this equation.

In FreeBSD, devices are created by the kernel in a dedicated filesystem type (devfs)
that’s mounted on /dev. In Linux, a daemon running in user space called udev
is responsible for this activity. Both systems listen to an underlying stream of
kernel-generated events that report the arrival and departure of devices.

However, there’s a lot more we might want to do with a newly discovered device than
just create a device file for it. If it represents a piece of removable storage media, for
example, we might want to automount it as a filesystem. If it’s a hub or a communi-
cations device, we might want to get it set up with the appropriate kernel subsystem.

Both Linux and FreeBSD leave such advanced procedures to a user-space daemon:
udevd in the case of Linux, and devd in the case of FreeBSD. The main conceptual
distinction between the two platforms is that Linux concentrates most intelligence
in udevd, whereas FreeBSD’s devfs filesystem is itself slightly configurable.

Table 11.1 on the next page summarizes the components of the device file manage-
ment systems on both platforms.

Linux device management
Linux administrators should understand how udevd’s rule system works and should
know how to use the udevadm command. Before peering into those details, how-
ever, let’s first review the underlying technology of sysfs, the device information
repository from which udevd gets its raw data.

332	 Chapter 11	 Drivers and the Kernel	

Table 11.1	 Outline of automatic device management

Component Linux FreeBSD

/dev filesystem udev / devtmpfs devfs
/dev FS configuration files – /etc/devfs.conf

/etc/devfs.rules
Device manager daemon udevd devd
Daemon configuration files /etc/udev/udev.conf

/etc/udev/rules.d
/lib/udev/rules.d

/etc/devd.conf

FIlesystem automounts udevd autofs

Sysfs: a window into the souls of devices
Sysfs was added to the Linux kernel at version 2.6. It is a virtual, in-memory filesys-
tem implemented by the kernel to provide detailed and well-organized informa-
tion about the system’s available devices, their configurations, and their state. Sysfs
device information is accessible both from within the kernel and from user space.

You can explore the /sys directory, where sysfs is typically mounted, to find out ev-
erything from what IRQ a device is using to how many blocks have been queued
for writing to a disk controller. One of the guiding principles of sysfs is that each
file in /sys should represent only one attribute of the underlying device. This con-
vention imposes a certain amount of structure on an otherwise chaotic data set.

Table 11.2 shows the directories within /sys, each of which is a subsystem that has
been registered with sysfs. The exact directories vary slightly by distribution.

Table 11.2	 Subdirectories of /sys

Directory What it contains

block Information about block devices such as hard disks
bus Buses known to the kernel: PCI-E, SCSI, USB, and others
class A tree organized by functional types of devices a

dev Device information split between character and block devices
devices An ancestrally correct representation of all discovered devices
firmware Interfaces to platform-specific subsystems such as ACPI
fs A directory for some, but not all, filesystems known to the kernel
kernel Kernel internals such as cache and virtual memory status
module Dynamic modules loaded by the kernel
power A few details about the system’s power state; mostly unused

a.	 For example, sound and graphic cards, input devices, and network interfaces

	 Devices and their drivers	 333

D
riv

er
s /

 K
er

ne
l

Device configuration information was formerly found in the /proc filesystem, if it
was available at all. /proc was inherited from System V UNIX and grew organically
and somewhat randomly over time. It ended up collecting all manner of unrelated
information, including many elements unrelated to processes. Although extra junk
in /proc is still supported for backward compatibility, /sys is a more predictable
and organized way of reflecting the kernel’s internal data structures. We anticipate
that all device-specific information will move to /sys over time.

udevadm: explore devices
The udevadm command queries device information, triggers events, controls the
udevd daemon, and monitors udev and kernel events. Its primary use for admin-
istrators is to build and test rules, which are covered in the next section.

udevadm expects one of six commands as its first argument: info, trigger, settle,
control, monitor, or test. Of particular interest to system administrators are info,
which prints device-specific information, and control, which starts and stops
udevd or forces it to reload its rules files. The monitor command displays events
as they occur.

The following command shows all udev attributes for the device sdb. The output is
truncated here, but in reality it goes on to list all parent devices—such as the USB
bus—that are ancestors of sdb in the device tree.

linux$ udevadm info -a -n sdb
...
looking at device '/devices/pci0000:00/0000:00:11.0/0000:02:03.0/

usb1/1-1/1-1:1.0/host6/target6:0:0/6:0:0:0/block/sdb':
	 KERNEL=="sdb"
	 SUBSYSTEM=="block"
	 DRIVER==""
	 ATTR{range}=="16"
	 ATTR{ext_range}=="256"
	 ATTR{removable}=="1"
	 ATTR{ro}=="0"
	 ATTR{size}=="1974271"
	 ATTR{capability}=="53"
	 ATTR{stat}==" 71 986 1561 860 1 0 1 12 0 592 872"
...

All paths in udevadm output (such as /devices/pci0000:00/…) are relative to /sys,
even though they may appear to be absolute pathnames.

The output is formatted so that you can feed it back to udev when constructing rules.
For example, if the ATTR{size}=="1974271" clause were unique to this device, you
could copy that snippet into a rule as the identifying criterion.

Refer to the man page on udevadm for additional options and syntax.

334	 Chapter 11	 Drivers and the Kernel	

Rules and persistent names
udevd relies on a set of rules to guide its management of devices. The default rules
live in the /lib/udev/rules.d directory, but local rules belong in /etc/udev/rules.d.
You need never edit or delete the default rules; you can ignore or override a file of
default rules by creating a new file with the same name in the custom rules directory.

The master configuration file for udevd is /etc/udev/udev.conf; however, the de-
fault behaviors are reasonable. The udev.conf files on our example distributions
contain only comments, with the exception of one line that enables error logging.

Sadly, because of political bickering among distributors and developers, there is
little rule synergy among distributions. Many of the filenames in the default rules
directory are the same from distribution to distribution, but the contents of the
files differ significantly.

Rule files are named according to the pattern nn-description.rules, where nn is
usually a two-digit number. Files are processed in lexical order, so lower numbers
are processed first. Files from the two rules directories are combined before the
udev daemon, udevd, parses them. The .rules suffix is mandatory; files without it
are ignored.

Rules are of the form

match_clause, [match_clause, ...] assign_clause, [assign_clause, ...]

The match clauses define the situations in which the rule is to be applied, and the as-
signment clauses tell udevd what to do when a device is consistent with all the rule’s
match clauses. Each clause consists of a key, an operator, and a value. For example,
the match clause ATTR{size}=="1974271" was referred to above as a potential
component of a rule; it selects all devices whose size attribute is exactly 1,974,271.

Most match keys refer to device properties (which udevd obtains from the /sys
filesystem), but some refer to other context-dependent attributes, such as the op-
eration being handled (e.g., device addition or removal). All match clauses must
match in order for a rule to be activated.

Table 11.3 shows the match keys understood by udevd.

The assignment clauses specify actions udevd should take to handle any matching
events. Their format is similar to that for match clauses.

The most important assignment key is NAME, which indicates how udevd should
name a new device. The optional SYMLINK assignment key creates a symbolic link
to the device through its desired path in /dev.

Here, we put these components together with an example configuration for a USB
flash drive. Suppose we want to make the drive’s device name persist across inser-
tions and we want the drive to be mounted and unmounted automatically.

 	

  

	

	 Devices and their drivers	 335

D
riv

er
s /

 K
er

ne
l

To start with, we insert the flash drive and check to see how the kernel identifies it.
This task can be approached in a couple of ways. By running the lsusb command,
we can inspect the USB bus directly:

ubuntu$ lsusb
Bus 001 Device 007: ID 1307:0163 Transcend, Inc. USB Flash Drive
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Alternatively, we can check for kernel log entries by running dmesg or journalctl.
In our case, the attachment leaves an extensive audit trail:

Aug 9 19:50:03 ubuntu kernel: [42689.253554] scsi 8:0:0:0: Direct-
Access Ut163 USB2FlashStorage 0.00 PQ: 0 ANSI: 2

Aug 9 19:50:03 ubuntu kernel: [42689.292226] sd 8:0:0:0: [sdb] 1974271
512-byte hardware sectors: (1.01 GB/963 MiB)

...
Aug 9 19:50:03 ubuntu kernel: [42689.304749] sd 8:0:0:0: [sdb] 1974271

512-byte hardware sectors: (1.01 GB/963 MiB)
Aug 9 19:50:03 ubuntu kernel: [42689.307182] sdb: sdb1
Aug 9 19:50:03 ubuntu kernel: [42689.427785] sd 8:0:0:0: [sdb] Attached

SCSI removable disk
Aug 9 19:50:03 ubuntu kernel: [42689.428405] sd 8:0:0:0: Attached scsi

generic sg3 type 0

The log messages above indicate that the drive was recognized as sdb, which gives us
an easy way to identify the device in /sys. We can now examine the /sys filesystem
with udevadm in search of some rule snippets that are characteristic of the device
and so might be useful to incorporate in udev rules.

Table 11.3	 udevd match keys

Match key Function

ACTION Matches the event type, e.g., add or remove
ATTR{filename} Matches a device’s sysfs values a

DEVPATH Matches a specific device path
DRIVER Matches the driver used by a device
ENV{key} Matches the value of an environment variable
KERNEL Matches the kernel’s name for the device
PROGRAM Runs an external command; matches if the return code is 0
RESULT Matches the output of the last call through PROGRAM
SUBSYSTEM Matches a specific subsystem
TEST{omask} Tests whether a file exists; the omask is optional

a.	 The filename is a leaf in the sysfs tree that corresponds to a specific attribute.

336	 Chapter 11	 Drivers and the Kernel	

ubuntu$ udevadm info -a -p /block/sdb/sdb1
looking at device '/devices/pci0000:00/0000:00:11.0/0000:02:03.0/

usb1/1-1/1-1:1.0/host30/target30:0:0/30:0:0:0/block/sdb/sdb1':
	 KERNEL=="sdb1"
	 SUBSYSTEM=="block"
	 DRIVER==""
	 ATTR{partition}=="1"
	 ATTR{start}=="63"
	 ATTR{size}=="1974208"
	 ATTR{stat}==" 71 792 1857 808 0 0 0 0 0 512 808"

 looking at parent device '/devices/pci0000:00/0000:00:11.0/0000:02:03
.0/usb1/1-1/1-1:1.0/host30/target30:0:0/30:0:0:0/block/sdb':

	 KERNELS=="sdb"
	 SUBSYSTEMS=="block"
	 DRIVERS==""
	 ATTRS{scsi_level}=="3"
	 ATTRS{vendor}=="Ut163 "
	 ATTRS{model}=="USB2FlashStorage"
...

The output from udevadm shows several opportunities for matching. One possibil-
ity is the size field, which is likely to be unique to this device. However, if the size
of the partition were to change, the device would not be recognized. Instead, we
can use a combination of two values: the kernel’s naming convention of sd plus an
additional letter, and the contents of the model attribute, USB2FlashStorage. For
creating rules specific to this particular flash drive, another good choice would be
the device’s serial number (which we’ve omitted from the output here).

We next put our rules for this device in the file /etc/udev/rules.d/10-local.rules.
Because we have multiple objectives in mind, we need a series of rules.

First, we take care of creating device symlinks in /dev. The following rule uses our
knowledge of the ATTRS and KERNEL match keys, gleaned from udevadm, to iden-
tify the device:

ATTRS{model}=="USB2FlashStorage", KERNEL=="sd[a-z]1",
SYMLINK+="ate-flash%n"

(The rule has been folded here to fit the page; in the original file, it’s all one line.)

When the rule triggers, udevd sets up /dev/ate-flashN as a symbolic link to the de-
vice (where N is the next integer in sequence, starting at 0). We don’t really expect
more than one of these devices to appear on the system. If more copies do appear,
they receive unique names in /dev, but the exact names will depend on the inser-
tion order of the devices.

Next, we use the ACTION key to run some commands whenever the device appears
on the USB bus. The RUN assignment key lets us create an appropriate mount point
directory and mount the device there.

	 Devices and their drivers	 337

D
riv

er
s /

 K
er

ne
l

ACTION=="add", ATTRS{model}=="USB2FlashStorage", KERNEL=="sd[a-z]1",
RUN+="/bin/mkdir -p /mnt/ate-flash%n"

ACTION=="add", ATTRS{model}=="USB2FlashStorage", KERNEL=="sd[a-z]1",
PROGRAM=="/lib/udev/vol_id -t %N", RESULT=="vfat",
RUN+="/bin/mount vfat /dev/%k /mnt/ate-flash%n"

The PROGRAM and RUN keys look similar, but PROGRAM is a match key that’s active
during the rule selection phase, whereas RUN is an assignment key that’s part of
the rule’s actions once triggered. The second rule above verifies that the flash drive
contains a Windows filesystem before mounting it with the -t vfat option to the
mount command.

Similar rules clean up when the device is removed:

ACTION=="remove", ATTRS{model}=="USB2FlashStorage",
KERNEL=="sd[a-z]1", RUN+="/bin/umount -l /mnt/ate-flash%n"

ACTION=="remove", ATTRS{model}=="USB2FlashStorage",
KERNEL=="sd[a-z]1", RUN+="/bin/rmdir /mnt/ate-flash%n"

Now that our rules are in place, we must notify udevd of our changes. udevadm’s
control command is one of the few that require root privileges:

ubuntu$ sudo udevadm control --reload-rules

Typos are silently ignored after a reload, even with the --debug flag, so be sure to
double-check the rules’ syntax.

That’s it! Now when the flash drive is plugged into a USB port, udevd creates a sym-
bolic link called /dev/ate-flash1 and mounts the drive as /mnt/ate-flash1.

ubuntu$ ls -l /dev/ate*
lrwxrwxrwx 1 root root 4 2009-08-09 21:22 /dev/ate-flash1 -> sdb1

ubuntu$ mount | grep ate
/dev/sdb1 on /mnt/ate-flash1 type vfat (rw)

FreeBSD device management
As we saw in the brief overview on page 331, FreeBSD’s implementation of the
self-managing /dev filesystem is called devfs, and its user-level device management
daemon is called devd.

Devfs: automatic device file configuration
Unlike Linux’s udev filesystem, devfs itself is somewhat configurable. However, the
configuration system is both peculiar and rather impotent. It’s split into boot-time
(/etc/devfs.conf) and dynamic (/etc/devfs.rules) portions. The two configuration
files have different syntaxes and somewhat different capabilities.

Devfs for static (nonremovable) devices is configured in /etc/devfs.conf. Each line
is a rule that starts with an action. The possible actions are link, own, and perm. The

338	 Chapter 11	 Drivers and the Kernel	

link action sets up symbolic links for specific devices. The own and perm actions
change the ownerships and permissions of device files, respectively.

Each action accepts two parameters, the interpretation of which depends on the
specific action. For example, suppose we want our DVD-ROM drive /dev/cd0 to
also be accessible by the name /dev/dvd. The following line would do the trick:

link cd0 dvd

We could set the ownerships and permissions on the device with the following lines.

own cd0 root:sysadmin
perm cd0 0660

Just as /etc/devfs.conf specifies actions to take for built-in devices, /etc/devfs.rules
contains rules for removable devices. Rules in devfs.rules also have the option to
make devices hidden or inaccessible, which can be useful for jail(8) environments.

devd: higher-level device management
The devd daemon runs in the background, watching for kernel events related to de-
vices and acting on the rules defined in /etc/devd.conf. The configuration of devd
is detailed in the devd.conf man page, but the default devd.conf file includes many
useful examples and enlightening comments.

The format of /etc/devd.conf is conceptually simple, consisting of “statements” con-
taining groups of “substatements”. Statements are essentially rules, and substate-
ments provide details about the rule. Table 11.4 lists the available statement types.

Table 11.4	 Statement types in /etc/devd.conf

Statement What it specifies

attach What to do when a device is inserted
detach What to do when a device is removed
nomatch What to do if no other statements match a device
notify How to respond to kernel events about a device
options Configuration options for devd itself

Despite being conceptually simple, the configuration language for substatements is
rich and complex. For this reason, many of the common configuration statements
are already included in the standard distribution’s configuration file. In many cases,
you will never need to modify the default /etc/devd.conf.

Automatic mounting of removable media devices such as USB hard disks and thumb
drives is now handled by FreeBSD’s implementation of autofs, not by devd. See
page 812 for general information about autofs. Although autofs is found on most
UNIX-like operating systems, FreeBSD is unusual in assigning it this extra task.

	 Linux kernel configuration	 339

D
riv

er
s /

 K
er

ne
l

11.4	 Linux kernel configuration
You can use any of three basic methods to configure a Linux kernel. Chances are
that you will have the opportunity to try all of them eventually. The methods are

•	 Modifying tunable (dynamic) kernel configuration parameters

•	 Building a kernel from scratch (by compiling it from the source code,
possibly with modifications and additions)

•	 Loading new drivers and modules into an existing kernel on the fly

These procedures are used in different situations, so learning which approaches are
needed for which tasks is half the battle. Modifying tunable parameters is the eas-
iest and most common kernel tweak, whereas building a kernel from source code
is the hardest and least often required. Fortunately, all these approaches become
second nature with a little practice.

Tuning Linux kernel parameters
Many modules and drivers in the kernel were designed with the knowledge that
one size doesn’t fit all. To increase flexibility, special hooks allow parameters such
as an internal table’s size or the kernel’s behavior in a particular circumstance to
be adjusted on the fly by the system administrator. These hooks are accessible
through an extensive kernel-to-userland interface represented by files in the /proc
filesystem (aka procfs). In some cases, a large user-level application (especially an
infrastructure application such as a database) might require a sysadmin to adjust
kernel parameters to accommodate its needs.

You can view and set kernel options at run time through special files in /proc/sys.
These files mimic standard Linux files, but they are really back doors into the ker-
nel. If a file in /proc/sys contains a value you want to change, you can try writing
to it. Unfortunately, not all files are writable (regardless of their apparent permis-
sions), and not much documentation is available. If you have the kernel source tree
installed, you may be able to read about some of the values and their meanings in
the subdirectory Documentation/sysctl (or on-line at kernel.org/doc).

For example, to change the maximum number of files the system can have open at
once, try something like

linux# cat /proc/sys/fs/file-max
34916
linux# echo 32768 > /proc/sys/fs/file-max

Once you get used to this unorthodox interface, you’ll find it quite useful. However,
note that changes are not remembered across reboots.

A more permanent way to modify these same parameters is to use the sysctl com-
mand. sysctl can set individual variables either from the command line or from
a list of variable=value pairs in a configuration file. By default, /etc/sysctl.conf is
read at boot time and its contents are used to set the initial values of parameters.

http://kernel.org/doc

340	 Chapter 11	 Drivers and the Kernel	

For example, the command

	 linux# sysctl net.ipv4.ip_forward=0

turns off IP forwarding. (Alternatively, you can manually edit /etc/sysctl.conf.) You
form the variable names used by sysctl by replacing the slashes in the /proc/sys
directory structure with dots.

Table 11.5 lists some commonly tuned parameters for Linux kernel version 3.10.0
and higher. Default values vary widely among distributions.

Table 11.5	 Files in /proc/sys for some tunable kernel parameters

File What it does

cdrom/autoclose Autocloses the CD-ROM when mounted
cdrom/autoeject Autoejects the CD-ROM when unmounted
fs/file-max Sets max number of open files
kernel/ctrl-alt-del Reboots on <Control-Alt-Delete>; may increase

security on unsecured consoles
kernel/panic Sets seconds to wait before rebooting after a kernel

panic: 0 = loop or hang indefinitely
kernel/panic_on_oops Determines the kernel’s behavior after

encountering an oops or a bug: 1 = always panic
kernel/printk_ratelimit Sets minimum seconds between kernel messages
kernel/printk_ratelimit_burst Sets number of messages in succession before the

printk rate limit is actually enforced
kernel/shmmax Sets max amount of shared memory
net/ip*/conf/default/rp_filter Enables IP source route verification a

net/ip*/icmp_echo_ignore_all Ignores ICMP pings when set to 1 b

net/ip*/ip_forward Allows IP forwarding when set to 1 c

net/ip*/ip_local_port_range Sets local port range used during connection setup d

net/ip*/tcp_syncookies Protects against SYN flood attacks; turn on if you
suspect denial-of-service (DoS) attacks

tcp_fin_timeout Sets seconds to wait for a final TCP FIN packet e

vm/overcommit_memory Controls memory overcommit behavior, i.e.,
how the kernel reacts when physical memory is
insufficient to handle a VM allocation request

vm/overcommit_ratio Defines how much physical memory (as a
percentage) will be used when overcommitting

a.	 This antispoofing mechanism makes the kernel drop packets received from “impossible” paths.
b.	The related variable icmp_echo_ignore_broadcasts ignores broadcast ICMP pings. It’s almost always a

good idea to set this value to 1.
c.	 Only set this value to 1 if you explicitly intend to use your Linux box as a network router.
d.	 Increase this range to 1024–65000 on servers that initiate many outbound connections.
e.	 Try setting this value lower (~20) on high-traffic servers to increase performance.

	 Linux kernel configuration	 341

D
riv

er
s /

 K
er

ne
l

Note that there are two IP networking subdirectories of /proc/sys/net: ipv4 and
ipv6. In the past, administrators only had to worry about IPv4 behaviors because
that was the only game in town. But as of this writing (2017), the IPv4 address
blocks have all been assigned, and IPv6 is deployed and in use almost everywhere,
even within smaller organizations.

In general, when you change a parameter for IPv4, you should also change that
parameter for IPv6, if you are supporting both protocols. It’s all too easy to mod-
ify one version of IP and not the other, then run into problems several months or
years later when a user reports strange network behavior.

Building a custom kernel
Because Linux evolves rapidly, you’ll likely be faced with the need to build a custom
kernel at some point or another. The steady flow of kernel patches, device drivers,
and new features that arrive on the scene is something of a mixed blessing. On one
hand, it’s a privilege to live at the center of an active and vibrant software ecosys-
tem. On the other hand, just keeping abreast of the constant flow of new material
can be a job of its own.

If it ain’t broke, don’t fix it
Carefully weigh your site’s needs and risks when planning kernel upgrades and
patches. A new release may be the latest and greatest, but is it as stable as the cur-
rent version? Could the upgrade or patch be delayed and installed with another
group of patches at the end of the month? Resist the temptation to let keeping up
with the Joneses (in this case, the kernel-hacking community) dominate the best
interests of your user community.

A good rule of thumb is to upgrade or apply patches only when the productivity
gains you expect to obtain (usually measured in terms of reliability and perfor-
mance) exceed the effort and lost time required for the installation. If you’re hav-
ing trouble quantifying the specific gain, that’s a good sign that the patch can wait
for another day. (Of course, security-related patches should be installed promptly.)

Setting up to build the Linux kernel
It’s less likely that you’ll need to build a kernel on your own if you’re running a dis-
tribution that uses a “stable” kernel to begin with. It used to be that the second part
of the version number indicated whether the kernel was stable (even numbers) or
in development (odd numbers). But these days, the kernel developers no longer
follow that system. Check kernel.org for the official word on any particular kernel
version. The kernel.org site is also the best source for Linux kernel source code if you
are not relying on a particular distribution or vendor to provide you with a kernel.

Each distribution has a specific way to configure and build custom kernels. Howev-
er, distributions also support the traditional way of doing things, which is what we
describe here. It’s generally safest to use your distributor’s recommended procedure.

http://kernel.org
http://kernel.org

342	 Chapter 11	 Drivers and the Kernel	

Configuring kernel options
Most distributions install kernel source files in versioned subdirectories under
/usr/src/kernels. In all cases, you need to install the kernel source package before
you can build a kernel on your system. See Chapter 6, Software Installation and
Management, for tips on package installation.

Kernel configuration revolves around the .config file at the root of the kernel source
directory. All the kernel configuration information is specified in this file, but its
format is somewhat cryptic. Use the decoding guide in

	 kernel_src_dir/Documentation/Configure.help

to find out what the various options mean. It’s usually inadvisable to edit the .config
file by hand because the effect of changing options is not always obvious. Options
are frequently interdependent, so turning on an option might not be a simple mat-
ter of changing an n to a y.

To save folks from having to edit the .config file directly, Linux has several make
targets that help you configure the kernel through a user interface. If you are run-
ning KDE, the prettiest configuration interface is provided by make xconfig. Like-
wise, if you’re running GNOME, make gconfig is probably the best option. These
commands bring up a graphical configuration screen in which you can pick the
devices to add to your kernel (or to compile as loadable modules).

If you are not running KDE or GNOME, you can use a terminal-based alternative
invoked with make menuconfig. Finally, the bare-bones make config prompts you
to respond to every single configuration option that’s available, which results in a lot
of questions—and if you change your mind, you have to start over. We recommend
make xconfig or make gconfig if your environment supports them; otherwise, use
make menuconfig. Avoid make config, the least flexible and most painful option.

If you’re migrating an existing kernel configuration to a new kernel version (or tree),
you can use the make oldconfig target to read in the previous config file and ask
only the questions that are new to this edition of the kernel.

These tools are straightforward as far as the options you can turn on. Unfortunate-
ly, they are painful to use if you want to maintain multiple versions of the kernel
to accompany multiple architectures or hardware configurations found in your
environment.

All the various configuration interfaces described above generate a .config file that
looks something like this:

Automatically generated make config: don't edit
Code maturity level options

CONFIG_EXPERIMENTAL=y

Processor type and features
CONFIG_M386 is not set

	 Linux kernel configuration	 343

D
riv

er
s /

 K
er

ne
l

CONFIG_M486 is not set
CONFIG_M586 is not set
CONFIG_M586TSC is not set
CONFIG_M686=y
CONFIG_X86_WP_WORKS_OK=y
CONFIG_X86_INVLPG=y
CONFIG_X86_BSWAP=y
CONFIG_X86_POPAD_OK=y
CONFIG_X86_TSC=y
CONFIG_X86_GOOD_APIC=y
...

As you can see, the contents are cryptic and do not attempt to describe what the
various CONFIG tags mean. Each line refers to a specific kernel configuration op-
tion. The value y compiles the option into the kernel, and the value m enables the
option as a loadable module.

Some options can be configured as modules and some can’t. You just have to know
which is which; it will not be clear from the .config file. Nor are the CONFIG tags
easily mapped to meaningful information.

The option hierarchy is extensive, so set aside many hours if you plan to scrutinize
every possibility.

Building the kernel binary
Setting up an appropriate .config file is the most important part of the Linux ker-
nel configuration process, but you must jump through several more hoops to turn
that file into a finished kernel.

Here’s an outline of the entire process:

1.	 Change directory (cd) to the top level of the kernel source directory.
2.	 Run make xconfig, make gconfig, or make menuconfig.
3.	 Run make clean.
4.	 Run make.
5.	 Run make modules_install.
6.	 Run make install.

You might also have to update, configure, and install the GRUB boot loader’s con-
figuration file if this was not performed by the make install step. The GRUB up-
dater scans the boot directory to see which kernels are available and automatically
includes them in the boot menu.

The make clean step is not strictly necessary, but it’s generally a good idea to start
with a clean build environment. In practice, many problems can be traced back to
this step having been skipped.

See page 35 for
more information
about GRUB.

344	 Chapter 11	 Drivers and the Kernel	

Adding a Linux device driver
On Linux systems, device drivers are typically distributed in one of three forms:

•	 A patch against a specific kernel version
•	 A loadable kernel module
•	 An installation script or package that installs the driver

The most common form is the installation script or package. If you’re lucky enough
to have one of these for your new device, you should be able to follow the standard
procedure for installing new software.

In situations where you have a patch against a specific kernel version, you can in
most cases install the patch with the following procedure:

linux# cd kernel_src_dir ; patch -p1 < patch_file

11.5	 FreeBSD kernel configuration
FreeBSD supports the same three methods of changing kernel parameters as Linux:
dynamically tuning the running kernel, building a new kernel from source, and
loading dynamic modules.

Tuning FreeBSD kernel parameters
Many FreeBSD kernel parameters can be changed dynamically with the sysctl
command, as is done on Linux. You can set values automatically at boot time by
adding them to /etc/sysctl.conf. Many, many parameters can be changed this way;
type sysctl -a to see them all. Not everything that shows up in the output of that
command can be changed; many parameters are read-only.

The following paragraphs outline a few of the more commonly modified or inter-
esting parameters that you might want to adjust.

net.inet.ip.forwarding and net.inet6.ip6.forwarding control IP packet for-
warding for IPv4 and IPv6, respectively.

kern.maxfiles sets the maximum number of file descriptors that the system can
open. You may need to increase this on systems such as database or web servers.

net.inet.tcp.mssdflt sets the default TCP maximum segment size, which is the
size of the TCP packet payload carried over IPv4. Certain payload sizes are too large
for long-haul network links, and hence might be dropped by their routers. Chang-
ing this parameter can be useful when debugging long-haul connectivity issues.

net.inet.udp.blackhole controls whether an ICMP “port unreachable” packet is
returned when a packet arrives for a closed UDP port. Enabling this option (that
is, disabling “port unreachable” packets) might slow down port scanners and po-
tential attackers.

	 FreeBSD kernel configuration 	 345

D
riv

er
s /

 K
er

ne
l

net.inet.tcp.blackhole is similar in concept to the udp.blackhole parameter. TCP
normally sends an RST (connection reset) response when packets arrive for closed
ports. Setting this parameter to 1 prevents any SYN (connection setup) arriving on
a closed port from generating an RST. Setting it to 2 prevents RST responses to any
segment at all that arrives on a closed port.

kern.ipc.nmbclusters controls the number of mbuf clusters available to the system.
Mbufs are the internal storage structure for network packets, and mbuf clusters can
be thought of as the mbuf “payload.” For servers that experience heavy network
loads, this value may need to be increased from the default (currently 253,052 on
FreeBSD 10).

kern.maxvnodes sets the maximum number of vnodes, which are kernel data struc-
tures that track files. Increasing the number of available vnodes can improve disk
throughput on a busy server. Examine the value of vfs.numvnodes on servers that are
experiencing poor performance; if its value is close to the value of kern.maxvnodes,
increase the latter.

Building a FreeBSD kernel
Kernel source comes from the FreeBSD servers in the form of a compressed tarball.
Just download and unpack to install. Once the kernel source tree has been installed,
the process for configuring and building the kernel is similar to that of Linux. How-
ever, the kernel source always lives in /usr/src/sys. Under that directory is a set of
subdirectories, one for each architecture that is supported. Inside each architecture
directory, a conf subdirectory includes a configuration file named GENERIC for
the so-called “generic kernel,” which supports every possible device and option.

The configuration file is analogous to the Linux .config file. The first step in making
a custom kernel is to copy the GENERIC file to a new, distinct name in the same
directory, e.g., MYCUSTOM. The second step is to edit the config file and modify
its parameters by commenting out functions and devices that you don’t need. The
final step is to build and install the kernel. That final step must be performed in the
top-level /usr/src directory.

FreeBSD kernel configuration files must be edited by hand. There are no dedicat-
ed user interfaces for this task as there are in the Linux world. Information on the
general format is available from the config(5) man page, and information about
how the config file is used can be found in the config(8) man page.

The configuration file contains some internal comments that describe what each
option does. However, you do still need some background knowledge on a wide
variety of technologies to make informed decisions about what to leave in. In gen-
eral, you’ll want to leave all the options from the GENERIC configuration enabled
and modify only the device-specific lines lower in the configuration file. It’s best to
leave options enabled unless you’re absolutely certain you don’t need them.

346	 Chapter 11	 Drivers and the Kernel	

For the final build step, FreeBSD has a single, highly automated make buildkernel
target that combines parsing the configuration file, creating the build directories,
copying the relevant source files, and compiling those files. This target accepts the
custom configuration filename in the form of a build variable, KERNCONF. An
analogous install target, make installkernel, installs the kernel and boot loader.

Here is a summary of the process:

1.	 Change directory (cd) to /usr/src/sys/arch/conf for your architecture.
2.	 Copy the generic configuration: cp GENERIC MYCUSTOM.
3.	 Edit your MYCUSTOM configuration file.
4.	 Change directory to /usr/src.
5.	 Run make buildkernel KERNCONF=MYCUSTOM.
6.	 Run make installkernel KERNCONF=MYCUSTOM.

Note that these steps are not cross-compilation-enabled! That is, if your build ma-
chine has an AMD64 architecture, you cannot cd to /usr/src/sys/sparc/conf, follow
the normals steps, and end up with a SPARC-ready kernel.

11.6	 Loadable kernel modules
Loadable kernel modules (LKMs) are available in both Linux and FreeBSD. LKM
support allows a device driver—or any other kernel component—to be linked into
and removed from the kernel while the kernel is running. This capability facilitates
the installation of drivers because it avoids the need to update the kernel binary.
It also allows the kernel to be smaller because drivers are not loaded unless they
are needed.

Although loadable drivers are convenient, they are not 100% safe. Any time you
load or unload a module, you risk causing a kernel panic. So don’t try out an un-
tested module when you are not willing to crash the machine.

Like other aspects of device and driver management, the implementation of load-
able modules is OS-dependent.

Loadable kernel modules in Linux
Under Linux, almost anything can be built as a loadable kernel module. The ex-
ceptions are the root filesystem type (whatever that might be on a given system)
and the PS/2 mouse driver.

Loadable kernel modules are conventionally stored under /lib/modules/version,
where version is the version of your Linux kernel as returned by uname -r.

You can inspect the currently loaded modules with the lsmod command:

redhat$ lsmod
Module	 Size	 Used by
ipmi_devintf	 13064	 2
ipmi_si	 36648	 1

	 Loadable kernel modules 	 347

D
riv

er
s /

 K
er

ne
l

ipmi_msghandler	 31848	 2 ipmi_devintf,ipmi_si
iptable_filter	 6721	 0
ip_tables	 21441	 1 iptable_filter
...

Loaded on this machine are the Intelligent Platform Management Interface mod-
ules and the iptables firewall, among other modules.

As an example of manually loading a kernel module, here’s how we would insert a
module that implements sound output to USB devices:

redhat$ sudo modprobe snd-usb-audio

We can also pass parameters to modules as they are loaded; for example,

redhat$ sudo modprobe snd-usb-audio nrpacks=8 async_unlink=1

modprobe is a semi-automatic wrapper around a more primitive command, insmod.
modprobe understands dependencies, options, and installation and removal pro-
cedures. It also checks the version number of the running kernel and selects an
appropriate version of the module from within /lib/modules. It consults the file
/etc/modprobe.conf to figure out how to handle each individual module.

Once a loadable kernel module has been manually inserted into the kernel, it remains
active until you explicitly request its removal or reboot the system. You could use
modprobe -r snd-usb-audio to remove the audio module loaded above. Removal
works only if the number of current references to the module (listed in the “Used
by” column of lsmod’s output) is 0.

You can dynamically generate an /etc/modprobe.conf file that corresponds to all
your currently installed modules by running modprobe -c. This command gener-
ates a long file that looks like this:

#This file was generated by: modprobe -c
path[pcmcia]=/lib/modules/preferred
path[pcmcia]=/lib/modules/default
path[pcmcia]=/lib/modules/2.6.6
path[misc]=/lib/modules/2.6.6
...
Aliases
alias block-major-1 rd
alias block-major-2 floppy
...
alias char-major-4 serial
alias char-major-5 serial
alias char-major-6 lp
...
alias dos msdos
alias plip0 plip
alias ppp0 ppp
options ne io=x0340 irq=9

348	 Chapter 11	 Drivers and the Kernel	

The path statements tell where a particular module can be found. You can modify
or add entries of this type to keep your modules in a nonstandard location.

The alias statements map between module names and block-major device numbers,
character-major device numbers, filesystems, network devices, and network protocols.

The options lines are not dynamically generated but must be manually added by an
administrator. They specify options that should be passed to a module when it is
loaded. For example, you could use the following line to pass in additional options
to the USB sound module:

options snd-usb-audio nrpacks=8 async_unlink=1

modprobe also understands the statements install and remove. These statements
allow commands to be executed when a specific module is inserted into or removed
from the running kernel.

Loadable kernel modules in FreeBSD
Kernel modules in FreeBSD live in /boot/kernel (for standard modules that are part
of the distribution) or /boot/modules (for ported, proprietary, and custom mod-
ules). Each kernel module uses the .ko filename extension, but it is not necessary to
specify that extension when loading, unloading, or viewing the status of the module.

For example, to load a module named foo.ko, run kldload foo in the appropriate
directory. To unload the module, run kldunload foo from any location. To view
the module’s status, run kldstat -m foo from any location. Running kldstat without
any parameters displays the status of all currently loaded modules.

Modules listed in either of the files /boot/defaults/loader.conf (system defaults)
or /boot/loader.conf are loaded automatically at boot time. To add a new entry to
/boot/loader.conf, use a line of the form

zfs_load="YES"

The appropriate variable name is just the module basename with _load appended
to it. The line above ensures that the module /boot/kernel/zfs.ko will be loaded at
boot; it implements the ZFS filesystem.

11.7	 Booting
Now that we have covered kernel basics, it’s time to learn what actually happens
when a kernel loads and initializes at startup. You’ve no doubt seen countless boot
messages, but do you know what all of those messages actually mean?

The following messages and annotations come from some key phases of the boot
process. They almost certainly won’t be an exact match for what you see on your own
systems and kernels. However, they should give you a notion of some of the major
themes in booting and a feeling for how the Linux and FreeBSD kernels start up.

	 Booting 	 349

D
riv

er
s /

 K
er

ne
l

Linux boot messages
The first boot log we examine is from a CentOS 7 machine running a 3.10.0 kernel.

Feb 14 17:18:57 localhost kernel: Initializing cgroup subsys cpuset
Feb 14 17:18:57 localhost kernel: Initializing cgroup subsys cpu
Feb 14 17:18:57 localhost kernel: Initializing cgroup subsys cpuacct
Feb 14 17:18:57 localhost kernel: Linux version 3.10.0-327.el7.x86_64

(builder@kbuilder.dev.centos.org) (gcc version 4.8.3 20140911 (Red
Hat 4.8.3-9) (GCC)) #1 SMP Thu Nov 19 22:10:57 UTC 2015

Feb 14 17:18:57 localhost kernel: Command line: BOOT_IMAGE=/
vmlinuz-3.10.0-327.el7.x86_64 root=/dev/mapper/centos-root ro
crashkernel=auto rd.lvm.lv=centos/root rd.lvm.lv=centos/swap rhgb
quiet LANG=en_US.UTF-8

These initial messages tell us that the top-level control groups (cgroups) are starting
up on a Linux 3.10.0 kernel. The messages tell us who built the kernel and where, and
which compiler they used (gcc). Note that although this log comes from a CentOS
system, CentOS is a clone of Red Hat, and the boot messages remind us of that fact.

The parameters set in the GRUB boot configuration and passed from there into the
kernel are listed above as the “command line.”

Feb 14 17:18:57 localhost kernel: e820: BIOS-provided physical RAM map:
Feb 14 17:18:57 localhost kernel: BIOS-e820: [mem 0x0000000000000000-

0x000000000009fbff] usable
Feb 14 17:18:57 localhost kernel: BIOS-e820: [mem 0x000000000009fc00-

0x000000000009ffff] reserved
...
Feb 14 17:18:57 localhost kernel: Hypervisor detected: KVM
Feb 14 17:18:57 localhost kernel: AGP: No AGP bridge found
Feb 14 17:18:57 localhost kernel: x86 PAT enabled: cpu 0, old

0x7040600070406, new 0x7010600070106
Feb 14 17:18:57 localhost kernel: CPU MTRRs all blank - virtualized

system.
Feb 14 17:18:57 localhost kernel: e820: last_pfn = 0xdfff0 max_arch_pfn

= 0x400000000
Feb 14 17:18:57 localhost kernel: found SMP MP-table at [mem 0x0009fff0-

0x0009ffff] mapped at [ffff88000009fff0]
Feb 14 17:18:57 localhost kernel: init_memory_mapping: [mem

0x00000000-0x000fffff]
...

These messages describe the processor that the kernel has detected and show how
the RAM is mapped. Note that the kernel is aware that it’s booting within a hyper-
visor and is not actually running on bare hardware.

Feb 14 17:18:57 localhost kernel: ACPI: bus type PCI registered
Feb 14 17:18:57 localhost kernel: acpiphp: ACPI Hot Plug PCI Controller

Driver version: 0.5
...

mailto:builder@kbuilder.dev.centos.org

350	 Chapter 11	 Drivers and the Kernel	

Feb 14 17:18:57 localhost kernel: PCI host bridge to bus 0000:00
Feb 14 17:18:57 localhost kernel: pci_bus 0000:00: root bus resource [bus

00-ff]
Feb 14 17:18:57 localhost kernel: pci_bus 0000:00: root bus resource [io

0x0000-0xffff]
Feb 14 17:18:57 localhost kernel: pci_bus 0000:00: root bus resource

[mem 0x00000000-0xfffffffff]
...
Feb 14 17:18:57 localhost kernel: SCSI subsystem initialized
Feb 14 17:18:57 localhost kernel: ACPI: bus type USB registered
Feb 14 17:18:57 localhost kernel: usbcore: registered new interface driver

usbfs
Feb 14 17:18:57 localhost kernel: PCI: Using ACPI for IRQ routing

Here the kernel initializes the system’s various data buses, including the PCI bus
and the USB subsystem.

Feb 14 17:18:57 localhost kernel: Non-volatile memory driver v1.3
Feb 14 17:18:57 localhost kernel: Linux agpgart interface v0.103
Feb 14 17:18:57 localhost kernel: crash memory driver: version 1.1
Feb 14 17:18:57 localhost kernel: rdac: device handler registered
Feb 14 17:18:57 localhost kernel: hp_sw: device handler registered
Feb 14 17:18:57 localhost kernel: emc: device handler registered
Feb 14 17:18:57 localhost kernel: alua: device handler registered
Feb 14 17:18:57 localhost kernel: libphy: Fixed MDIO Bus: probed
...
Feb 14 17:18:57 localhost kernel: usbserial: USB Serial support

registered for generic
Feb 14 17:18:57 localhost kernel: i8042: PNP: PS/2 Controller

[PNP0303:PS2K,PNP0f03:PS2M] at 0x60,0x64 irq 1,12
Feb 14 17:18:57 localhost kernel: serio: i8042 KBD port 0x60,0x64 irq 1
Feb 14 17:18:57 localhost kernel: serio: i8042 AUX port 0x60,0x64 irq 12
Feb 14 17:18:57 localhost kernel: mousedev: PS/2 mouse device common for

all mice
Feb 14 17:18:57 localhost kernel: input: AT Translated Set 2 keyboard as /

devices/platform/i8042/serio0/input/input2
Feb 14 17:18:57 localhost kernel: rtc_cmos rtc_cmos: rtc core: registered

rtc_cmos as rtc0
Feb 14 17:18:57 localhost kernel: rtc_cmos rtc_cmos: alarms up to one

day, 114 bytes nvram
Feb 14 17:18:57 localhost kernel: cpuidle: using governor menu
Feb 14 17:18:57 localhost kernel: usbhid: USB HID core driver

These messages document the kernel’s discovery of various devices, including the
power button, a USB hub, a mouse, and a real-time clock (RTC) chip. Some of the

“devices” are metadevices rather than actual hardware; these constructs manage
groups of real, related hardware devices. For example, the usbhid (USB Human
Interface Device) driver manages keyboards, mice, tablets, game controllers, and
other types of input devices that follow USB reporting standards.

	 Booting 	 351

D
riv

er
s /

 K
er

ne
l

Feb 14 17:18:57 localhost kernel: drop_monitor: Initializing network drop
monitor service

Feb 14 17:18:57 localhost kernel: TCP: cubic registered
Feb 14 17:18:57 localhost kernel: Initializing XFRM netlink socket
Feb 14 17:18:57 localhost kernel: NET: Registered protocol family 10
Feb 14 17:18:57 localhost kernel: NET: Registered protocol family 17

In this phase, the kernel initializes a variety of network drivers and facilities.

The drop monitor is a Red Hat kernel subsystem that implements comprehensive
monitoring of network packet loss. “TCP cubic” is a congestion-control algorithm
optimized for high-latency, high-bandwidth connections, so-called long fat pipes.

As mentioned on page 330, Netlink sockets are a modern approach to communi-
cation between the kernel and user-level processes. The XFRM Netlink socket is the
link between the user-level IPsec process and the kernel’s IPsec routines.

The last two lines document the registration of two additional network protocol
families.

Feb 14 17:18:57 localhost kernel: Loading compiled-in X.509 certificates
Feb 14 17:18:57 localhost kernel: Loaded X.509 cert 'CentOS Linux kpatch

signing key: ea0413152cde1d98ebdca3fe6f0230904c9ef717'
Feb 14 17:18:57 localhost kernel: Loaded X.509 cert 'CentOS Linux Driver

update signing key: 7f421ee0ab69461574bb358861dbe77762a4201b'
Feb 14 17:18:57 localhost kernel: Loaded X.509 cert 'CentOS Linux kernel

signing key: 79ad886a113ca0223526336c0f825b8a94296ab3'
Feb 14 17:18:57 localhost kernel: registered taskstats version 1
Feb 14 17:18:57 localhost kernel: Key type trusted registered
Feb 14 17:18:57 localhost kernel: Key type encrypted registered

Like other OSs, CentOS provides a way to incorporate and validate updates. The
validation portion uses X.509 certificates that are installed into the kernel.

Feb 14 17:18:57 localhost kernel: IMA: No TPM chip found, activating
TPM-bypass!

Feb 14 17:18:57 localhost kernel: rtc_cmos rtc_cmos: setting system clock
to 2017-02-14 22:18:57 UTC (1487110737)

Here, the kernel reports that it’s unable to find a Trusted Platform Module (TPM)
on the system. TPM chips are cryptographic hardware devices that provide for se-
cure signing operations. When used properly, they can make it much more difficult
to hack into a system.

For example, the TPM can be used to sign kernel code and to make the system
refuse to execute any portion of the code for which the current signature doesn’t
match the TPM signature. This measure helps avoid the execution of maliciously
injected code. An admin who expects to have a working TPM would be unhappy
to see this message!

352	 Chapter 11	 Drivers and the Kernel	

The last message shows the kernel setting the battery-backed real-time clock to the
current time of day. This is the same RTC that we saw mentioned earlier when it
was identified as a device.

Feb 14 17:18:57 localhost kernel: e1000: Intel(R) PRO/1000 Network
Driver - version 7.3.21-k8-NAPI

Feb 14 17:18:57 localhost kernel: e1000: Copyright (c) 1999-2006 Intel
Corporation.

Feb 14 17:18:58 localhost kernel: e1000 0000:00:03.0 eth0:
(PCI:33MHz:32-bit) 08:00:27:d0:ae:6f

Feb 14 17:18:58 localhost kernel: e1000 0000:00:03.0 eth0: Intel(R)
PRO/1000 Network Connection

Now the kernel has found the gigabit Ethernet interface and initialized it. The in-
terface’s MAC address (08:00:27:d0:ae:6f) might be of interest to you if you want-
ed this machine to obtain its IP address through DHCP. Specific IP addresses are
often locked to specific MACs in the DHCP server configuration so that servers
can have IP address continuity.

Feb 14 17:18:58 localhost kernel: scsi host0: ata_piix
Feb 14 17:18:58 localhost kernel: ata1: PATA max UDMA/33 cmd 0x1f0 ctl

0x3f6 bmdma 0xd000 irq 14
Feb 14 17:18:58 localhost kernel: ahci 0000:00:0d.0: flags: 64bit ncq

stag only ccc
Feb 14 17:18:58 localhost kernel: scsi host2: ahci
Feb 14 17:18:58 localhost kernel: ata3: SATA max UDMA/133 abar

m8192@0xf0806000 port 0xf0806100 irq 21
Feb 14 17:18:58 localhost kernel: ata2.00: ATAPI: VBOX CD-ROM, 1.0, max

UDMA/133
Feb 14 17:18:58 localhost kernel: ata2.00: configured for UDMA/33
Feb 14 17:18:58 localhost kernel: scsi 1:0:0:0: CD-ROM VBOX

CD-ROM 1.0 PQ: 0 ANSI: 5
Feb 14 17:18:58 localhost kernel: tsc: Refined TSC clocksource

calibration: 3399.654 MHz
Feb 14 17:18:58 localhost kernel: ata3: SATA link up 3.0 Gbps (SStatus

123 SControl 300)
Feb 14 17:18:58 localhost kernel: ata3.00: ATA-6: VBOX HARDDISK, 1.0,

max UDMA/133
Feb 14 17:18:58 localhost kernel: ata3.00: 16777216 sectors, multi 128:

LBA48 NCQ (depth 31/32)
Feb 14 17:18:58 localhost kernel: ata3.00: configured for UDMA/133
Feb 14 17:18:58 localhost kernel: scsi 2:0:0:0: Direct-Access ATA

VBOX HARDDISK 1.0 PQ: 0 ANSI: 5
Feb 14 17:18:58 localhost kernel: sr 1:0:0:0: [sr0] scsi3-mmc drive:

32x/32x xa/form2 tray
Feb 14 17:18:58 localhost kernel: cdrom: Uniform CD-ROM driver Revision:

3.20
Feb 14 17:18:58 localhost kernel: sd 2:0:0:0: [sda] 16777216 512-byte

logical blocks: (8.58 GB/8.00 GiB)
Feb 14 17:18:58 localhost kernel: sd 2:0:0:0: [sda] Attached SCSI disk

See page 402 for
more information
about DHCP.

	 Booting 	 353

D
riv

er
s /

 K
er

ne
l

Feb 14 17:18:58 localhost kernel: SGI XFS with ACLs, security attributes,
no debug enabled

Feb 14 17:18:58 localhost kernel: XFS (dm-0): Mounting V4 Filesystem
Feb 14 17:18:59 localhost kernel: XFS (dm-0): Ending clean mount

Here the kernel recognizes and initializes various drives and support devices (hard
disk drives, a SCSI-based virtual CD-ROM, and an ATA hard disk). It also mounts a
filesystem (XFS) that is part of the device-mapper subsystem (the dm-0 filesystem).

As you can see, Linux kernel boot messages are verbose almost to a fault. However,
you can rest assured that you’ll see everything the kernel is doing as it starts up, a
most useful feature if you encounter problems.

FreeBSD boot messages
The log below is from a FreeBSD 10.3-RELEASE system that runs the kernel shipped
with the release. Much of the output will look eerily familiar; the sequence of events
is quite similar to that found in Linux. One notable difference is that the FreeBSD
kernel produces far fewer boot messages than does Linux. Compared to Linux,
FreeBSD is downright taciturn.

Sep 25 12:48:36 bucephalus kernel: FreeBSD 10.3-RELEASE #0 r297264: Fri
Mar 25 02:10:02 UTC 2016

Sep 25 12:48:36 bucephalus kernel: root@releng1.nyi.freebsd.org:/usr/obj/
usr/src/sys/GENERIC amd64

Sep 25 12:48:36 bucephalus kernel: FreeBSD clang version 3.4.1 (tags/
RELEASE_34/dot1-final 208032) 20140512

The initial messages above tell you the OS release, the time at which the kernel was
built from source, the name of the builder, the configuration file that was used, and
finally, the compiler that generated the code (Clang version 3.4.1).1

Sep 25 12:48:36 bucephalus kernel: real memory = 4831838208 (4608 MB)
Sep 25 12:48:36 bucephalus kernel: avail memory = 4116848640 (3926 MB)

Above are the system’s total amount of memory and the amount that’s available
to user-space code. The remainder of the memory is reserved for the kernel itself.

Total memory of 4608MB probably looks a bit strange. However, this FreeBSD in-
stance is running under a hypervisor. The amount of “real memory” is an arbitrary
value that was set when the virtual machine was configured. On bare-metal systems,
the total memory is likely to be a power of 2, since that’s how actual RAM chips are
manufactured (e.g., 8192MB).

Sep 25 12:48:36 bucephalus kernel: vgapci0: <VGA-compatible display>
mem 0xe0000000-0xe0ffffff irq 18 at device 2.0 on pci0

Sep 25 12:48:36 bucephalus kernel: vgapci0: Boot video device

There’s the default video display, which was found on the PCI bus. The output shows
the memory range to which the frame buffer has been mapped.

	 1.	 Well, compiler front end, really. But let’s not quibble.

mailto:root@releng1.nyi.freebsd.org:/usr/obj/usr/src/sys/GENERIC
mailto:root@releng1.nyi.freebsd.org:/usr/obj/usr/src/sys/GENERIC

354	 Chapter 11	 Drivers and the Kernel	

Sep 25 12:48:36 bucephalus kernel: em0: <Intel(R) PRO/1000 Legacy
Network Connection 1.1.0> port 0xd010-0xd017 mem 0xf0000000-
0xf001ffff irq 19 at device 3.0 on pci0

Sep 25 12:48:36 bucephalus kernel: em0: Ethernet address:
08:00:27:b5:49:fc

And above, the Ethernet interface, along with its hardware (MAC) address.

Sep 25 12:48:36 bucephalus kernel: usbus0: 12Mbps Full Speed USB v1.0
Sep 25 12:48:36 bucephalus kernel: ugen0.1: <Apple> at usbus0
Sep 25 12:48:36 bucephalus kernel: uhub0: <Apple OHCI root HUB, class

9/0, rev 1.00/1.00, addr 1> on usbus0
Sep 25 12:48:36 bucephalus kernel: ada0 at ata0 bus 0 scbus0 tgt 0 lun 0
Sep 25 12:48:36 bucephalus kernel: cd0 at ata1 bus 0 scbus1 tgt 0 lun 0
Sep 25 12:48:36 bucephalus kernel: cd0: <VBOX CD-ROM 1.0> Removable

CD-ROM SCSI device
Sep 25 12:48:36 bucephalus kernel: cd0: Serial Number VB2-01700376
Sep 25 12:48:36 bucephalus kernel: cd0: 33.300MB/s transfers (UDMA2,

ATAPI 12bytes, PIO 65534bytes)
Sep 25 12:48:36 bucephalus kernel: cd0: Attempt to query device size

failed: NOT READY, Medium not present
Sep 25 12:48:36 bucephalus kernel: ada0: <VBOX HARDDISK 1.0> ATA-6

device
Sep 25 12:48:36 bucephalus kernel: ada0: Serial Number

VBcf309b40-154c5085
Sep 25 12:48:36 bucephalus kernel: ada0: 33.300MB/s transfers (UDMA2,

PIO 65536bytes)
Sep 25 12:48:36 bucephalus kernel: ada0: 4108MB (8413280 512 byte

sectors)
Sep 25 12:48:36 bucephalus kernel: ada0: Previously was known as ad0

As shown above, the kernel initializes the USB bus, the USB hub, the CD-ROM
drive (actually a DVD-ROM drive, but virtualized to look like a CD-ROM), and
the ada disk driver.

Sep 25 12:48:36 bucephalus kernel: random: unblocking device.
Sep 25 12:48:36 bucephalus kernel: Timecounter "TSC-low" frequency

1700040409 Hz quality 1000
Sep 25 12:48:36 bucephalus kernel: Root mount waiting for: usbus0
Sep 25 12:48:36 bucephalus kernel: uhub0: 12 ports with 12 removable,

self powered
Sep 25 12:48:36 bucephalus kernel: Trying to mount root from ufs:/dev/

ada0p2 [rw]...

The final messages in the FreeBSD boot log document a variety of odds and ends.
The “random” pseudo-device harvests entropy from the system and generates ran-
dom numbers. The kernel seeded its number generator and put it in nonblocking
mode. A few other devices came up, and the kernel mounted the root filesystem.

At this point, the kernel boot messages end. Once the root filesystem has been
mounted, the kernel transitions to multiuser mode and initiates the user-level

See page 1011 for
more comments on
the random driver.

	 Booting alternate kernels in the cloud	 355

D
riv

er
s /

 K
er

ne
l

startup scripts. Those scripts, in turn, start the system services and make the sys-
tem available for use.

11.8	 Booting alternate kernels in the cloud
Cloud instances boot differently from traditional hardware. Most cloud providers
sidestep GRUB and use either a modified open source boot loader or some kind
of scheme that avoids the use of a boot loader altogether. Therefore, booting an al-
ternate kernel on a cloud instance usually requires that you interact with the cloud
provider’s web console or API.

This section briefly outlines some of the specifics that relate to booting and kernel
selection on our example cloud platforms. For a more general introduction to cloud
systems, see Chapter 9, Cloud Computing.

On AWS, you’ll need to start with a base AMI (Amazon machine image) that uses
a boot loader called PV-GRUB. PV-GRUB runs a patched version of legacy GRUB
and lets you specify the kernel in your AMI’s menu.lst file.

After compiling a new kernel, edit /boot/grub/menu.lst to add it to the boot list:

default 0
fallback 1
timeout 0
hiddenmenu

title My Linux Kernel
root (hd0)
kernel /boot/my-vmlinuz-4.3 root=LABEL=/ console=hvc0
initrd /boot/my-initrd.img-4.3

title Amazon Linux
root (hd0)
kernel /boot/vmlinuz-4.1.10-17.31.amzn1.x86 root=LABEL=/ console=hvc0
initrd /boot/initramfs-4.1.10-17.31.amzn1.x86.img

Here, the custom kernel is the default, and the fallback option points to the standard
Amazon Linux kernel. Having a fallback helps ensure that your system can boot
even if your custom kernel can’t be loaded or doesn’t work correctly. See Amazon
EC2’s User Guide for Linux Instances for more details on this process.

Historically, DigitalOcean bypassed the boot loader through a QEMU (short for
Quick Emulator) feature that allowed a kernel and RAM disk to be loaded directly
into a droplet. Thankfully, DigitalOcean now allows droplets to use their own boot
loaders. Most modern operating systems are supported, including CoreOS, FreeBSD,
Fedora, Ubuntu, Debian, and CentOS. Changes to boot options, including selec-
tion of the kernel, are handled by the respective OS boot loaders (GRUB, usually).

Google Cloud Platform (GCP) is the most flexible platform when it comes to boot
management. Google lets you upload complete system disk images to your Compute

356	 Chapter 11	 Drivers and the Kernel	

Engine account. Note that in order for a GCP image to boot properly, it must use
the MBR partitioning scheme and include an appropriate (installed) boot loader.
UEFI and GPT do not apply here!

The cloud.google.com/compute/docs/creating-custom-image tutorial on building
images is incredibly thorough and specifies not only the required kernel options
but also the recommended settings for kernel security.

11.9	 Kernel errors
Kernel crashes (aka kernel panics) are an unfortunate reality that can happen even
on properly configured systems. They have a variety of causes. Bad commands en-
tered by privileged users can certainly crash the system, but a more common cause
is faulty hardware. Physical memory failures and hard drive errors (bad sectors on
a platter or device) are both notorious for causing kernel panics.

It’s also possible for bugs in the implementation of the kernel to result in crashes.
However, such crashes are exceedingly rare in kernels anointed as “stable.” Device
drivers are another matter, however. They come from many different sources and
are often of less-than-exemplary code quality.

If hardware is the underlying cause of a crash, keep in mind that the crash may have
occurred long after the device failure that sparked it. For example, you can often
remove a hot-swappable hard drive without causing immediate problems. The sys-
tem continues to hum along without (much) complaint until you try to reboot or
perform some other operation that depends on that particular drive.

Despite the names “panic” and “crash,” kernel panics are usually relatively struc-
tured events. User-space programs rely on the kernel to police them for many kinds
of misbehavior, but the kernel has to monitor itself. Consequently, kernels include
a liberal helping of sanity-checking code that attempts to validate important data
structures and invariants in passing. None of those checks should ever fail; if they do,
it’s sufficient reason to panic and halt the system, and the kernel does so proactively.

Or at least, that’s the traditional approach. Linux has liberalized this rule somewhat
through the “oops” system; see the next section.

Linux kernel errors
Linux has four varieties of kernel failure: soft lockups, hard lockups, panics, and the
infamous Linux “oops.” Each one of these usually provides a complete stack trace,
except for certain soft lockups that are recoverable without a panic.

A soft lockup occurs when the system is in kernel mode for more than a few sec-
onds, thus preventing user-level tasks from running. The interval is configurable,
but it is usually around 10 seconds, which is a long time for a process to be denied
CPU cycles! During a soft lockup, the kernel is the only thing running, but it is still

http://cloud.google.com/compute/docs/creating-custom-image

	 Kernel errors	 357

D
riv

er
s /

 K
er

ne
l

servicing interrupts such as those from network interfaces and keyboards. Data is
still flowing in and out of the system, albeit in a potentially crippled fashion.

A hard lockup is the same as a soft lockup, but with the additional complication
that most processor interrupts go unserviced. Hard lockups are overtly patholog-
ical conditions that are detected relatively quickly, whereas soft lockups can occur
even on correctly configured systems that are experiencing some kind of extreme
condition, such as a high CPU load.

In both cases, a stack trace and a display of the CPU registers (a “tombstone”) are
usually dumped to the console. The trace shows the sequence of function calls that
resulted in the lockup. In most cases, this trace tells you quite a bit about the cause
of the problem.

A soft or hard lockup is almost always the result of a hardware failure, the most
common culprit being bad memory. The second most common reason for a soft
lockup is a kernel spinlock that has been held too long; however, this situation nor-
mally occurs only with nonstandard kernel modules. If you are running any unusual
modules, try unloading them and see if the problem recurs.

When a lockup occurs, the usual behavior is for the system to stay frozen so that
the tombstone remains visible on the console. But in some environments, it’s pref-
erable to have the system panic and thus reboot. For example, an automated test
rig needs systems to avoid hanging, so these systems are often configured to reboot
into a safe kernel after encountering a lockup.

sysctl can configure both soft and hard lockups to panic:

linux$ sudo sysctl kernel.softlockup_panic=1
linux$ sudo sysctl kernel.nmi_watchdog=1

You can set these parameters at boot by listing them in /etc/sysctl.conf, just like
any other kernel parameter.

The Linux “oops” system is a generalization of the traditional UNIX “panic after
any anomaly” approach to kernel integrity. Oops doesn’t stand for anything; it’s just
the English word oops, as in “Oops! I zeroed out your SAN again.” Oopses in the
Linux kernel can lead to a panic, but they needn’t always. If the kernel can repair
or address an anomaly through a less drastic measure, such as killing an individual
process, it might do that instead.

When an oops occurs, the kernel generates a tombstone in the kernel message buf-
fer that’s viewable with the dmesg command. The cause of the oops is listed at the
top. It might be something like “unable to handle kernel paging request at virtual
address 0x0000000000000.”

You probably won’t be debugging your own kernel oopses. However, your chance
of attracting the interest of a kernel or module developer is greatly increased if
you do a good job of capturing the available context and diagnostic information,
including the full tombstone.

358	 Chapter 11	 Drivers and the Kernel	

The most valuable information is at the beginning of the tombstone. That fact can
present a problem after a full-scale kernel panic. On a physical system, you may
be able to just go to the console and page up through the history to see the full
dump. But on a virtual machine, the console might be a window that becomes fro-
zen when the Linux instance panics; it depends on the hypervisor. If the text of the
tombstone has scrolled out of view, you won’t be able to see the cause of the crash.

One way to minimize the likelihood of information loss is to increase the resolution
of the console screen. We’ve found that a resolution of 1280 × 1024 is adequate to
display the full text of most kernel panics.

You can set the console resolution by modifying /etc/grub2/grub.cfg and adding
vga=795 as a kernel startup parameter for the kernel you want to boot. You can
also set the resolution by adding this clause to the kernel “command line” from
GRUB’s boot menu screen. The latter approach lets you test the waters without
making any permanent changes.

To make the change permanent, find the menu item with the boot command for
the kernel that you wish to boot, and modify it. For example, if the boot command
looks like this:

	 linux16 /vmlinuz-3.10.0-229.el7.x86_64 root=/dev/mapper/centos-
root ro rd.lvm.lv=centos/root rd.lvm.lv=centos/swap crashkernel=auto
biosdevname=0 net.ifnames=0 LANG=en_US.UTF-8

	 then simply modify it to add the vga=795 parameter at the end:

	 linux16 /vmlinuz-3.10.0-229.el7.x86_64 root=/dev/mapper/centos-
root ro rd.lvm.lv=centos/root rd.lvm.lv=centos/swap crashkernel=auto
biosdevname=0 net.ifnames=0 LANG=en_US.UTF-8 vga=795

Other resolutions can be achieved by setting the vga boot parameter to other val-
ues. Table 11.6 lists the possibilities.

Table 11.6	 VGA mode values

Color depth (bits)

Geometry 8 15 16 24

640 x 480 769 784 785 786
800 x 600 771 787 788 789
1024 x 768 773 790 791 792
1280 x 1024 775 793 884 795
1400 x 1050 834 – – –
1600 x 1200 884 – – –

	 Recommended reading	 359

D
riv

er
s /

 K
er

ne
l

FreeBSD kernel panics
FreeBSD does not divulge much information when the kernel panics. If you are
running a generic kernel from a production release, the best thing to do if you are
encountering regular panics is to instrument the kernel for debugging. Rebuild the
generic kernel with makeoptions DEBUG=-g enabled in the kernel configuration,
and reboot with that new kernel. Once the system panics again, you can use kgdb
to generate a stack trace from the resulting crash dump in /var/crash.

Of course, if you’re running unusual kernel modules and the kernel doesn’t panic
when you don’t load them, that’s a good indication of where the issue lies.

An important note: crash dumps are the same size as real (physical) memory, so you
must ensure that /var/crash has at least that much space available before you enable
these dumps. There are ways to get around this, though: for more information, see
the man pages for dumpon and savecore and the dumpdev variable in /etc/rc.conf.

11.10	 Recommended reading
You can visit lwn.net for the latest information on what the kernel community is
doing. In addition, we recommend the following books.

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel (3rd Edi-
tion). Sebastopol, CA: O’Reilly Media, 2006.

Love, Robert. Linux Kernel Development (3rd Edition). Upper Saddle River, NJ:
Addison-Wesley Professional, 2010.

McKusick, Marshall Kirk, et al. The Design and Implementation of the Free-
BSD Operating System (2nd Edition). Upper Saddle River, NJ: Addison-Wesley
Professional, 2014.

Rosen, Rami. Linux Kernel Networking: Implementation and Theory. Apress, 2014.

http://lwn.net

360

Printing is a necessary evil. No one wants to deal with it, but every user wants to
print. For better or worse, printing on UNIX and Linux systems typically requires at
least some configuration and occasionally some coddling by a system administrator.

Ages ago, there were three common printing systems: BSD, System V, and CUPS
(the Common UNIX Printing System). Today, Linux and FreeBSD both use CUPS,
an up-to-date, sophisticated, network- and security-aware printing system. CUPS
includes a modern, browser-based GUI as well as shell-level commands that allow
the printing system to be controlled by scripts.

Before we start, a general point: system administrators often consider printing a
lower priority than do users. Administrators are accustomed to reading documents
on-line, but users often need hard copy, and they want the printing system to work
100% of the time. Satisfying these desires is one of the easier ways for sysadmins to
earn Brownie points with users.

Printing relies on a handful of pieces:

•	 A print “spooler” that collects and schedules jobs. The word “spool” orig-
inated as an acronym for Simultaneous Peripheral Operation On-Line.
Now it’s just a generic term.

12 Printing

	 CUPS printing	 361

Pr
in

tin
g

•	 User-level utilities (command-line interfaces or GUIs) that talk to the
spooler. These utilities send jobs to the spooler, query the system about
jobs (both pending and complete), remove or reschedule jobs, and con-
figure the other parts of the system.

•	 Back ends that talk to the printing devices themselves. (These are normally
unseen and hidden under the floorboards.)

•	 A network protocol that lets spoolers communicate and transfer jobs.

Modern environments often use network-attached printers that minimize the
amount of setup and processing that must be done on the UNIX or Linux side.

12.1	 CUPS printing
CUPS was created by Michael Sweet and has been adopted as the default printing
system for Linux, FreeBSD, and macOS. Michael has been at Apple since 2007,
where he continues to develop CUPS and its ecosystem.

Just as newer mail transport systems include a command called sendmail that lets
older scripts (and older system administrators!) work as they always did back in
sendmail’s glory days, CUPS supplies traditional commands such as lp and lpr that
are backward compatible with legacy UNIX printing systems.

CUPS servers are also web servers, and CUPS clients are web clients. The clients
can be commands such as the CUPS versions of lpr and lpq, or they can be appli-
cations with their own GUIs. Under the covers they’re all web apps, even if they’re
talking only to the CUPS daemon on the local system. CUPS servers can also act
as clients of other CUPS servers.

A CUPS server offers a web interface to its full functionality on port 631. For admin-
istrators, a web browser is usually the most convenient way to manage the system;
just navigate to http://printhost:631. If you need secure communication with the
daemon (and your system offers it), use https://printhost:433 instead. Scripts can
use discrete commands to control the system, and users normally access it through
a GNOME or KDE interface. These routes are all equivalent.

HTTP is the underlying protocol for all interactions among CUPS servers and their
clients. Actually, it’s the Internet Printing Protocol, a souped-up version of HTTP.
Clients submit jobs with the HTTP/IPP POST operation and request status with
HTTP/IPP GET. The CUPS configuration files also look suspiciously similar to
Apache web server configuration files.

Interfaces to the printing system
CUPS printing is often done from a GUI, and administration is often done through
a web browser. As a sysadmin, though, you (and perhaps some of your hard-core
terminal users) might want to use shell-level commands as well. CUPS includes

http://printhost:631
https://printhost:433instead

362	 Chapter 12	 Printing	

work-alike commands for many of the basic, shell-level printing commands of the
legacy BSD and System V printing systems. Unfortunately, CUPS doesn’t necessarily
emulate all the bells and whistles. Sometimes, it emulates the old interfaces entire-
ly too well; instead of giving you a quick usage summary, lpr --help and lp --help
just print error messages.

Here’s how you might print the files foo.pdf and /tmp/testprint.ps to your default
printer under CUPS:

$ lpr foo.pdf /tmp/testprint.ps

The lpr command transmits copies of the files to the CUPS server, cupsd, which
stores them in the print queue. CUPS processes each file in turn as the printer be-
comes available.

When printing, CUPS examines both the document and the printer’s PostScript Print-
er Description (PPD) file to see what needs to be done to get the document to print
properly. (Despite the name, PPD files are used even for non-PostScript printers.)

To prepare a job for printing on a specific printer, CUPS passes it through a series
of filters. For example, one filter might reformat the job so that two reduced-size
page images print on each physical page (aka “2-up printing”), and another might
transform the job from PostScript to PCL. Filters can also do printer-specific pro-
cessing such as printer initialization. Some filters perform rasterization, turning
abstract instructions such as “draw a line across the page” into a bitmap image. Such
rasterizers are useful for printers that do not include their own rasterizers or that
don’t speak the language in which a job was originally submitted.

The final stage of the print pipeline is a back end that transmits the job from the
host to the printer through an appropriate protocol such as Ethernet. The back end
also communicates status information in the other direction, back to the CUPS
server. After transmitting the print job, the CUPS daemon returns to processing
its queues and handling requests from clients, and the printer goes off to print the
job it was shipped.

The print queue
cupsd’s centralized control of the printing system makes it easy to understand
what the user-level commands are doing. For example, the lpq command requests
job status information from the server and reformats it for display. Other CUPS
clients ask the server to suspend, cancel, or reprioritize jobs. They can also move
jobs from one queue to another.

Most changes require jobs to be identified by their job number, which you can get
from lpq. For example, to remove a print job, just run lprm jobid.

lpstat -t summarizes the print server’s overall status.

	 CUPS printing	 363

Pr
in

tin
g

Multiple printers and queues
The CUPS server maintains a separate queue for each printer. Command-line clients
accept an option (typically -P printer or -p printer) by which you specify the queue
to address. You can also set a default printer for yourself by setting the PRINTER
environment variable

$ export PRINTER=printer_name

or by telling CUPS to use a particular default for your account.

$ lpoptions -dprinter_name

When run as root, lpoptions sets system-wide defaults in /etc/cups/lpoptions, but
it’s more typically used by individual, nonroot users. lpoptions lets each user define
personal printer instances and defaults, which it stores in ~/.cups/lpoptions. The
command lpoptions -l lists the current settings.

Printer instances
If you have only one printer but want to use it in several ways—say, both for quick
drafts and for final production work—CUPS lets you set up different “printer in-
stances” for these different uses.

For example, if you already have a printer named Phaser_6120, the command

$ lpoptions -p Phaser_6120/2up -o number-up=2 -o job-sheets=standard

creates an instance named Phaser_6120/2up that performs 2-up printing and adds
banner pages. Once the instance has been created, the command

$ lpr -P Phaser_6120/2up biglisting.ps

prints the PostScript file biglisting.ps as a 2-up job with a banner page.

Network printer browsing
From CUPS’s perspective, a network of machines isn’t very different from an iso-
lated machine. Every computer runs a cupsd, and all the CUPS daemons talk to
one another.

If you’re working on the command line, you configure a CUPS daemon to accept
print jobs from remote systems by editing the /etc/cups/cupsd.conf file (see page
365). By default, servers that are set up this way broadcast information every 30
seconds about the printers they serve. As a result, computers on the local network
automatically learn about the printers that are available to them. You can effect
the same configuration by clicking a checkbox in the CUPS GUI in your browser.

If someone has plugged in a new printer, if you’ve brought your laptop into work, or
if you’ve just installed a new workstation, you can tell cupsd to redetermine what
printing services are available; click the Find New Printers button in the Adminis-
tration tab of the CUPS GUI.

364	 Chapter 12	 Printing	

Because broadcast packets do not cross subnet boundaries, it’s a bit tricker to make
printers available to multiple subnets. One solution is to designate, on each subnet,
a slave server that polls the other subnets’ servers for information and then relays
that information to machines on the local subnet.

For example, suppose the print servers allie (192.168.1.5) and jj (192.168.2.14) live
on different subnets and we want both of them to be accessible to users on a third
subnet, 192.168.3. We designate a slave server (say, copeland, 192.168.3.10) and
add these lines to its cupsd.conf file:

BrowsePoll allie
BrowsePoll jj
BrowseRelay 127.0.0.1 192.168.3.255

The first two lines tell the slave’s cupsd to poll the cupsds on allie and jj for infor-
mation about the printers they serve. The third line tells copeland to relay the in-
formation it learns to its own subnet. Simple!

Filters
Rather than using a specialized printing tool for every printer, CUPS uses a chain of
filters to convert each printed file into a form the destination printer can understand.

The CUPS filter scheme is elegant. Given a document and a target printer, CUPS
uses its .types files to figure out the document’s MIME type. It consults the printer’s
PPD file to figure out what MIME types the printer can handle. It then uses .convs
files to deduce what filter chains could convert one format to the other, and what
each prospective chain would cost. Finally, it picks a chain and passes the docu-
ment through those filters. The final filter in the chain passes the printable format
to a back end, which transmits the data to the printer through whatever hardware
or protocol the printer understands.

We can flesh out that process a bit. CUPS uses rules in /usr/share/cups/mime/mime.types
to figure out the incoming data type. For example, the rule

application/pdf				 pdf string (0,%PDF)

means “If a file has a .pdf extension or starts with the string %PDF, then its MIME
type is application/pdf.”

CUPS figures out how to convert one data type to another by looking up rules in
the file mime.convs (usually in /etc/cups or /usr/share/cups/mime). For example,

application/pdf				 application/postscript 33 pdftops

means “To convert an application/pdf file to an application/postscript file, run the
filter pdftops.” The number 33 is the cost of the conversion. When CUPS finds that
several filter chains can convert a file from one type to another, it picks the chain
with the lowest total cost. (Costs are chosen by whoever creates the mime.convs
file—the distribution maintainers, perhaps. If you want to spend time tuning them
because you think you can do a better job, you may have too much free time.)

	 CUPS server administration	 365

Pr
in

tin
g

The last component in a CUPS pipeline is a filter that talks directly to the printer.
In the PPD of a non-PostScript printer, you might see lines such as

*cupsFilter: "application/vnd.cups-postscript 0 foomatic-rip"

or even

*cupsFilter: "application/vnd.cups-postscript foomatic-rip"

The quoted string has the same format as a line in mime.convs, but there’s only
one MIME type instead of two. This line advertises that the foomatic-rip filter
converts data of type application/vnd.cups-postscript to the printer’s native data
format. The cost is zero (or omitted) because there’s only one way to do this step,
so why pretend there’s a cost? (Some PPDs for non-PostScript printers, like those
from the Gutenprint project, are slightly different.)

To find the filters available on your system, try running locate pstops. pstops is a
popular filter that massages PostScript jobs in various ways, such as adding a Post-
Script command to set the number of copies. Wherever you find pstops, the other
filters won’t be far away.

You can ask CUPS for a list of the available back ends by running lpinfo -v. If your
system lacks a back end for the network protocol you need, it may be available from
the web or from your Linux distributor.

12.2	 CUPS server administration
cupsd starts at boot time and runs continuously. All our example systems are set
up this way by default.

The CUPS configuration file, cupsd.conf, is usually found in /etc/cups. The file
format is similar to that of the Apache configuration file. If you’re comfortable
with one of these files, you’ll be comfortable with the other. You can view and edit
cupsd.conf with a text editor or, once again, from the CUPS web GUI.

The default config file is well commented. The comments and the cupsd.conf man
page are good enough that we won’t belabor the details of configuration here.

CUPS reads its configuration file only at startup. If you change the contents of
cupsd.conf, you must restart cupsd for changes to take effect. If you make changes
through cupsd’s web GUI, cupsd restarts automatically.

Network print server setup
If you’re having trouble printing over the network, review the browser-based CUPS
GUI and make sure you’ve checked all the right boxes. Possible problem areas in-
clude an unpublished printer, a CUPS server that isn’t broadcasting its printers to
the network, or a CUPS server that won’t accept network print jobs.

See page 698 for
details about Apache
configuration.

366	 Chapter 12	 Printing	

If you’re editing the cupsd.conf file directly, you’ll need to make a couple of chang-
es. First, change

<Location />
Order Deny,Allow
Deny From All
Allow From 127.0.0.1
</Location>

to

<Location />
Order Deny,Allow
Deny From All
Allow From 127.0.0.1
Allow From netaddress
</Location>

Replace netaddress with the IP address of the network from which you want to ac-
cept jobs (e.g., 192.168.0.0).

Then, look for the BrowseAddress keyword and set it to the broadcast address on
that network plus the CUPS port; for example,

BrowseAddress 192.168.0.255:631

These steps tell the server to accept requests from any machine on the designated
subnet and to broadcast what it knows about the printers it’s serving to every CUPS
daemon on that network. That’s it! Once you restart cupsd, it comes back as a server.

Printer autoconfiguration
You can use CUPS without a printer (e.g., to convert files to PDF or fax format),
but its typical role is to manage real printers. In this section, we review the ways in
which you can deal with the printers per se.

In some cases, adding a printer is trivial. CUPS autodetects USB printers when
they’re plugged into the system and figures out what to do with them.

Even if you have to do some configuration work yourself, adding a printer is often
no more painful than plugging in the hardware, connecting to the CUPS web in-
terface at localhost:631/admin, and answering a few questions. KDE and GNOME
come with their own printer configuration widgets, which you may prefer to the
CUPS interface. (We like the CUPS GUI.)

If someone else adds a printer and one or more CUPS servers running on the net-
work know about it, your CUPS server will learn of its existence. You don’t have
to explicitly add the printer to the local inventory or copy PPDs to your machine.
It’s magic.

	 CUPS server administration	 367

Pr
in

tin
g

Network printer configuration
Network printers—that is, printers whose primary hardware interface is an Ethernet
jack or Wi-Fi radio—need some configuration of their own just to be proper citizens
of the TCP/IP network. In particular, they need to know their own IP addresses
and netmasks. That information is usually conveyed to them in one of two ways.

Network printers can get this information from a BOOTP or DHCP server, and this
method works well in environments that have many such printers. See DHCP: the
Dynamic Host Configuration Protocol on page 402 for more information about DHCP.

Alternatively, you can assign the printer a static IP address from its console, which
usually consists of a set of buttons on the printer’s front panel and a one-line display.
Fumble around with the menus until you discover where to set the IP address. (If
there is a menu option to print the menus, use it and put the printed version un-
derneath the printer for future reference.)

Once configured, network printers usually have a web console that’s accessible from
a browser. However, printers must have an IP address and must be up and running
on the network before you can access them this way, so this interface is unavailable
just when it’s most needed.

Printer configuration examples
Below, we add the parallel printer groucho and the network printer fezmo from
the command line:

$ sudo lpadmin -p groucho -E -v parallel:/dev/lp0 -m pxlcolor.ppd
$ sudo lpadmin -p fezmo -E -v socket://192.168.0.12 -m laserjet.ppd

Groucho is attached to port /dev/lp0 and fezmo is at IP address 192.168.0.12. We
specify each device in the form of a universal resource indicator (URI) and choose
an appropriate PPD from the ones in /usr/share/cups/model.

As long as cupsd has been configured as a network server, it immediately makes
the new printers available to other clients on the network. No restart is required.

CUPS accepts a wide variety of URIs for printers. Here are a few more examples:

•	 	ipp://zoe.admin.com/ipp
•	 lpd://riley.admin.com/ps
•	 	serial://dev/ttyS0?baud=9600+parity=even+bits=7
•	 	socket://gillian.admin.com:9100
•	 usb://XEROX/Phaser%206120?serial=YGG210547

Some types take options (e.g., serial) and others don’t. lpinfo -v lists the devices
your system can see and the types of URIs that CUPS understands.

368	 Chapter 12	 Printing	

Service shutoff
Removing a printer is easily done with lpadmin -x:

$ sudo lpadmin -x fezmo

OK, but what if you just want to disable a printer temporarily for service instead
of removing it? You can block the print queue at either end. If you disable the tail
(the exit or printer side) of the queue, users can still submit jobs, but the jobs won’t
print until the outlet is re-enabled. If you disable the head (the entrance) of the
queue, jobs that are already in the queue can still print, but the queue rejects at-
tempts to submit new jobs.

The cupsdisable and cupsenable commands control the exit side of the queue, and
the reject and accept commands control the submission side. For example,

$ sudo cupsdisable groucho
$ sudo reject corbet

Which to use? It’s a bad idea to accept print jobs that have no hope of being printed
in the foreseeable future, so use reject for extended downtime. For brief interruptions
that should be invisible to users (e.g., changing a toner cartridge), use cupsdisable.

Administrators occasionally ask for a mnemonic to help them remember which
commands control which end of the queue. Consider: if CUPS “rejects” a job, that
means you can’t “inject” it. Another way to keep the commands straight is to re-
member that accepting and rejecting are things you can do to print jobs, whereas
disabling and enabling are things you can do to printers. It doesn’t make any sense
to “accept” a printer or queue.

CUPS itself sometimes temporarily disables a printer that it’s having trouble with
(e.g., if someone has dislodged a cable). Once you fix the problem, remember to
re-cupsenable the queue. If you forget, lpstat will tell you. (For a complete dis-
cussion of this issue and an alternative approach, see linuxprinting.org/beh.html.)

Other configuration tasks
Today’s printers are eminently configurable, and CUPS lets you tweak a wide vari-
ety of features through its web interface and through the lpadmin and lpoptions
commands. As a rule of thumb, lpadmin is for system-wide tasks and lpoptions
is for per-user tasks.

lpadmin can restrict access to printers and queues. For example, you can set up
printing quotas and specify which users can print to which printers.

Table 12.1 lists the commands that come with CUPS and classifies them according
to their origin.

http://linuxprinting.org/beh.html

	 Troubleshooting tips	 369

Pr
in

tin
g

Table 12.1	 CUPS command-line utilities and their origins

Command Function

CU
PS

cups-config  Prints API, compiler, directory, and link information
cupsdisable a Stops printing on a printer
cupsenable a Restarts printing on a printer
lpinfo Shows available devices or drivers
lpoptions Displays or sets printer options and defaults
lppasswd Adds, changes, or deletes digest passwords

Sy
st

em
 V

accept, reject Accepts or rejects queue submissions
cancel Cancels print jobs
lp Queues jobs for printing
lpadmin Configures printers
lpmove Moves an existing print job to a new destination
lpstat Prints status information

BS
D

lpc Acts as a general printer-control program
lpq Displays print queues
lpr Queues jobs for printing
lprm Cancels print jobs

a.	 These are actually just the disable and enable commands from System V, renamed.

12.3	 Troubleshooting tips
Printers combine all the foibles of a mechanical device with all the communication
eccentricities of a foreign operating system. They (and the software that drives them)
seem dedicated to creating problems for you and your users. The next sections offer
some general tips for dealing with printer adversity.

Print daemon restart
Always remember to restart daemons after changing a configuration file.

You can restart cupsd in whatever way your system normally restarts daemons, usu-
ally systemctl restart org.cups.cupsd.service or a similar incantation. In theory,
you can also send cupsd a HUP signal. Alternatively, you can use the CUPS GUI.

Log files
CUPS maintains three logs: a page log, an access log, and an error log. The page
log lists the pages that CUPS has printed. The other two logs are just like the ac-
cess log and error log for Apache, which should not be surprising since the CUPS
server is a web server.

370	 Chapter 12	 Printing	

The cupsd.conf file specifies the logging level and the locations of the log files.
They’re all typically kept underneath /var/log.

Here’s an excerpt from a log file that corresponds to a single print job:

I [21/June/2017:18:59:08] Adding start banner page "none" to job 24.
I [21/June/2017:18:59:08] Adding end banner page "none" to job 24.
I [21/June/2017:18:59:08] Job 24 queued on 'Phaser_6120' by 'jsh'.
I [21/June/2017:18:59:08] Started filter /usr/libexec/cups/filter/pstops

(PID 19985) for job 24.
I [21/June/2017:18:59:08] Started backend /usr/libexec/cups/backend/usb

(PID 19986) for job 24.

Direct printing connections
Under CUPS, to verify the physical connection to a local printer, you can directly
run the printer’s back end. For example, here’s what we get when we execute the
back end for a USB-connected printer:

$ /usr/lib/cups/backend/usb
direct usb "Unknown" "USB Printer (usb)"
direct usb://XEROX/Phaser%206120?serial=YGG210547 "XEROX Phaser

6120" "Phaser 6120"

When the USB cable for the Phaser 6120 is disconnected, that printer drops out of
the back end’s output:

$ /usr/lib/cups/backend/usb
direct usb "Unknown" "USB Printer (usb)"

Network printing problems
To begin tracking down a network printing problem, first try connecting to the
printer daemon. You can connect to cupsd with a web browser (hostname:631) or
with the telnet command (telnet hostname 631).

If you have problems debugging a network printer connection, keep in mind that
there must be a queue for the job on some machine, a way to decide where to send
the job, and a method of sending the job to the machine that hosts the print queue.
On the print server, there must be a place to queue the job, sufficient permissions
to allow the job to be printed, and a way to output to the device.

Any and all of these prerequisites will, at some point, go awry. Be prepared to hunt
for problems in many places, including these:

•	 System log files on the sending machine, for name resolution and per-
mission problems

•	 System log files on the print server, for permission problems

•	 Log files on the sending machine, for missing filters, unknown printers,
missing directories, etc.

	 Recommended reading	 371

Pr
in

tin
g

•	 The print daemon’s log files on the print server’s machine, for messages
about bad device names, incorrect formats, etc.

•	 The printer log file on the printing machine, for errors in transmitting the job

•	 The printer log file on the sending machine, for errors about preprocess-
ing or queuing the job

The locations of CUPS log files are specified in /etc/cups/cupsd.conf. See Chapter
10, Logging, for general information about log management.

12.4	 Recommended reading
CUPS comes with a lot of documentation in HTML format. An excellent way to
access it is to connect to a CUPS server and click the link for on-line help. Of course,
this isn’t any help if you’re consulting the documentation to figure out why you can’t
connect to the CUPS server. On your computer, the documents should be installed
in /usr/share/doc/cups in both HTML and PDF formats. If they aren’t there, ask
your distribution’s package manager or look on cups.org.

Shah, Ankur. CUPS Administrative Guide: A practical tutorial to installing, managing,
and securing this powerful printing system. Birmingham, UK: Packt Publishing, 2008.

http://cups.org

This page intentionally left blank

SECTION TWO
NETWORKING

This page intentionally left blank

N
et

w
or

ki
ng

			 375

It would be hard to overstate the importance of networks to modern computing,
although that doesn’t seem to stop people from trying. At many sites—perhaps even
the majority—web and email access are the primary uses of computers. As of 2017,
internetworldstats.com estimates the Internet to have more than 3.7 billion users,
or just slightly less than half of the world’s population. In North America, Internet
penetration approaches 90%.

TCP/IP (Transmission Control Protocol/Internet Protocol) is the networking system
that underlies the Internet. TCP/IP does not depend on any particular hardware or
operating system, so devices that speak TCP/IP can all exchange data (“interoper-
ate”) despite their many differences.

TCP/IP works on networks of any size or topology, whether or not they are connect-
ed to the outside world. This chapter introduces the TCP/IP protocols in the con-
text of the Internet, but stand-alone networks are quite similar at the TCP/IP level.

13.1	 TCP/IP and its relationship to the Internet
TCP/IP and the Internet share a history that goes back multiple decades. The techni-
cal success of the Internet is due largely to the elegant and flexible design of TCP/IP

13 TCP/IP Networking

http://internetworldstats.com

376	 Chapter 13	 TCP/IP Networking	

and its open and nonproprietary protocol suite. In turn, the leverage provided by
the Internet has helped TCP/IP prevail over several competing protocol suites that
were favored at one time or another for political or commercial reasons.

The progenitor of the modern Internet was a research network called ARPANET,
established in 1969 by the U.S. Department of Defense. By the end of the 1980s the
network was no longer a research project and we transitioned to the commercial
Internet. Today’s Internet is a collection of private networks owned by Internet ser-
vice providers (ISPs) that interconnect at many so-called peering points.

Who runs the Internet?
Oversight of the Internet and the Internet protocols has long been a cooperative and
open effort, but its exact structure has changed as the Internet has evolved into a
public utility and a driving force in the world economy. Current Internet governance
is split roughly into administrative, technical, and political wings, but the bound-
aries between these functions are often vague. The major players are listed below:

•	 ICANN, the Internet Corporation for Assigned Names and Numbers: if
any one group can be said to be in charge of the Internet, this is probably it.
It’s the only group with any sort of actual enforcement capability. ICANN
controls the allocation of Internet addresses and domain names, along with
various other snippets such as protocol port numbers. It is organized as a
nonprofit corporation headquartered in California. (icann.org)

•	 ISOC, the Internet Society: ISOC is an open-membership organization
that represents Internet users. Although it has educational and policy
functions, it’s best known as the umbrella organization for the technical
development of the Internet. In particular, it is the parent organization of
the Internet Engineering Task Force (ietf.org), which oversees most tech-
nical work. ISOC is an international nonprofit organization with offices
in Washington, D.C. and Geneva. (isoc.org)

•	 IGF, the Internet Governance Forum: a relative newcomer, the IGF was
created by the United Nations in 2006 to establish a home for interna-
tional and policy-oriented discussions related to the Internet. It’s current-
ly structured as a yearly conference series, but its importance is likely to
grow over time as governments attempt to exert more control over the
operation of the Internet. (intgovforum.org)

Of these groups, ICANN has the toughest job: establishing itself as the authority in
charge of the Internet, undoing the mistakes of the past, and foreseeing the future,
all while keeping users, governments, and business interests happy.

Network standards and documentation
If your eyes haven’t glazed over just from reading the title of this section, you’ve
probably already had several cups of coffee. Nonetheless, accessing the Internet’s

http://icann.org
http://ietf.org
http://isoc.org
http://intgovforum.org

	 TCP/IP and its relationship to the Internet	 377

N
et

w
or

ki
ng

authoritative technical documentation is a crucial skill for system administrators,
and it’s more entertaining than it sounds.

The technical activities of the Internet community are summarized in documents
known as Requests for Comments or RFCs. Protocol standards, proposed changes,
and informational bulletins all usually end up as RFCs. RFCs start their lives as In-
ternet Drafts, and after lots of email wrangling and IETF meetings they either die or
are promoted to the RFC series. Anyone who has comments on a draft or proposed
RFC is encouraged to reply. In addition to standardizing the Internet protocols, the
RFC mechanism sometimes just documents or explains aspects of existing practice.

RFCs are numbered sequentially; currently, there are about 8,200. RFCs also have
descriptive titles (e.g., Algorithms for Synchronizing Network Clocks), but to fore-
stall ambiguity they are usually cited by number. Once distributed, the contents of
an RFC are never changed. Updates are distributed as new RFCs with their own
reference numbers. Updates may either extend and clarify existing RFCs or super-
sede them entirely.

RFCs are available from numerous sources, but rfc-editor.org is dispatch central
and will always have the most up-to-date information. Look up the status of an
RFC at rfc-editor.org before investing the time to read it; it may no longer be the
most current document on that subject.

The Internet standards process itself is detailed in RFC2026. Another useful meta-RFC
is RFC5540, 40 Years of RFCs, which describes some of the cultural and technical
context of the RFC system.

Don’t be scared away by the wealth of technical detail found in RFCs. Most contain
introductions, summaries, and rationales that are useful for system administrators
even when the technical details are not. Some RFCs are specifically written as over-
views or general introductions. RFCs might not be the gentlest way to learn about
a topic, but they are authoritative, concise, and free.

Not all RFCs are full of boring technical details. Here are some of our favorites on
the lighter side (usually written on April 1st):

•	 RFC1149 – Standard for Transmission of IP Datagrams on Avian Carriers 1
•	 RFC1925 – The Twelve Networking Truths
•	 RFC3251 – Electricity over IP
•	 RFC4041 – Requirements for Morality Sections in Routing Area Drafts
•	 RFC6214 – Adaptation of RFC1149 for IPv6
•	 RFC6921 – Design Considerations for Faster-Than-Light Communication
•	 RFC7511 – Scenic Routing for IPv6

In addition to being assigned its own serial number, an RFC can also be assigned
an FYI (For Your Information) number, a BCP (Best Current Practice) number, or

	 1.	 A group of Linux enthusiasts from BLUG, the Bergen (Norway) Linux User Group, actually imple-
mented the Carrier Pigeon Internet Protocol (CPIP) as specified in RFC1149. For details, see the web
site blug.linux.no/rfc1149.

http://rfc-editor.org
http://rfc-editor.org
http://blug.linux.no/rfc1149

378	 Chapter 13	 TCP/IP Networking	

a STD (Standard) number. FYIs, STDs, and BCPs are subseries of the RFCs that
include documents of special interest or importance.

FYIs are introductory or informational documents intended for a broad audience.
They can be a good place to start research on an unfamiliar topic if you can find
one that’s relevant. Unfortunately, this series has languished recently and not many
of the FYIs are up to date.

BCPs document recommended procedures for Internet sites. They consist of ad-
ministrative suggestions and for system administrators are often the most valuable
of the RFC subseries.

STDs document Internet protocols that have completed the IETF’s review and test-
ing process and have been formally adopted as standards.

RFCs, FYIs, BCPs, and STDs are numbered sequentially within their own series, so
a document can bear several different identifying numbers. For example, RFC1713,
Tools for DNS Debugging, is also known as FYI27.

13.2	 Networking basics
Now that we’ve provided a bit of context, let’s look at the TCP/IP protocols them-
selves. TCP/IP is a protocol “suite,” a set of network protocols designed to work
smoothly together. It includes several components, each defined by a standards-track
RFC or series of RFCs:

•	 IP, the Internet Protocol, which routes data packets from one machine
to another (RFC791)

•	 ICMP, the Internet Control Message Protocol, which defines several kinds
of low-level support for IP, including error messages, routing assistance,
and debugging help (RFC792)

•	 ARP, the Address Resolution Protocol, which translates IP addresses to
hardware addresses (RFC826)2

•	 UDP, the User Datagram Protocol, which implements unverified, one-
way data delivery (RFC768)

•	 TCP, the Transmission Control Protocol, which implements reliable, full
duplex, flow-controlled, error-corrected conversations (RFC793)

These protocols are arranged in a hierarchy or “stack”, with the higher-level protocols
making use of the protocols beneath them. TCP/IP is conventionally described as a
five-layer system (as shown in Exhibit A), but the actual TCP/IP protocols inhabit
only three of these layers.

	 2.	 This is actually a little white lie. ARP is not really part of TCP/IP and can be used with other protocol
suites. However, it’s an integral part of the way TCP/IP works on most LAN media.

	 Networking basics	 379

N
et

w
or

ki
ng

Exhibit A	 TCP/IP layering model

APPLICATION

TRANSPORT

NETWORK

LINK

PHYSICAL

LAYER

LAYER

LAYER

LAYER

LAYER

IP ICMP

ARP, device drivers

Copper, optical �ber, radio waves

UDPTCP

DNS, DOTA 3 tracerouteSSH, SMTP, HTTParp

IPv4 and IPv6
The version of TCP/IP that has been in widespread use for nearly five decades is
protocol revision 4, aka IPv4. It uses 4-byte IP addresses. A modernized version,
IPv6, expands the IP address space to 16 bytes and incorporates several other les-
sons learned from the use of IPv4. It removes several features of IP that experience
has shown to be of little value, making the protocol potentially faster and easier to
implement. IPv6 also integrates security and authentication into the basic protocol.

Operating systems and network devices have supported IPv6 for a long time. Goo-
gle reports statistics about its clients’ use of IPv6 at google.com/ipv6. As of March
2017, the fraction of peers using IPv6 to contact Google sites has risen to about
14% world-wide. In the United States, it’s over 30%.

Those numbers look healthy, but in fact they’re perhaps a bit deceptive because most
mobile devices default to IPv6 when they’re on the carrier’s data network, and there
are a lot of phones out there. Home and enterprise networks remain overwhelm-
ingly centered on IPv4.

The development and deployment of IPv6 were to a large extent motivated by the
concern that the world was running out of 4-byte IPv4 address space. And indeed
that concern proved well founded: at this point, only Africa has any remaining
IPv4 addresses still available for assignment (see ipv4.potaroo.net for details). The
Asia-Pacific region was the first to run out of addresses (on April 19, 2011).

Given that we’ve already lived through the IPv4 apocalypse and have used up all our
IPv4 addresses, how is it that the world continues to rely predominantly on IPv4?

For the most part, we’ve learned to make more efficient use of the IPv4 addresses that
we have. Network Address Translation (NAT; see page 392) lets entire networks
of machines hide behind a single IPv4 address. Classless Inter-Domain Routing
(CIDR; see page 391) flexibly subdivides networks and promotes efficient back-

http://google.com/ipv6
http://ipv4.potaroo.net

380	 Chapter 13	 TCP/IP Networking	

bone routing. Contention for IPv4 addresses still exists, but like broadcast spectrum,
it tends to be reallocated in economic rather than technological ways these days.

The underlying issue that limits IPv6’s adoption is that IPv4 support remains man-
datory for a device to be a functional citizen of the Internet. For example, here are
a few major web sites that as of 2017 are still not reachable through IPv6: Amazon,
Reddit, eBay, IMDB, Hotmail, Tumblr, MSN, Apple, The New York Times, Twitter,
Pinterest, Bing,3 WordPress, Dropbox, craigslist, Stack Overflow. We could go on,
but you get the drift.4

Your choice is not between IPv4 and IPv6; it’s between supporting IPv4 alone and
supporting both IPv4 and IPv6. When all the services listed above—and scores
more in the second tier—have added IPv6 support, then you can reasonably con-
sider adopting IPv6 instead of IPv4. Until then, it doesn’t seem unreasonable to ask
IPv6 to justify the effort of its implementation by providing better performance,
security, or features. Or perhaps, by opening the door to a world of IPv6-only ser-
vices that simply can’t be accessed through IPv4.

Unfortunately, those services don’t exist, and IPv6 doesn’t actually offer any of those
benefits. Yes, it’s an elegant and well-designed protocol that improves on IPv4. And
yes, it is in some ways easier to administer than IPv4 and requires fewer hacks (e.g.,
less need for NAT). But in the end, it’s just a cleaned-up version of IPv4 with a larg-
er address space. The fact that you must manage it alongside IPv4 eliminates any
potential efficiency gain. IPv6’s raison d’être remains the millennial fear of IPv4
address exhaustion, and to date, the effects of that exhaustion just haven’t been
painful enough to motivate widespread migration to IPv6.

We’ve been publishing this book for a long time, and over the last few editions, IPv6
has always seemed like it was one more update away from meriting coverage as a
primary technology. 2017 brings an uncanny sense of deja vu, with IPv6 looming
ever brighter on the horizon but still solving no immediate problems and offering
few specific incentives to convert. IPv6 is the future of networking, and evidently,
it always will be.

The arguments in favor of actually deploying IPv6 inside your network remain
largely attitudinal: It will have to be done at some point. IPv6 is superior from
an engineering standpoint. You need to develop IPv6 expertise so that you’re not
caught flat-footed when the IPv6 rapture finally arrives. All the cool kids are doing it.

We say: sure, go ahead, support IPv6 if you feel like it. That’s a responsible and
forward-thinking path. It’s civic-minded, too—your adoption of IPv6 hastens the

	 3.	 Microsoft Bing’s presence on this list is particularly interesting given that it’s one of a handful of ma-
jor sites showcased in materials for the World IPv6 Launch marketing campaign of 2012 (tag line:

“This time it is for real”). We don’t know the full story behind this situation, but Bing evidently sup-
ported IPv6 at one point, then later decided it wasn’t worth the trouble. See worldipv6launch.org.

	 4.	 These are sites whose primary web addresses are not associated with any IPv6 addresses (AAAA re-
cords) in DNS.

http://worldipv6launch.org

	 Networking basics	 381

N
et

w
or

ki
ng

day when IPv6 is all we have to deal with. But if you don’t feel like diving into IPv6,
that’s fine too. You’ll have years of warning before there’s any real need to transition.

Of course, none of these comments apply if your organization offers public services
on the Internet. In that case, it’s your solemn duty to implement IPv6. Don’t screw
things up for the rest of us by continuing to impede IPv6’s adoption. Do you want
to be Google, or do you want to be Microsoft Bing?

There’s also an argument to be made for IPv6 in data centers where direct connec-
tivity to the outside world of IPv4 is not needed. In these limited environments,
you may indeed have the option to migrate to IPv6 and leave IPv4 behind, thereby
simplifying your infrastructure. Internet-facing servers can speak IPv4 even as they
route all internal and back-end traffic over IPv6.

A couple of points:

•	 IPv6 has been production-ready for a long time. Implementation bugs
aren’t a major concern. Expect it to work as reliably as IPv4.

•	 From a hardware standpoint, IPv6 support should be considered man-
datory for all new device acquisitions. It’s doubtful that you could find
any piece of enterprise-grade networking gear that doesn’t support IPv6
these days, but a lot of consumer-grade equipment remains IPv4-only.

In this book, we focus on IPv4 as the mainstream version of TCP/IP. IPv6-specific
material is explicitly marked. Fortunately for sysadmins, IPv4 and IPv6 are highly
analogous. If you understand IPv4, you already know most of what you need to
know about IPv6. The main difference between the versions lies in their addressing
schemes. In addition to longer addresses, IPv6 introduces a few additional address-
ing concepts and some new notation. But that’s about it.

Packets and encapsulation
TCP/IP supports a variety of physical networks and transport systems, including
Ethernet, token ring, MPLS (Multiprotocol Label Switching), wireless Ethernet,
and serial-line-based systems. Hardware is managed within the link layer of the
TCP/IP architecture, and higher-level protocols do not know or care about the
specific hardware being used.

Data travels on a network in the form of packets, bursts of data with a maximum
length imposed by the link layer. Each packet consists of a header and a payload.
The header tells where the packet came from and where it’s going. It can also in-
clude checksums, protocol-specific information, or other handling instructions.
The payload is the data to be transferred.

The name of the primitive data unit depends on the layer of the protocol. At the link
layer it is called a frame, at the IP layer a packet, and at the TCP layer a segment. In
this book, we use “packet” as a generic term that encompasses these various cases.

382	 Chapter 13	 TCP/IP Networking	

As a packet travels down the protocol stack (from TCP or UDP transport to IP to
Ethernet to the physical wire) in preparation for being sent, each protocol adds its
own header information. Each protocol’s finished packet becomes the payload part
of the packet generated by the next protocol. This nesting is known as encapsula-
tion. On the receiving machine, the encapsulation is reversed as the packet travels
back up the protocol stack.

For example, a UDP packet being transmitted over Ethernet contains three differ-
ent wrappers or envelopes. On the Ethernet wire, it is framed with a simple header
that lists the source and next-hop destination hardware addresses, the length of
the frame, and the frame’s checksum (CRC). The Ethernet frame’s payload is an
IP packet, the IP packet’s payload is a UDP packet, and the UDP packet’s payload
is the data being transmitted. Exhibit B shows the components of such a frame.

Exhibit B	 A typical network packet

Ethernet frame (146 bytes)

Ethernet
header

IPv4
header

UDP
header Application data

14 bytes 20 bytes 8 bytes

Ethernet
CRC

4 bytes100 bytes

IPv4 packet (128 bytes)

UDP packet (108 bytes)

Ethernet framing
One of the main chores of the link layer is to add headers to packets and to put
separators between them. The headers contain each packet’s link-layer addressing
information and checksums, and the separators ensure that receivers can tell where
one packet stops and the next one begins. The process of adding these extra bits is
known generically as framing.

The link layer is divided into two parts: MAC, the Media Access Control sublay-
er, and LLC, the Logical Link Control sublayer. The MAC sublayer deals with the
media and transmits packets onto the wire. The LLC sublayer handles the framing.

Today, a single standard for Ethernet framing is in common use: DIX Ethernet II. In
the distant past, several slightly different standards based on IEEE 802.2 were also
used. You might still run across vestigial references to framing choices in network
documentation, but you can now ignore this issue.

Maximum transfer unit
The size of packets on a network can be limited both by hardware specifications and
by protocol conventions. For example, the payload of a standard Ethernet frame

	 Networking basics	 383

N
et

w
or

ki
ng

is traditionally 1,500 bytes. The size limit is associated with the link-layer protocol
and is called the maximum transfer unit or MTU. Table 13.1 shows some typical
values for the MTU.

Table 13.1	 MTUs for various types of network

Network type Maximum transfer unit

Ethernet 1,500 bytes (1,492 with 802.2 framing) a

IPv6 (all hardware) At least 1,280 bytes at the IP layer
Token ring Configurable b

Point-to-point WAN links (T1, T3) Configurable, often 1,500 or 4,500 bytes

a.	 See page 468 for some comments on “jumbo” Ethernet packets.
b.	Common values are 552; 1,064; 2,088; 4,508; and 8,232. Sometimes 1,500 to match Ethernet.

IPv4 splits packets to conform to the MTU of a particular network link. If a packet
is routed through several networks, one of the intermediate networks might have
a smaller MTU than the network of origin. In this case, an IPv4 router that for-
wards the packet onto the small-MTU network further subdivides the packet in a
process called fragmentation.

Fragmentation of in-flight packets is an unwelcome chore for a busy router, so IPv6
largely removes this feature. Packets can still be fragmented, but the originating
host must do the work itself. All IPv6 networks are required to support an MTU of
at least 1,280 bytes at the IP layer, so IPv6 senders also have the option of limiting
themselves to packets of this size.

IPv4 senders can discover the lowest-MTU link through which a packet must pass
by setting the packet’s “do not fragment” flag. If the packet reaches an intermediate
router that cannot forward the packet without fragmenting it, the router returns
an ICMP error message to the sender. The ICMP packet includes the MTU of the
network that’s demanding smaller packets, and this MTU then becomes the gov-
erning packet size for communication with that destination.

IPv6 path MTU discovery works similarly, but since intermediate routers are nev-
er allowed to fragment IPv6 packets, all IPv6 packets act as if they had a “do not
fragment” flag enabled. Any IPv6 packet that’s too large to fit into a downstream
pipe causes an ICMP message to be returned to the sender.

The TCP protocol automatically does path MTU discovery, even in IPv4. UDP is
not so nice and is happy to shunt extra work to the IP layer.

IPv4 fragmentation problems can be insidious. Although path MTU discovery
should automatically resolve MTU conflicts, an administrator must occasionally
intervene. If you are using a tunneled architecture for a virtual private network, for
example, you should look at the size of the packets that are traversing the tunnel.

384	 Chapter 13	 TCP/IP Networking	

They are often 1,500 bytes to start with, but once the tunneling header is added,
they become 1,540 bytes or so and must be fragmented. Setting the MTU of the
link to a smaller value averts fragmentation and increases the overall performance
of the tunneled network. Consult the ifconfig or ip-link man page to see how to
set an interface’s MTU.

13.3	 Packet addressing
Like letters or email messages, network packets must be properly addressed to reach
their destinations. Several addressing schemes are used in combination:

•	 MAC (Media Access Control) addresses for use by hardware
•	 IPv4 and IPv6 network addresses for use by software
•	 Hostnames for use by people

Hardware (MAC) addressing
Each of a host’s network interfaces usually has one link-layer MAC address that
distinguishes it from other machines on the physical network, plus one or more
IP addresses that identify the interface on the global Internet. This last part bears
repeating: IP addresses identify network interfaces, not machines. (To users the dis-
tinction is irrelevant, but administrators must know the truth.)

The lowest level of addressing is dictated by network hardware. For example, Eth-
ernet devices are assigned a unique 6-byte hardware address at the time of man-
ufacture. These addresses are traditionally written as a series of 2-digit hex bytes
separated by colons; for example, 00:50:8d:9a:3b:df.

Token ring interfaces have a similar address that is also six bytes long. Some point-
to-point networks (such as PPP) need no hardware addresses at all; the identity of
the destination is specified as the link is established.

A 6-byte Ethernet address is divided into two parts. The first three bytes identify
the manufacturer of the hardware, and the last three bytes are a unique serial num-
ber that the manufacturer assigns. Sysadmins can sometimes identify the brand of
machine that is trashing a network by looking up the 3-byte identifier in a table of
vendor IDs. The 3-byte codes are actually IEEE Organizationally Unique Identifiers
(OUIs), so you can look up them up directly in the IEEE’s database at

	 standards.ieee.org/regauth/oui

Of course, the relationships among the manufacturers of chipsets, components,
and systems are complex, so the vendor ID embedded in a MAC address can be
misleading, too.

http://standards.ieee.org/regauth/oui

	 Packet addressing	 385

N
et

w
or

ki
ng

In theory, Ethernet hardware addresses are permanently assigned and immutable.
However, many network interfaces let you override the hardware address and set
one of your own choosing. This feature can be handy if you have to replace a bro-
ken machine or network card and for some reason must use the old MAC address
(e.g., all your switches filter it, or your DHCP server hands out addresses according
to MAC addresses, or your MAC address is also a software license key). Spoofable
MAC addresses are also helpful if you need to infiltrate a wireless network that uses
MAC-based access control. But for simplicity, it’s generally advisable to preserve
the uniqueness of MAC addresses.

IP addressing
At the next level up from the hardware, Internet addressing (more commonly known
as IP addressing) is used. IP addresses are hardware independent. Within any par-
ticular network context, an IP address identifies a specific and unique destination.
However, it’s not quite accurate to say that IP addresses are globally unique because
several special cases muddy the water: NAT uses one interface’s IP address to handle
traffic for multiple machines; IP private address spaces are addresses that multiple
sites can use at once, as long as the addresses are not visible to the Internet; anycast
addressing shares one IP address among several machines.

The mapping from IP addresses to hardware addresses is implemented at the link
layer of the TCP/IP model. On networks such as Ethernet that support broadcasting
(that is, networks that allow packets to be addressed to “all hosts on this physical
network”), senders use the ARP protocol to discover mappings without assistance
from a system administrator. In IPv6, an interface’s MAC address is often used as
part of the IP address, making the translation between IP and hardware address-
ing virtually automatic.

Hostname “addressing”
IP addresses are sequences of numbers, so they are hard for people to remember.
Operating systems allow one or more hostnames to be associated with an IP address
so that users can type rfc-editor.org instead of 4.31.198.49. This mapping can be set
up in several ways, ranging from a static file (/etc/hosts) to the LDAP database sys-
tem to DNS, the world-wide Domain Name System. Keep in mind that hostnames
are really just a convenient shorthand for IP addresses, and as such, they refer to
network interfaces rather than computers.

Ports
IP addresses identify a machine’s network interfaces, but they are not specific enough
to address individual processes or services, many of which might be actively using
the network at once. TCP and UDP extend IP addresses with a concept known as
a port, a 16-bit number that supplements an IP address to specify a particular com-
munication channel. Valid ports are in the range 1–65,535.

See page 392 for more
details about NAT and
private address spaces.

See page 401 for
more information
about ARP.

See Chapter 16
for more informa-
tion about DNS.

http://rfc-editor.org

386	 Chapter 13	 TCP/IP Networking	

Standard services such as SMTP, SSH, and HTTP associate themselves with “well
known” ports defined in /etc/services. Here are some typical entries from the
services file:

...
smtp 25/udp # Simple Mail Transfer
smtp 25/tcp # Simple Mail Transfer
...
domain 53/udp # Domain Name Server
domain 53/tcp # Domain Name Server
...
http 80/udp www www-http # World Wide Web HTTP
http 80/tcp www www-http # World Wide Web HTTP
...
kerberos 88/udp # Kerberos
kerberos 88/tcp # Kerberos
...

The services file is part of the infrastructure. You should never need to modify it,
although you can do so if you want to add a nonstandard service. You can find a
full list of assigned ports at iana.org/assignments/port-numbers.

Although both TCP and UDP have ports, and those ports have the same sets of
potential values, the port spaces are entirely separate and unrelated. Firewalls must
be configured separately for each of these protocols.

To help prevent impersonation of system services, UNIX systems restrict programs
from binding to port numbers under 1,024 unless they are run as root or have an
appropriate Linux capability. Anyone can communicate with a server running on a
low port number; the restriction applies only to the program listening on the port.

Today, the privileged port system is as much a nuisance as it is a bulwark against
malfeasance. In many cases, it’s more secure to run standard services on unprivi-
leged ports as nonroot users and to forward network traffic to these high-numbered
ports through a load balancer or some other type of network appliance. This prac-
tice limits the proliferation of unnecessary root privileges and adds an additional
layer of abstraction to your infrastructure.

Address types
The IP layer defines several broad types of address, some of which have direct coun-
terparts at the link layer:

•	 Unicast – addresses that refer to a single network interface
•	 Multicast – addresses that simultaneously target a group of hosts
•	 Broadcast – addresses that include all hosts on the local subnet
•	 Anycast – addresses that resolve to any one of a group of hosts

Multicast addressing facilitates applications such as video conferencing for which
the same set of packets must be sent to all participants. The Internet Group Man-

http://iana.org/assignments/port-numbers

	 IP addresses: the gory details	 387

N
et

w
or

ki
ng

agement Protocol (IGMP) constructs and manages sets of hosts that are treated as
one multicast destination.

Multicast is largely unused on today’s Internet, but it’s slightly more mainstream in
IPv6. IPv6 broadcast addresses are really just specialized forms of multicast addressing.

Anycast addresses bring load balancing to the network layer by allowing packets
to be delivered to whichever of several destinations is closest in terms of network
routing. You might expect that they’d be implemented similarly to multicast ad-
dresses, but in fact they are more like unicast addresses.

Most of the implementation details for anycast support are handled at the level of
routing rather than through IP. The novelty of anycast addressing is really just the
relaxation of the traditional requirement that IP addresses identify unique destina-
tions. Anycast addressing is formally described for IPv6, but the same tricks can be
applied to IPv4, too—for example, as is done for root DNS name servers.

13.4	 IP addresses: the gory details
With the exception of multicast addresses, Internet addresses consist of a network
portion and a host portion. The network portion identifies a logical network to
which the address refers, and the host portion identifies a node on that network.
In IPv4, addresses are 4 bytes long and the boundary between network and host
portions is set administratively. In IPv6, addresses are 16 bytes long and the net-
work portion and host portion are always 8 bytes each.

IPv4 addresses are written as decimal numbers, one for each byte, separated by
periods; for example, 209.85.171.147. The leftmost byte is the most significant and
is always part of the network portion.

When 127 is the first byte of an address, it denotes the “loopback network,” a ficti-
tious network that has no real hardware interface and only one host. The loopback
address 127.0.0.1 always refers to the current host. Its symbolic name is “localhost”.
(This is another small violation of IP address uniqueness since every host thinks
127.0.0.1 is a different computer.)

IPv6 addresses and their text-formatted equivalents are a bit more complicated.
They’re discussed in the section IPv6 addressing starting on page 394.

An interface’s IP address and other parameters are set with the ip address (Linux)
or ifconfig (FreeBSD) command. Details on configuring a network interface start
on page 412.

IPv4 address classes
Historically, IP addresses had an inherent “class” that depended on the first bits of
the leftmost byte. The class determined which bytes of the address were in the net-
work portion and which were in the host portion. Today, an explicit mask identifies

388	 Chapter 13	 TCP/IP Networking	

the network portion, and the boundary can fall between any two adjacent bits, not
just between bytes. However, the traditional classes are still used as defaults when
no explicit division is specified.

Classes A, B, and C denote regular IP addresses. Classes D and E are multicasting
and research addresses. Table 13.2 describes the characteristics of each class. The
network portion of an address is denoted by N, and the host portion by H.

Table 13.2	 Historical IPv4 address classes

Cl
as

s

1st byte a Format Comments

A 1-127 N.H.H.H Very early networks, or reserved for DoD
B 128-191 N.N.H.H Large sites, usually subnetted, were hard to get
C 192-223 N.N.N.H Were easy to get, often obtained in sets
D 224-239 – Multicast addresses, not permanently assigned
E 240-255 – Experimental addresses

a.	 The value 0 is special and is not used as the first byte of regular IP addresses. The value
127 is reserved for the loopback address.

It’s unusual for a single physical network to have thousands of computers attached
to it, so class A and class B addresses (which allow for 16,777,214 hosts and 65,534
hosts per network, respectively) are really quite wasteful. For example, the 127 class
A networks use up half the available 4-byte address space. Who knew that IPv4 ad-
dress space would become so precious!

IPv4 subnetting
To make better use of these addresses, you can now reassign part of the host por-
tion to the network portion by specifying an explicit 4-byte (32-bit) “subnet mask”
or “netmask” in which the 1s correspond to the desired network portion and the
0s correspond to the host portion. The 1s must be leftmost and contiguous. At least
eight bits must be allocated to the network part and at least two bits to the host part.
Ergo, there are really only 22 possible values for an IPv4 netmask.

For example, the four bytes of a class B address would normally be interpreted as
N.N.H.H. The implicit netmask for class B is therefore 255.255.0.0 in decimal no-
tation. With a netmask of 255.255.255.0, however, the address would be interpreted
as N.N.N.H. Use of the mask turns a single class B network address into 256 distinct
class-C-like networks, each of which can support 254 hosts.

	 IP addresses: the gory details	 389

N
et

w
or

ki
ng

Netmasks are assigned with the ip or ifconfig command as each network interface
is set up. By default, these commands use the inherent class of an address to figure
out which bits are in the network part. When you set an explicit mask, you simply
override this behavior.

Netmasks that do not end at a byte boundary can be annoying to decode and are
often written as /XX, where XX is the number of bits in the network portion of the
address. This is sometimes called CIDR (Classless Inter-Domain Routing; see page
391) notation. For example, the network address 128.138.243.0/26 refers to the
first of four networks whose first bytes are 128.138.243. The other three networks
have 64, 128, and 192 as their fourth bytes. The netmask associated with these net-
works is 255.255.255.192 or 0xFFFFFFC0; in binary, it’s 26 ones followed by 6 zeros.
Exhibit C breaks out these numbers in a bit more detail.

Exhibit C	 Netmask base conversion

IP address

Decimal netmask

Hex netmask

Binary netmask

128 138 243 0

255

f f

1111 1111

255

f f

1111 1111

255

f f

1111 1111

192

c 0

1100 0000

. . .

.

.

.

.

.

.

.

.

.

A /26 network has 6 bits left (32 – 26 = 6) to number hosts. 26 is 64, so the network
has 64 potential host addresses. However, it can only accommodate 62 actual hosts
because the all-0 and all-1 host addresses are reserved (they are the network and
broadcast addresses, respectively).

In our 128.138.243.0/26 example, the extra two bits of network address obtained by
subnetting can take on the values 00, 01, 10, and 11. The 128.138.243.0/24 network
has thus been divided into four /26 networks:

•	 128.138.243.0/26	 (0 in decimal is 00000000 in binary)
•	 128.138.243.64/26	 (64 in decimal is 01000000 in binary)
•	 128.138.243.128/26	(128 in decimal is 10000000 in binary)
•	 128.138.243.192/26	(192 in decimal is 11000000 in binary)

The boldfaced bits of the last byte of each address are the bits that belong to the
network portion of that byte.

See page 412 for
more information
about ip and ifconfig.

390	 Chapter 13	 TCP/IP Networking	

Tricks and tools for subnet arithmetic
It’s confusing to do all this bit twiddling in your head, but some tricks can make
it simpler. The number of hosts per network and the value of the last byte in the
netmask always add up to 256:

	 last netmask byte = 256 – net size

For example, 256 – 64 = 192, which is the final byte of the netmask in the preceding
example. Another arithmetic fact is that the last byte of an actual network address
(as opposed to a netmask) must be evenly divisible by the number of hosts per net-
work. We see this in action in the 128.138.243.0/26 example, where the last bytes
of the networks are 0, 64, 128, and 192—all divisible by 64.5

Given an IP address (say, 128.138.243.100), we cannot tell without the associated
netmask what the network address and broadcast address will be. Table 13.3 shows
the possibilities for /16 (the default for a class B address), /24 (a plausible value),
and /26 (a reasonable value for a small network).

Table 13.3	 Example IPv4 address decodings

IP address Netmask Network Broadcast

128.138.243.100/16 255.255.0.0 128.138.0.0 128.138 255.255
128.138.243.100/24 255.255.255.0 128.138.243.0 128.138 243.255
128.138.243.100/26 255.255.255.192 128.138.243.64 128.138 243.127

The network address and broadcast address steal two hosts from each network, so it
would seem that the smallest meaningful network would have four possible hosts:
two real hosts—usually at either end of a point-to-point link—and the network
and broadcast addresses. To have four values for hosts requires two bits in the host
portion, so such a network would be a /30 network with netmask 255.255.255.252
or 0xFFFFFFFC. However, a /31 network is treated as a special case (see RFC3021)
and has no network or broadcast address; both of its two addresses are used for
hosts, and its netmask is 255.255.255.254.

A handy web site called the IP Calculator by Krischan Jodies (jodies.de/ipcalc) helps
with binary/hex/mask arithmetic. IP Calculator displays everything you might need
to know about a network address and its netmask, broadcast address, hosts, etc.

A command-line version of the tool, ipcalc, is also available. It’s in the standard
repositories for Debian, Ubuntu, and FreeBSD.

Red Hat and CentOS include a similar but unrelated program that’s also called ipcalc.
However, it’s relatively useless because it only understands default IP address classes.

	 5.	 Of course, 0 counts as being divisible by any number.

RHEL

http://jodies.de/ipcalc

	 IP addresses: the gory details	 391

N
et

w
or

ki
ng

Here’s some sample ipcalc output, munged a bit to help with formatting:

$ ipcalc 24.8.175.69/28
Address: 24.8.175.69 00011000.00001000.10101111.0100 0101
Netmask: 255.255.255.240 = 28 11111111.11111111.11111111.1111 0000
Wildcard: 0.0.0.15 00000000.00000000.00000000.0000 1111
=>
Network: 24.8.175.64/28 00011000.00001000.10101111.0100 0000
HostMin: 24.8.175.65 00011000.00001000.10101111.0100 0001
HostMax: 24.8.175.78 00011000.00001000.10101111.0100 1110
Broadcast: 24.8.175.79 00011000.00001000.10101111.0100 1111
Hosts/Net: 14 Class A

The output includes both easy-to-understand versions of the addresses and “cut
and paste” versions. Very useful.

If a dedicated IP calculator isn’t available, the standard utility bc makes a good
backup utility since it can do arithmetic in any base. Set the input and output bases
with the ibase and obase directives. Set the obase first; otherwise, it’s interpreted
relative to the new ibase.

CIDR: Classless Inter-Domain Routing
Like subnetting, of which it is a direct extension, CIDR relies on an explicit netmask
to define the boundary between the network and host parts of an address. But un-
like subnetting, CIDR allows the network portion to be made smaller than would
be implied by an address’s implicit class. A short CIDR mask can have the effect of
aggregating several networks for purposes of routing. Hence, CIDR is sometimes
referred to as supernetting.

CIDR simplifies routing information and imposes hierarchy on the routing process.
Although CIDR was intended as only an interim solution along the road to IPv6,
it has proved to be sufficiently powerful to handle the Internet’s growth problems
for more than two decades.

For example, suppose that a site has been given a block of eight class C addresses
numbered 192.144.0.0 through 192.144.7.0 (in CIDR notation, 192.144.0.0/21).
Internally, the site could use them as

•	 1 network of length /21 with 2,046 hosts, netmask 255.255.248.0
•	 8 networks of length /24 with 254 hosts each, netmask 255.255.255.0
•	 16 networks of length /25 with 126 hosts each, netmask 255.255.255.128
•	 32 networks of length /26 with 62 hosts each, netmask 255.255.255.192

and so on. But from the perspective of the Internet, it’s not necessary to have 32,
16, or even 8 routing table entries for these addresses. They all refer to the same
organization, and all the packets go to the same ISP. A single routing entry for
192.144.0.0/21 suffices. CIDR makes it easy to sub-allocate portions of addresses
and thus increases the number of available addresses manyfold.

CIDR is defined
in RFC4632.

392	 Chapter 13	 TCP/IP Networking	

Inside your network, you can mix and match regions of different subnet lengths
as long as all the pieces fit together without overlaps. This is called variable length
subnetting. For example, an ISP with the 192.144.0.0/21 allocation could define
some /30 networks for point-to-point customers, some /24s for large customers,
and some /27s for smaller folks.

All the hosts on a network must be configured with the same netmask. You can’t
tell one host that it is a /24 and another host on the same network that it is a /25.

Address allocation
Only network numbers are formally assigned; sites must define their own host
numbers to form complete IP addresses. You can subdivide the address space that
has been assigned to you into subnets however you like.

Administratively, ICANN (the Internet Corporation for Assigned Names and
Numbers) has delegated blocks of addresses to five regional Internet registries, and
these regional authorities are responsible for doling out subblocks to ISPs within
their regions. These ISPs in turn divide up their blocks and hand out pieces to in-
dividual clients. Only large ISPs should ever have to deal directly with one of the
ICANN-sponsored address registries.

Table 13.4 lists the regional registration authorities.

Table 13.4	 Regional Internet registries

Name Site Region covered

ARIN arin.net North America, part of the Caribbean
APNIC apnic.net Asia/Pacific region, including Australia and New Zealand
AfriNIC afrinic.net Africa
LACNIC lacnic.net Central and South America, part of the Caribbean
RIPE NCC ripe.net Europe and surrounding areas

The delegation from ICANN to regional registries and then to national or regional
ISPs has allowed for further aggregation in the backbone routing tables. ISP cus-
tomers who have been allocated address space within the ISP’s block do not need
individual routing entries on the backbone. A single entry for the aggregated block
that points to the ISP suffices.

Private addresses and network address translation (NAT)
Another factor that has mitigated the effect of the IPv4 address crisis is the use of
private IP address spaces, described in RFC1918. These addresses are used by your
site internally but are never shown to the Internet (or at least, not intentionally). A

	 IP addresses: the gory details	 393

N
et

w
or

ki
ng

border router translates between your private address space and the address space
assigned by your ISP.

RFC1918 sets aside 1 class A network, 16 class B networks, and 256 class C networks
that will never be globally allocated and can be used internally by any site. Table
13.5 shows the options. (The “CIDR range” column shows each range in the more
compact CIDR notation; it does not add additional information.)

Table 13.5	 IP addresses reserved for private use

IP class From To CIDR range

Class A 10.0.0.0 10.255.255.255 10.0.0.0/8
Class B 172.16.0.0 172.31.255.255 172.16.0.0/12
Class C 192.168.0.0 192.168.255.255 192.168.0.0/16

The original idea was that sites would choose an address class from among these
options to fit the size of their organizations. But now that CIDR and subnetting are
universal, it probably makes the most sense to use the class A address (subnetted,
of course) for all new private networks.

To allow hosts that use these private addresses to talk to the Internet, the site’s border
router runs a system called NAT (Network Address Translation). NAT intercepts
packets addressed with these internal addresses and rewrites their source address-
es, using a valid external IP address and perhaps a different source port number. It
also maintains a table of the mappings it has made between internal and external
address/port pairs so that the translation can be performed in reverse when an-
swering packets arrive from the Internet.

Many garden-variety “NAT” gateways actually perform Port Address Translation,
aka PAT: they use a single external IP address and multiplex connections for many
internal clients onto the port space of that single address. For example, this is the
default configuration for most of the mass-market routers used with cable modems.
In practice, NAT and PAT are similar in terms of their implementation, and both
systems are commonly referred to as NAT.

A site that uses NAT must still request a small section of address space from its ISP,
but most of the addresses thus obtained are used for NAT mappings and are not
assigned to individual hosts. If the site later wants to choose another ISP, only the
border router and its NAT configuration need be updated, not the configurations
of the individual hosts.

Large organizations that use NAT and RFC1918 addresses must institute some
form of central coordination so that all hosts, independently of their department
or administrative group, have unique IP addresses. The situation can become com-
plicated when one company that uses RFC1918 address space acquires or merges

394	 Chapter 13	 TCP/IP Networking	

with another company that’s doing the same thing. Parts of the combined organi-
zation must often renumber.

It is possible to have a UNIX or Linux box perform the NAT function, but most
sites prefer to delegate this task to their routers or network connection devices.6 See
the vendor-specific sections later in this chapter for details.

An incorrect NAT configuration can let private-address-space packets escape onto
the Internet. The packets might get to their destinations, but answering packets
won’t be able to get back. CAIDA,7 an organization that collects operational data
from the Internet backbone, finds that 0.1% to 0.2% of the packets on the backbone
have either private addresses or bad checksums. This sounds like a tiny percentage,
but it represents thousands of packets every minute on a busy circuit. See caida.org
for other interesting statistics and network measurement tools.

One issue raised by NAT is that an arbitrary host on the Internet cannot initiate
connections to your site’s internal machines. To get around this limitation, NAT
implementations let you preconfigure externally visible “tunnels” that connect to
specific internal hosts and ports.8

Another issue is that some applications embed IP addresses in the data portion of
packets; these applications are foiled or confused by NAT. Examples include some
media streaming systems, routing protocols, and FTP commands. NAT sometimes
breaks VPNs, too.

NAT hides interior structure. This secrecy feels like a security win, but the security
folks say NAT doesn’t really help for security and does not replace the need for a
firewall. Unfortunately, NAT also foils attempts to measure the size and topology of
the Internet. See RFC4864, Local Network Protection for IPv6, for a good discussion
of both the real and illusory benefits of NAT in IPv4.

IPv6 addressing
IPv6 addresses are 128 bits long. These long addresses were originally intended
to solve the problem of IP address exhaustion. But now that they’re here, they are
being exploited to help with issues of routing, mobility, and locality of reference.

The boundary between the network portion and the host portion of an IPv6 ad-
dress is fixed at /64, so there can be no disagreement or confusion about how long

	 6.	 Of course, many routers now run embedded Linux kernels. Even so, these dedicated systems are still
generally more reliable and more secure than general-purpose computers that also forward packets.

	 7.	 CAIDA, pronounced “kay duh,” is the Cooperative Association for Internet Data Analysis at the San
Diego Supercomputer Center on the UCSD campus (caida.org).

	 8.	 Many routers also support the Universal Plug and Play (UPnP) standards promoted by Microsoft,
one feature of which allows interior hosts to set up their own dynamic NAT tunnels. This can be ei-
ther a godsend or a security risk, depending on your perspective. You can easily disable the feature at
the router if you so desire.

http://caida.org
http://caida.org

	 IP addresses: the gory details	 395

N
et

w
or

ki
ng

an address’s network portion “really” is. Stated another way, true subnetting no
longer exists in the IPv6 world, although the term “subnet” lives on as a synonym
for “local network.” Even though network numbers are always 64 bits long, routers
needn’t pay attention to all 64 bits when making routing decisions. They can route
packets by prefix, just as they do under CIDR.

IPv6 address notation
The standard notation for IPv6 addresses divides the 128 bits of an address into 8
groups of 16 bits each, separated by colons. For example,

	 2607:f8b0:000a:0806:0000:0000:0000:200e 9

Each 16-bit group is represented by 4 hexadecimal digits. This is different from
IPv4 notation, in which each byte of the address is represented by a decimal (base
10) number.

A couple of notational simplifications help limit the amount of typing needed to
represent IPv6 addresses. First, you needn’t include leading zeros within a group.
000a in the third group above can be written simply as a, and 0806 in the fourth
group can be written as 806. Groups with a value of 0000 should be represented as
0. Application of this rule reduces the address above to the following string:

	 2607:f8b0:a:806:0:0:0:200e

Second, you can replace any number of contiguous, zero-valued, 16-bit groups
with a double colon:

	 2607:f8b0:a:806::200e

The :: can be used only once within an address. However, it can appear as the first
or last component. For example, the IPv6 loopback address (analogous to 127.0.0.1
in IPv4) is ::1, which is equivalent to 0:0:0:0:0:0:0:1.

The original specification for IPv6 addresses, RFC4921, documented these nota-
tional simplifications but did not require their use. As a result, there can be multiple
RFC491-compliant ways to write a given IPv6 address, as illustrated by the several
versions of the example address above.

This polymorphousness makes searching and matching difficult because addresses
must be normalized before they can be compared. That’s a problem: we can’t expect
standard data-wrangling software such as spreadsheets, scripting languages, and
databases to know about the details of IPv6 notation.

	 9.	 This is a real IPv6 address, so don’t use it on your own systems, even for experimentation. RFC3849
suggests that documentation and examples show IPv6 addresses within the prefix block 2001:db8::/32.
But we wanted to show a real example that’s routed on the Internet backbone.

396	 Chapter 13	 TCP/IP Networking	

RFC5952 updates RFC4921 to make the notational simplifications mandatory.
It also adds a few more rules to ensure that every address has only a single text
representation:

•	 Hex digits a–f must be represented by lowercase letters.

•	 The :: element cannot replace a single 16-bit group. (Just use :0:.)

•	 If there is a choice of groups to replace with ::, the :: must replace the lon-
gest possible sequence of zeros.

You will still see RFC5952-noncompliant addresses out in the wild, and nearly all
networking software accepts them, too. However, we strongly recommend following
the RFC5952 rules in your configurations, recordkeeping, and software.

IPv6 prefixes
IPv4 addresses were not designed to be geographically clustered in the manner of
phone numbers or zip codes, but clustering was added after the fact in the form of
the CIDR conventions. (Of course, the relevant “geography” is really routing space
rather than physical location.) CIDR was so technically successful that hierarchical
subassignment of network addresses is now assumed throughout IPv6.

Your IPv6 ISP obtains blocks of IPv6 prefixes from one of the regional registries
listed in Table 13.4 on page 392. The ISP in turn assigns you a prefix that you pre-
pend to the local parts of your addresses, usually at your border router. Organiza-
tions are free to set delegation boundaries wherever they wish within the address
spaces assigned to them.

Whenever an address prefix is represented in text form, IPv6 adopts CIDR notation
to represent the length of the prefix. The general pattern is

	 IPv6-address/prefix-length-in-decimal

The IPv6-address portion is as outlined in the previous section. It must be a full-
length 128-bit address. In most cases, the address bits beyond the prefix are set to
zero. However, it’s sometimes appropriate to specify a complete host address along
with a prefix length; the intent and meaning are usually clear from context.

The IPv6 address shown in the previous section leads to a Google server. The 32-bit
prefix that’s routed on the North American Internet backbone is

	 2607:f8b0::/32

In this case, the address prefix was assigned by ARIN directly to Google, as you can
verify by looking up the prefix at arin.net.10 There is no intervening ISP. Google is
responsible for structuring the remaining 32 bits of the network number as it sees

	 10.	 In this case, the prefix lengths of the ARIN-assigned address block and the backbone routing table
entry are the same, but that is not always true. The allocation prefix determines an administrative
boundary, whereas the routing prefix relates to route-space locality.

http://arin.net

	 IP addresses: the gory details	 397

N
et

w
or

ki
ng

fit. Most likely, several additional layers of prefixing are used within the Google
infrastructure.

Automatic host numbering
A machine’s 64-bit interface identifier (the host portion of the IPv6 address) can be
automatically derived from the interface’s 48-bit MAC (hardware) address with the
algorithm known as “modified EUI-64,” documented in RFC4291.

Specifically, the interface identifier is just the MAC address with the two bytes
0xFFFE inserted in the middle and one bit complemented. The bit you will flip is
the 7th most significant bit of the first byte; in other words, you XOR the first byte
with 0x02. For example, on an interface with MAC address 00:1b:21:30:e9:c7, the
autogenerated interface identifier would be 021b:21ff:fe30:e9c7. The underlined
digit is 2 instead of 0 because of the flipped bit.

This scheme allows for automatic host numbering, which is a nice feature for sys-
admins since only the network portion of addresses need be managed.

That the MAC address can be seen at the IP layer has both good and bad implications.
The good part is that host number configuration can be completely automatic. The
bad part is that the manufacturer of the interface card is encoded in the first half of
the MAC address (see page 384), so you inevitably give up some privacy. Prying
eyes and hackers with code for a particular architecture will be helped along. The
IPv6 standards point out that sites are not required to use MAC addresses to derive
host IDs; they can use whatever numbering system they want.

Virtual servers have virtual network interfaces. The MAC addresses associated with
these interfaces are typically randomized, which all but guarantees uniqueness
within a particular local context.

Stateless address autoconfiguration
The autogenerated host numbers described in the previous section combine with
a couple of other simple IPv6 features to enable automatic network configuration
for IPv6 interfaces. The overall scheme is known as SLAAC, for StateLess Address
AutoConfiguration.

SLAAC configuring for an interface begins by assigning an address on the “link-local
network,” which has the fixed network address fe80::/64. The host portion of the
address is set from the MAC address of the interface, as described above.

IPv6 does not have IPv4-style broadcast addresses per se, but the link-local network
serves roughly the same purpose: it means “this physical network.” Routers never
forward packets that were sent to addresses on this network.

Once the link-local address for an interface has been set, the IPv6 protocol stack
sends an ICMP Router Solicitation packet to the “all routers” multicast address.

398	 Chapter 13	 TCP/IP Networking	

Routers respond with ICMP Router Advertisement packets that list the IPv6 net-
work numbers (prefixes, really) in use on the network.

If one of these networks has its “autoconfiguration OK” flag set, the inquiring host
assigns an additional address to its interface that combines the network portion
advertised by the router with the autogenerated host portion constructed with
the modified EUI-64 algorithm. Other fields in the Router Advertisement allow a
router to identify itself as an appropriate default gateway and to communicate the
network’s MTU.

The end result is that a new host becomes a full citizen of the IPv6 network without
the need for any server (other than the router) to be running on the network and
without any local configuration. Unfortunately, the system does not address the
configuration of higher-level software such as DNS, so you may still want to run a
traditional DHCPv6 server, too.

You will sometimes see IPv6 network autoconfiguration associated with the name
Neighbor Discovery Protocol. Although RFC4861 is devoted to the Neighbor Dis-
covery Protocol, the term is actually rather vague. It covers the use and interpre-
tation of a variety of ICMPv6 packet types, some of which are only peripherally
related to discovering network neighbors. From a technical perspective, the rela-
tionship is that the SLAAC procedure described above uses some, but not all, of
the ICMPv6 packet types defined in RFC4861. It’s clearer to just call it SLAAC or

“IPv6 autoconfiguration” and to reserve “neighbor discovery” for the IP-to-MAC
mapping process described starting on page 401.

IPv6 tunneling
Various schemes have been proposed to ease the transition from IPv4 to IPv6, most-
ly focusing on ways to tunnel IPv6 traffic through the IPv4 network to compensate
for gaps in IPv6 support. The two tunneling systems in common use are called 6to4
and Teredo; the latter, named after a family of wood-boring shipworms, can be used
on systems behind a NAT device.

IPv6 information sources
Here are some useful sources of additional IPv6 information:

•	 worldipv6launch.com – A variety of IPv6 propaganda
•	 RFC3587 – IPv6 Global Unicast Address Format
•	 RFC4291 – IP Version 6 Addressing Architecture

13.5	 Routing
Routing is the process of directing a packet through the maze of networks that stand
between its source and its destination. In the TCP/IP system, it is similar to asking
for directions in an unfamiliar country. The first person you talk to might point

See page 402 for
more information
about DHCP.

http://worldipv6launch.com

	 Routing	 399

N
et

w
or

ki
ng

you toward the right city. Once you were a bit closer to your destination, the next
person might be able to tell you how to get to the right street. Eventually, you get
close enough that someone can identify the building you’re looking for.

Routing information takes the form of rules (“routes”), such as “To reach network
A, send packets through machine C.” There can also be a default route that tells what
to do with packets bound for a network to which no explicit route exists.

Routing information is stored in a table in the kernel. Each table entry has several
parameters, including a mask for each listed network. To route a packet to a par-
ticular address, the kernel picks the most specific of the matching routes—that is,
the one with the longest mask. If the kernel finds no relevant route and no default
route, then it returns a “network unreachable” ICMP error to the sender.

The word “routing” is commonly used to mean two distinct things:

•	 Looking up a network address in the routing table as part of the process
of forwarding a packet toward its destination

•	 Building the routing table in the first place

In this section we examine the forwarding function and look at how routes can
be manually added to or deleted from the routing table. We defer the more com-
plicated topic of routing protocols that build and maintain the routing table until
Chapter 15.

Routing tables
You can examine a machine’s routing table with ip route show on Linux or netstat -r
on FreeBSD. Although netstat on Linux is on its way out, it still exists and contin-
ues to work. We use netstat for the examples below just to avoid having to show
two different versions of the output. The ip version contains similar content, but
its format is somewhat different.

Use netstat -rn to avoid DNS lookups and present all information numerically,
which is generally more useful. Here is a short example of an IPv4 routing table to
give you a better idea of what routes look like:

redhat$ netstat -rn
Destination Genmask Gateway Fl MSS Iface
132.236.227.0 255.255.255.0 132.236.227.93 U 1500 eth0
default 0.0.0.0 132.236.227.1 UG 1500 eth0
132.236.212.0 255.255.255.192 132.236.212.1 U 1500 eth1
132.236.220.64 255.255.255.192 132.236.212.6 UG 1500 eth1
127.0.0.1 255.255.255.255 127.0.0.1 U 3584 lo

This host has two network interfaces: 132.236.227.93 (eth0) on the network
132.236.227.0/24 and 132.236.212.1 (eth1) on the network 132.236.212.0/26.

The destination field is usually a network address, although you can also add
host-specific routes (their genmask is 255.255.255.255 since all bits are consulted).

400	 Chapter 13	 TCP/IP Networking	

An entry’s gateway field must contain the full IP address of a local network interface
or adjacent host; on Linux kernels it can be 0.0.0.0 to invoke the default gateway.

For example, the fourth route in the table above says that to reach the network
132.236.220.64/26, packets must be sent to the gateway 132.236.212.6 through in-
terface eth1. The second entry is a default route; packets not explicitly addressed
to any of the three networks listed (or to the machine itself) are sent to the default
gateway host, 132.236.227.1.

A host can route packets only to gateway machines that are reachable through a di-
rectly connected network. The local host’s job is limited to moving packets one hop
closer to their destinations, so it is pointless to include information about nonad-
jacent gateways in the local routing table. Each gateway that a packet visits makes
a fresh next-hop routing decision by consulting its own local routing database.11

Routing tables can be configured statically, dynamically, or with a combination of
the two approaches. A static route is one that you enter explicitly with the ip (Linux)
or route (FreeBSD) command. Static routes remain in the routing table as long as
the system is up; they are often set up at boot time from one of the system startup
scripts. For example, the Linux commands

ip route add 132.236.220.64/26 via 132.236.212.6 dev eth1
ip route add default via 132.236.227.1 dev eth0

add the fourth and second routes displayed by netstat -rn above. (The first and third
routes in that display were added automatically when the eth0 and eth1 interfaces
were configured.) The equivalent FreeBSD commands are similar:

route add -net 132.236.220.64/26 gw 132.236.212.6 eth1
route add default gw 132.236.227.1 eth0

The final route is also added at boot time. It configures the loopback interface, which
prevents packets sent from the host to itself from going out on the network. Instead,
they are transferred directly from the network output queue to the network input
queue inside the kernel.

In a stable local network, static routing is an efficient solution. It is easy to manage
and reliable. However, it requires that the system administrator know the topolo-
gy of the network accurately at boot time and that the topology not change often.

Most machines on a local area network have only one way to get out to the rest of
the network, so the routing problem is easy. A default route added at boot time
suffices to point toward the way out. Hosts that use DHCP (see page 402) to get
their IP addresses can also obtain a default route with DHCP.

For more complicated network topologies, dynamic routing is required. Dynamic
routing is implemented by a daemon process that maintains and modifies the routing
table. Routing daemons on different hosts communicate to discover the topology

	 11.	 The IPv4 source routing feature is an exception to this rule; see page 407.

	 IPv4 ARP and IPv6 neighbor discovery	 401

N
et

w
or

ki
ng

of the network and to figure out how to reach distant destinations. Several routing
daemons are available. See Chapter 15, IP Routing, for details.

ICMP redirects
Although IP generally does not concern itself with the management of routing in-
formation, it does define a naïve damage control feature called an ICMP redirect.
When a router forwards a packet to a machine on the same network from which
the packet was originally received, something is clearly wrong. Since the sender,
the router, and the next-hop router are all on the same network, the packet could
have been forwarded in one hop rather than two. The router can conclude that the
sender’s routing tables are inaccurate or incomplete.

In this situation, the router can notify the sender of its problem by sending an ICMP
redirect packet. In effect, a redirect says, “You should not be sending packets for
host xxx to me; you should send them to host yyy instead.”

In theory, the recipient of a redirect can adjust its routing table to fix the problem.
In practice, redirects contain no authentication information and are therefore un-
trustworthy. Dedicated routers usually ignore redirects, but most UNIX and Li-
nux systems accept them and act on them by default. You’ll need to consider the
possible sources of redirects in your network and disable their acceptance if they
could pose a problem.

Under Linux, the variable accept_redirects in the /proc hierarchy controls the
acceptance of ICMP redirects. See page 422 for instructions on examining and
resetting this variable.

On FreeBSD the parameters net.inet.icmp.drop_redirect and net.inet6.icmp6.rediraccept
control the acceptance of ICMP redirects. Set them to 1 and 0, respectively, in the
file /etc/sysctl.conf to ignore redirects. (To activate the new settings, reboot or run
sudo /etc/rc.d/sysctl reload.)

13.6	 IPv4 ARP and IPv6 neighbor discovery
Although IP addresses are hardware-independent, hardware addresses must still
be used to actually transport data across a network’s link layer.12 IPv4 and IPv6 use
separate but eerily similar protocols to discover the hardware address associated
with a particular IP address.

IPv4 uses ARP, the Address Resolution Protocol, defined in RFC826. IPv6 uses parts
of the Neighbor Discovery Protocol defined in RFC4861. These protocols can be
used on any kind of network that supports broadcasting or all-nodes multicasting,
but they are most commonly described in terms of Ethernet.

If host A wants to send a packet to host B on the same Ethernet, it uses ARP or ND
to discover B’s hardware address. If B is not on the same network as A, host A uses

	 12.	 An exception is for point-to-point links, where the identity of the destination is sometimes implicit.

402	 Chapter 13	 TCP/IP Networking	

the routing system to determine the next-hop router along the route to B and then
uses ARP or ND to find that router’s hardware address. These protocols can only
be used to find the hardware addresses of machines that are directly connected to
the sending host’s local networks.

Every machine maintains a table in memory called the ARP or ND cache which
contains the results of recent queries. Under normal circumstances, many of the
addresses a host needs are discovered soon after booting, so ARP and ND do not
account for a lot of network traffic.

These protocols work by broadcasting or multicasting a packet of the form “Does
anyone know the hardware address for IP address X?” The machine being searched for
recognizes its own IP address and replies, “Yes, that’s the IP address assigned to one
of my network interfaces, and the corresponding MAC address is 08:00:20:00:fb:6a.”

The original query includes the IP and MAC addresses of the requester so that the
machine being sought can reply without issuing a query of its own. Thus, the two
machines learn each other’s address mappings with only one exchange of packets.
Other machines that overhear the requester’s initial broadcast can record its ad-
dress mapping, too.

On Linux, the ip neigh command examines and manipulates the caches created by
ARP and ND, adds or deletes entries, and flushes or prints the table. ip neigh show
displays the contents of the caches.

On FreeBSD, the arp command manipulates the ARP cache and the ndp command
gives access to the ND cache.

These commands are generally useful only for debugging and for situations that in-
volve special hardware. For example, if two hosts on a network are using the same
IP address, one has the right ARP or ND table entry and one is wrong. You can use
the cache information to track down the offending machine.

Inaccurate cache entries can be a sign that someone with access to your local net-
work is attempting to hijack network traffic. This type of attack is known generically
as ARP spoofing or ARP cache poisoning.

13.7	 DHCP: the Dynamic Host Configuration Protocol
When you plug a device or computer into a network, it usually obtains an IP address
for itself on the local network, sets up an appropriate default route, and connects
itself to a local DNS server. The Dynamic Host Configuration Protocol (DHCP) is
the hidden Svengali that makes this magic happen.

The protocol lets a DHCP client “lease” a variety of network and administrative
parameters from a central server that is authorized to distribute them. The leasing
paradigm is particularly convenient for PCs that are turned off when not in use and
for networks that must support transient guests such as laptops.

DHCP is defined
in RFCs 2131,
2132, and 3315.

	 DHCP: the Dynamic Host Configuration Protocol	 403

N
et

w
or

ki
ng

Leasable parameters include

•	 IP addresses and netmasks
•	 Gateways (default routes)
•	 DNS name servers
•	 Syslog hosts
•	 WINS servers, X font servers, proxy servers, NTP servers
•	 TFTP servers (for loading a boot image)

There are dozens more—see RFC2132 for IPv4 and RFC3315 for IPv6. Real-world
use of the more exotic parameters is rare, however.

Clients must report back to the DHCP server periodically to renew their leases. If
a lease is not renewed, it eventually expires. The DHCP server is then free to assign
the address (or whatever was being leased) to a different client. The lease period is
configurable, but it’s usually quite long (hours or days).

Even if you want each host to have its own permanent IP address, DHCP can save you
time and suffering because it concentrates configuration information on the DHCP
server rather than requiring it to be distributed to individual hosts. Once the server
is up and running, clients can use DHCP to obtain their network configurations
at boot time. The clients needn’t know that they’re receiving a static configuration.

DHCP software
ISC, the Internet Systems Consortium, maintains a nice open source reference
implementation of DHCP. Major versions 2, 3, and 4 of ISC’s software are all in
common use, and all these versions work fine for basic service. Version 3 supports
backup DHCP servers, and version 4 supports IPv6. Server, client, and relay agents
are all available from isc.org.

Vendors all package some version of the ISC software, although you may have to
install the server portion explicitly. The server package is called dhcp on Red Hat
and CentOS, isc-dhcp-server on Debian and Ubuntu, and isc-dhcp43-server on
FreeBSD. Make sure you’re installing the software you intend, as many systems
package multiple implementations of both the server and client sides of DHCP.

It’s best not to tamper with the client side of DHCP, since that part of the code is
relatively simple and comes preconfigured and ready to use. Changing the client
side of DHCP is not trivial.

However, if you need to run a DHCP server, we recommend the ISC package over
vendor-specific implementations. In a typical heterogeneous network environment,
administration is greatly simplified by standardizing on a single implementation.
The ISC software is a reliable, open source solution that builds without incident
on most systems.

http://isc.org

404	 Chapter 13	 TCP/IP Networking	

Another option to consider is Dnsmasq, a server that implements DHCP service
in combination with a DNS forwarder. It’s a tidy package that runs on pretty much
any system. The project home page is thekelleys.org.uk/dnsmasq/doc.html.

DHCP server software is also built into most routers. Configuration is usually
more painful than on a UNIX- or Linux-based server, but reliability and availabil-
ity might be higher.

In the next few sections, we briefly discuss the DHCP protocol, explain how to set
up the ISC server that implements it, and review some client configuration issues.

DHCP behavior
DHCP is a backward-compatible extension of BOOTP, a protocol originally devised
to help diskless workstations boot. DHCP generalizes the parameters that can be
supplied and adds the concept of a lease period for assigned values.

A DHCP client begins its interaction with a DHCP server by broadcasting a “Help!
Who am I?” message.13 If a DHCP server is present on the local network, it nego-
tiates with the client to supply an IP address and other networking parameters. If
there is no DHCP server on the local net, servers on different subnets can receive
the initial broadcast message through a separate piece of DHCP software that acts
as a relay agent.

When the client’s lease time is half over, it attempts to renew its lease. The server
is obliged to keep track of the addresses it has handed out, and this information
must persist across reboots. Clients are supposed to keep their lease state across
reboots too, although many do not. The goal is to maximize stability in network
configuration. In theory, all software should be prepared for network configura-
tions to change at a moment’s notice, but some software still makes unwarranted
assumptions about the continuity of the network.

ISC’s DHCP software
ISC’s server daemon is called dhcpd, and its configuration file is dhcpd.conf, usu-
ally found in /etc or /etc/dhcp3. The format of the config file is a bit fragile; leave
out a semicolon and you may receive a cryptic, unhelpful error message.

When setting up a new DHCP server, you must also make sure that an empty lease
database file has been created. Check the summary at the end of the man page
for dhcpd to find the correct location for the lease file on your system. It’s usually
somewhere underneath /var.

	 13.	 IPv4 clients initiate conversations with the DHCP server by using the generic all-1s broadcast address.
The clients don’t yet know their subnet masks and therefore can’t use the subnet broadcast address.
IPv6 uses multicast addressing instead of broadcasting.

http://thekelleys.org.uk/dnsmasq/doc.html

	 DHCP: the Dynamic Host Configuration Protocol	 405

N
et

w
or

ki
ng

To set up the dhcpd.conf file, you need the following information:

•	 The subnets for which dhcpd should manage IP addresses, and the ranges
of addresses to dole out

•	 A list of static IP address assignments you want to make (if any), along
with the MAC (hardware) addresses of the recipients

•	 The initial and maximum lease durations, in seconds

•	 Any other options the server should pass to DHCP clients: netmask, de-
fault route, DNS domain, name servers, etc.

The dhcpd man page outlines the configuration process, and the dhcpd.conf man
page covers the exact syntax of the config file. In addition to setting up your config-
uration, make sure dhcpd is started automatically at boot time. (See Chapter 2,
Booting and System Management Daemons, for instructions.) It’s helpful to make
startup of the daemon conditional on the existence of the dhcpd.conf file if your
system doesn’t automatically do this for you.

Below is a sample dhcpd.conf file from a Linux box with two interfaces, one inter-
nal and one that connects to the Internet. This machine performs NAT translation
for the internal network (see page 392) and leases out a range of 10 IP addresses
on this network as well.

Every subnet must be declared, even if no DHCP service is provided on it, so this
dhcpd.conf file contains a dummy entry for the external interface. It also includes
a host entry for one particular machine that needs a fixed address.

global options

option domain-name "synack.net";
option domain-name-servers gw.synack.net;
option subnet-mask 255.255.255.0;
default-lease-time 600;
max-lease-time 7200;

subnet 192.168.1.0 netmask 255.255.255.0 {
	 range 192.168.1.51 192.168.1.60;
	 option broadcast-address 192.168.1.255;
	 option routers gw.synack.net;
}

subnet 209.180.251.0 netmask 255.255.255.0 {
}

host gandalf {
	 hardware ethernet 08:00:07:12:34:56;
	 fixed-address gandalf.synack.net;
}

http://"synack.net"
http://gw.synack.net
http://gw.synack.net
http://gandalf.synack.net

406	 Chapter 13	 TCP/IP Networking	

Unless you make static IP address assignments such as the one for gandalf above,
you need to consider how your DHCP configuration interacts with DNS. The
easy option is to assign a generic name to each dynamically leased address (e.g.,
dhcp1.synack.net) and allow the names of individual machines to float along with
their IP addresses. Alternatively, you can configure dhcpd to update the DNS data-
base as it hands out addresses. The dynamic update solution is more complicated,
but it has the advantage of preserving each machine’s hostname.

ISC’s DHCP relay agent is a separate daemon called dhcrelay. It’s a simple program
with no configuration file of its own, although vendors often add a startup harness
that feeds it the appropriate command-line arguments for your site. dhcrelay lis-
tens for DHCP requests on local networks and forwards them to a set of remote
DHCP servers that you specify. It’s handy both for centralizing the management of
DHCP service and for provisioning backup DHCP servers.

ISC’s DHCP client is similarly configuration free. It stores status files for each con-
nection in the directory /var/lib/dhcp or /var/lib/dhclient. The files are named after
the interfaces they describe. For example, dhclient-eth0.leases would contain all
the networking parameters that dhclient had set up on behalf of the eth0 interface.

13.8	 Security issues
We address the topic of security in a chapter of its own (Chapter 27), but several
security issues relevant to IP networking merit discussion here. In this section, we
briefly look at a few networking features that have acquired a reputation for causing
security problems, and we recommend ways to minimize their impact. The details
of our example systems’ default behavior on these issues (and the appropriate meth-
ods for changing them) vary considerably and are discussed in the system-specific
material starting on page 417.

IP forwarding
A UNIX or Linux system that has IP forwarding enabled can act as a router. That is,
it can accept third party packets on one network interface, match them to a gateway
or destination host on another interface, and retransmit the packets.

Unless your system has multiple network interfaces and is actually supposed to
function as a router, it’s best to turn this feature off. Hosts that forward packets can
sometimes be coerced into compromising security by making external packets ap-
pear to have come from inside your network. This subterfuge can help an intruder’s
packets evade network scanners and packet filters.

It is perfectly acceptable for a host to have network interfaces on multiple subnets
and to use them for its own traffic without forwarding third party packets.

See Chapter 16
for more informa-
tion about DNS.

http://dhcp1.synack.net

	 Security issues	 407

N
et

w
or

ki
ng

ICMP redirects
ICMP redirects (see page 401) can maliciously reroute traffic and tamper with
your routing tables. Most operating systems listen to ICMP redirects and follow
their instructions by default. It would be bad if all your traffic were rerouted to a
competitor’s network for a few hours, especially while backups were running! We
recommend that you configure your routers (and hosts acting as routers) to ignore
and perhaps log ICMP redirect attempts.

Source routing
IPv4’s source routing mechanism lets you specify an explicit series of gateways for
a packet to transit on the way to its destination. Source routing bypasses the next-
hop routing algorithm that’s normally run at each gateway to determine how a
packet should be forwarded.

Source routing was part of the original IP specification; it was intended primar-
ily to facilitate testing. It can create security problems because packets are often
filtered according to their origin. If someone can cleverly route a packet to make
it appear to have originated within your network instead of the Internet, it might
slip through your firewall. We recommend that you neither accept nor forward
source-routed packets.

Despite the Internet’s dim view of IPv4 source routing, it somehow managed to sneak
its way into IPv6 as well. However, this IPv6 feature was deprecated by RFC5095 in
2007. Compliant IPv6 implementations are now required to reject source-routed
packets and return an error message to the sender.14 Linux and FreeBSD both fol-
low the RFC5095 behavior, as do commercial routers.

Broadcast pings and other directed broadcasts
Ping packets addressed to a network’s broadcast address (instead of to a particular
host address) are typically delivered to every host on the network. Such packets
have been used in denial-of-service attacks; for example, the so-called Smurf at-
tacks. (The “Smurf attacks” Wikipedia article has details.)

Broadcast pings are a form of “directed broadcast” in that they are packets sent to
the broadcast address of a distant network. The default handling of such packets
has been gradually changing. For example, versions of Cisco’s IOS up through 11.x
forwarded directed broadcast packets by default, but IOS releases since 12.0 do not.
It is usually possible to convince your TCP/IP stack to ignore broadcast packets
that come from afar, but since this behavior must be set on each interface, the task
can be nontrivial at a large site.

	 14.	 Even so, IPv6 source routing may be poised to stage a mini-comeback in the form of “segment rout-
ing,” a feature that has now been integrated into the Linux kernel. See lwn.net/Articles/722804 for a
discussion of this technology.

http://lwn.net/Articles/722804

408	 Chapter 13	 TCP/IP Networking	

IP spoofing
The source address on an IP packet is normally filled in by the kernel’s TCP/IP
implementation and is the IP address of the host from which the packet was sent.
However, if the software creating the packet uses a raw socket, it can fill in any source
address it likes. This is called IP spoofing and is usually associated with some kind
of malicious network behavior. The machine identified by the spoofed source IP
address (if it is a real address at all) is often the victim in the scheme. Error and re-
turn packets can disrupt or flood the victim’s network connections. Packet spoofing
from a large set of external machines is called a “distributed denial-of-service attack.”

Deny IP spoofing at your border router by blocking outgoing packets whose source
address is not within your address space. This precaution is especially important if
your site is a university where students like to experiment and might be tempted
to carry out digital vendettas.

If you are using private address space internally, you can filter at the same time to
catch any internal addresses escaping to the Internet. Such packets can never be
answered (because they lack a backbone route) and always indicate that your site
has some kind of internal configuration error.

In addition to detecting outbound packets with bogus source addresses, you must
also protect against an attacker’s forging the source address on external packets to
fool your firewall into thinking that they originated on your internal network. A
heuristic known as “unicast reverse path forwarding” (uRPF) helps to address this
problem. It makes IP gateways discard packets that arrive on an interface different
from the one on which they would be transmitted if the source address were the
destination. It’s a quick sanity check that uses the normal IP routing table as a way
to validate the origin of network packets. Dedicated routers implement uRPF, but
so does the Linux kernel. On Linux, it’s enabled by default.

If your site has multiple connections to the Internet, it might be perfectly reason-
able for inbound and outbound routes to be different. In this situation, you’ll have
to turn off uRPF to make your routing work properly. If your site has only one way
out to the Internet, then turning on uRPF is usually safe and appropriate.

Host-based firewalls
Traditionally, a network packet filter or firewall connects your local network to the
outside world and controls traffic according to a site-wide policy. Unfortunately,
Microsoft has warped everyone’s perception of how a firewall should work with its
notoriously insecure Windows systems. The last few Windows releases all come
with their own personal firewalls, and they complain bitterly if you try to turn off
the firewall.

Our example systems all include packet filtering software, but you should not infer
from this that every UNIX or Linux machine needs its own firewall. The packet
filtering features are there primarily to allow these machines to serve as network
gateways.

	 Security issues	 409

N
et

w
or

ki
ng

However, we don’t recommend using a workstation as a firewall. Even with metic-
ulous hardening, full-fledged operating systems are too complex to be fully trust-
worthy. Dedicated network equipment is more predictable and more reliable—even
if it secretly runs Linux.

Even sophisticated software solutions like those offered by Check Point (whose
products run on UNIX, Linux, and Windows hosts) are not as secure as a dedi-
cated device such as Cisco’s Adaptive Security Appliance series. The software-only
solutions are nearly the same price, to boot.

A more thorough discussion of firewall-related issues begins on page 440.

Virtual private networks
Many organizations that have offices in several locations would like to have all those
locations connected to one big private network. Such organizations can use the In-
ternet as if it were a private network by establishing a series of secure, encrypted

“tunnels” among their various locations. A network that includes such tunnels is
known as a virtual private network or VPN.

VPN facilities are also needed when employees must connect to your private net-
work from their homes or from the field. A VPN system doesn’t eliminate every
possible security issue relating to such ad hoc connections, but it’s secure enough
for many purposes.

Some VPN systems use the IPsec protocol, which was standardized by the IETF in
1998 as a relatively low-level adjunct to IP. Others, such as OpenVPN, implement
VPN security on top of TCP by using Transport Layer Security (TLS), the succes-
sor to the Secure Sockets Layer (SSL). TLS is also on the IETF’s standards track,
although it hasn’t yet been fully adopted as of this writing (2017).

A variety of proprietary VPN implementations are also available. These systems
generally don’t interoperate with one another or with the standards-based VPN
systems, but that’s not necessarily a major drawback if all the endpoints are under
your control.

The TLS-based VPN solutions seem to be the marketplace winners at this point.
They are just as secure as IPsec and considerably less complicated. Having a free
implementation in the form of OpenVPN doesn’t hurt either.

For users at home and at large, a common paradigm is for them to download a
small Java or executable component through their web browser. This component
then implements VPN connectivity back to the enterprise network. The mecha-
nism is convenient for users, but be aware that the browser-based systems differ
widely in their implementations: some offer VPN service through a pseudo-net-
work-interface, while others forward only specific ports. Still others are little more
than glorified web proxies.

See page 1030 for
more information
about IPsec.

410	 Chapter 13	 TCP/IP Networking	

Be sure you understand the underlying technology of the solutions you’re con-
sidering, and don’t expect the impossible. True VPN service (that is, full IP-layer
connectivity through a network interface) requires administrative privileges and
software installation on the client, whether that client is a Windows system or a
Linux laptop. Check browser compatibility too, since the voodoo involved in im-
plementing browser-based VPN solutions often doesn’t translate among browsers.

13.9	 Basic network configuration
Only a few steps are involved in adding a new machine to an existing local area
network, but every system does it slightly differently. Systems with a GUI installed
typically include a control panel for network configuration, but these visual tools
address only simple scenarios. On a typical server, you just enter the network con-
figuration directly into text files.

Before bringing up a new machine on a network that is connected to the Internet,
secure it (Chapter 27, Security) so that you are not inadvertently inviting attack-
ers onto your local network.

Adding a new machine to a local network goes like this:

1.	 Assign a unique IP address and hostname.
2.	 Configure network interfaces and IP addresses.
3.	 Set up a default route and perhaps fancier routing.
4.	 Point to a DNS name server to allow access to the rest of the Internet.

If you rely on DHCP for basic provisioning, most of the configuration chores for a
new machine are performed on the DHCP server rather than on the new machine
itself. New OS installations typically default to configuration through DHCP, so new
machines may require no network configuration at all. Refer to the DHCP section
starting on page 402 for general information.

After any change that might affect startup, always reboot to verify that the machine
comes up correctly. Six months later when the power has failed and the machine
refuses to boot, it’s hard to remember what change you made that might have
caused the problem.

The process of designing and installing a physical network is touched on in Chapter
14, Physical Networking. If you are dealing with an existing network and have a
general idea of how it is set up, it may not be necessary for you to read too much
more about the physical aspects of networking unless you plan to extend the ex-
isting network.

In this section, we review the various issues involved in manual network configu-
ration. This material is general enough to apply to any UNIX or Linux system. In
the vendor-specific sections starting on page 417, we address the unique twists
that separate the various vendors’ systems.

	 Basic network configuration	 411

N
et

w
or

ki
ng

As you work through basic network configuration on any machine, you’ll find it
helpful to test your connectivity with basic tools such as ping and traceroute. See
Network troubleshooting starting on page 428 for a description of these tools.

Hostname and IP address assignment
Administrators have various heartfelt theories about how the mapping from host-
names to IP addresses is best maintained: through the hosts file, LDAP, the DNS
system, or perhaps some combination of those options. The conflicting goals are
scalability, consistency, and maintainability versus a system that is flexible enough
to allow machines to boot and function when not all services are available.

Another consideration when you’re designing your addressing system is the possible
need to renumber your hosts in the future. Unless you are using RFC1918 private
addresses (see page 392), your site’s IP addresses might change when you switch
ISPs. Such a transition becomes daunting if you must visit each host on the net-
work to reconfigure its address. To expedite renumbering, you can use hostnames
in configuration files and confine address mappings to a few centralized locations
such as the DNS database and your DHCP configuration files.

The /etc/hosts file is the oldest and simplest way to map names to IP addresses.
Each line starts with an IP address and continues with the various symbolic names
by which that address is known.

Here is a typical /etc/hosts file for the host lollipop:

127.0.0.1		 localhost
::1				 localhost ip6-localhost
ff02::1			 ip6-allnodes
ff02::2 			 ip6-allrouters
192.108.21.48	 lollipop.atrust.com lollipop loghost
192.108.21.254	 chimchim-gw.atrust.com chimchim-gw
192.108.21.1	 ns.atrust.com ns
192.225.33.5	 licenses.atrust.com license-server

A minimalist version would contain only the first three lines. localhost is common-
ly the first entry in the /etc/hosts file; this entry is unnecessary on many systems,
but it doesn’t hurt to include it. You can freely intermix IPv4 and IPv6 addresses.

Because /etc/hosts contains only local mappings and must be maintained on each
client system, it’s best reserved for mappings that are needed at boot time (e.g., the
host itself, the default gateway, and name servers). Use DNS or LDAP to find map-
pings for the rest of the local network and the rest of the world. You can also use
/etc/hosts to specify mappings that you do not want the rest of the world to know
about and therefore do not publish in DNS.15

The hostname command assigns a hostname to a machine. hostname is typical-
ly run at boot time from one of the startup scripts, which obtains the name to be

	 15.	 You can also use a split DNS configuration to achieve this goal; see page 541.

See Chapter 16
for more informa-
tion about DNS.

http://lollipop.atrust.com
http://chimchim-gw.atrust.com
http://ns.atrust.com
http://licenses.atrust.com

412	 Chapter 13	 TCP/IP Networking	

assigned from a configuration file. (Of course, each system does this slightly dif-
ferently. See the system-specific sections beginning on page 417 for details.) The
hostname should be fully qualified: that is, it should include both the hostname
and the DNS domain name, such as anchor.cs.colorado.edu.

At a small site, you can easily dole out hostnames and IP addresses by hand. But
when many networks and many different administrative groups are involved, it helps
to have some central coordination to ensure uniqueness. For dynamically assigned
networking parameters, DHCP takes care of the uniqueness issues.

Network interface and IP configuration
A network interface is a piece of hardware that can potentially be connected to a
network. The actual hardware varies widely. It can be an RJ-45 jack with associated
signaling hardware for wired Ethernet, a wireless radio, or even a virtual piece of
hardware that connects to a virtual network.

Every system has at least two network interfaces: a virtual loopback interface and
at least one real network card or port. On PCs with multiple Ethernet jacks, a sepa-
rate network interface usually controls each jack. (These interfaces quite often have
hardware different from that of each other as well.)

On most systems, you can see all the network interfaces with ip link show (Linux)
or ifconfig -a (FreeBSD), whether or not the interfaces have been configured or are
currently running. Here’s an example from an Ubuntu system:

$ ip link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

mode DEFAULT group default qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: enp0s5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast

state UP mode DEFAULT group default qlen 1000
 link/ether 00:1c:42:b4:fa:54 brd ff:ff:ff:ff:ff:ff

Interface naming conventions vary. Current versions of Linux try to ensure that
interface names don’t change over time, so the names are somewhat arbitrary (e.g.,
enp0s5). FreeBSD and older Linux kernels use a more traditional driver + instance
number scheme, resulting in names like em0 or eth0.

Network hardware often has configurable options that are specific to its media type
and have little to do with TCP/IP per se. One common example of this is mod-
ern-day Ethernet, wherein an interface card might support 10, 100, 1000, or even
10000 Mb/s in either half-duplex or full-duplex mode. Most equipment defaults to
autonegotiation mode, in which both the card and its upstream connection (usu-
ally a switch port) try to guess what the other wants to use.

Historically, autonegotiation worked about as well as a blindfolded cowpoke trying
to rope a calf. Modern network devices play better together, but autonegotiation is

http://anchor.cs.colorado.edu

	 Basic network configuration	 413

N
et

w
or

ki
ng

still a possible source of failure. High packet loss rates (especially for large packets)
are a common artifact of failed autonegotiation.

If you manually configure a network link, turn off autonegotiation on both sides. It
makes intuitive sense that you might be able to manually configure one side of the
link and then let the other side automatically adapt to those settings. But alas, that
is not how Ethernet autoconfiguration actually works. All participants must agree
that the network is either automatically or manually configured.

The exact method by which hardware options like autonegotiation are set varies
widely, so we defer discussion of those details to the system-specific sections start-
ing on page 417.

Above the level of interface hardware, every network protocol has its own config-
uration. IPv4 and IPv6 are the only protocols you might normally want to config-
ure, but it’s important to understand that configurations are defined per interface/
protocol pair. In particular, IPv4 and IPv6 are completely separate worlds, each of
which has its own configuration.

IP configuration is largely a matter of setting an IP address for the interface. IPv4
also needs to know the subnet mask (“netmask”) for the attached network so that it
can distinguish the network and host portions of addresses. At the level of network
traffic in and out of an interface, IPv6 does not use netmasks; the network and host
portions of an IPv6 address are of fixed size.

In IPv4, you can set the broadcast address to any IP address that’s valid for the
network to which the host is attached. Some sites have chosen weird values for the
broadcast address in the hope of avoiding certain types of denial-of-service attacks
that use broadcast pings, but this is risky and probably overkill. Failure to properly
configure every machine’s broadcast address can lead to broadcast storms, in which
packets travel from machine to machine until their TTLs expire.16

A better way to avoid problems with broadcast pings is to prevent your border routers
from forwarding them and to tell individual hosts not to respond to them. IPv6 no
longer has broadcasting at all; it’s been replaced with various forms of multicasting.

You can assign more than one IP address to an interface. In the past it was some-
times helpful to do this to allow one machine to host several web sites; however,
the need for this feature has been superseded by the HTTP Host header and the
SNI feature of TLS. See page 681 for details.

	 16.	 Broadcast storms occur because the same link-layer broadcast address must be used to transport
packets no matter what the IP broadcast address has been set to. For example, suppose that machine
X thinks the broadcast address is A1 and machine Y thinks it is A2. If X sends a packet to address A1,
Y will receive the packet (because the link-layer destination address is the broadcast address), will see
that the packet is not for itself and also not for the broadcast address (because Y thinks the broadcast
address is A2), and may then forward the packet back to the net. If two machines are in Y’s state, the
packet circulates until its TTL expires. Broadcast storms can erode your bandwidth, especially on a
large switched net.

414	 Chapter 13	 TCP/IP Networking	

Routing configuration
This book’s discussion of routing is divided among several sections in this chapter
and Chapter 15, IP Routing. Although most of the basic information about routing
is found here and in the sections about the ip route (Linux) and route (FreeBSD)
commands, you might find it helpful to read the first few sections of Chapter 15
if you need more information.

Routing is performed at the IP layer. When a packet bound for some other host ar-
rives, the packet’s destination IP address is compared with the routes in the kernel’s
routing table. If the address matches a route in the table, the packet is forwarded to
the next-hop gateway IP address associated with that route.

There are two special cases. First, a packet may be destined for some host on a direct-
ly connected network. In this case, the “next-hop gateway” address in the routing
table is one of the local host’s own interfaces, and the packet is sent directly to its
destination. This type of route is added to the routing table for you by the ifconfig
or ip address command when you configure a network interface.

Second, it may be that no route matches the destination address. In this case, the
default route is invoked if one exists. Otherwise, an ICMP “network unreachable”
or “host unreachable” message is returned to the sender.

Many local area networks have only one way out, so all they need is a single de-
fault route that points to the exit. On the Internet backbone, the routers do not
have default routes. If there is no routing entry for a destination, that destination
cannot be reached.

Each ip route (Linux) or route (FreeBSD) command adds or removes one route.
Here are two prototypical commands:

linux# ip route add 192.168.45.128/25 via zulu-gw.atrust.net
freebsd# route add -net 192.168.45.128/25 zulu-gw.atrust.net

These commands add a route to the 192.168.45.128/25 network through the gate-
way router zulu-gw.atrust.net, which must be either an adjacent host or one of the
local host’s own interfaces. Naturally, the hostname zulu-gw.atrust.net must be
resolvable to an IP address. Use a numeric IP address if your DNS server is on the
other side of the gateway!

Destination networks were traditionally specified with separate IP addresses and
netmasks, but all routing-related commands now understand CIDR notation (e.g.,
128.138.176.0/20). CIDR notation is clearer and relieves you of the need to fuss
over some of the system-specific syntax issues.

http://zulu-gw.atrust.net
http://zulu-gw.atrust.net

	 Basic network configuration	 415

N
et

w
or

ki
ng

Some other tricks:

•	 To inspect existing routes, use the command netstat -nr, or netstat -r if
you want to see names instead of numbers. Numbers are often better if
you are debugging, since the name lookup may be the thing that is bro-
ken. An example of netstat output is shown on page 399. On Linux, ip
route show is the officially blessed command for seeing routes. However,
we find its output less clear than netstat’s.

•	 Use the keyword default instead of an address or network name to set
the system’s default route. This mnemonic is identical to 0.0.0.0/0, which
matches any address and is less specific than any real routing destination.

•	 Use ip route del (Linux) or route del (FreeBSD) to remove entries from
the routing table.

•	 Run ip route flush (Linux) or route flush (FreeBSD) to initialize the
routing table and start over.

•	 IPv6 routes are set up similarly to IPv4 routes; include the -6 option to
route to tell it that you’re setting an IPv6 routing entry. ip route can nor-
mally recognize IPv6 routes on its own (by inspecting the format of the
addresses), but it accepts the -6 argument, too.

•	 /etc/networks maps names to network numbers, much like the hosts file
maps hostnames to IP addresses. Commands such as ip and route that
expect a network number can accept a name if it is listed in the networks
file. Network names can also be listed in DNS; see RFC1101.

DNS configuration
To configure a machine as a DNS client, you need only set up the /etc/resolv.conf
file. DNS service is not strictly required, but it’s hard to imagine a situation in which
you’d want to eliminate it completely.

The resolv.conf file lists the DNS domains that should be searched to resolve
names that are incomplete (that is, not fully qualified, such as anchor instead of
anchor.cs.colorado.edu) and the IP addresses of the name servers to contact for
name lookups. A sample is shown here; for more details, see page 500.

search cs.colorado.edu colorado.edu
nameserver 128.138.242.1
nameserver 128.138.243.151
nameserver 192.108.21.1

http://anchor.cs.colorado.edu
http://cs.colorado.edu
http://colorado.edu

416	 Chapter 13	 TCP/IP Networking	

/etc/resolv.conf should list the “closest” stable name server first. Servers are con-
tacted in order, and the timeout after which the next server in line is tried can be
quite long. You can have up to three nameserver entries. If possible, you should
always have more than one.

If the local host obtains the addresses of its DNS servers through DHCP, the DHCP
client software stuffs these addresses into the resolv.conf file for you when it ob-
tains the leases. Since DHCP configuration is the default for most systems, you
generally need not configure the resolv.conf file manually if your DHCP server
has been set up correctly.

Many sites use Microsoft’s Active Directory DNS server implementation. That
works fine with the standard UNIX and Linux resolv.conf; there’s no need to do
anything differently.

System-specific network configuration
On early UNIX systems, you configured the network by editing the system start-
up scripts and directly changing the commands they contained. Modern systems
have read-only scripts; they cover a variety of configuration scenarios and choose
among them by reusing information from other system files or consulting config-
uration files of their own.

Although this separation of configuration and implementation is a good idea, ev-
ery system does it a little bit differently. The format and use of the /etc/hosts and
/etc/resolv.conf files are relatively consistent among UNIX and Linux systems, but
that’s about all you can count on for sure.

Most systems offer some sort of GUI interface for basic configuration tasks, but the
mapping between the visual interface and the configuration files behind the scenes
is often unclear. In addition, the GUIs tend to ignore advanced configurations, and
they are relatively inconvenient for remote and automated administration.

In the next sections, we pick apart some of the variations among our example sys-
tems, describe what’s going on under the hood, and cover the details of network
configuration for each of our supported operating systems. In particular, we cover

•	 Basic configuration
•	 DHCP client configuration
•	 Dynamic reconfiguration and tuning
•	 Security, firewalls, filtering, and NAT configuration

Keep in mind that most network configuration happens at boot time, so there’s some
overlap between the information here and the information presented in Chapter
2, Booting and System Management Daemons.

	 Linux networking	 417

N
et

w
or

ki
ng

13.10	 Linux networking
Linux developers love to tinker, and they often implement features and algorithms
that aren’t yet accepted standards. One example is the Linux kernel’s addition of
pluggable congestion-control algorithms in release 2.6.13. The several options in-
clude variations for lossy networks, high-speed WANs with lots of packet loss, sat-
ellite links, and more. The standard TCP “reno” mechanism (slow start, congestion
avoidance, fast retransmit, and fast recovery) is still used by default. A variant might
be more appropriate for your environment (but probably not).17

After any change to a file that controls network configuration at boot time, you may
need either to reboot or to bring the network interface down and then up again for
your change to take effect. You can use ifdown interface and ifup interface for this
purpose on most Linux systems.

NetworkManager
Linux support for mobile networking was relatively scattershot until the advent
of NetworkManager in 2004. It consists of a service that’s run continuously, along
with a system tray app for configuring individual network interfaces. In addition to
various kinds of wired network, NetworkManager also handles transient wireless
networks, wireless broadband, and VPNs. It continually assesses the available net-
works and shifts service to “preferred” networks as they become available. Wired
networks are most preferred, followed by familiar wireless networks.

This system represented quite a change for Linux network configuration. In addition
to being more fluid than the traditional static configuration, it’s also designed to be
run and managed by users rather than system administrators. NetworkManager
has been widely adopted by Linux distributions, including all our examples, but in
an effort to avoid breaking existing scripts and setups, it’s usually made available
as a sort of “parallel universe” of network configuration in addition to whatever
traditional network configuration was used in the past.

Debian and Ubuntu run NetworkManager by default, but keep the statically config-
ured network interfaces out of the NetworkManager domain. Red Hat and CentOS
don’t run NetworkManager by default at all.

NetworkManager is primarily of use on laptops, since their network environment
may change frequently. For servers and desktop systems, NetworkManager isn’t
necessary and may in fact complicate administration. In these environments, it
should be ignored or configured out.

	 17.	 See lwn.net/Articles/701165 for some hints on when to consider the use of alternate congestion con-
trol algorithms.

http://lwn.net/Articles/701165

418	 Chapter 13	 TCP/IP Networking	

ip: manually configure a network
Linux systems formerly used the same basic commands for network configuration
and status checking as traditional UNIX: ifconfig, route, and netstat. These are
still available on most distributions, but active development has moved on to the
iproute2 package, which features the commands ip (for most everyday network
configuration, including routing) and ss (for examining the state of network sock-
ets, roughly replacing netstat).

If you’re accustomed to the traditional commands, it’s worth the effort to transition
your brain to ip. The legacy commands won’t be around forever, and although they
cover the common configuration scenarios, they don’t give access to the full feature
set of the Linux networking stack. ip is cleaner and more regular.

ip takes a second argument for you to specify what kind of object you want to
configure or examine. There are many options, but the common ones are ip link
for configuring network interfaces, ip address for binding network addresses to
interfaces, and ip route for changing or printing the routing table.18 Most objects
understand list or show to print out a summary of their current status, so ip link
show prints a list of network interfaces, ip route show dumps the current routing
table, and ip address show lists all assigned IP addresses.

The man pages for ip are divided by subcommand. For example, to see detailed
information about interface configuration, run man ip-link. You can also run ip
link help to see a short cheat sheet.

The UNIX ifconfig command conflates the concept of interface configuration with
the concept of configuring the settings for a particular network protocol. In fact,
several protocols can run on a given network interface (the prime example being
simultaneous IPv4 and IPv6), and each of those protocols can support multiple
addresses, so ip’s distinction between ip link and ip address is actually quite smart.
Most of what system administrators traditionally think of as “interface configura-
tion” really has to do with setting up IPv4 and IPv6.

ip accepts a -4 or -6 argument to target IPv4 or IPv6 explicitly, but it’s rarely nec-
essary to specify these options. ip guesses the right mode just by looking at the
format of the addresses you provide.

Basic configuration of an interface looks like this:

ip address add 192.168.1.13/26 broadcast 192.168.1.63 dev enp0s5

In this case the broadcast clause is superfluous because that would be the default
value anyway, given the netmask. But this is how you would set it if you needed to.

Of course, in daily life you won’t normally be setting up network addresses by hand.
The next sections describe how our example distributions handle static configura-
tion of the network from the perspective of configuration files.

	 18.	 You can abbreviate ip arguments, so ip ad is the same as ip address. We show full names for clarity.

	 Linux networking	 419

N
et

w
or

ki
ng

Debian and Ubuntu network configuration
As shown in Table 13.6, Debian and Ubuntu configure the network in /etc/hostname
and /etc/network/interfaces, with a bit of help from the file /etc/network/options.

Table 13.6	 Ubuntu network configuration files in /etc

File What’s set there

hostname Hostname
network/interfaces IP address, netmask, default route

The hostname is set in /etc/hostname. The name in this file should be fully quali-
fied; its value is used in a variety of contexts, some of which require qualification.

The IP address, netmask, and default gateway are set in /etc/network/interfaces.
A line starting with the iface keyword introduces each interface. The iface line
can be followed by indented lines that specify additional parameters. For example,

auto lo enp0s5
iface lo inet loopback
iface enp0s5 inet static
	 address 192.168.1.102
	 netmask 255.255.255.0
	 gateway 192.168.1.254

The ifup and ifdown commands read this file and bring the interfaces up or down
by calling lower-level commands (such as ip) with the appropriate parameters.
The auto clause specifies the interfaces to be brought up at boot time or whenever
ifup -a is run.

The inet keyword in the iface line is the address family, IPv4. To configure IPv6
as well, include an inet6 configuration.

The keyword static is called a “method” and specifies that the IP address and net-
mask for enp0s5 are directly assigned. The address and netmask lines are required
for static configurations. The gateway line specifies the address of the default net-
work gateway and is used to install a default route.

To configure interfaces with DHCP, just specify that in the interfaces file:

iface enp0s5 inet dhcp

Red Hat and CentOS network configuration
Red Hat and CentOS’s network configuration revolves around /etc/sysconfig. Table
13.7 on the next page shows the various configuration files.RHEL

420	 Chapter 13	 TCP/IP Networking	

Table 13.7	 Red Hat network configuration files in /etc/sysconfig

File What’s set there

network Hostname, default route
network-scripts/ifcfg-ifname Per-interface parameters: IP address, netmask, etc.
network-scripts/route-ifname Per-interface routing: arguments to ip route

You set the machine’s hostname in /etc/sysconfig/network, which also contains
lines that specify the machine’s DNS domain and default gateway. (Essentially, this
file is where you specify all interface-independent network settings.)

For example, here is a network file for a host with a single Ethernet interface:

NETWORKING=yes
NETWORKING_IPV6=no
HOSTNAME=redhat.toadranch.com
DOMAINNAME=toadranch.com		 ### optional
GATEWAY=192.168.1.254

Interface-specific data is stored in /etc/sysconfig/network-scripts/ifcfg-ifname,
where ifname is the name of the network interface. These configuration files set
the IP address, netmask, network, and broadcast address for each interface. They
also include a line that specifies whether the interface should be configured “up”
at boot time.

A generic machine has files for an Ethernet interface (eth0) and for the loopback
interface (lo). For example,

DEVICE=eth0
IPADDR=192.168.1.13
NETMASK=255.255.255.0
NETWORK=192.168.1.0
BROADCAST=192.168.1.255
MTU=1500
ONBOOT=yes

and

DEVICE=lo
IPADDR=127.0.0.1
NETMASK=255.0.0.0
NETWORK=127.0.0.0
BROADCAST=127.255.255.255
ONBOOT=yes
NAME=loopback

are the ifcfg-eth0 and ifcfg-lo files for the machine redhat.toadranch.com described
in the network file above.

http://HOSTNAME=redhat.toadranch.com
http://DOMAINNAME=toadranch.com
http://redhat.toadranch.com

	 Linux networking	 421

N
et

w
or

ki
ng

A DHCP-based setup for eth0 is even simpler:

DEVICE=eth0
BOOTPROTO=dhcp
ONBOOT=yes

After changing configuration information in /etc/sysconfig, run ifdown ifname fol-
lowed by ifup ifname for the appropriate interface. If you reconfigure multiple inter-
faces at once, you can use the command sysctl restart network to reset networking.

Lines in network-scripts/route-ifname are passed as arguments to ip route when
the corresponding interface is configured. For example, the line

default via 192.168.0.1

sets a default route. This isn’t really an interface-specific configuration, but for clar-
ity, it should go in the file that corresponds to the interface on which you expect
default-routed packets to be transmitted.

Linux network hardware options
The ethtool command queries and sets a network interface’s media-specific parame-
ters such as link speed and duplex. It replaces the old mii-tool command, but some
systems still include both. If ethtool is not installed by default, it’s usually included
in an optional package of its own (also called ethtool).

You can query the status of an interface just by naming it. For example, this eth0
interface (a generic NIC on a PC motherboard) has autonegotiation enabled and
is currently running at full speed:

ethtool eth0
Settings for eth0:
 Supported ports: [TP MII]
 Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Half 1000baseT/Full
 Supports auto-negotiation: Yes
 Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Half 1000baseT/Full
 Advertised auto-negotiation: Yes
 Speed: 1000Mb/s
 Duplex: Full
 Port: MII
 PHYAD: 0
 Transceiver: internal
 Auto-negotiation: on
 Supports Wake-on: pumbg
 Wake-on: g
 Current message level: 0x00000033 (51)
 Link detected: yes

422	 Chapter 13	 TCP/IP Networking	

To lock this interface to 100 Mb/s full duplex, use the command

ethtool -s eth0 speed 100 duplex full

If you are trying to determine whether autonegotiation is reliable in your environ-
ment, you may also find ethtool -r helpful. It forces the parameters of the link to
be renegotiated immediately.

Another useful option is -k, which shows what protocol-related tasks are assigned
to the network interface rather than being performed by the kernel. Most interfaces
can calculate checksums, and some can assist with segmentation as well. Unless you
believe that a network interface is not doing these tasks reliably, it’s always better
to offload them. You can use ethtool -K in combination with various suboptions
to force or disable specific types of offloading. (The -k option shows current values
and the -K option sets them.)

Any changes you make with ethtool are transient. If you want them to be enforced
consistently, make sure that ethtool gets run as part of the system’s network con-
figuration. It’s best to do this as part of the per-interface configuration; if you just
arrange to have some ethtool commands run at boot time, your configuration will
not properly cover cases in which the interfaces are restarted without a reboot of
the system.

On Red Hat and CentOS systems, you can include an ETHTOOL_OPTS= line in the
configuration file for the interface underneath /etc/sysconfig/network-scripts. The
ifup command passes the entire line as arguments to ethtool.

In Debian and Ubuntu, you can run ethtool commands directly from the config-
uration for a particular network in /etc/network/interfaces.

Linux TCP/IP options
Linux puts a representation of each tunable kernel variable into the /proc virtual
filesystem. See Tuning Linux kernel parameters starting on page 339 for general
information about the /proc mechanism.

The networking variables are under /proc/sys/net/ipv4 and /proc/sys/net/ipv6.
We formerly showed a complete list here, but there are too many to list these days.

The ipv4 directory includes a lot more parameters than does the ipv6 directory,
but that’s mostly because IP-version-independent protocols such as TCP and UDP
confine their parameters to the ipv4 directory. A prefix such as tcp_ or udp_ tells
you which protocol the parameter relates to.

The conf subdirectories within ipv4 and ipv6 contain parameters that are set per
interface. They include subdirectories all and default and a subdirectory for each
interface (including the loopback). Each subdirectory has the same set of files.

RHEL

	 Linux networking	 423

N
et

w
or

ki
ng

ubuntu$ ls -F /proc/sys/net/ipv4/conf/default
accept_local drop_gratuitous_arp proxy_arp
accept_redirects drop_unicast_in_l2_multicast proxy_arp_pvlan
accept_source_route force_igmp_version route_localnet
arp_accept forwarding rp_filter
arp_announce igmpv2_unsolicited_report_interval secure_redirects
arp_filter igmpv3_unsolicited_report_interval send_redirects
arp_ignore ignore_routes_with_linkdown shared_media
arp_notify log_martians src_valid_mark
bootp_relay mc_forwarding tag
disable_policy medium_id
disable_xfrm promote_secondaries

If you change a variable in the conf/enp0s5 subdirectory, for example, your change
applies to that interface only. If you change the value in the conf/all directory, you
might expect it to set the corresponding value for all existing interfaces, but this
is not what happens. Each variable has its own rules for accepting changes via all.
Some values are ORed with the current values, some are ANDed, and still others
are MAXed or MINed. As far as we are aware, there is no documentation for this
process except in the kernel source code, so the whole debacle is probably best
avoided. Just confine your modifications to individual interfaces.

If you change a variable in the conf/default directory, the new value propagates
to any interfaces that are later configured. On the other hand, it’s nice to keep the
defaults unmolested as reference information; they make a nice sanity check if you
want to undo other changes.

The /proc/sys/net/ipv4/neigh and /proc/sys/net/ipv6/neigh directories also con-
tain a subdirectory for each interface. The files in each subdirectory control ARP
table management and IPv6 neighbor discovery for that interface. Here is the list
of variables; the ones starting with gc (for garbage collection) determine how ARP
table entries are timed out and discarded.

ubuntu$ ls -F /proc/sys/net/ipv4/neigh/default
anycast_delay gc_interval locktime retrans_time
app_solicit gc_stale_time mcast_resolicit retrans_time_ms
base_reachable_time gc_thresh1 mcast_solicit ucast_solicit
base_reachable_time_ms gc_thresh2 proxy_delay unres_qlen
delay_first_probe_time gc_thresh3 proxy_qlen unres_qlen_bytes

To see the value of a variable, use cat. To set it, you can use echo redirected to the
proper filename, but the sysctl command (which is just a command interface to
the same variables) is often easier.

424	 Chapter 13	 TCP/IP Networking	

For example, the command

ubuntu$ cat /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts
0

shows that this variable’s value is 0, meaning that broadcast pings are not ignored.
To set it to 1 (and avoid falling prey to Smurf-type denial of service attacks), run

ubuntu$ sudo sh -c "echo 1 > icmp_echo_ignore_broadcasts" 19

from the /proc/sys/net directory or

ubuntu$ sysctl net.ipv4.icmp_echo_ignore_broadcasts=1

sysctl variable names are pathnames relative to /proc/sys. Dots are the traditional
separator, but sysctl also accepts slashes if you prefer them.

You are typically logged in over the same network you are tweaking as you adjust
these variables, so be careful! You can mess things up badly enough to require a
reboot from the console to recover, which might be inconvenient if the system
happens to be in Point Barrow, Alaska, and it’s January. Test-tune these variables
on your desktop system before you even think of tweaking a production machine.

To change any of these parameters permanently (or more accurately, to reset them
every time the system boots), add the appropriate variables to /etc/sysctl.conf, which
is read by the sysctl command at boot time. For example, the line

net.ipv4.ip_forward=0

in the /etc/sysctl.conf file turns off IP forwarding on this host.

Some of the options under /proc are better documented than others. Your best bet
is to look at the man page for the protocol in question in section 7 of the manuals.
For example, man 7 icmp documents six of the eight available options. (You must
have man pages for the Linux kernel installed to see man pages about protocols.)

You can also look at the ip-sysctl.txt file in the kernel source distribution for some
good comments. If you don’t have kernel source installed, just Google for ip-sysctl-txt
to reach the same document.

Security-related kernel variables
Table 13.8 shows Linux’s default behavior with regard to various touchy network
issues. For a brief description of the implications of these behaviors, see page
406. We recommend that you verify the values of these variables so that you do
not answer broadcast pings, do not listen to routing redirects, and do not accept
source-routed packets. These should be the defaults on current distributions ex-
cept for accept_redirects.

	 19.	 If you try this command in the form sudo echo 1 > icmp_echo_ignore_broadcasts, you just gener-
ate a “permission denied” message—your shell attempts to open the output file before it runs sudo.
You want the sudo to apply to both the echo command and the redirection. Ergo, you must create a
root subshell in which to execute the entire command.

	 FreeBSD networking	 425

N
et

w
or

ki
ng

Table 13.8	 Default security-related network behaviors in Linux

Feature Host Gateway Control file (in /proc/sys/net/ipv4)

IP forwarding off on ip_forward for the whole system
conf/interface/forwarding per interface a

ICMP redirects obeys ignores conf/interface/accept_redirects
Source routing off off conf/interface/accept_source_route
Broadcast ping ignores ignores icmp_echo_ignore_broadcasts

a.	 The interface can be either a specific interface name or all.

13.11	 FreeBSD networking
As a direct descendant of the BSD lineage, FreeBSD remains something of a refer-
ence implementation of TCP/IP. It lacks many of the elaborations that complicate
the Linux networking stack. From the standpoint of system administrators, Free-
BSD network configuration is simple and direct.

ifconfig: configure network interfaces
ifconfig enables or disables a network interface, sets its IP address and subnet mask,
and sets various other options and parameters. It is usually run at boot time with
command-line parameters taken from config files, but you can also run it by hand
to make changes on the fly. Be careful if you are making ifconfig changes and are
logged in remotely—many a sysadmin has been locked out this way and had to
drive in to fix things.

An ifconfig command most commonly has the form

ifconfig interface [family] address options ...

For example, the command

ifconfig em0 192.168.1.13/26 up

sets the IPv4 address and netmask associated with the interface em0 and readies
the interface for use.

interface identifies the hardware interface to which the command applies. The loop-
back interface is named lo0. The names of real interfaces vary according to their
hardware drivers. ifconfig -a lists the system’s network interfaces and summarizes
their current settings.

The family parameter tells ifconfig which network protocol (“address family”) you
want to configure. You can set up multiple protocols on an interface and use them
all simultaneously, but they must be configured separately. The main options here
are inet for IPv4 and inet6 for IPv6; inet is assumed if you omit the parameter.

426	 Chapter 13	 TCP/IP Networking	

The address parameter specifies the interface’s IP address. A hostname is also ac-
ceptable here, but the hostname must be resolvable to an IP address at boot time.
For a machine’s primary interface, this means that the hostname must appear in
the local hosts file, since other name resolution methods depend on the network
having been initialized.

The keyword up turns the interface on; down turns it off. When an ifconfig com-
mand assigns an IP address to an interface, as in the example above, the up param-
eter is implicit and need not be mentioned by name.

For subnetted networks, you can specify a CIDR-style netmask as shown in the
example above, or you can include a separate netmask argument. The mask can
be specified in dotted decimal notation or as a 4-byte hexadecimal number begin-
ning with 0x.

The broadcast option specifies the IP broadcast address for the interface, expressed
in either hex or dotted quad notation. The default broadcast address is one in which
the host part is set to all 1s. In the ifconfig example above, the autoconfigured
broadcast address is 192.168.1.61.

FreeBSD network hardware configuration
FreeBSD does not have a dedicated command analogous to Linux’s ethertool. In-
stead, ifconfig passes configuration information down to the network interface
driver through the media and mediaopt clauses. The legal values for these options
vary with the hardware. To find the list, read the man page for the specific driver.

For example, an interface named em0 uses the “em” driver. man 4 em shows that
this is the driver for certain types of Intel-based wired Ethernet hardware. To force
this interface to gigabit mode using four-pair cabling (the typical configuration),
the command would be

ifconfig em0 media 1000baseT mediaopt full-duplex

You can include these media options along with other configuration clauses for
the interface.

FreeBSD boot-time network configuration
FreeBSD’s static configuration system is mercifully simple. All the network param-
eters live in /etc/rc.conf, along with other system-wide settings. Here’s a typical
configuration:

hostname="freebeer"
ifconfig_em0="inet 192.168.0.48 netmask 255.255.255.0"
defaultrouter="192.168.0.1"

Each network interface has its own ifconfig_* variable. The value of the variable is
simply passed to ifconfig as a series of command-line arguments. The defaultrouter
clause identifies a default network gateway.

	 FreeBSD networking	 427

N
et

w
or

ki
ng

To obtain the system’s networking configuration from a DHCP server, use the fol-
lowing token:

ifconfig_em0="DHCP"

This form is magic and is not passed on to ifconfig, which wouldn’t know how to
interpret a DHCP argument. Instead, it makes the startup scripts run the command
dhclient em0. To modify the operational parameters of the DHCP system (timeouts
and such), set them in /etc/dhclient.conf. The default version of this file is empty
except for comments, and you shouldn’t normally need to modify it.

If you modify the network configuration, you can run service netif restart to repeat
the initial configuration procedure. If you changed the defaultrouter parameter,
also run service routing restart.

FreeBSD TCP/IP configuration
FreeBSD’s kernel-level networking options are controlled similarly to those of Linux
(see page 422), except that there’s no /proc hierarchy you can go rooting around
in. Instead, run sysctl -ad to list the available parameters and their one-line de-
scriptions. There are a lot of them (5,495 on FreeBSD 11), so you need to grep for
likely suspects such as “redirect” or “^net”.

Table 13.9 lists a selection of security-related parameters.

Table 13.9	 Default security-related network parameters in FreeBSD

Parameter Dfl What it does when set to 1

net.inet.ip.forwarding 0 Acts as a router for IPv4 packets
net.inet6.ip6.forwarding 0 Acts as a router for IPv6 packets
net.inet.tcp.blackhole 0 Disables “unreachable” messages for closed ports
net.inet.udp.blackhole 0 Does not send RST packets for closed TCP ports
net.inet.icmp.drop_redirect 0 Ignores IPv4 ICMP redirects
net.inet6.icmp6.rediraccept 1 Accepts (obeys) IPv6 ICMP redirects
net.inet.ip.accept_sourceroute 0 Allows source-routed IPv4 packets

The blackhole options are potentially useful on systems that you want to shield
from port scanners, but they do change the standard behaviors of UDP and TCP.
You might also want to disable acceptance of ICMP redirects for both IPv4 and IPv6.

You can set parameters in the running kernel with sysctl. For example,

$ sudo sysctl net.inet.icmp.drop_redirect=1

To have the parameter set at boot time, list it in /etc/sysctl.conf.

net.inet.icmp.drop_redirect=1

428	 Chapter 13	 TCP/IP Networking	

13.12	 Network troubleshooting
Several good tools are available for debugging a network at the TCP/IP layer. Most
give low-level information, so you must understand the main ideas of TCP/IP and
routing to use them.

In this section, we start with some general troubleshooting strategy. We then cover
several essential tools, including ping, traceroute, tcpdump, and Wireshark. We
don’t discuss the arp, ndp, ss, or netstat commands in this chapter, though they,
too, are useful debugging tools.

Before you attack your network, consider these principles:

•	 Make one change at a time. Test each change to make sure that it had the
effect you intended. Back out any changes that have an undesired effect.

•	 Document the situation as it was before you got involved, and document
every change you make along the way.

•	 Start at one end of a system or network and work through the system’s
critical components until you reach the problem. For example, you might
start by looking at the network configuration on a client, work your way
up to the physical connections, investigate the network hardware, and fi-
nally, check the server’s physical connections and software configuration.

•	 Or, use the layers of the network to negotiate the problem. Start at the “top”
or “bottom” and work your way through the protocol stack.

This last point deserves a bit more discussion. As described on page 378, the ar-
chitecture of TCP/IP defines several layers of abstraction at which components
of the network can function. For example, HTTP depends on TCP, TCP depends
on IP, IP depends on the Ethernet protocol, and the Ethernet protocol depends
on the integrity of the network cable. You can dramatically reduce the amount of
time spent debugging a problem if you first figure out which layer is misbehaving.

Ask yourself questions like these as you work up or down the stack:

•	 Do you have physical connectivity and a link light?
•	 Is your interface configured properly?
•	 Do your ARP tables show other hosts?
•	 Is there a firewall on your local machine?
•	 Is there a firewall anywhere between you and the destination?
•	 If firewalls are involved, do they pass ICMP ping packets and responses?
•	 Can you ping the localhost address (127.0.0.1)?
•	 Can you ping other local hosts by IP address?

	 Network troubleshooting	 429

N
et

w
or

ki
ng

•	 Is DNS working properly?20

•	 Can you ping other local hosts by hostname?
•	 Can you ping hosts on another network?
•	 Do high-level services such as web and SSH servers work?
•	 Did you really check the firewalls?

Once you’ve identified where the problem lies and have a fix in mind, step back to
consider the effect that your subsequent tests and prospective fixes will have on
other services and hosts.

ping: check to see if a host is alive
The ping command and its IPv6 twin ping6 are embarrassingly simple, but in
many situations they are the only commands you need for network debugging.
They send an ICMP ECHO_REQUEST packet to a target host and wait to see if
the host answers back.

You can use ping to check the status of individual hosts and to test segments of the
network. Routing tables, physical networks, and gateways are all involved in pro-
cessing a ping, so the network must be more or less working for ping to succeed.
If ping doesn’t work, you can be pretty sure that nothing more sophisticated will
work either.

However, this rule does not apply to networks or hosts that block ICMP echo re-
quests with a firewall.21 Make sure that a firewall isn’t interfering with your debug-
ging before you conclude that the target host is ignoring a ping. You might consider
disabling a meddlesome firewall for a short period of time to facilitate debugging.

If your network is in bad shape, chances are that DNS is not working. Simplify the
situation by using numeric IP addresses when pinging, and use ping’s -n option to
prevent ping from attempting to do reverse lookups on IP addresses—these look-
ups also trigger DNS requests.

Be aware of the firewall issue if you’re using ping to check your Internet connectiv-
ity, too. Some well-known sites answer ping packets and others don’t. We’ve found
google.com to be a consistent responder.

Most versions of ping run in an infinite loop unless you supply a packet count ar-
gument. Once you’ve had your fill of pinging, type the interrupt character (usually
<Control-C>) to get out.

	 20.	 If a machine hangs at boot time, boots very slowly, or hangs on inbound SSH connections, DNS
should be a prime suspect. Most systems use an approach to name resolution that’s configurable in
/etc/nsswitch.conf. If the system runs nscd, the name service caching daemon, that component de-
serves some suspicion as well. If nscd crashes or is misconfigured, name lookups are affected. Use the
getent command to check whether your resolver and name servers are working properly (e.g., getent
hosts google.com).

	 21.	 Note that recent versions of Windows block ping requests by default.

http://google.com
http://google.com

430	 Chapter 13	 TCP/IP Networking	

Here’s an example:

linux$ ping beast
PING beast (10.1.1.46): 56 bytes of data.
64 bytes from beast (10.1.1.46): icmp_seq=0 ttl=54 time=48.3ms
64 bytes from beast (10.1.1.46): icmp_seq=1 ttl=54 time=46.4ms
64 bytes from beast (10.1.1.46): icmp_seq=2 ttl=54 time=88.7ms
^C
--- beast ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2026ms
rtt min/avg/max/mdev = 46.490/61.202/88.731/19.481 ms

The output for beast shows the host’s IP address, the ICMP sequence number of each
response packet, and the round trip travel time. The most obvious thing that the
output above tells you is that the server beast is alive and connected to the network.

The ICMP sequence number is a particularly valuable piece of information. Discon-
tinuities in the sequence indicate dropped packets. They’re normally accompanied
by a message for each missing packet.

Despite the fact that IP does not guarantee the delivery of packets, a healthy net-
work should drop very few of them. Lost-packet problems are important to track
down because they tend to be masked by higher-level protocols. The network may
appear to function correctly, but it will be slower than it ought to be, not only be-
cause of the retransmitted packets but also because of the protocol overhead needed
to detect and manage them.

To track down the cause of disappearing packets, first run traceroute (see the next
section) to discover the route that packets are taking to the target host. Then ping
the intermediate gateways in sequence to discover which link is dropping packets.
To pin down the problem, you need to send a fair number of packets. The fault gen-
erally lies on the link between the last gateway you can ping without loss of packets
and the gateway beyond that.

The round trip time reported by ping can afford insight into the overall performance
of a path through a network. Moderate variations in round trip time do not usu-
ally indicate problems. Packets may occasionally be delayed by tens or hundreds
of milliseconds for no apparent reason; that’s just the way IP works. You should
see a fairly consistent round trip time for the majority of packets, with occasional
lapses. Many of today’s routers implement rate-limited or low-priority responses
to ICMP packets, which means that a router may defer responding to your ping if
it is already dealing with a lot of other traffic.

The ping program can send echo request packets of any size, so by using a packet
larger than the MTU of the network (1,500 bytes for Ethernet), you can force frag-
mentation. This practice helps you identify media errors or other low-level issues
such as problems with a congested network or VPN. You specify the desired packet
size in bytes with the -s flag:

$ ping -s 1500 cuinfo.cornell.edu

http://cuinfo.cornell.edu

	 Network troubleshooting	 431

N
et

w
or

ki
ng

Note that even a simple command like ping can have dramatic effects. In 1998, the
so-called Ping of Death attack crashed large numbers of UNIX and Windows sys-
tems. It was launched simply by transmission of an overly large ping packet. When
the fragmented packet was reassembled, it filled the receiver’s memory buffer and
crashed the machine. The Ping of Death issue has long since been fixed, but keep
in mind several other caveats regarding ping.

First, it’s hard to distinguish the failure of a network from the failure of a server
with only the ping command. In an environment where ping tests normally work,
a failed ping just tells you that something is wrong.

It’s also worth noting that a successful ping does not guarantee much about the tar-
get machine’s state. Echo request packets are handled within the IP protocol stack
and do not require a server process to be running on the probed host. A response
guarantees only that a machine is powered on and has not experienced a kernel
panic. You’ll need higher-level methods to verify the availability of individual ser-
vices such as HTTP and DNS.

traceroute: trace IP packets
traceroute, originally written by Van Jacobson, uncovers the sequence of gateways
through which an IP packet travels to reach its destination. All modern operating
systems come with some version of traceroute.22 The syntax is simply

traceroute hostname

Most of the variety of options are not important in daily use. As usual, the hostname
can be specified as either a DNS name or an IP address. The output is simply a list
of hosts, starting with the first gateway and ending at the destination. For example,
a traceroute from our host jaguar to our host nubark produces the following output:

$ traceroute nubark
traceroute to nubark (192.168.2.10), 30 hops max, 38 byte packets
 1 lab-gw (172.16.8.254) 0.840 ms 0.693 ms 0.671 ms
 2 dmz-gw (192.168.1.254) 4.642 ms 4.582 ms 4.674 ms
 3 nubark (192.168.2.10) 7.959 ms 5.949 ms 5.908 ms

From this output we can tell that jaguar is three hops away from nubark, and we can
see which gateways are involved in the connection. The round trip time for each
gateway is also shown—three samples for each hop are measured and displayed. A
typical traceroute between Internet hosts often includes more than 15 hops, even
if the two sites are just across town.

traceroute works by setting the time-to-live field (TTL, actually “hop count to live”)
of an outbound packet to an artificially low number. As packets arrive at a gateway,
their TTL is decreased. When a gateway decreases the TTL to 0, it discards the
packet and sends an ICMP “time exceeded” message back to the originating host.

	 22.	 Even Windows has it, but the command is spelled tracert (extra history points if you can guess why).

432	 Chapter 13	 TCP/IP Networking	

The first three traceroute packets above have their TTL set to 1. The first gateway to
see such a packet (lab-gw in this case) determines that the TTL has been exceeded
and notifies jaguar of the dropped packet by sending back an ICMP message. The
sender’s IP address in the header of the error packet identifies the gateway, and
traceroute looks up this address in DNS to find the gateway’s hostname.

To identify the second-hop gateway, traceroute sends out a second round of packets
with TTL fields set to 2. The first gateway routes the packets and decreases their TTL
by 1. At the second gateway, the packets are then dropped and ICMP error messages
are generated as before. This process continues until the TTL is equal to the number
of hops to the destination host and the packets reach their destination successfully.

Most routers send their ICMP messages from the interface “closest” to the destina-
tion. If you run traceroute backward from the destination host, you may see dif-
ferent IP addresses being used to identify the same set of routers. You might also
discover that packets flowing in the reverse direction take a completely different
path, a configuration known as asymmetric routing.

Since traceroute sends three packets for each value of the TTL field, you may some-
times observe an interesting artifact. If an intervening gateway multiplexes traffic
across several routes, the packets might be returned by different hosts; in this case,
traceroute simply prints them all.

Let’s look at a more interesting example from a host in Switzerland to caida.org at
the San Diego Supercomputer Center:23

linux$ traceroute caida.org
traceroute to caida.org (192.172.226.78), 30 hops max, 46 byte packets
 1 gw-oetiker.init7.net (213.144.138.193) 1.122 ms 0.182 ms 0.170 ms
 2 r1zur1.core.init7.net (77.109.128.209) 0.527 ms 0.204 ms 0.202 ms
 3 r1fra1.core.init7.net (77.109.128.250) 18.27 ms 6.99 ms 16.59 ms
 4 r1ams1.core.init7.net (77.109.128.154) 19.54 ms 21.85 ms 13.51 ms
 5 r1lon1.core.init7.net (77.109.128.150) 19.16 ms 21.15 ms 24.86 ms
 6 r1lax1.ce.init7.net (82.197.168.69) 158.23 ms 158.22 ms 158.27 ms
 7 cenic.laap.net (198.32.146.32) 158.34 ms 158.30 ms 158.24 ms
 8 dc-lax-core2-ge.cenic.net (137.164.46.119) 158.60 ms * 158.71 ms
 9 dc-tus-agg1-core2-10ge.cenic.net (137.164.46.7) 159 ms 159 ms 159 ms
10 dc-sdsc2-tus-dc-ge.cenic.net (137.164.24.174) 161 ms 161 ms 161 ms
11 pinot.sdsc.edu (198.17.46.56) 161.559 ms 161.381 ms 161.439 ms
12 rommie.caida.org (192.172.226.78) 161.442 ms 161.445 ms 161.532 ms

This output shows that packets travel inside Init Seven’s network for a long time.
Sometimes we can guess the location of the gateways from their names. Init Seven’s
core stretches all the way from Zurich (zur) to Frankfurt (fra), Amsterdam (ams),
London (lon), and finally, Los Angeles (lax). Here, the traffic transfers to cenic.net,
which delivers the packets to the caida.org host within the network of the San Di-
ego Supercomputer Center (sdsc) in La Jolla, CA.

	 23.	 We removed a few fractions of milliseconds from the longer lines to keep them from folding.

See page 520 for more
information about
reverse DNS lookups.

http://caida.org
http://caida.org
http://caida.org
http://gw-oetiker.init7.net
http://r1zur1.core.init7.net
http://r1fra1.core.init7.net
http://r1ams1.core.init7.net
http://r1lon1.core.init7.net
http://r1lax1.ce.init7.net
http://cenic.laap.net
http://dc-lax-core2-ge.cenic.net
http://10ge.cenic.net
http://dc-sdsc2-tus-dc-ge.cenic.net
http://pinot.sdsc.edu
http://rommie.caida.org
http://cenic.net
http://caida.org

	 Network troubleshooting	 433

N
et

w
or

ki
ng

At hop 8, we see a star in place of one of the round trip times. This notation means
that no response (error packet) was received in response to the probe. In this case,
the cause is probably congestion, but that is not the only possibility. traceroute re-
lies on low-priority ICMP packets, which many routers are smart enough to drop
in preference to “real” traffic. A few stars shouldn’t send you into a panic.

If you see stars in all the time fields for a given gateway, no “time exceeded” messages
came back from that machine. Perhaps the gateway is simply down. Sometimes, a
gateway or firewall is configured to silently discard packets with expired TTLs. In
this case, you can still see through the silent host to the gateways beyond. Another
possibility is that the gateway’s error packets are slow to return and that traceroute
has stopped waiting for them by the time they arrive.

Some firewalls block ICMP “time exceeded” messages entirely. If such a firewall
lies along the path, you won’t get information about any of the gateways beyond it.
However, you can still determine the total number of hops to the destination be-
cause the probe packets eventually get all the way there.

Also, some firewalls may block the outbound UDP datagrams that traceroute
sends to trigger the ICMP responses. This problem causes traceroute to report no
useful information at all. If you find that your own firewall is preventing you from
running traceroute, make sure the firewall has been configured to pass UDP ports
33434–33534 as well as ICMP ECHO (type 8) packets.

A slow link does not necessarily indicate a malfunction. Some physical networks
have a naturally high latency; UMTS/EDGE/GPRS wireless networks are a good
example. Sluggishness can also be a sign of high load on the receiving network. In-
consistent round trip times would support such a hypothesis.

You may occasionally see the notation !N instead of a star or round trip time. The
notation indicates that the current gateway sent back a “network unreachable” error,
meaning that it doesn’t know how to route your packet. Other possibilities include
!H for “host unreachable” and !P for “protocol unreachable.” A gateway that returns
any of these error messages is usually the last hop you can get to. That host often
has a routing problem (possibly caused by a broken network link): either its static
routes are wrong or dynamic protocols have failed to propagate a usable route to
the destination.

If traceroute doesn’t seem to be working for you or is working slowly, it may be
timing out while trying to resolve the hostnames of gateways through DNS. If DNS
is broken on the host you are tracing from, use traceroute -n to request numer-
ic output. This option disables hostname lookups; it may be the only way to get
traceroute to function on a crippled network.

traceroute needs root privileges to operate. To be available to normal users, it must
be installed setuid root. Several Linux distributions include the traceroute com-
mand but turn off the setuid bit. Depending on your environment and needs, you

434	 Chapter 13	 TCP/IP Networking	

can either turn the setuid bit back on or give interested users access to the com-
mand through sudo.

Recent years have seen the introduction of several new traceroute-like utilities that
can bypass ICMP-blocking firewalls. See the PERTKB Wiki for an overview of these
tools at goo.gl/fXpMeu. We especially like mtr, which has a top-like interface and
shows a sort of live traceroute. Neat!

When debugging routing issues, look at your site from the perspective of the out-
side world. Several web-based route tracing services let you do this sort of inverse
traceroute right from a browser window. Thomas Kernen maintains a list of these
services at traceroute.org.

Packet sniffers
tcpdump and Wireshark belong to a class of tools known as packet sniffers. They
listen to network traffic and record or print packets that meet criteria of your choice.
For example, you can inspect all packets sent to or from a particular host, or TCP
packets related to one particular network connection.

Packet sniffers are useful both for solving problems that you know about and for
discovering entirely new problems. It’s a good idea to take an occasional sniff of
your network to make sure the traffic is in order.

Packet sniffers need to be able to intercept traffic that the local machine would not
normally receive (or at least, pay attention to), so the underlying network hardware
must allow access to every packet. Broadcast technologies such as Ethernet work
fine, as do most other modern local area networks.

Since packet sniffers need to see as much of the raw network traffic as possible, they
can be thwarted by network switches, which by design try to limit the propagation
of “unnecessary” packets. However, it can still be informative to try out a sniffer on
a switched network. You may discover problems related to broadcast or multicast
packets. Depending on your switch vendor, you may be surprised at how much
traffic you can see. Even if you don’t see other systems’ network traffic, a sniffer
can be helpful when you are tracking down problems that involve the local host.

In addition to having access to all network packets, the interface hardware must
transport those packets up to the software layer. Packet addresses are normally
checked in hardware, and only broadcast/multicast packets and those addressed
to the local host are relayed to the kernel. In “promiscuous mode,” an interface lets
the kernel read all packets on the network, even the ones intended for other hosts.

Packet sniffers understand many of the packet formats used by standard network
services, and they can print these packets in human-readable form. This capability
makes it easier to track the flow of a conversation between two programs. Some
sniffers print the ASCII contents of a packet in addition to the packet header and
so are useful for investigating high-level protocols.

See page 465 for more
information about
network switches.

http://goo.gl/fXpMeu
http://traceroute.org

	 Network troubleshooting	 435

N
et

w
or

ki
ng

Since some protocols send information (and even passwords) across the network
as cleartext, take care not to invade the privacy of your users. On the other hand,
nothing quite dramatizes the need for cryptographic security like the sight of a
plaintext password captured in a network packet.

Sniffers read data from a raw network device, so they must run as root. Although
this root limitation serves to decrease the chance that normal users will listen in
on your network traffic, it is really not much of a barrier. Some sites choose to re-
move sniffer programs from most hosts to reduce the chance of abuse. If nothing
else, you should check your systems’ interfaces to be sure they are not running in
promiscuous mode without your knowledge or consent.

tcpdump: command-line packet sniffer
tcpdump, yet another amazing network tool by Van Jacobson, runs on most sys-
tems. tcpdump has long been the industry-standard sniffer, and most other net-
work analysis tools read and write trace files in tcpdump format, also known as
libpcap format.

By default, tcpdump tunes in on the first network interface it comes across. If it
chooses the wrong interface, you can force an interface with the -i flag. If DNS is
broken or you just don’t want tcpdump doing name lookups, use the -n option. This
option is important because slow DNS service can cause the filter to start dropping
packets before they can be dealt with by tcpdump.

The -v flag increases the information you see about packets, and -vv gives you even
more data. Finally, tcpdump can store packets to a file with the -w flag and can read
them back in with the -r flag.

Note that tcpdump -w saves only packet headers by default. This default makes
for small dumps, but the most helpful and relevant information may be missing.
So, unless you are sure you need only headers, use the -s option with a value on
the order of 1560 (actual values are MTU-dependent) to capture whole packets
for later inspection.

As an example, the following truncated output comes from the machine named
nubark. The filter specification host bull limits the display of packets to those that
directly involve the machine bull, either as source or as destination.

$ sudo tcpdump host bull
12:35:23.519339 bull.41537 > nubark.domain: A? atrust.com. (28) (DF)
12:35:23.519961 nubark.domain > bull.41537: A 66.77.122.161 (112) (DF)

The first packet shows bull sending a DNS lookup request about atrust.com to nubark.
The response is the IP address of the machine associated with that name, which is
66.77.122.161. Note the time stamp on the left and tcpdump’s understanding of
the application-layer protocol (in this case, DNS). The port number on bull is ar-
bitrary and is shown numerically (41537), but since the server port number (53) is
well known, tcpdump shows its symbolic name, domain.

http://atrust.com
http://atrust.com

436	 Chapter 13	 TCP/IP Networking	

Packet sniffers can produce an overwhelming amount of information—overwhelm-
ing not only for you but also for the underlying operating system. To avoid this
problem on busy networks, tcpdump lets you specify complex filters. For example,
the following filter collects only incoming web traffic from one subnet:

$ sudo tcpdump src net 192.168.1.0/24 and dst port 80

The tcpdump man page contains several good examples of advanced filtering along
with a complete listing of primitives.

Wireshark and TShark: tcpdump on steroids
tcpdump has been around since approximately the dawn of time, but a newer open
source package called Wireshark (formerly known as Ethereal) has been gaining
ground rapidly. Wireshark is under active development and incorporates more
functionality than most commercial sniffing products. It’s an incredibly powerful
analysis tool and should be included in every networking expert’s tool kit. It’s also
an invaluable learning aid.

Wireshark includes both a GUI interface (wireshark) and a command-line inter-
face (tshark). It’s available as a core package on most operating systems. If it’s not
in your system’s core repository, check wireshark.org, which hosts the source code
and a variety of precompiled binaries.

Wireshark can read and write trace files in the formats used by many other packet
sniffers. Another handy feature is that you can click on any packet in a TCP con-
versation and ask Wireshark to reassemble (splice together) the payload data of all
the packets in the stream. This feature is useful if you want to examine the data
transferred during a complete TCP exchange, such as a connection on which an
email message is transmitted across the network.

Wireshark’s capture filters are functionally identical to tcpdump’s since Wireshark
uses the same underlying libpcap library. Watch out, though—one important gotcha
with Wireshark is the added feature of “display filters,” which affect what you see
rather than what’s actually captured by the sniffer. The display filter syntax is more
powerful than the libpcap syntax supported at capture time. The display filters do
look somewhat similar, but they are not the same.

Wireshark has built-in dissectors for a wide variety of network protocols, including
many used to implement SANs. It breaks packets into a structured tree of informa-
tion in which every bit of the packet is described in plain English.

A note of caution regarding Wireshark: although it has lots of neat features, it has also
required many security updates over the years. Run a current copy, and do not leave
it running indefinitely on sensitive machines; it might be a potential route of attack.

See page 792 for
more information
about SANs.

http://wireshark.org

	 Network monitoring	 437

N
et

w
or

ki
ng

13.13	 Network monitoring
Chapter 28, Monitoring, describes several general-purpose platforms that can
help structure the ongoing oversight of your systems and networks. These systems
accept data from a variety of sources, summarize it in a way that illuminates ongo-
ing trends, and alert administrators to problems that require immediate attention.

The network is a key component of any computing environment, so it’s often one
of the first parts of the infrastructure to benefit from systematic monitoring. If
you don’t feel quite ready to commit to a single monitoring platform for all your
administrative needs, the packages outlined in this section are good options for
small-scale monitoring that’s focused on the network.

SmokePing: gather ping statistics over time
Even healthy networks drop an occasional packet. On the other hand, networks
should not drop packets regularly, even at a low rate, because the impact on users
can be disproportionately severe. Because high-level protocols often function even
in the presence of packet loss, you might never notice dropped packets unless you’re
actively monitoring for them.

SmokePing, an open source tool by Tobias Oetiker, can help you develop a more
comprehensive picture of your networks’ behavior. SmokePing sends several ping
packets to a target host at regular intervals. It shows the history of each monitored
link through a web front end and can send alarms when things go amiss. You can
get a copy from oss.oetiker.ch/smokeping.

Exhibit D on the next page shows a SmokePing graph. The vertical axis is the round
trip time of pings, and the horizontal axis is time (weeks). The black line from
which the gray spikes stick up indicates the median round trip time. The spikes
themselves are the transit times of individual packets. Since the gray in this graph
appears only above the median line, the great majority of packets must be traveling
at close to the median speed, with just a few being delayed. This is a typical finding.

The stair-stepped shape of the median line indicates that the baseline transit time
to this destination has changed several times during the monitoring period. The
most likely hypotheses to explain this observation are either that the host is reach-
able by several routes or that it is actually a collection of several hosts that have the
same DNS name but multiple IP addresses.

iPerf: track network performance
Ping-based tools are helpful for verifying reachability, but they’re not really pow-
erful enough to analyze and track network performance. Enter iPerf. The latest
version, iPerf3, has an extensive set of features that administrators can use to fine
tune network settings for maximum performance.

http://oss.oetiker.ch/smokeping

438	 Chapter 13	 TCP/IP Networking	

Exhibit D	 Sample SmokePing graph

Here, we look only at iPerf ’s throughput monitoring. At the most basic level, iPerf
opens a connection (TCP or UDP) between two servers, passes data between them,
and records how long the process took.

Once you’ve installed iperf on both machines, start the server side.

$ iperf -s

Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)

Then, on the machine you want to test from, transfer some data as shown here.

$ iperf -c 10.211.55.11

Client connecting to 10.211.55.11, TCP port 5001
TCP window size: 22.5 KByte (default)

[3] local 10.211.55.10 port 53862 connected with 10.211.55.11 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 4.13 GBytes 3.55 Gbits/sec

iPerf returns great instantaneous data for tracking bandwidth. It’s particularly
helpful for assessing the effect of changes to kernel parameters that control the
network stack, such as changes to the maximum transfer unit (MTU); see page
382 for more details.

Cacti: collect and graph data
Cacti, available from cacti.net, offers several attractive features. It uses a separate
package, RRDtool, as its back end, in which it stores monitoring data in the form
of zero-maintenance, statically sized databases.

http://cacti.net

	 Network monitoring	 439

N
et

w
or

ki
ng

Cacti stores only enough data to create the graphs you want. For example, Cacti
could store one sample every minute for a day, one sample every hour for a week,
and one sample every week for a year. This consolidation scheme lets you maintain
important historical context without having to store unimportant details or spend
time on database administration.

Cacti can record and graph any SNMP variable (see page 1063), as well as many
other performance metrics. You’re free to collect whatever data you want. When
combined with the NET-SNMP agent, Cacti generates a historical perspective on
almost any system or network resource.

Exhibit E shows some examples of graphs created by Cacti. These graphs show the
load average on a device over a period of multiple weeks along with a day’s traffic
on a network interface.

Exhibit E	 Examples of Cacti graphs

Cacti sports easy web-based configuration as well as all the other built-in benefits of
RRDtool, such as low maintenance and beautiful graphing. See the RRDtool home
page at rrdtool.org for links to the current versions of RRDtool and Cacti, as well
as dozens of other monitoring tools.

http://rrdtool.org

440	 Chapter 13	 TCP/IP Networking	

13.14	 Firewalls and NAT
We do not recommend the use of Linux, UNIX, or Windows systems as firewalls
because of the insecurity inherent in running a full-fledged, general-purpose oper-
ating system.24 However, all operating systems have firewall features, and a hardened
system is a workable substitute for organizations that don’t have the budget for a
high-dollar firewall appliance. Likewise, a Linux or UNIX firewall is a fine option
for a security-savvy home user with a penchant for tinkering.

If you are set on using a general-purpose computer as a firewall, make sure that it’s
up to date with respect to security configuration and patches. A firewall machine
is an excellent place to put into practice all the recommendations found in Chap-
ter 27, Security. (The section that starts on page 1027 discusses packet-filtering
firewalls in general. If you are not familiar with the basic concept of a firewall, it
would probably be wise to read that section before continuing.)

Microsoft has largely succeeded in convincing the world that every computer needs
its own built-in firewall. However, that’s not really true. In fact, machine-specific
firewalls can lead to no end of inconsistent behavior and mysterious network prob-
lems if they are not managed in synchrony with site-wide standards.

Two main schools of thought deal with the issue of machine-specific firewalls. The
first school considers them superfluous. According to this view, firewalls belong on
gateway routers, where they can protect an entire network through the application
of one consistent (and consistently applied) set of rules.

The second school considers machine-specific firewalls an important component
of a “defense in depth” security plan. Although gateway firewalls are theoretically
sufficient to control network traffic, they can be compromised, routed around, or
administratively misconfigured. Therefore, it’s prudent to implement the same net-
work traffic restrictions through multiple, redundant firewall systems.

If you do choose to implement machine-specific firewalls, you need a system for
deploying them in a consistent and easily updatable way. The configuration man-
agement systems described in Chapter 23 are excellent candidates for this task.
Don’t rely on manual configuration; it’s just too vulnerable to entropy.

Linux iptables: rules, chains, and tables
Version 2.4 of the Linux kernel introduced an all-new packet-handling engine, called
Netfilter, along with a command-line tool, iptables, to manage it.25

	 24.	 That said, many consumer-oriented networking devices, such as Linksys’s router products, use Linux
and iptables at their core.

	 25.	 An even newer system, nftables, has been available since kernel version 3.13 from 2014. It’s an elabo-
ration of the Netfilter system that’s configured with the nft command rather than the iptables com-
mand. We don’t discuss it in this book, but it’s worth evaluating at sites that run current kernels.

	 Firewalls and NAT	 441

N
et

w
or

ki
ng

iptables configuration can be rather fiddly. Debian and Ubuntu include a simple
front end, ufw, that facilitates common operations and configurations. It’s worth
checking out if your needs don’t stray far from the mainstream.

iptables applies ordered “chains” of rules to network packets. Sets of chains make
up “tables” and are used for handling specific kinds of traffic.

For example, the default iptables table is named “filter”. Chains of rules in this table
are used for packet-filtering network traffic. The filter table contains three default
chains: FORWARD, INPUT, and OUTPUT. Each packet handled by the kernel is
passed through exactly one of these chains.

Rules in the FORWARD chain are applied to all packets that arrive on one network
interface and need to be forwarded to another. Rules in the INPUT and OUTPUT
chains are applied to traffic addressed to or originating from the local host, respec-
tively. These three standard chains are usually all you need for firewalling between
two network interfaces. If necessary, you can define a custom configuration to sup-
port more complex accounting or routing scenarios.

In addition to the filter table, iptables includes the “nat” and “mangle” tables. The
nat table contains chains of rules that control Network Address Translation (here,

“nat” is the name of the iptables table and “NAT” is the name of the generic address
translation scheme). The section Private addresses and network address translation
(NAT) on page 392 discusses NAT, and an example of the nat table in action is
shown on page 445. Later in this section, we use the nat table’s PREROUTING
chain for antispoofing packet filtering.

The mangle table contains chains that modify or alter the contents of network pack-
ets outside the context of NAT and packet filtering. Although the mangle table is
handy for special packet handling, such as resetting IP time-to-live values, it is not
typically used in most production environments. We discuss only the filter and nat
tables in this section, leaving the mangle table to the adventurous.

iptables rule targets
Each rule that makes up a chain has a “target” clause that determines what to do
with matching packets. When a packet matches a rule, its fate is in most cases sealed;
no additional rules are checked. Although many targets are defined internally to
iptables, it is possible to specify another chain as a rule’s target.

The targets available to rules in the filter table are ACCEPT, DROP, REJECT, LOG,
ULOG, REDIRECT, RETURN, MIRROR, and QUEUE. When a rule results in
an ACCEPT, matching packets are allowed to proceed on their way. DROP and
REJECT both drop their packets; DROP is silent, and REJECT returns an ICMP
error message. LOG gives you a simple way to track packets as they match rules,
and ULOG expands logging.

REDIRECT shunts packets to a proxy instead of letting them go on their merry
way. For example, you might use this feature to force all your site’s web traffic to

442	 Chapter 13	 TCP/IP Networking	

go through a web cache such as Squid. RETURN terminates user-defined chains
and is analogous to the return statement in a subroutine call. The MIRROR target
swaps the IP source and destination addresses before sending the packet. Finally,
QUEUE hands packets to local user programs through a kernel module.

iptables firewall setup
Before you can use iptables as a firewall, you must enable IP forwarding and make
sure that various iptables modules have been loaded into the kernel. For more in-
formation on enabling IP forwarding, see Linux TCP/IP options on page 422 or
Security-related kernel variables on page 424. Packages that install iptables gen-
erally include startup scripts to achieve this enabling and loading.

A Linux firewall is usually implemented as a series of iptables commands con-
tained in an rc startup script. Individual iptables commands usually take one of
the following forms:

iptables -F chain-name
iptables -P chain-name target
iptables -A chain-name -i interface -j target

The first form (-F) flushes all prior rules from the chain. The second form (-P) sets
a default policy (aka target) for the chain. We recommend that you use DROP for
the default chain target. The third form (-A) appends the current specification to
the chain. Unless you specify a table with the -t argument, your commands apply
to chains in the filter table. The -i parameter applies the rule to the named interface,
and -j identifies the target. iptables accepts many other clauses, some of which are
shown in Table 13.10.

Table 13.10	 Command-line flags for iptables filters

Clause Meaning or possible values

-p proto Matches by protocol: tcp, udp, or icmp
-s source-ip Matches host or network source IP address (CIDR notation is OK)
-d dest-ip Matches host or network destination address
- - sport port# Matches by source port (note the double dashes)
- - dport port# Matches by destination port (note the double dashes)
- - icmp-type type Matches by ICMP type code (note the double dashes)
! Negates a clause
-t table Specifies the table to which a command applies (default is filter)

A complete example
Below, we break apart a complete example. We assume that the eth1 interface goes
to the Internet and that the eth0 interface goes to an internal network. The eth1 IP

	 Firewalls and NAT	 443

N
et

w
or

ki
ng

address is 128.138.101.4, the eth0 IP address is 10.1.1.1, and both interfaces have
a netmask of 255.255.255.0. This example uses stateless packet filtering to protect
the web server with IP address 10.1.1.2, which is the standard method of protect-
ing Internet servers. Later in the example, we show how to use stateful filtering to
protect desktop users.

Our first set of rules initializes the filter table. First, all chains in the table are flushed,
then the INPUT and FORWARD chains’ default target is set to DROP. As with any
other network firewall, the most secure strategy is to drop any packets you have
not explicitly allowed.

iptables -F
iptables -P INPUT DROP
iptables -P FORWARD DROP

Since rules are evaluated in order, we put our busiest rules at the front.26 The first rule
allows all connections through the firewall that originate from within the trusted
net. The next three rules in the FORWARD chain allow connections through the
firewall to network services on 10.1.1.2. Specifically, we allow SSH (port 22), HTTP
(port 80), and HTTPS (port 443) through to our web server.

iptables -A FORWARD -i eth0 -p ANY -j ACCEPT
iptables -A FORWARD -d 10.1.1.2 -p tcp --dport 22 -j ACCEPT
iptables -A FORWARD -d 10.1.1.2 -p tcp --dport 80 -j ACCEPT
iptables -A FORWARD -d 10.1.1.2 -p tcp --dport 443 -j ACCEPT

The only TCP traffic we allow to our firewall host (10.1.1.1) is SSH, which is useful
for managing the firewall itself. The second rule listed below allows loopback traf-
fic, which stays local to the host. Administrators get nervous when they can’t ping
their default route, so the third rule here allows ICMP ECHO_REQUEST packets
from internal IP addresses.

iptables -A INPUT -i eth0 -d 10.1.1.1 -p tcp --dport 22 -j ACCEPT
iptables -A INPUT -i lo -d 127.0.0.1 -p ANY -j ACCEPT
iptables -A INPUT -i eth0 -d 10.1.1.1 -p icmp --icmp-type 8 -j ACCEPT

For any IP host to work properly on the Internet, certain types of ICMP packets
must be allowed through the firewall. The following eight rules allow a minimal set
of ICMP packets to the firewall host, as well as to the network behind it.

iptables -A INPUT -p icmp --icmp-type 0 -j ACCEPT
iptables -A INPUT -p icmp --icmp-type 3 -j ACCEPT
iptables -A INPUT -p icmp --icmp-type 5 -j ACCEPT
iptables -A INPUT -p icmp --icmp-type 11 -j ACCEPT
iptables -A FORWARD -d 10.1.1.2 -p icmp --icmp-type 0 -j ACCEPT
iptables -A FORWARD -d 10.1.1.2 -p icmp --icmp-type 3 -j ACCEPT
iptables -A FORWARD -d 10.1.1.2 -p icmp --icmp-type 5 -j ACCEPT
iptables -A FORWARD -d 10.1.1.2 -p icmp --icmp-type 11 -j ACCEPT

	 26.	 However, you must be careful that reordering the rules for performance doesn’t modify functionality.

444	 Chapter 13	 TCP/IP Networking	

We next add rules to the PREROUTING chain in the nat table. Although the nat
table is not intended for packet filtering, its PREROUTING chain is particularly
useful for antispoofing filtering. If we put DROP entries in the PREROUTING
chain, they need not be present in the INPUT and FORWARD chains, since the
PREROUTING chain is applied to all packets that enter the firewall host. It’s cleaner
to put the entries in a single place rather than to duplicate them.

iptables -t nat -A PREROUTING -i eth1 -s 10.0.0.0/8 -j DROP
iptables -t nat -A PREROUTING -i eth1 -s 172.16.0.0/12 -j DROP
iptables -t nat -A PREROUTING -i eth1 -s 192.168.0.0/16 -j DROP
iptables -t nat -A PREROUTING -i eth1 -s 127.0.0.0/8 -j DROP
iptables -t nat -A PREROUTING -i eth1 -s 224.0.0.0/4 -j DROP

Finally, we end both the INPUT and FORWARD chains with a rule that forbids
all packets not explicitly permitted. Although we already enforced this behavior
with the iptables -P commands, the LOG target lets us see who is knocking on our
door from the Internet.

iptables -A INPUT -i eth1 -j LOG
iptables -A FORWARD -i eth1 -j LOG

Optionally, we could set up IP NAT to disguise the private address space used on
the internal network. See page 392 for more information about NAT.

One of the most powerful features that Netfilter brings to Linux firewalling is stateful
packet filtering. Instead of allowing specific incoming services, a firewall for clients
connecting to the Internet needs to allow incoming responses to the client’s requests.
The simple stateful FORWARD chain below allows all traffic to leave our network
but allows only incoming traffic that’s related to connections initiated by our hosts.

iptables -A FORWARD -i eth0 -p ANY -j ACCEPT
iptables -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

Certain kernel modules must be loaded to enable iptables to track complex network
sessions such as those of FTP and IRC. If these modules are not loaded, iptables
simply disallows those connections. Although stateful packet filters can increase
the security of your site, they also add to the complexity of the network and can
reduce performance. Be sure you need stateful functionality before implementing
it in your firewall.

Perhaps the best way to debug your iptables rulesets is to use iptables -L -v. These
options tell you how many times each rule in your chains has matched a packet.
We often add temporary iptables rules with the LOG target when we want more
information about the packets that get matched. You can often solve trickier prob-
lems by using a packet sniffer such as tcpdump.

Linux NAT and packet filtering
Linux traditionally implements only a limited form of Network Address Transla-
tion (NAT) that is more properly called Port Address Translation, or PAT. Instead

See page 408 for
more information
about IP spoofing.

	 Firewalls and NAT	 445

N
et

w
or

ki
ng

of using a range of IP addresses as a true NAT implementation would, PAT mul-
tiplexes all connections onto a single address. The details and differences aren’t of
much practical importance.

iptables implements NAT as well as packet filtering. In earlier versions of Linux
this functionality was a bit of a mess, but iptables makes a much cleaner separa-
tion between the NAT and filtering features. Of course, if you use NAT to let local
hosts access the Internet, you must use a full complement of firewall filters as well.

To make NAT work, enable IP forwarding in the kernel by setting the kernel vari-
able /proc/sys/net/ipv4/ip_forward to 1. Additionally, insert the appropriate ker-
nel modules:

$ sudo modprobe iptable_nat
$ sudo modprobe ip_conntrack
$ sudo modprobe ip_conntrack_ftp

Many other modules track connections; see the net/netfilter subdirectory under-
neath /lib/modules for a more complete list and enable the ones you need.

The iptables command to route packets using NAT is of the form

iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to 128.138.101.4

This example is for the same host as the filtering example in the previous section, so
eth1 is the interface connected to the Internet. The eth1 interface does not appear
directly in the command line above, but its IP address is the one that appears as the
argument to --to. The eth0 interface is the one connected to the internal network.

To Internet hosts, it appears that all packets from hosts on the internal network have
eth1’s IP address. The host that implements NAT receives incoming packets, looks
up their true destinations, rewrites them with the appropriate internal network IP
address, and sends them on their merry way.

IPFilter for UNIX systems
IPFilter, an open source package developed by Darren Reed, supplies NAT and
stateful firewall services on a variety of systems, including Linux and FreeBSD.
You can use IPFilter as a loadable kernel module (which is recommended by the
developers) or include it statically in the kernel.

IPFilter is mature and feature-complete. The package has an active user community
and a history of continuous development. It is capable of stateful tracking even for
stateless protocols such as UDP and ICMP.

IPFilter reads filtering rules from a configuration file (usually /etc/ipf/ipf.conf or /
etc/ipf.conf) rather than obliging you to run a series of commands as does iptables.
An example of a simple rule that could appear in ipf.conf is

block in all

446	 Chapter 13	 TCP/IP Networking	

This rule blocks all inbound traffic (i.e., network activity received by the system) on
all network interfaces. Certainly secure, but not particularly useful!

Table 13.11 shows some of the possible conditions that can appear in an ipf rule.

Table 13.11	 Commonly used ipf conditions

Condition Meaning or possible values

on interface Applies the rule to the specified interface
proto protocol Selects packet according to protocol: tcp, udp, or icmp
from source-ip Filters by source: host, network, or any
to dest-ip Filters by destination: host, network, or any
port = port# Filters by port name (from /etc/services) or number a

flags flag-spec Filters according to TCP header flags bits
icmp-type number Filters by ICMP type and code
keep state Retains details about the flow of a session; see below

a.	 You can use any comparison operator: =, <, >, <=, >=, etc.

IPFilter evaluates rules in the sequence in which they are presented in the configu-
ration file. The last match is binding. For example, inbound packets traversing the
following filter will always pass:

block in all
pass in all

The block rule matches all packets, but so does the pass rule, and pass is the last
match. To force a matching rule to apply immediately and make IPFilter skip sub-
sequent rules, use the quick keyword:

block in quick all
pass in all

An industrial-strength firewall typically contains many rules, so liberal use of quick
is important in order to maintain the performance of the firewall. Without it, every
packet is evaluated against every rule, and this wastefulness is costly.

Perhaps the most common use of a firewall is to control access to and from a specific
network or host, often with respect to a specific port. IPFilter has powerful syntax
to control traffic at this level of granularity. In the following rules, inbound traffic is
permitted to the 10.0.0.0/24 network on TCP ports 80 and 443 and on UDP port 53.

block out quick all
pass in quick proto tcp from any to 10.0.0.0/24 port = 80 keep state
pass in quick proto tcp from any to 10.0.0.0/24 port = 443 keep state
pass in quick proto udp from any to 10.0.0.0/24 port = 53 keep state
block in all

	 Firewalls and NAT	 447

N
et

w
or

ki
ng

The keep state keywords deserve special attention. IPFilter can keep track of con-
nections by noting the first packet of new sessions. For example, when a new packet
arrives addressed to port 80 on 10.0.0.10, IPFilter makes an entry in the state table
and allows the packet through. It also allows the reply from the web server even
though the first rule explicitly blocks all outbound traffic.

keep state is also useful for devices that offer no services but that must initiate
connections. The following ruleset permits all conversations that are initiated by
192.168.10.10. It blocks all inbound packets except those related to connections
that have already been initiated.

block in quick all
pass out quick from 192.168.10.10/32 to any keep state

The keep state keywords work for UDP and ICMP packets, too, but since these
protocols are stateless, the mechanics are slightly more ad hoc: IPFilter permits
responses to a UDP or an ICMP packet for 60 seconds after the inbound packet is
seen by the filter. For example, if a UDP packet from 10.0.0.10, port 32,000, is ad-
dressed to 192.168.10.10, port 53, a UDP reply from 192.168.10.10 will be permit-
ted until 60 seconds have passed. Similarly, an ICMP echo reply (ping response) is
permitted after an echo request has been entered in the state table.

IPFilter uses the map keyword (in place of pass and block) to provide NAT services.
In the following rule, traffic from the 10.0.0.0/24 network is mapped to the current
routable address on the em0 interface.

map em0 10.0.0.0/24 -> 0/32

The filter must be reloaded if the address of em0 changes, as might happen if em0
leases a dynamic IP address through DHCP. For this reason, IPFilter’s NAT features
are best used at sites that have a static IP address on the Internet-facing interface.

Table 13.12 lists the command-line tools that come with the IPFilter package.

Table 13.12	 IPFilter commands

Cmd Function

ipf Manages rules and filter lists
ipfstat Obtains statistics about packet filtering
ipmon Monitors logged filter information
ipnat Manages NAT rules

Of the commands in Table 13.12, ipf is the most commonly used. ipf accepts a rule
file as input and adds correctly parsed rules to the kernel’s filter list. ipf adds rules
to the end of the filter unless you use the -Fa argument, which flushes all existing

See page 392 for
more information
about NAT.

448	 Chapter 13	 TCP/IP Networking	

rules. For example, to flush the kernel’s existing set of filters and load the rules from
ipf.conf, use the following syntax:

$ sudo ipf -Fa -f /etc/ipf/ipf.conf

IPFilter relies on pseudo-device files in /dev for access control, and by default only
root can edit the filter list. We recommend leaving the default permissions in place
and using sudo to maintain the filter.

Use ipf’s -v flag when loading the rules file to debug syntax errors and other prob-
lems in the configuration.

13.15	 Cloud networking
One of the interesting features of the cloud is that you get to define the networking
environment in which your virtual servers live. Ultimately, of course, cloud servers
live on physical computers that are connected to real network hardware. However,
that doesn’t necessarily mean that virtual servers running on the same node are
networked together. The combination of virtualization technology and program-
mable network switching equipment gives platform providers great flexibility to
define the networking model they export to clients.

AWS’s virtual private cloud (VPC)
VPC, the software-defined network technology for Amazon Web Services, creates
private networks within the broader AWS network. VPC was first introduced in
2009 as a bridge between an on-premises data center and the cloud, opening up
many hybrid use cases for enterprise organizations. Today, VPC is a central feature
of AWS, and a default VPC is included for all accounts. EC2 instances for newer
AWS accounts must be created within a VPC, and most new AWS services launch
with native VPC support.27

The central features of VPC include

•	 An IPv4 address range selected from the RFC1918 private address space,
expressed in CIDR notation (for example, 10.110.0.0/16 for the addresses
10.110.0.0-10.110.255.255)28

•	 Subnets to segment the VPC address space into smaller subnetworks
•	 Routing tables that determine where to send traffic
•	 Security groups that act as firewalls for EC2 instances
•	 Network Access Control Lists (NACLs) to isolate subnets from each other

You can create as many VPCs as you need, and no other AWS customer has access
to network traffic within your VPCs.29 VPCs within the same region can be peered,

	 27.	 Longtime users gripe that AWS services are incomplete until they support VPC.
	 28.	 VPC has also recently added support for IPv6.
	 29.	 Depending on the state of your account, AWS may initially limit you to 5 VPCs. However, you can re-

quest a higher limit if you need it.

	 Cloud networking	 449

N
et

w
or

ki
ng

creating private routes between separate networks. VPCs in different regions can
be connected with software VPN tunnels over the Internet, or with expensive, cus-
tom, direct connections to AWS data centers over private circuits that you must
lease from a telco.

VPCs can be as small as a /28 network or as large as a /16. It’s important to plan
ahead because the size cannot be adjusted after the VPC is created. Choose an ad-
dress space that is large enough to accommodate future growth, but also ensure that
it does not conflict with other networks that you may wish to connect.

Subnets and routing tables
Like traditional networks, VPCs are divided into subnets. Public subnets are for
servers that must talk directly to clients on the Internet. They are akin to tradition-
al DMZs. Private subnets are inaccessible from the Internet and are intended for
trusted or sensitive systems.

VPC routing is simpler than routing for a traditional hardware network because the
cloud does not simulate physical topology. Every accessible destination is reachable
in one logical hop.

In the world of physical networking, every device has a routing table that tells it
how to route outbound network packets. But in VPC, routing tables are also an
abstract entity that’s defined through the AWS web console or its command-line
equivalent. Every VPC subnet has an associated VPC routing table. When instances
are created on a subnet, their routing tables are initialized from the VPC template.

The simplest routing table contains only a default static route for reaching other
instances within the same VPC. You can add additional routes to access the Inter-
net, on-premises networks (through VPN connections), or other VPCs (through
peering connections).

A component called an Internet Gateway connects VPCs to the Internet. This entity
is transparent to the administrator and is managed by AWS. However, you need to
create one and attach it to your VPC if instances are to have Internet connectivity.
Hosts in public subnets can access the Internet Gateway directly.

Instances in private subnets cannot be reached from the Internet even if they are
assigned public IP addresses, a fact that results in much confusion for new users.
For outbound access, they must hop through a NAT gateway on a public subnet.
VPC offers a managed NAT feature which saves you the overhead of running your
own gateway, but it incurs an additional hourly cost. The NAT gateway is a po-
tential bottleneck for applications that have high throughput requirements, so it’s
better to locate the servers for such applications on public subnets, avoiding NAT.

AWS’s implementation of IPv6 does not have NAT, and all instances set up for IPv6
receive “public” (i.e., routable) IPv6 addresses. You make IPv6 subnets private by
connecting them through an egress-only Internet Gateway (aka eigw) which blocks

See page 1028 for
more information
about DMZs.

450	 Chapter 13	 TCP/IP Networking	

inbound connections. The gateway is stateful, so external hosts can talk to servers
on the private IPv6 network as long as the AWS server initiates the connection.

To understand the network routing for an instance, you’ll find it more informative
to review the VPC routing table for its subnet than to look at the instance’s actu-
al routing table (such as might be displayed by netstat -r or ip route show when
logged in to the instance). The VPC version identifies gateways (“targets”) by their
AWS identifiers, which makes the table easy to parse at a glance.

In particular, you can easily distinguish public subnets from private subnets by
looking at the VPC routing table. If the default gateway (i.e., the target associated
with the address 0.0.0.0/0) is an Internet Gateway (an entity named igw-something),
then that subnet is public. If the default gateway is a NAT device (a route target pre-
fixed by an instance ID, i-something, or nat-something), then the subnet is private.

Table 13.13 shows an example routing table for a private subnet.

Table 13.13	 Example VPC routing table for a private subnet

Destination Target Target type

10.110.0.0/16 local Built-in route for the local VPC network
0.0.0.0/0 nat-a31ed812 Internet access through a VPC NAT gateway
10.120.0.0/16 pcx-38c3e8b2 Peering connection to another VPC
192.168.0.0/16 vgw-1e513d90 VPN gateway to an external network

VPCs are regional, but subnets are restricted to a single availability zone. To build
highly available systems, create at least one subnet per zone and distribute instances
evenly among all the subnets. A typical design puts load balancers or other proxies in
public subnets and restricts web, application, and database servers to private subnets.

Security groups and NACLs
Security groups are firewalls for EC2 instances. Security group rules dictate which
source addresses are allowed for ICMP, UDP, and TCP traffic (ingress rules), and
which ports on other systems can be accessed by instances (egress rules). Security
groups deny all connections by default, so any rules you add allow additional traffic.

All EC2 instances belong to at least one security group, but they may be in as many
as five.30 The more security groups an instance belongs to, the more confusing it
can be to determine precisely what traffic is and is not allowed. We prefer that each
instance be in only one security group, even if that configuration results in some
duplicate rules among groups.

	 30.	 Security groups are actually associated with network interfaces, and an instance can have more than
one network interface. So to be perfectly correct, we should say that the maximum number of securi-
ty groups is the number of network interfaces times five.

	 Cloud networking	 451

N
et

w
or

ki
ng

When adding rules to security groups, always consider the principle of least priv-
ilege. Opening ports unnecessarily presents a security risk, especially for systems
that have public, routable IP addresses. For example, a web server may only need
ports 22 (SSH, used for management and control of the system), 80 (HTTP), and
443 (HTTPS).

In addition, all hosts should accept the ICMP packets used to implement path MTU
discovery. Failure to admit these packets can lower network bandwidth considerably,
so we find puzzling AWS’s decision to block them by default. See goo.gl/WrETNq
(deep link into docs.aws.amazon.com) for the steps to enable these packets.

Most security groups have granular inbound rules but allow all outbound traffic, as
shown in Table 13.14. This configuration is convenient since you don’t need to think
about what outside connectivity your systems have. However, it’s easier for attackers
to set up shop if they can retrieve tools and communicate with their external control
systems. The most secure networks have both inbound and outbound restrictions.

Table 13.14	 Typical security group rules

Direction Proto Ports CIDR Notes

Ingress TCP 22 10.110.0.0/16 SSH from the internal network
Ingress TCP 80 0.0.0.0/0 HTTP from anywhere
Ingress TCP 443 0.0.0.0/0 HTTPS from anywhere
Ingress ICMP n/a a 0.0.0.0/0 Allow path MTU discovery
Egress ALL ALL 0.0.0.0/0 Outbound traffic (all OK)

a.	 See goo.gl/WrETNq for detailed instructions; this record is a bit tricky to set up.

Much like access control lists on a firewall device, NACLs control traffic among
subnets. Unlike security groups, NACLs are stateless: they don’t distinguish between
new and existing connections. They are similar in concept to NACLs on a hardware
firewall. NACLs allow all traffic by default. In the wild, we see security groups used
far more often than NACLs.

A sample VPC architecture
Exhibit F on the next page depicts two VPCs, each with public and private subnets.
Network 2 hosts an Elastic Load Balancer in its public subnets. The ELB acts as a
proxy for some autoscaling EC2 instances that live in the private subnet and protects
those instances from the Internet. Service 2 in Network 2 may need access to Service
1 hosted in Network 1, and they can communicate privately through VPC peering.

http://goo.gl/WrETNq
http://docs.aws.amazon.com
http://goo.gl/WrETNq

452	 Chapter 13	 TCP/IP Networking	

Exhibit F	 Peered VPCs with public and private subnets

NATNAT

VPCVPC

VPC Peering

VPC 1: 10.110.0.0/16 VPC 2: 10.120.0.0/16

Autoscale group

Security Group

Service 2

Public nets

Private nets

Elastic
Load
Balancer

Autoscale group

Security Group

Service 1

Internet users

Public nets

Private nets

Architecture diagrams like Exhibit F communicate dense technical details more
clearly than written prose. We maintain diagrams like this one for every applica-
tion we deploy.

Creating a VPC with Terraform
VPCs are composed of many resources, each of which has its own settings and op-
tions. The interdependencies among these objects are complex. It’s possible to create
and manage almost everything by using the CLI or web console, but that approach
requires that you keep all the minutiae in your head. Even if you can keep all the mov-
ing parts straight during the initial setup, it’s difficult to track your work over time.

Terraform, a tool from HashiCorp, creates and manages cloud resources. For example,
Terraform can create a VPC, launch instances, and then initialize those instances by
running scripts or other configuration management tools. Terraform configuration
is expressed in HashiCorp Configuration Language (HCL), a declarative format that
looks similar to JSON but adds variable interpolation and comments. The file can
be tracked in revision control, so it’s simple to update and adapt.

The example below shows a Terraform configuration for a simple VPC with one
public subnet. We think it’s rather self-documenting, intelligible even to a neophyte:

Specify the VPC address range as a variable
variable "vpc_cidr" {
 default = "10.110.0.0/16"
}

The address range for a public subnet
variable "public_subnet_cidr" {
 default = "10.110.0.0/24"
}

	 Cloud networking	 453

N
et

w
or

ki
ng

The VPC
resource "aws_vpc" "default" {
 cidr_block = "${var.vpc_cidr}"
 enable_dns_hostnames = true
}

Internet gateway to connect the VPC to the Internet
resource "aws_internet_gateway" "default" {
 vpc_id = "${aws_vpc.default.id}"
}

Public subnet
resource "aws_subnet" "public-us-west-2a" {
 vpc_id = "${aws_vpc.default.id}"
 cidr_block = "${var.public_subnet_cidr}"
 availability_zone = "us-west-2a"
}

Route table for the public subnet
resource "aws_route_table" "public-us-west-2a" {
 vpc_id = "${aws_vpc.default.id}"
 route {
 cidr_block = "0.0.0.0/0"
 gateway_id = "${aws_internet_gateway.default.id}"
 }
}

Associate the route table with the public subnet
resource "aws_route_table_association" "public-us-west-2-a" {
 subnet_id = "${aws_subnet.public-us-west-2a.id}"
 route_table_id = "${aws_route_table.public-us-west-2a.id}"
}

The Terraform documentation is the authoritative syntax reference. You’ll find
many example configurations like this one in the Terraform GitHub repository
and elsewhere on the Internet.

Run terraform apply to have Terraform create this VPC. It examines the current
directory (by default) for .tf files and processes each of them, assembling an execu-
tion plan and then invoking API calls in the appropriate order. You can set the AWS
API credentials in the configuration file or through the AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY environment variables, as we have done here.

$ AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
$ AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENGbPxRfiCYEXAMPLEKEY
$ time terraform apply
aws_vpc.default: Creating...
 cidr_block: "" => "10.110.0.0/16"
 default_network_acl_id: "" => "<computed>"
 default_security_group_id: "" => "<computed>"
 dhcp_options_id: "" => "<computed>"

454	 Chapter 13	 TCP/IP Networking	

 enable_dns_hostnames: "" => "1"
 enable_dns_support: "" => "<computed>"
 main_route_table_id: "" => "<computed>"
aws_vpc.default: Creation complete
aws_internet_gateway.default: Creating...
 vpc_id: "" => "vpc-a9ebe3cc"
aws_subnet.public-us-west-2a: Creating...
 availability_zone: "" => "us-west-2a"
 cidr_block: "" => "10.110.0.0/24"
 map_public_ip_on_launch: "" => "0"
 vpc_id: "" => "vpc-a9ebe3cc"
aws_subnet.public-us-west-2a: Creation complete
aws_route_table.public-us-west-2a: Creation complete
[snip]
Apply complete! Resources: 5 added, 0 changed, 0 destroyed.
real	0m4.530s
user	0m0.221s
sys	0m0.172s

time measures how long it takes to create all the resources in the configuration
(about 4.5 seconds). The <computed> values indicate that Terraform chose defaults
because we didn’t specify those settings explicitly.

The state of all resources created by Terraform is saved in a file called terraform.tfstate.
This file must be preserved so that Terraform knows which resources are under its
control. In the future, Terraform will discover the managed resources on its own.

We can clean up the VPC just as easily:

$ terraform destroy -force
aws_vpc.default: Refreshing state... (ID: vpc-87ebe3e2)
aws_subnet.public-us-west-2a: Refreshing state... (ID: subnet-7c596a0b)
aws_internet_gateway.default: Refreshing state... (ID: igw-dc95edb9)
aws_route_table.public-us-west-2a: Refreshing state... (ID: rtb-2fc7214b)
aws_route_table_association.public-us-west-2-a: Refreshing state... (ID:

rtbassoc-da479bbe)
aws_route_table_association.public-us-west-2-a: Destroying...
aws_route_table_association.public-us-west-2-a: Destruction complete
aws_subnet.public-us-west-2a: Destroying...
aws_route_table.public-us-west-2a: Destroying...
aws_route_table.public-us-west-2a: Destruction complete
aws_internet_gateway.default: Destroying...
aws_subnet.public-us-west-2a: Destruction complete
aws_internet_gateway.default: Destruction complete
aws_vpc.default: Destroying...
aws_vpc.default: Destruction complete
Apply complete! Resources: 0 added, 0 changed, 5 destroyed.

Terraform is cloud-agnostic, so it can manage resources for AWS, GCP, Digita-
lOcean, Azure, Docker, and other providers.

	 Cloud networking	 455

N
et

w
or

ki
ng

How do you know when to use Terraform and when to use the CLI? If you’re build-
ing infrastructure for a team or project, or if you’ll need to make changes and repeat
the build later, use Terraform. If you need to fire off a quick instance as a test, if
you need to inspect the details of a resource, or if you need to access the API from
a shell script, use the CLI.

Google Cloud Platform networking
On the Google Cloud Platform, networking is functionally part of the platform,
as opposed to being represented as a distinct service. GCP private networks are
global: an instance in the us-east1 region can communicate with another instance
in europe-west1 over the private network, a fact that makes it easy to build global
network services. Network traffic among instances in the same zone is free, but
there is a fee for traffic between zones or regions.

New projects have a default network with the 10.240.0.0/16 address range. You
can create up to five separate networks per project, and instances are members of
exactly one network. Many sites use this network architecture to isolate test and
development from production systems.

Networks can be subdivided by region with subnetworks, a relatively recent addi-
tion to GCP that functions differently from subnets on AWS. The global network
does not need to be part of a single IPv4 prefix range, and there can be multiple
prefixes per region. GCP configures all the routing for you, so instances on dif-
ferent CIDR blocks within the same network can still reach each other. Exhibit G
demonstrates this topology.

Exhibit G	 A multiregion private GCP network with subnetworks

Internal routing

10.120.0.94

us-east1-b

us-east1
10.120.0.0/16

us-central1
10.100.0.0/16

192.168.10.0/24

10.100.0.10510.100.0.103

192.168.10.19

us-central1-b us-central1-f

456	 Chapter 13	 TCP/IP Networking	

There is no concept of a subnetwork being public or private; instead, instances that
don’t need to accept inbound traffic from the Internet can simply not have a pub-
lic, Internet-facing address. Google offers static external IP addresses that you can
borrow for use in DNS records without fear that they will be assigned to another
customer. When an instance does have an external address, you still won’t see it if
you run ip addr show; Google handles the address translation for you.

By default, firewall rules in a GCP network apply to all instances. To restrict rules
to a smaller set of instances, you can tag instances and filter the rules according
to the tags. The default, global firewall rules deny everything except the following:

•	 ICMP traffic for 0/0
•	 RDP (remote desktop for Windows, TCP port 3389) for 0/0
•	 SSH (TCP port 22) for 0/0
•	 All ports and protocols for the internal network (10.240.0.0/16 by default)

When it comes to decisions that impact security, we always come back to the prin-
ciple of least privilege. In this case, we recommend narrowing these default rules to
block RDP entirely, allow SSH only from your own source IPs, and further restrict
traffic within the GCP network. You might also want to block ICMP, but be aware
that you need to allow ICMP packets of type 3, code 4 to enable path MTU discovery.

DigitalOcean networking
DigitalOcean does not have a private network, or at least, not one similar to those
of GCP and AWS. Droplets can have private interfaces that communicate over an
internal network within the same region. However, that network is shared with all
other DigitalOcean customers in the same region. This is a slight improvement over
using the Internet, but firewalls and in-transit encryption become hard requirements.

We can examine a booted DigitalOcean droplet with the tugboat CLI:

$ tugboat info ulsah
Droplet fuzzy name provided. Finding droplet ID...done, 8857202

(ulsah-ubuntu-15-10)
Name: ulsah-ubuntu-15-10
ID: 8857202
Status: active
IP4: 45.55.1.165
IP6: 2604:A880:0001:0020:0000:0000:01EF:D001
Private IP: 10.134.131.213
Region: San Francisco 1 - sfo1
Image: 14169855 - ubuntu-15-10-x64
Size: 512MB
Backups Active: false

The output includes an IPv6 address in addition to public and private IPv4 addresses.

	 Recommended reading	 457

N
et

w
or

ki
ng

On the instance, we can further explore by looking at the addresses on the local
interfaces.

tugboat ssh ulsah-ubuntu-15-10
ip address show eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast

state UP group default qlen 1000
 link/ether 04:01:87:26:d6:01 brd ff:ff:ff:ff:ff:ff
 inet 45.55.1.165/19 brd 45.55.31.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet 10.12.0.8/16 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::601:87ff:fe26:d601/64 scope link
 valid_lft forever preferred_lft forever
ip address show eth1
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast

state UP group default qlen 1000
 link/ether 04:01:87:26:d6:02 brd ff:ff:ff:ff:ff:ff
 inet 10.134.131.213/16 brd 10.134.255.255 scope global eth1
 valid_lft forever preferred_lft forever
 inet6 fe80::601:87ff:fe26:d602/64 scope link
 valid_lft forever preferred_lft forever

The public address is assigned directly to the eth0 interface, not translated by the
provider as on other cloud platforms. Each interface also has an IPv6 address, so
it’s possible to serve traffic through IPv4 and IPv6 simultaneously.

13.16	 Recommended reading

History
Comer, Douglas E. Internetworking with TCP/IP Volume 1: Principles, Protocols,
and Architectures (6th Edition). Upper Saddle River, NJ: Prentice Hall, 2013.

Doug Comer’s Internetworking with TCP/IP series was for a long time the standard
reference for the TCP/IP protocols. The books are designed as undergraduate text-
books and are a good introductory source of background material.

Salus, Peter H. Casting the Net, From ARPANET to INTERNET and Beyond. Read-
ing, MA: Addison-Wesley Professional, 1995.

This is a lovely history of the ARPANET as it grew into the Internet, written by a
historian who has been hanging out with UNIX people long enough to sound like
one of them.

An excellent collection of documents about the history of the Internet and its var-
ious technologies can be found at isoc.org/internet/history.

http://isoc.org/internet/history

458	 Chapter 13	 TCP/IP Networking	

Classics and bibles
Stevens, W. Richard. UNIX Network Programming. Upper Saddle River, NJ:
Prentice Hall, 1990.

Stevens, W. Richard, Bill Fenner, and Andrew M. Rudoff. UNIX Network
Programming, Volume 1, The Sockets Networking API (3rd Edition). Upper Saddle
River, NJ: Addison-Wesley, 2003.

Stevens, W. Richard. UNIX Network Programming, Volume 2: Interprocess Com-
munications (2nd Edition). Upper Saddle River, NJ: Addison-Wesley, 1999.

The UNIX Network Programming books are the student’s bibles in networking class-
es that involve programming. If you need only the Berkeley sockets interface, the
original edition is still a fine reference. If you need the STREAMS interface too, then
the third edition, which includes IPv6, is a good bet. All three are clearly written
in typical Rich Stevens style.

Tanenbaum, Andrew S., and David J. Wetherall. Computer Networks (5th Edi-
tion). Upper Saddle River, NJ: Prentice Hall PTR, 2011.

Computer Networks was the first networking text, and it is still a classic. It contains a
thorough description of all the nitty-gritty details going on at the physical and link
layers of the protocol stack. The latest edition includes coverage of wireless networks,
gigabit Ethernet, peer-to-peer networks, voice over IP, cellular networks, and more.

Protocols
Fall, Kevin R., and W. Richard Stevens. TCP/IP Illustrated, Volume One: The
Protocols (2nd Edition). Reading, MA: Addison-Wesley, 2011.

Wright, Gary R., and W. Richard Stevens. TCP/IP Illustrated, Volume Two: The
Implementation. Reading, MA: Addison-Wesley, 1995.

The books in the TCP/IP Illustrated series are an excellent and thorough guide to
the TCP/IP protocol stack.

Hunt, Craig. TCP/IP Network Administration (3rd Edition). Sebastopol, CA:
O’Reilly Media, 2002. Like other books in the nutshell series, this book is directed
at administrators of UNIX systems. Half the book is about TCP/IP, and the rest
deals with higher-level UNIX facilities such as email and remote login.

Farrel, Adrian. The Internet and Its Protocols: A Comparative Approach. San Fran-
cisco, CA: Morgan Kaufmann Publishers, 2004.

Kozierak, Charles M. The TCP/IP Guide: A Comprehensive, Illustrated Internet
Protocols Reference. San Francisco, CA: No Starch Press, 2005.

Donahue, Gary A. Network Warrior: Everything You Need to Know That Wasn’t
on the CCNA Exam. Sebastopol, CA: O’Reilly Media, 2015.

Ph
ys

ic
al

 N
et

s

			 459

Regardless of whether your systems live in a data center, a cloud, or an old missile
silo, one element they have in common is the need to communicate on a network.
The ability to move data quickly and reliably is essential in every environment. If
there’s one area in which UNIX technology has touched human lives and influenced
other operating systems, it’s in the practical realization of large-scale packetized
data transport.

Networks are following the same trail blazed by servers in that the physical and log-
ical views of the network are increasingly separated by a virtualization layer that has
its own configuration. That sort of setup is standard in the cloud, but even physical
data centers often include a layer of software-defined networking (SDN) these days.

Administrators interact with real-world network hardware less frequently than they
once did, but familiarity with traditional networking remains a crucial skill. Vir-
tualized networks closely emulate physical networks in their features, terminology,
architecture, and topology.

Many link-layer technologies have been promoted over the years, but Ethernet has
emerged as the clear and decisive winner. Now that Ethernet is found on everything
from game consoles to refrigerators, a thorough understanding of this technology
is critical to success as a system administrator.

14 Physical Networking

460	 Chapter 14	 Physical Networking	

Obviously, the speed and reliability of your network have a direct effect on your
organization’s productivity. But today, networking has become so pervasive that
the state of the network affects even such basic interactions as the ability to make
telephone calls. A poorly designed network is a personal and professional embar-
rassment that can lead to catastrophic social effects. It can also be expensive to fix.

At least four major factors contribute to success:

•	 Development of a reasonable network design
•	 Selection of high-quality hardware
•	 Proper installation and documentation
•	 Competent ongoing operations and maintenance

This chapter focuses on understanding, installing, and operating Ethernet networks
in an enterprise environment.

14.1	 Ethernet: the Swiss Army knife of networking
Having captured over 95% of the world-wide local area network (LAN) market,
Ethernet can be found just about everywhere in its many forms. It started as Bob
Metcalfe’s Ph.D. thesis at MIT but is now described in a variety of IEEE standards.

Ethernet was originally specified at 3 Mb/s (megabits per second), but it moved to
10 Mb/s almost immediately. Once a 100 Mb/s standard was finalized in 1994, it
became clear that Ethernet would evolve rather than be replaced. This realization
touched off a race to build increasingly faster versions of Ethernet, and that race
continues today. Table 14.1 highlights the evolution of the various Ethernet
standards.1

Ethernet signaling
The underlying model used by Ethernet can be described as a polite dinner party
at which guests (computers) don’t interrupt each other but rather wait for a lull in
the conversation (no traffic on the network cable) before speaking. If two guests
start to talk at once (a collision) they both stop, excuse themselves, wait a bit, and
then one of them starts talking again.

The technical term for this scheme is CSMA/CD:

•	 Carrier Sense: you can tell whether anyone is talking.
•	 Multiple Access: everyone can talk.
•	 Collision Detection: you know when you interrupt someone else.

The actual delay after a collision is somewhat random. This convention avoids the
scenario in which two hosts simultaneously transmit to the network, detect the
collision, wait the same amount of time, and then start transmitting again, thus
flooding the network with collisions. This was not always true!

	 1.	 We have omitted a few of the less popular Ethernet standards that cropped up along the way.

 	

  

 
 
 

 
 

 
 

 

     

   

   

	

	
	

	 Ethernet: the Swiss Army knife of networking	 461

Ph
ys

ic
al

 N
et

s

Today, the importance of the CSMA/CD conventions has been lessened by the
advent of switches, which typically limit the number of hosts to two in a given col-
lision domain. (To continue the “dinner party” analogy, you might think of this
switched variant of Ethernet as being akin to the scenes found in old movies where
two people sit at opposite ends of a long, formal dining table.)

Ethernet topology
The Ethernet topology is a branching bus with no loops. A packet can travel be-
tween two hosts on the same network in only one way.

Three types of packets can be exchanged on a segment: unicast, multicast, and
broadcast. Unicast packets are addressed to only one host. Multicast packets are ad-
dressed to a group of hosts. Broadcast packets are delivered to all hosts on a segment.

A “broadcast domain” is the set of hosts that receive packets destined for the hard-
ware broadcast address. Exactly one broadcast domain is defined for each logical
Ethernet segment. Under the early Ethernet standards and media (e.g., 10BASE5),

	
	
	
	

	

	
	
	

	 	

Table 14.1	 The evolution of Ethernet

Year Speed Common name IEEE# Dist Media a

1973 3 Mb/s Xerox Ethernet – ? Coax
1976 10 Mb/s Ethernet 1 – 500m RG-11 coax
1989 10 Mb/s 10BASE-T 802.3 100m Cat 3 UTP copper
1994 100 Mb/s 100BASE-TX 802.3u 100m Cat 5 UTP copper
1999 1 Gb/s 1000BASE-T (“gigabit”) 802.3ab 100m Cat 5e, 6 UTP copper
2006 10 Gb/s 10GBASE-T (“10 gig”) 802.3an 100m Cat 6a, 7, 7a UTP
2009 40 Gb/s 40GBASE-CR4

40GBASE-SR4
P802.3ba 10m

100m
UTP copper
MM fiber

2009 100 Gb/s 100GBASE-CR10
100GBASE-SR10

P802.3ba 10m
100m

UTP copper
MM fiber

2018 b 200 Gb/s 200GBASE-FR4
200GBASE-LR4

802.3bs c 2km
10km

CWDM fiber
CWDM fiber

2018 b 400 Gb/s 400GBASE-SR16
400GBASE-DR4
400GBASE-FR8
400GBASE-LR8

802.3bs 100m
500m
2km
10km

MM fiber (16 strand)
MM fiber (4 strand)
CWDM fiber
CWDM fiber

2020 b 1 Tb/s TbE TBD TBD TBD

a.	 MM = Multimode, SM = Single-mode, UTP = Unshielded twisted pair,
CWDM = Coarse wavelength division multiplexing

b.	 Industry projection
c.	 We’ll give the benefit of the doubt and assume this lettering choice was an unfortunate coincidence.

462	 Chapter 14	 Physical Networking	

physical segments and logical segments were exactly the same because all the
packets traveled on one big cable with host interfaces strapped onto the side of it.2

With the advent of switches, today’s logical segments usually consist of many physi-
cal segments (possibly dozens or hundreds) to which only two devices are connect-
ed: a switch port and a host.3 The switches are responsible for escorting multicast
and unicast packets to the physical (or wireless) segments on which the intended
recipients reside. Broadcast traffic is forwarded to all ports in a logical segment.

A single logical segment can consist of physical (or wireless) segments that operate
at different speeds. Hence, switches must have buffering and timing capabilities to
let them smooth over any potential timing conflicts.

Unshielded twisted-pair cabling
Unshielded twisted pair (UTP) has historically been the preferred cable medium for
Ethernet in most office environments. Today, wireless networking has displaced UTP
in many situations. The general “shape” of a UTP network is illustrated in Exhibit A.

Exhibit A	 A UTP installation

PUNISHER 2000

C:>C:>

PUNISHER 2000

C:>

UTP switch

Workstation Workstation

link to backbone

Ethernet printer

Power

UTP wire is commonly broken down into eight classifications. The performance
rating system was first introduced by Anixter, a large cable supplier. These standards
were formalized by the Telecommunications Industry Association (TIA) and are
known today as Category 1 through Category 8, with a few special variants such
as Category 5e and Category 6a thrown in for good measure.

The International Organization for Standardization (ISO) has also jumped into
the exciting and highly profitable world of cable classification. They promote stan-
dards that are exactly or approximately equivalent to the higher-numbered TIA

	 2.	 No kidding! Attaching a new computer involved boring a hole into the outer sheath of the cable with
a special drill to reach the center conductor. A “vampire tap” that bit into the outer conductor was
then clamped on with screws.

	 3.	 Wireless networks are another common type of logical Ethernet segment. They behave more like the
traditional forms of Ethernet which share one cable among many hosts. See page 469.

	 Ethernet: the Swiss Army knife of networking	 463

Ph
ys

ic
al

 N
et

s

categories. For example, TIA Category 5 cable is equivalent to ISO Class D cable.
For the geeks in the audience, Table 14.2 illustrates the differences among the var-
ious modern-day classifications. This is good information to memorize so you can
impress your friends at parties.

Table 14.2	 UTP cable characteristics

Parameter Units
Cat 5 b

Class D Cat 5e
Cat 6

Class E
Cat 6a

Class EA
Cat 7

Class F
Cat 7a

Class FA
Cat 8

Class I

Frequency range MHz 100 100 250 500 600 1000 2000
Attenuation dB 24 24 21.7 18.4 20.8 60 50
NEXT a dB 27.1 30.1 39.9 59 62.1 60.4 36.5
ELFEXT a dB 17 17.4 23.2 43.1 46.0 35.1 –
Return loss dB 8 10 12 32 14.1 61.93 8
Propagation delay ns 548 548 548 548 504 534 548

a.	 NEXT = Near-end crosstalk, ELFEXT = Equal level far-end crosstalk
b.	 Includes additional TIA and ISO requirements TSB95 and FDAM 2, respectively

Category 5 cable can support 100 Mb/s and is “table stakes” for network wiring to-
day. Category 5e, Category 6, and Category 6a cabling support 1 Gb/s and are the
most common standard currently in use for data cabling. Category 6a is the cable of
choice for new installations because it is particularly resistant to interference from
older Ethernet signaling standards (e.g., 10BASE-T), a problem that has plagued
some Category 5/5e installations. Category 7 and Category 7a cable are intended
for 10 Gb/s use, and Category 8 rounds out the family at 40 Gb/s.

Faster standards require multiple pairs of UTP. Having multiple conductors trans-
ports data across the link faster than any single pair can support. 100BASE-TX re-
quires two pairs of Category 5 wire. 1000BASE-TX requires four pairs of Category
5e or Category 6/6a wire, and 10GBASE-TX requires four pairs of Category 6a, 7,
or 7a wire. All these standards are limited to 100 meters in length.

Both PVC-coated and Teflon-coated wire are available. Your choice of jacketing
should depend on the environment in which the cable will be installed. Enclosed
areas that feed into the building’s ventilation system (“return air plenums”) typically
require Teflon.4 PVC is less expensive and easier to work with but produces toxic
fumes if it catches fire, hence the need to keep it out of air plenums.

For terminating the four-pair UTP cable at patch panels and RJ-45 wall jacks, we
suggest you use the TIA/EIA-568A RJ-45 wiring standard. This standard, which is
compatible with other uses of RJ-45 (e.g., RS-232), is a convenient way to keep the
wiring at both ends of the connection consistent, regardless of whether you can eas-
ily access the cable pairs themselves. Table 14.3 on the next page shows the pinouts.

	 4.	 Check with your fire marshal or local fire department to determine the requirements in your area.

464	 Chapter 14	 Physical Networking	

Table 14.3	 TIA/EIA-568A standard for wiring four-pair UTP to an RJ-45 jack

Pair Colors Wired to Pair Colors Wired to

1 White/Blue Pins 5/4 3 White/Green Pins 1/2
2 White/Orange Pins 3/6 4 White/Brown Pins 7/8

Existing building wiring might or might not be suitable for network use, depending
on how and when it was installed.

Optical fiber
Optical fiber is used in situations where copper cable is inadequate. Fiber carries
signals farther than copper and is also resistant to electrical interference. In cases
where fiber isn’t absolutely necessary, copper is normally preferred because it’s less
expensive and easier to work with.

“Multimode” and “single mode” fiber are the two common types. Multimode fiber
is typically used for applications within a building or campus. It’s thicker than sin-
gle-mode fiber and can carry multiple rays of light; this feature permits the use of
less expensive electronics (e.g., LEDs as a light source).

Single-mode fiber is most often found in long-haul applications, such as intercity or
interstate connections. It can carry only a single ray of light and requires expensive
precision electronics on the endpoints.

A common strategy to increase the bandwidth across a fiber link is coarse wave-
length division multiplexing (CWDM). It’s a way to transmit multiple channels of
data through a single fiber on multiple wavelengths (colors) of light. Some of the
faster Ethernet standards use this scheme natively. However, it can also be em-
ployed to extend the capabilities of an existing dark fiber link through the use of
CWDM multiplexers.

TIA-598C recommends color-coding the common types of fiber, as shown in Table
14.4. The key rule to remember is that everything must match. The fiber that con-
nects the endpoints, the fiber cross-connect cables, and the endpoint electronics
must all be of the same type and size. Note that although both OM1 and OM2 are
colored orange, they are not interchangeable—check the size imprint on the cables
to make sure they match. You will experience no end of difficult-to-isolate prob-
lems if you don’t follow this rule.

More than 30 types of connectors are used on the ends of optical fibers, and there
is no real rhyme or reason as to which connectors are used where. The connectors
you need to use in a particular case will most often be dictated by your equipment
vendors or by your existing building fiber plant. The good news is that conversion
jumpers are fairly easy to obtain.

 	

  

	
	
	  
	

	
	

	 Ethernet: the Swiss Army knife of networking	 465

Ph
ys

ic
al

 N
et

s

Ethernet connection and expansion
Ethernets can be connected through several types of devices. The options below are
ranked by approximate cost, with the cheapest options first. The more logic that a
device uses to move bits from one network to another, the more hardware and em-
bedded software the device needs to have and the more expensive it is likely to be.

Hubs
Devices from a bygone era, hubs are also referred to as concentrators or repeaters.
They are active devices that connect Ethernet segments at the physical layer. They
require external power.

A hub retimes and retransmits Ethernet frames but does not interpret them; it has
no idea where packets are going or what protocol they are using. With the exception
of extremely special cases, hubs should no longer be used in enterprise networks; we
discourage their use in residential (consumer) networks as well. Switches make sig-
nificantly more efficient use of network bandwidth and are just as cheap these days.

Switches
Switches connect Ethernets at the link layer. They join two physical networks in a
way that makes them seem like one big physical network. Switches are the industry
standard for connecting Ethernet devices today.

Switches receive, regenerate, and retransmit packets in hardware. Switches use a
dynamic learning algorithm. They notice which source addresses come from one
port and which from another. They forward packets between ports only when nec-
essary. At first all packets are forwarded, but in a few seconds the switch has learned
the locations of most hosts and can be more selective.

Since not all packets are forwarded among networks, each segment of cable that
connects to a switch is less saturated with traffic than it would be if all machines
were on the same cable. Given that most communication tends to be localized, the
increase in apparent bandwidth can be dramatic. And since the logical model of

 	

Table 14.4	 Attributes of standard optical fibers

Mode ISO name a
Core

diameter
Cladding
diameter Color

Multi OM1 	 62.5 µm 125 µm Orange
Multi OM2 	 50 µm 125 µm Orange
Multi OM3 	 50 µm b 125 µm Aqua
Single OS1 	 8–10 µm 125 µm Yellow

a.	 According to ISO 11801
b.	 OM3 is optimized for carrying laser light.

466	 Chapter 14	 Physical Networking	

the network is not affected by the presence of a switch, few administrative conse-
quences result from installing one.

Switches can sometimes become confused if your network contains loops. The
confusion arises because packets from a single host appear to be on two (or more)
ports of the switch. A single Ethernet cannot have loops, but as you connect sev-
eral Ethernets with routers and switches, the topology can include multiple paths
to a host. Some switches can handle this situation by holding alternative routes in
reserve in case the primary route goes down. They prune the network they see until
the remaining sections present only one path to each node on the network. Some
switches can also handle duplicate links between the same two networks and route
traffic in a round robin fashion.

Switches must scan every packet to determine if it should be forwarded. Their
performance is usually measured by both the packet scanning rate and the packet
forwarding rate. Many vendors do not mention packet sizes in the performance
figures they quote, and thus, actual performance might be less than advertised.

Although Ethernet switching hardware is getting faster all the time, it is still not a
reasonable technology for connecting more than a hundred hosts in a single logi-
cal segment. Problems such as “broadcast storms” often plague large switched net-
works since broadcast traffic must be forwarded to all ports in a switched segment.
To solve this problem, use a router to isolate broadcast traffic between switched
segments, thereby creating more than one logical Ethernet.

Choosing a switch can be difficult. The switch market is a highly competitive seg-
ment of the computer industry, and it’s plagued with marketing claims that aren’t
even partially true. When selecting a switch vendor, rely on independent evalua-
tions rather than on data supplied by vendors themselves. In recent years, it has
been common for one vendor to have the “best” product for a few months but then
completely destroy its performance or reliability when trying to make improvements,
thus elevating another manufacturer to the top of the heap.

In all cases, make sure that the backplane speed of the switch is adequate—that’s the
number that really counts at the end of a long day. A well-designed switch should
have a backplane speed that exceeds the sum of the speeds of all its ports.

VLAN-capable switches
Large sites can benefit from switches that partition their ports (through software
configuration) into subgroups called virtual local area networks or VLANs. A
VLAN is a group of ports that belong to the same logical segment, as if the ports
were connected to their own dedicated switch. Such partitioning increases the abil-
ity of the switch to isolate traffic, and that capability has beneficial effects on both
security and performance.

	 Ethernet: the Swiss Army knife of networking	 467

Ph
ys

ic
al

 N
et

s

Traffic among VLANs is handled by a router, or in some cases, by a layer 3 routing
module or routing software layer within the switch. An extension of this system
known as “VLAN trunking” (such as is specified by the IEEE 802.1Q protocol) al-
lows physically separate switches to service ports on the same logical VLAN.

It’s important to note that VLANs alone provide little additional security. You must
filter the traffic among VLANs to reap any potential security benefit.

Routers
Routers (aka “layer 3 switches”) direct traffic at the network layer, layer 3 of the
OSI network model. They shuttle packets to their final destinations in accordance
with the information in the TCP/IP protocol headers. In addition to simply mov-
ing packets from one place to another, routers can also perform other functions
such as packet filtering (for security), prioritization (for quality of service), and
big-picture network topology discovery. See Chapter 14 for all the gory details
of how routing actually works.

Routers take one of two forms: fixed configuration and modular.

•	 Fixed configuration routers have network interfaces permanently installed
at the factory. They are usually suitable for small, specialized applications.
For example, a router with a T1 interface and an Ethernet interface might
be a good choice to connect a small company to the Internet.

•	 Modular routers have a slot or bus architecture to which interfaces can be
added by the end user. Although this approach is usually more expensive,
it ensures greater flexibility down the road.

Depending on your reliability needs and expected traffic load, a dedicated router
might or might not be cheaper than a UNIX or Linux system configured to act as
a router. However, a dedicated router usually achieves superior performance and
reliability. This is one area of network design in which it’s usually advisable to spend
extra money up front to avoid headaches later.

Autonegotiation
With the introduction of a variety of Ethernet standards came the need for devic-
es to figure out how their neighbors were configured and to adjust their settings
accordingly. For example, the network won’t work if one side of a link thinks the
network is running at 1 Gb/s and the other side of the link thinks it’s running at
10 Mb/s. The Ethernet autonegotiation feature of the IEEE standards is supposed
to detect and solve this problem. And in some cases, it does. In other cases, it is
easily misapplied and simply compounds the problem.

468	 Chapter 14	 Physical Networking	

The two golden rules of autonegotiation are these:

•	 You must use autonegotiation on all interfaces capable of 1 Gb/s or above.
It’s required by the standard.

•	 On interfaces limited to 100 Mb/s or below, you must either configure
both ends of a link in autonegotiation mode, or you must manually con-
figure the speed and duplex (half vs. full) on both sides. If you configure
only one side in autonegotiation mode, that side will not (in most cases)

“learn” how the other side has been configured. The result will be a con-
figuration mismatch and poor performance.

To see how to set a network interface’s autonegotiation policy, see the system-spe-
cific sections in the TCP/IP Networking chapter; they start on page 417.

Power over Ethernet
Power over Ethernet (PoE) is an extension of UTP Ethernet (standardized as IEEE
802.3af) that transmits power to devices over the same UTP cable that carries the
Ethernet signal. It’s especially handy for Voice over IP (VoIP) telephones or wire-
less access points (to name just two examples) that need a relatively small amount
of power in addition to a network connection.

The power supply capacity of PoE systems has been stratified into four classes that
range from 3.84 to 25.5 watts. Never satisfied, the industry is currently working on
a higher power standard (802.3bt) that may provide more than 100 watts. Won’t it
be convenient to operate an Easy-Bake Oven off the network port in the confer-
ence room? 5

PoE has two ramifications that are significant for sysadmins:

•	 You need to be aware of PoE devices in your infrastructure so that you
can plan the availability of PoE-capable switch ports accordingly. They
are more expensive than non-PoE ports.

•	 The power budget for data closets that house PoE switches must include
the wattage of the PoE devices. Note that you don’t have to budget the
same amount of extra cooling for the closet because most of the heat gen-
erated by the consumption of PoE power is dissipated outside the closet
(usually, in an office).

Jumbo frames
Ethernet is standardized for a typical packet size of 1,500 bytes (1,518 with fram-
ing), a value chosen long ago when networks were slow and memory for buffers
was scarce. Today, these 1,500-byte packets look shrimpy in the context of a gigabit

	 5.	 For those of you that are wondering: yes, it is possible to boot a small Linux system off a PoE port.
Perhaps the simplest option is a Raspberry Pi with an add-on Pi PoE Switch HAT board.

	 Wireless: Ethernet for nomads	 469

Ph
ys

ic
al

 N
et

s

Ethernet. Because every packet consumes overhead and introduces latency, network
throughput can be higher if larger packet sizes are allowed.

Unfortunately, the original IEEE standards for the various types of Ethernet forbid
large packets because of interoperability concerns. But just as highway traffic often
mysteriously flows faster than the stated speed limit, king-size Ethernet packets are
a common sight on today’s networks. Egged on by customers, most manufacturers
of network equipment have built support for large frames into their gigabit products.

To use these so-called jumbo frames, all you need do is bump up your network
interfaces’ MTUs. Throughput gains vary with traffic patterns, but large transfers
over TCP (e.g., NFSv4 or SMB file service) benefit the most. Expect a modest but
measurable improvement on the order of 10%.

Be aware of these points, though:

•	 All network equipment on a subnet must support and use jumbo frames,
including switches and routers. You cannot mix and match.

•	 Because jumbo frames are nonstandard, you usually have to enable them
explicitly. Devices may accept jumbo frames by default, but they probably
will not generate them.

•	 Since jumbo frames are a form of outlawry, there’s no universal consensus
on exactly how large a jumbo frame can or should be. The most common
value is 9,000 bytes, or 9,018 bytes with framing. You’ll have to investigate
your devices to determine the largest packet size they have in common.
Frames larger than 9K or so are sometimes called “super jumbo frames,”
but don’t be scared off by the extreme-sounding name. Larger is generally
better, at least up to 64K or so.

We endorse the use of jumbo frames on gigabit Ethernets, but be prepared to do
some extra debugging if things go wrong. It’s perfectly reasonable to deploy new
networks with the default MTU and convert to jumbo frames later once the reli-
ability of the underlying network has been confirmed.

14.2	 Wireless: Ethernet for nomads
A wireless network consists of wireless access points (WAPs, or simply APs) and
wireless clients. WAPs can be connected to traditional wired networks (the typi-
cal configuration) or wirelessly connected to other access points, a configuration
known as a “wireless mesh.”

Wireless standards
The common wireless standards today are IEEE 802.11g, 802.11n, and 802.11ac.
802.11g operates in the 2.4 GHz frequency band and affords LAN-like access at up

470	 Chapter 14	 Physical Networking	

to 54 Mb/s. Operating range varies from 100 meters to 40 kilometers, depending
on equipment and terrain.

802.11n delivers up to 600 Mb/s6 of bandwidth and can use both the 5 GHz fre-
quency band and the 2.4 GHz band (though 5 GHz is recommended for deploy-
ment). Typical operating range is approximately double that of 802.11g. 802.11ac is
an extension of 802.11n with support for up to 1 Gb/s of multistation throughput.

All these standards are covered by the generic term “Wi-Fi.” In theory, the Wi-Fi
label is restricted to Ethernet implementations from the IEEE 802.11 family. How-
ever, that’s the only kind of wireless Ethernet hardware you can actually buy, so all
wireless Ethernet is Wi-Fi.

Today, 802.11g and 802.11n are commonplace. The transceivers are inexpensive
and are built into most laptops. Add-in cards are widely and cheaply available for
desktop PCs, too.

Wireless client access
You can configure a UNIX or Linux box to connect to a wireless network as a client
if you have the right hardware and driver. Since most PC-based wireless cards are
still designed for Microsoft Windows, they might not come from the factory with
FreeBSD or Linux drivers.

When attempting to add wireless connectivity to a FreeBSD or Linux system, you’ll
likely need these commands:

•	 ifconfig – configure a wireless network interface
•	 iwlist – list available wireless access points
•	 iwconfig – configure wireless connection parameters
•	 wpa_supplicant – authenticate to a wireless (or wired 802.1x) network

Unfortunately, the industry’s frantic scramble to sell low-cost hardware often means
that getting a wireless adapter to work correctly under UNIX or Linux might re-
quire hours of trial and error. Plan ahead, or buy the same adapter that someone
else on the Internet has had good luck with on the same OS version you’re running.

Wireless infrastructure and WAPs
Everyone wants wireless everything everywhere, and a wide variety of products are
available to provide wireless service. But as with so many things, you get what you
pay for. Inexpensive devices often meet the needs of home users but fail to scale
well in an enterprise environment.

	 6.	 The 600 Mb/s bandwidth of 802.11n is largely theoretical. In practice, bandwidth in the neighbor-
hood of 400 Mb/s is a more realistic expectation for an optimized configuration. The environment
and capabilities of client devices explain most of the difference between theoretical and real-life
throughput. When it comes to wireless, “your mileage may vary” always applies!

	 Wireless: Ethernet for nomads	 471

Ph
ys

ic
al

 N
et

s

Wireless topology
WAPs are usually dedicated appliances that consist of one or more radios and some
form of embedded network operating system, often a stripped-down version of
Linux. A single WAP can provide a connection point for multiple clients, but not
for an unlimited number of clients. A good rule of thumb is to serve no more than
forty simultaneous clients from a single enterprise-grade WAP. Any device that com-
municates through a wireless standard supported by your WAPs can act as a client.

WAPs are configured to advertise one or more “service set identifiers,” aka SSIDs.
The SSID acts as the name of a wireless LAN and must be unique within a partic-
ular area. When a client wants to connect to a wireless LAN, it listens to see what
SSIDs are being advertised and lets the user select from among these networks.

You can choose to name your SSID something helpful and easy to remember such as
“Third Floor Public,” or you can get creative. Some of our favorite SSID names are

•	 	FBI Surveillance Van
•	 	The Promised LAN
•	 	IP Freely
•	 Get Off My LAN
•	 Virus Distribution Center
•	 Access Denied

Nothing better than geeks at play... In the simplest scenarios, a WAP advertises a
single SSID, your client connects to that SSID, and voila! You’re on the network.

However, few aspects of wireless networking are truly simple. What if your house
or building is too big to be served by a single WAP? Or what if you need to provide
different networks to different groups of users (such as employees vs. guests)? For
these cases, you need to strategically structure your wireless network.

You can use multiple SSIDs to break up groups of users or functions. Typically, you
map them to separate VLANs, which you can then route or filter as desired, just
like wired networks.

The frequency spectrum allocated to 802.11 wireless is broken up into bands, com-
monly called channels. Left on its own, a WAP selects a quiet radio channel to ad-
vertise an SSID. Clients and the WAP then use that channel for communication,
forming a single broadcast domain. Nearby WAPs will likely choose other channels
so as to maximize available bandwidth and minimize interference.

The theory is that as clients move around the environment, they will dissociate
from one WAP when its signal becomes weak and connect to a closer WAP with
a stronger signal. Theory and reality often don’t cooperate, however. Many clients
hold onto weak WAP signals with a death grip and ignore better options.

In most situations, you should allow WAPs to automatically select their favorite
channels. If you must manually interfere with this process and are using 802.11b/g/n,
consider selecting channel 1, 6, or 11. The spectrum allocated to these channels

472	 Chapter 14	 Physical Networking	

does not overlap, so combinations of these channels create the greatest likelihood
of a wide-open wireless highway. The default channels for 802.11a/ac don’t overlap
at all, so just pick your favorite number.

Some WAPs have multiple antennas and take advantage of multiple-input,
multiple-output technology (MIMO). This practice can increase available bandwidth
by exploiting multiple transmitters and receivers to take advantage of signal offsets
resulting from propagation delay. The technology can provide a slight performance
improvement in some situations, though probably not as much improvement as
the dazzling proliferation of antennas might lead you to expect.

If you need a physically larger coverage area, then deploy multiple WAPs. If the area
is completely open, you can deploy them in a grid structure. If the physical plant
includes walls and other obstructions, you may want to invest in a professional
wireless survey. The survey will identify the best options for WAP placement given
the physical attributes of your space.

Small money wireless
We like the products made by Ubiquiti (ubnt.com) for inexpensive, high-perform-
ing home networks. Google Wifi is a nice, cloud-managed solution, great if you
support remote family members. Another option is to run a stripped down version
of Linux (such as OpenWrt or LEDE) on a commercial WAP. See openwrt.org for
more information and a list of compatible hardware.

Literally dozens of vendors are hawking wireless access points these days. You can
buy them at Home Depot and even at the grocery store. El cheapo access points
(those in the $30 range) are likely to perform poorly when handling large file trans-
fers or more than one active client.

Big money wireless
Big wireless means big money. Providing reliable, high-density wireless on a large
scale (think hospitals, sports arenas, schools, cities) is a challenge complicated by
physical plant constraints, user density, and the pesky laws of physics. For situa-
tions like this, you need enterprise-grade wireless gear that’s aware of the location
and condition of each WAP and that actively adjusts the WAPs’ channels, signal
strengths, and client associations to yield the best results. These systems usually
support transparent roaming, which allows a client’s association with a particular
VLAN and session to seamlessly follow it as the client moves among WAPs.

Our favorite large wireless platforms are those made by Aerohive and Meraki (the
latter now owned by Cisco). These next-generation platforms are managed from
the cloud, allowing you to sip martinis on the beach as you monitor your network
through a browser. You can even eject individual users from the wireless network
from the comfort of your beach chair. Take that, hater!

http://ubnt.com
http://openwrt.org

	 SDN: software-defined networking	 473

Ph
ys

ic
al

 N
et

s

If you are deploying a wireless network on a large scale, you’ll probably need to
invest in a wireless network analyzer. We highly recommend the analysis products
made by AirMagnet.

Wireless security
The security of wireless networks has traditionally been poor. Wired Equivalent
Privacy (WEP) is a protocol used in conjunction with legacy 802.11b networks to
encrypt packets traveling over the airwaves. Unfortunately, this standard contains
a fatal design flaw that makes it little more than a speed bump for snoopers. Some-
one sitting outside your building or house can access your network directly and
undetectably, usually in under a minute.

More recently, the Wi-Fi Protected Access (WPA) security standards have engen-
dered new confidence in wireless security. Today, WPA (specifically, WPA2) should
be used instead of WEP in all new installations. Without WPA2, wireless networks
should be considered completely insecure and should never be found inside an en-
terprise firewall. Don’t even use WEP at home!

To remember that it’s WEP that’s insecure and WPA that’s secure, just remember
that WEP stands for Wired Equivalent Privacy. The name is accurate; WEP gives
you as much protection as letting someone connect directly to your wired network.
(That is, no protection at all—at least at the IP level.)

14.3	 SDN: software-defined networking
Just as with server virtualization, the separation of physical network hardware from
the functional architecture of the network can significantly increase flexibility and
manageability. The best traction along this path is the software-defined network-
ing (SDN) movement.

The main idea of SDN is that the components managing the network (the control
plane) are physically separate from the components that forward packets (the data
plane). The data plane is programmable through the control plane, so you can
fine-tune or dynamically configure data paths to meet performance, security, and
accessibility goals.

As with so many things in our industry, SDN for enterprise networks has become
somewhat of a marketing gimmick. The original goal was to standardize vendor-in-
dependent ways to reconfigure network components. Although some of this idealism
has been realized, many vendors now offer proprietary enterprise SDN products
that run somewhat counter to SDN’s original purpose. If you find yourself explor-
ing the enterprise SDN space, choose products that conform to open standards and
are interoperable with other vendors’ products.

474	 Chapter 14	 Physical Networking	

For large cloud providers, SDN adds a layer of flexibility that reduces your need to
know (or care) where a particular resource is physically located. Although these
solutions may be proprietary, they are tightly integrated into cloud providers’ plat-
forms and can make configuring your virtual infrastructure effortless.

SDN and its API-driven configuration system offer you, the sysadmin, a tempting
opportunity to integrate network topology management with other DevOps-style
tools for continuous integration and deployment. Perhaps in some ideal world, you
always have a “next at bat” production environment staged and ready to activate
with a single click. As the new environment is promoted to production, the network
infrastructure magically morphs, eliminating user-visible downtime and the need
for you to schedule maintenance windows.

14.4	 Network testing and debugging
The key to debugging a network is to break it down into its component parts and
then test each piece until you’ve isolated the offending device or cable. The “idiot
lights” on switches and hubs (such as “link status” and “packet traffic”) often hold
immediate clues to the source of the problem. Top-notch documentation of your
wiring scheme is essential for making these indicator lights work in your favor.

As with most tasks, having the right tools for the job is a big part of being able to
get the job done right and without delay. The market offers two major types of net-
work debugging tools, although these are quickly converging into unified devices.

The first type of tool is the hand-held cable analyzer. This device can measure the
electrical characteristics of a given cable, including its length, with a groovy tech-
nology called “time domain reflectrometry.” Usually, these analyzers can also point
out simple faults such as broken or miswired cables.

Our favorite product for LAN cable analysis is the Fluke LanMeter. It’s an all-in-one
analyzer that can even perform IP pings across the network. High-end versions have
their own web server that can show you historical statistics. For WAN (telco) circuits,
the T-BERD line analyzer is the cat’s meow. It’s made by Viavi (viavisolutions.com).

The second type of debugging tool is the network sniffer. A sniffer captures the bytes
that travel across the wire and disassembles network packets to look for protocol
errors, misconfigurations, and general snafus. Sniffers operate at the link layer of
the network rather than the electrical layer, so they cannot diagnose cabling prob-
lems or electrical issues that might be affecting network interfaces.

Commercial sniffers are available, but we find that the freely available program
Wireshark running on a fat laptop is usually the best option.7 See the Packet sniffers
section starting on page 434 for details.

	 7.	 Like so many popular programs, Wireshark is often the target of attacks by hackers. Make sure you
stay up to date with the most current version.

http://viavisolutions.com

	 Building wiring	 475

Ph
ys

ic
al

 N
et

s

14.5	 Building wiring
If you’re embarking on a building wiring project, the most important advice we
can give you is to “do it right the first time.” This is not an area in which to skimp
or cut corners. Buying quality materials, selecting a competent wiring contractor,
and installing extra connections (drops) will save you years of frustration and
heartburn down the road.

UTP cabling options
Category 6a wire typically offers the best price vs. performance tradeoff in today’s
market. Its normal format is four pairs per sheath, which is just right for a variety
of data connections from RS-232 to gigabit Ethernet.

Category 6a specifications require that the twist be maintained to the point of
contact. Special training and termination equipment are necessary to satisfy this
requirement. You must use Category 6a jacks and patch panels. We’ve had the best
luck with parts manufactured by Siemon.

Connections to offices
For many years, there has been an ongoing debate about how many connections
should be wired per office. One connection per office is clearly not enough. But
should you use two or four? With the advent of high-bandwidth wireless, we now
recommend two, for several reasons:

•	 A nonzero number of wired connections is typically needed to support
voice telephones and other specialty devices.

•	 Most user devices can now be connected through wireless networking,
and users prefer this to being chained down by cables.

•	 Your network wiring budget is better spent on core infrastructure (fiber
to closets, etc.) than on more drops to individual offices.

If you’re in the process of wiring your entire building, you might consider install-
ing a few outlets in hallways, conference rooms, lunch rooms, bathrooms, and of
course, ceilings (for wireless access points). Don’t forget to keep security in mind,
however, and put publicly accessible ports on a “guest” VLAN that doesn’t have
access to your internal network resources. You can also secure public ports by im-
plementing 802.1x authentication.

Wiring standards
Modern buildings often require a large and complex wiring infrastructure to sup-
port all the various activities that take place inside. Walking into the average tele-
communications closet can be a shocking experience for the weak of stomach, as
identically colored, unlabeled wires often cover the walls.

476	 Chapter 14	 Physical Networking	

In an effort to increase traceability and standardize building wiring, the Telecom-
munications Industry Association in February 1993 released TIA/EIA‑606 (Admin-
istration Standard for Commercial Telecommunications Infrastructure), later updated
to TIA/EIA-606-B in 2012.

EIA-606 specifies requirements and guidelines for the identification and documen-
tation of telecommunications infrastructure. Items covered by EIA-606 include

•	 Termination hardware
•	 Cables
•	 Cable pathways
•	 Equipment spaces
•	 Infrastructure color coding
•	 Labeling requirements
•	 Symbols for standard components

In particular, the standard specifies colors to be used for wiring. Table 14.5 shows
the details.

Table 14.5	 EIA-606 color chart

Termination type Color Code a Comments

Demarcation point Orange 150C Central office terminations
Network connections Green 353C Also used for aux circuit terminations
Common equipment b Purple 264C Major switching/data eqpt. terminations
First-level backbone White – Cable terminations
Second-level backbone Gray 422C Cable terminations
Station Blue 291C Horizontal cable terminations
Interbuilding backbone Brown 465C Campus cable terminations
Miscellaneous Yellow 101C Maintenance, alarms, etc.
Key telephone systems Red 184C –

a.	 Pantone Matching System color code
b.	 PBXes, hosts, LANs, muxes, etc.

Pantone sells software to map between the Pantone systems for ink-on-paper, textile
dyes, and colored plastic. Hey, you could color-coordinate the wiring, the uniforms
of the installers, and the wiring documentation! On second thought…

14.6	 Network design issues
This section addresses the logical and physical design of networks. It’s targeted at
medium-sized installations. The ideas presented here scale up to a few hundred
hosts but are overkill for three machines and inadequate for thousands. We also

	 Network design issues	 477

Ph
ys

ic
al

 N
et

s

assume that you have an adequate budget and are starting from scratch, which is
probably only partially true.

Most of network design consists of specifying

•	 The types of media that will be used
•	 The topology and routing of cables
•	 The use of switches and routers

Another key issue in network design is congestion control. For example, file-sharing
protocols such as NFS and SMB tax the network quite heavily, and so file serving
on a backbone cable is undesirable.

The issues presented in the following sections are typical of those that must be con-
sidered in any network design.

Network architecture vs. building architecture
Network architecture is usually more flexible than building architecture, but the
two must coexist. If you are lucky enough to be able to specify the network be-
fore a building is constructed, be lavish. For most of us, both the building and a
facilities-management department already exist and are somewhat rigid.

In existing buildings, the network must use the building architecture, not fight it.
Modern buildings often contain utility raceways for data and telephone cables in
addition to high-voltage electrical wiring and water or gas pipes. They often use
drop ceilings, a boon to network installers. Many campuses and organizations have
underground utility tunnels that facilitate network installation.

The integrity of firewalls8 must be maintained; if you route a cable through a fire-
wall, the hole must be snug and filled in with a noncombustible substance. Respect
return air plenums in your choice of cable. If you are caught violating fire codes,
you might be fined and will be required to fix the problems you have created, even
if that means tearing down the entire network and rebuilding it correctly.

Your network’s logical design must fit into the physical constraints of the buildings
it serves. As you specify the network, keep in mind that it’s easy to draw a logically
good solution and then find that it is physically difficult or impossible to implement.

Expansion
It’s difficult to predict needs ten years into the future, especially in the computer
and networking fields. Therefore, design the network with expansion and increased
bandwidth in mind. As you install cable, especially in out-of-the-way, hard-to-reach
places, pull three to four times the number of pairs you actually need. Remember:
the majority of installation cost is labor, not materials.

	 8.	 This type of firewall is a concrete, brick, or flame-retardant wall that prevents a fire from spreading
and burning down the building. Although different from a network security firewall, it’s probably just
as important.

478	 Chapter 14	 Physical Networking	

Even if you have no plans to use fiber, it’s wise to install some when wiring your
building, especially in situations where it will be hard to install cable later. Run
both multimode and single-mode fiber. The kind you need in the future is always
the kind you didn’t install.

Congestion
A network is like a chain: it is only as good as its weakest or slowest link. The per-
formance of Ethernet, like that of many other network architectures, degrades non-
linearly as the network becomes loaded.

Overtaxed switches, mismatched interfaces, and low-speed links can all lead to con-
gestion. It’s helpful to isolate local traffic by creating subnets and by using intercon-
nection devices such as routers. Subnets can also be used to cordon off machines
that are used for experimentation. It’s difficult to run an experiment that involves
several machines if you cannot isolate those machines both physically and logically
from the rest of the network.

Maintenance and documentation
We have found that the maintainability of a network correlates highly with the
quality of its documentation. Accurate, complete, up-to-date documentation is
indispensable.

Cables should be labeled at all termination points. It’s a good idea to post copies of
local cable maps inside communications closets so that the maps can be updated
on the spot when changes are made. Once every few weeks, have someone copy
down the changes for entry into a wiring database.

Joints between major population centers in the form of switches or routers can
facilitate debugging by allowing parts of the network to be isolated and debugged
separately. It’s also helpful to put joints between political and administrative do-
mains, for similar reasons.

14.7	 Management issues
If a network is to work correctly, some things must be centralized, some distrib-
uted, and some local. Reasonable ground rules and “good citizen” guidelines must
be formulated and agreed on.

A typical environment includes

•	 A backbone network among buildings
•	 Departmental subnets connected to the backbone
•	 Group subnets within a department
•	 Connections to the outside world (Internet or field office VPNs)

	 Recommended vendors	 479

Ph
ys

ic
al

 N
et

s

Several facets of network design and implementation must have site-wide control,
responsibility, maintenance, and financing. Networks with chargeback algorithms
for each connection grow in bizarre but predictable ways as departments try to
minimize their own local costs. Prime targets for central control are

•	 The network design, including the use of subnets, routers, switches, etc.
•	 The backbone network itself, including the connections to it
•	 Host IP addresses, hostnames, and subdomain names
•	 Protocols, mostly to ensure their interoperation
•	 Routing policy to the Internet

Domain names, IP addresses, and network names are in some sense already con-
trolled centrally by authorities such as ARIN (the American Registry for Internet
Numbers) and ICANN. However, your site’s use of these items must be coordinat-
ed locally as well.

A central authority has an overall view of the network: its design, capacity, and ex-
pected growth. It can afford to own monitoring equipment (and the staff to run it)
and to keep the backbone network healthy. It can insist on correct network design,
even when that means telling a department to buy a router and build a subnet to
connect to the campus backbone. Such a decision might be necessary to ensure that
a new connection does not adversely impact the existing network.

If a network serves many types of machines, operating systems, and protocols, it is
almost essential to have a layer 3 device as a gateway between networks.

14.8	 Recommended vendors
In the past 30+ years of installing networks around the world, we’ve gotten burned
more than a few times by products that didn’t quite meet specs or were misrepre-
sented, overpriced, or otherwise failed to meet expectations. Below is a list of ven-
dors in the United States that we still trust, recommend, and use ourselves today.

Cables and connectors
	 AMP (part of Tyco)	 Anixter	 Black Box Corporation
	 (800) 522-6752	 (800) 264-9837	 (724) 746-5500
	 amp.com	 anixter.com	 blackbox.com

	 Belden Cable	 Siemon	 Newark Electronics
	 (800) 235-3361	 (860) 945-4395 	 (800) 463-9275
	 (765) 983-5200	 siemon.com	 newark.com
	 belden.com

http://amp.com
http://anixter.com
http://blackbox.com
http://siemon.com
http://newark.com
http://belden.com

480	 Chapter 14	 Physical Networking	

Test equipment
	 Fluke 	 Siemon	 Viavi
	 (800) 443-5853	 (860) 945-4395	 (844) 468-4284
	 fluke.com	 siemon.com	 viavisolutions.com

Routers/switches
	 Cisco Systems	 Juniper Networks	
	 (415) 326-1941	 (408) 745-2000
	 cisco.com	 juniper.net

14.9	 Recommended reading
ANSI/TIA/EIA-568-A, Commercial Building Telecommunications Cabling Standard,
and ANSI/TIA/EIA-606, Administration Standard for the Telecommunications Infra-
structure of Commercial Buildings, are the telecommunication industry’s standards
for building wiring. Unfortunately, they are not free. See tiaonline.org.

Barnett, David, David Groth, and Jim McBee. Cabling: The Complete Guide to
Network Wiring (3rd Edition). San Francisco, CA: Sybex, 2004.

Goransson, Paul, and Chuck Black. Software Defined Networks, A Comprehen-
sive Approach (2nd Edition). Burlington, MA: Morgan Kaufman, 2016.

Spurgeon, Charles, and Joann Zimmerman. Ethernet: The Definitive Guide: Design-
ing and Managing Local Area Networks (2nd Edition). Sebastopol, CA: O’Reilly, 2014.

http://fluke.com
http://siemon.com
http://viavisolutions.com
http://cisco.com
http://juniper.net
http://tiaonline.org

IP
 R

ou
tin

g

			 481

More than 4.3 billion IP addresses are available world-wide, so getting packets to
the right place on the Internet is no easy task.1 Chapter 13, TCP/IP Networking,
briefly introduced IP packet forwarding. In this chapter, we examine the forwarding
process in more detail and investigate several network protocols that allow routers
to automatically discover efficient routes. Routing protocols not only lessen the day-
to-day administrative burden of maintaining routing information, but they also al-
low network traffic to be redirected quickly if a router, link, or network should fail.

It’s important to distinguish between the process of actually forwarding IP packets
and the management of the routing table that drives this process, both of which
are commonly called “routing.” Packet forwarding is simple, whereas route com-
putation is tricky; consequently, the second meaning is used more often in practice.
This chapter describes only unicast routing; multicast routing (sending packets to
groups of subscribers) involves an array of very different problems and is beyond
the scope of this book.

For most cases, the information covered in Chapter 13 is all you need to know
about routing. If the appropriate network infrastructure is already in place, you can
set up a single static default route (as described in the Routing section starting on

	 1.	 See wapo.st/world-ip.

15 IP Routing

482	 Chapter 15	 IP Routing	

page 398) and voilà, you have enough information to reach just about anywhere
on the Internet. If you must live within a complex network topology, or if you are
using UNIX or Linux systems as part of your network infrastructure, then this chap-
ter’s information about dynamic routing protocols and tools can come in handy.2

IP routing (both for IPv4 and for IPv6) is “next hop” routing. At any given point,
the system handling a packet needs to determine only the next host or router in
the packet’s journey to its final destination. This is a different approach from that of
many legacy protocols, which determine the exact path a packet will travel before
it leaves its originating host, a scheme known as source routing.3

15.1	 Packet forwarding: a closer look
Before we jump into the management of routing tables, we need a more detailed
look at how the tables are used. Consider the network shown in Exhibit A.

Exhibit A	 Example network

199.165.145
network

199.165.146
network145.17

145.24 146.1
146.4

146.3

Host
A

Host
BRouter

R1

Router
R2 216.12.111.80

to the Internet

For simplicity, we start this example with IPv4; for an IPv6 routing table, see page 485.

Router R1 connects two networks, and router R2 connects one of these nets to
the outside world. A look at the routing tables for these hosts and routers lets us
examine some specific packet forwarding scenarios. First, host A’s routing table:

A$ netstat -rn
Destination Gateway Genmask Flags MSS Window irtt Iface
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
199.165.145.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
0.0.0.0 199.165.145.24 0.0.0.0 UG 0 0 0 eth0

The example above uses the venerable netstat tool to query the routing table. This
tool is distributed with FreeBSD and is available for Linux as part of the net-tools

	 2.	 We do not recommend the use of UNIX or Linux systems as network routers in a production infra-
structure. Buy a dedicated router.

	 3.	 IP packets can also be source-routed—at least in theory—but this is almost never done. The feature is
not widely supported because of security considerations.

	 Packet forwarding: a closer look	 483

IP
 R

ou
tin

g

package. net-tools is no longer actively maintained, and as a result it is considered
deprecated. The less featureful ip route command is the officially recommended
way to obtain this information on Linux:

A$ ip route
default via 199.165.145.24 dev eth0 onlink
199.165.145.0/24 dev eth0 proto kernel scope link src 199.165.145.17

The output from netstat -rn is slightly easier to read, so we use that for subsequent
examples and for the following exploration of Exhibit A.

Host A has the simplest routing configuration of the four machines. The first two
routes describe the machine’s own network interfaces in standard routing terms.
These entries exist so that forwarding to directly connected networks need not be
handled as a special case. eth0 is host A’s Ethernet interface, and lo is the loopback
interface, a virtual interface emulated in software. Entries such as these are normally
added automatically when a network interface is configured.

The default route on host A forwards all packets not addressed to the loopback ad-
dress or to the 199.165.145 network to the router R1, whose address on this network
is 199.165.145.24. Gateways must be only one hop away.

Suppose a process on A sends a packet to B, whose address is 199.165.146.4. The
IP implementation looks for a route to the target network, 199.165.146, but none
of the routes match. The default route is invoked and the packet is forwarded to R1.
Exhibit B shows the packet that actually goes out on the Ethernet. The addresses in
the Ethernet header are the MAC addresses of A’s and R1’s interfaces on the 145 net.

Exhibit B	 Ethernet packet

ETHERNET FRAME

Ethernet
header IP header UDP header and data

IP PACKET
UDP PACKET

From:
To:

Type:

199.165.145.17
199.165.146.4
UDP

From:
To:

Type:

A
R1
IP

The Ethernet destination address is that of router R1, but the IP packet hidden within
the Ethernet frame does not mention R1 at all. When R1 inspects the packet it has
received, it sees from the IP destination address that it is not the ultimate destina-
tion of the packet. It then uses its own routing table to forward the packet to host B
without rewriting the IP header; the header still shows the packet coming from A.

See the discussion
of netmasks start-
ing on page 388.

See page 384 for
more information
about addressing.

484	 Chapter 15	 IP Routing	

Here’s the routing table for host R1:

R1$ netstat -rn
Destination Gateway Genmask Flags MSS Window irtt Iface
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
199.165.145.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
199.165.146.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
0.0.0.0 199.165.146.3 0.0.0.0 UG 0 0 0 eth1

This table is similar to that of host A, except that it shows two physical network in-
terfaces. The default route in this case points to R2, since that’s the gateway through
which the Internet can be reached. Packets bound for either of the 199.165 networks
can be delivered directly.

Like host A, host B has only one real network interface. However, B needs an addi-
tional route to function correctly because it has direct connections to two different
routers. Traffic for the 199.165.145 net must travel through R1, but other traffic
should go out to the Internet through R2.

B$ netstat -rn
Destination Gateway Genmask Flags MSS Window irtt Iface
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
199.165.145.0 199.165.146.1 255.255.255.0 U 0 0 0 eth0
199.165.146.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
0.0.0.0 199.165.146.3 0.0.0.0 UG 0 0 0 eth0

In theory, you can configure host B with initial knowledge of only one gateway and
rely on help from ICMP redirects to eliminate extra hops. For example, here is one
possible initial configuration for host B:

B$ netstat -rn
Destination Gateway Genmask Flags MSS Window irtt Iface
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
199.165.146.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
0.0.0.0 199.165.146.3 0.0.0.0 UG 0 0 0 eth0

If B then sends a packet to host A (199.165.145.17), no route matches and the packet
is forwarded to R2 for delivery. R2 (which, being a router, presumably has complete
information about the network) sends the packet on to R1. Since R1 and B are on
the same network, R2 also sends an ICMP redirect notice to B, and B enters a host
route for A into its routing table:

199.165.145.17 199.165.146.1 255.255.255.255 UGHD 0 0 0 eth0

This route sends all future traffic for A directly through R1. However, it does not
affect routing for other hosts on A’s network, all of which have to be routed by sep-
arate redirects from R2.

Some sites use ICMP redirects this way as a sort of low-rent routing “protocol,” think-
ing that this approach is dynamic. Unfortunately, systems and routers all handle
redirects differently. Some hold on to them indefinitely. Others remove them from

See page 401 for
an explanation of
ICMP redirects.

	 Routing daemons and routing protocols	 485

IP
 R

ou
tin

g

the routing table after a relatively short period (5–15 minutes). Still others ignore
them entirely, which is probably the correct approach from a security perspective.

Redirects have several other potential disadvantages: increased network load, in-
creased load on R2, routing table clutter, and dependence on extra servers, to name
a few. Therefore, we don’t recommend their use. In a properly configured network,
redirects should never appear in the routing table.

If you are using IPv6 addresses, the same model applies. Here’s a routing table from
a FreeBSD host that is running IPv6:

$ netstat -rn
Destination Gateway Flags Netif Expire
default 2001:886b:4452::1 UGS re0
2001:886b:4452::/64 link#1 U re0
fe80::/10 ::1 UGRS lo0
fe80::%re0/64 link#1 U re0

As in IPv4, the first route is a default that’s used when no more-specific entries
match. The next line contains a route to the global IPv6 network where the host
lives, 2001:886b:4452::/64. The final two lines are special; they represent a route
to the reserved IPv6 network fe80, known as the link-local unicast network. This
network is used for traffic that is scoped to the local broadcast domain (typically,
the same physical network segment). It is most often used by network services that
need to find each other on a unicast network, such as OSPF. Don’t use link-local
addresses for normal networking purposes.

15.2	 Routing daemons and routing protocols
In simple networks such as the one shown in Exhibit A, it is perfectly reasonable to
configure routing by hand. At some point, however, networks become too compli-
cated to be managed this way. Instead of having to explicitly tell every computer on
every network how to reach every other computer and network, it would be nice if
the computers could just cooperate and figure it all out. This is the job of routing
protocols and the daemons that implement them.

Routing protocols have a major advantage over static routing systems in that they
can react and adapt to changing network conditions. If a link goes down, then the
routing daemons can discover and propagate alternative routes to the networks
served by that link, if any such routes exist.

Routing daemons collect information from three sources: configuration files, the
existing routing tables, and routing daemons on other systems. This information is
merged to compute an optimal set of routes, and the new routes are then fed back
into the system routing table (and possibly fed to other systems through a routing
protocol). Because network conditions change over time, routing daemons must
periodically check in with one another for reassurance that their routing informa-
tion is still current.

486	 Chapter 15	 IP Routing	

The exact manner in which routes are computed depends on the routing protocol.
Two general types of protocols are in common use: distance-vector protocols and
link-state protocols.

Distance-vector protocols
Distance-vector (aka “gossipy”) protocols are based on the general idea, “If rout-
er X is five hops away from network Y, and I’m adjacent to router X, then I must
be six hops away from network Y.” You announce how far you think you are from
the networks you know about. If your neighbors don’t know of a better way to get
to each network, they mark you as being the best gateway. If they already know a
shorter route, they ignore your advertisement. Over time, everyone’s routing tables
are supposed to converge to a steady state.

This is a really elegant idea. If it worked as advertised, routing would be relatively
simple. Unfortunately, the basic algorithm does not deal well with changes in topol-
ogy.4 In some cases, infinite loops (e.g., router X receives information from router
Y and sends it on to router Z, which sends it back to router Y) can prevent routes
from converging at all. Real-world distance-vector protocols must avoid such prob-
lems by introducing complex heuristics or by enforcing arbitrary restrictions such
as the RIP (Routing Information Protocol) notion that any network more than 15
hops away is unreachable.

Even in nonpathological cases, it can take many update cycles for all routers to reach
a steady state. Therefore, to guarantee that routing does not jam for an extended peri-
od, the cycle time must be made short, and for this reason distance-vector protocols
as a class tend to be talkative. For example, RIP requires that routers broadcast all
their routing information every 30 seconds. EIGRP sends updates every 90 seconds.

On the other hand, BGP, the Border Gateway Protocol, transmits the entire table
once and then transmits changes as they occur. This optimization substantially re-
duces the potential for “chatty” (and mostly unnecessary) traffic.

Table 15.1 lists the distance-vector protocols in common use today.

Table 15.1	 Common distance-vector routing protocols

Name Long name Application

RIP Routing Information Protocol Internal LANs (if that)
RIPng Routing Information Protocol, next generation IPv6 LANs
EIGRP a Enhanced Interior Gateway Routing Protocol WANs, corporate LANs
BGP Border Gateway Protocol Internet backbone routing

a.	 This protocol (EIGRP) is proprietary to Cisco.

	 4.	 The problem is that changes in topology can lengthen the optimal routes. Some DV protocols, such as
EIGRP, maintain information about multiple possible routes so that they always have a fallback plan.
The exact details are not important.

	 Routing daemons and routing protocols	 487

IP
 R

ou
tin

g

Link-state protocols
Link-state protocols distribute information in a relatively unprocessed form. The
records traded among routers are of the form “Router X is adjacent to router Y,
and the link is up.” A complete set of such records forms a connectivity map of the
network from which each router can compute its own routing table. The primary
advantage that link-state protocols offer over distance-vector protocols is the abil-
ity to quickly converge on an operational routing solution after a catastrophe oc-
curs. The tradeoff is that maintaining a complete map of the network at each node
requires memory and CPU power that would not be needed by a distance-vector
routing system.

Because the communications among routers in a link-state protocol are not part of
the actual route-computation algorithm, they can be implemented in such a way
that transmission loops do not occur. Updates to the topology database propagate
across the network efficiently, at a lower cost in network bandwidth and CPU time.

Link-state protocols tend to be more complicated than distance-vector protocols,
but this complexity can be explained in part by the fact that link-state protocols
make it easier to implement advanced features such as type-of-service routing and
multiple routes to the same destination.

The only true link-state protocol in general use is OSPF.

Cost metrics
For a routing protocol to determine which path to a network is shortest, the pro-
tocol has to define what is meant by “shortest.” Is it the path involving the fewest
number of hops? The path with the lowest latency? The largest minimal interme-
diate bandwidth? The lowest financial cost?

For routing, the quality of a link is represented by a number called the cost metric.
A path cost is the sum of the costs of each link in the path. In the simplest systems,
every link has a cost of 1, leading to hop counts as a path metric. But any of the
considerations mentioned above can be converted to a numeric cost metric.

Routing protocol designers have labored long and hard to make the definition of
cost metrics flexible, and some protocols even allow different metrics to be used
for different kinds of network traffic. Nevertheless, in 99% of cases, all this hard
work can be safely ignored. The default metrics for most systems work just fine.

You might encounter situations in which the actual shortest path to a destination
is not a good default route for political or financial reasons. To handle these cases,
you can artificially boost the cost of the critical links to make them seem less ap-
pealing. Leave the rest of the routing configuration alone.

488	 Chapter 15	 IP Routing	

Interior and exterior protocols
An “autonomous system” (AS) is a group of networks under the administrative con-
trol of a single entity. The definition is vague; real-world autonomous systems can
be as large as a world-wide corporate network or as small as a building or a single
academic department. It all depends on how you want to manage routing. The gen-
eral tendency is to make autonomous systems as large as you can. This convention
simplifies administration and makes routing as efficient as possible.

Routing within an autonomous system is somewhat different from routing between
autonomous systems. Protocols for routing among ASs (“exterior” protocols) must
often handle routes for many networks (e.g., the entire Internet), and they must deal
gracefully with the fact that neighboring routers are under other people’s control.
Exterior protocols do not reveal the topology inside an autonomous system, so in
a sense they can be thought of as a second level of routing hierarchy that deals with
collections of nets rather than individual hosts or cables.

In practice, small- and medium-sized sites rarely need to run an exterior protocol
unless they are connected to more than one ISP. With multiple ISPs, the easy divi-
sion of networks into local and Internet domains collapses, and routers must decide
which route to the Internet is best for any particular address. (However, that is not
to say that every router must know this information. Most hosts can stay stupid and
route their default packets through an internal gateway that is better informed.)

Although exterior protocols are not much different from their interior counterparts,
this chapter concentrates on the interior protocols and the daemons that support
them. If your site must use an external protocol as well, see the recommended read-
ing list on page 496 for some suggested references.

15.3	 Protocols on parade
Several routing protocols are in common use. In this section, we introduce the ma-
jor players and summarize their main advantages and weaknesses.

RIP and RIPng: Routing Information Protocol
RIP is an old Xerox protocol that was adapted for IP networks. The IP version was
originally specified in RFC1058, circa 1988. The protocol has existed in three ver-
sions: RIP, RIPv2, and the IPv6-only RIPng (“next generation”).

All versions of RIP are simple distance-vector protocols that use hop counts as a cost
metric. Because RIP was designed in an era when computers were expensive and
networks small, RIPv1 considers any host 15 or more hops away to be unreachable.
Later versions of RIP have maintained the hop-count limit, mostly to encourage the
administrators of complex sites to migrate to more sophisticated routing protocols.

RIPv2 is a minor revision of RIP that distributes netmasks along with next-hop
addresses, so its support for subnetted networks and CIDR is better than that of
RIPv1. A vague gesture toward increasing the security of RIP was also included.

See page 391 for
more information
about CIDR.

	 Protocols on parade	 489

IP
 R

ou
tin

g

RIPv2 can be run in a compatibility mode that preserves most of its new features
without entirely abandoning vanilla RIP receivers. In most respects, RIPv2 is iden-
tical to the original protocol and should be used in preference to it.

RIPng is a restatement of RIP in terms of IPv6. It is an IPv6-only protocol, and RIP
remains IPv4-only. If you want to route both IPv4 and IPv6 with RIP, you’ll need
to run RIP and RIPng as separate protocols.

Although RIP is known for its profligate broadcasting, it does a good job when a
network is changing often or when the topology of remote networks is not known.
However, it can be slow to stabilize after a link goes down.

It was originally thought that the advent of more sophisticated routing protocols
such as OSPF would make RIP obsolete. However, RIP continues to fill a need for
a simple, easy-to-implement protocol that doesn’t require much configuration, and
it works well on low-complexity networks.

RIP is widely implemented on non-UNIX platforms. A variety of common devices,
from printers to SNMP-manageable network components, can listen to RIP adver-
tisements to learn about network gateways. In addition, some form of RIP client is
available for all versions of UNIX and Linux, so RIP is a de facto lowest-common-​
denominator routing protocol. Often, RIP is used for LAN routing, and a more
featureful protocol is used for wide-area connectivity.

Some sites run passive RIP daemons (usually routed or Quagga’s ripd) that listen
for routing updates on the network but do not broadcast any information of their
own. The actual route computations are performed with a more efficient protocol
such as OSPF (see the next section). RIP is used only as a distribution mechanism.

OSPF: Open Shortest Path First
OSPF is the most popular link-state protocol. “Shortest path first” refers to the
mathematical algorithm that calculates routes; “open” is used in the sense of “non-
proprietary.” RFC2328 defines the basic protocol (OSPF version 2), and RFC5340
extends it to include support for IPv6 (OSPF version 3). OSPF version 1 is obso-
lete and is not used.

OSPF is an industrial-strength protocol that works well for large, complicated topol-
ogies. It offers several advantages over RIP, including the ability to manage several
paths to a single destination and the ability to partition the network into sections
(“areas”) that share only high-level routing information. The protocol itself is com-
plex and hence only worthwhile at sites of significant size, where routing protocol
behavior really makes a difference. To use OSPF effectively, your site’s IP addressing
scheme should be reasonably hierarchical.

The OSPF protocol specification does not mandate any particular cost metric. Cis-
co’s implementation uses a bandwidth-related value by default.

See page 379 for
details on IPv6.

490	 Chapter 15	 IP Routing	

EIGRP: Enhanced Interior Gateway Routing Protocol
EIGRP is a proprietary routing protocol that runs only on Cisco routers. Its prede-
cessor IGRP was created to address some of the shortcomings of RIP before robust
standards like OSPF existed. IGRP has now been deprecated in favor of EIGRP,
which accommodates CIDR masks. IGRP and EIGRP are configured similarly de-
spite being quite different in their underlying protocol design.

EIGRP supports IPv6, but as with other routing protocols, the IPv6 world and IPv4
world are configured separately and act as separate, though parallel, routing domains.

EIGRP is a distance-vector protocol, but it’s designed to avoid the looping and
convergence problems found in other DV systems. It’s widely regarded as the most
evolved distance-vector protocol. For most purposes, EIGRP and OSPF are equally
functional.

BGP: Border Gateway Protocol
BGP is an exterior routing protocol; that is, a protocol that manages traffic among
autonomous systems rather than among individual networks. There were once
several exterior routing protocols in common use, but BGP has outlasted them all.

BGP is now the standard protocol used for Internet backbone routing. As of mid-
2017, the Internet routing table contains about 660,000 prefixes. It should be clear
from this number that backbone routing has scaling requirements very different
from those for local routing.

15.4	 Routing protocol multicast coordination
Routers need to talk to each other to learn how to get to places on the network, but
to get to places on the network they need to talk to a router. This chicken-and-egg
problem is most commonly solved through multicast communication. This is the
networking equivalent of agreeing to meet your friend on a particular street corner
if you get separated. The process is normally invisible to system administrators, but
you might occasionally see this multicast traffic in your packet traces or when do-
ing other kinds of network debugging. Table 15.2 lists the agreed-on multicast ad-
dresses for various routing protocols.

15.5	 Routing strategy selection criteria
Routing for a network can be managed at essentially four levels of complexity:

•	 No routing
•	 Static routes only
•	 Mostly static routes, but clients listen for RIP updates
•	 Dynamic routing everywhere

 	

	 Routing strategy selection criteria	 491

IP
 R

ou
tin

g

The topology of the overall network has a dramatic effect on each individual seg-
ment’s routing requirements. Different nets might need very different levels of rout-
ing support. The following rules of thumb can help you choose a strategy:

•	 A stand-alone network requires no routing.

•	 If a network has only one way out, clients (nongateway machines) on that
network should have a static default route to the lone gateway. No other
configuration is necessary, except perhaps on the gateway itself.

•	 A gateway with a small number of networks on one side and a gateway
to “the world” on the other side can have explicit static routes pointing
to the former and a default route to the latter. However, dynamic routing
is advisable if both sides have more than one routing choice.

•	 If networks cross political or administrative boundaries, use dynamic
routing at those points, even if the complexity of the networks involved
would not otherwise suggest the use of a routing protocol.

•	 RIP works OK and is widely supported. Don’t reject it out of hand just
because it’s an older protocol with a reputation for chattiness.

	 The problem with RIP is that it doesn’t scale indefinitely; an expanding
network will eventually outgrow it. That fact makes RIP something of
a transitional protocol with a narrow zone of applicability. That zone is
bounded on one side by networks too simple to require any routing pro-
tocol and on the other side by networks too complicated for RIP. If your
network plans include continued growth, it’s probably reasonable to skip
over the “RIP zone” entirely.

•	 Even when RIP isn’t a good choice for your global routing strategy, it’s
still a good way to distribute routes to leaf nodes. But don’t use it where
it’s not needed: systems on a network that has only one gateway never
need dynamic updates.

	

	

	
	
	
	

Table 15.2	 Routing protocol multicast addresses

Description IPv6 IPv4

All systems on this subnet ff02::1 224.0.0.1
All routers on this subnet ff02::2 224.0.0 2
Unassigned ff02::3 224.0.0 3
DVMRP Routers ff02::4 224.0.0.4
OSPF Routers ff02::5 224.0.0 5
OSPF DR Routers ff02::6 224.0.0.6
RIP Routers ff02::9 224.0.0.9
EIGRP Routers ff02::10 224.0.0.10

492	 Chapter 15	 IP Routing	

•	 EIGRP and OSPF are about equally functional, but EIGRP is proprietary
to Cisco. Cisco makes excellent and cost-competitive routers; neverthe-
less, standardizing on EIGRP limits your choices for future expansion.

•	 Routers connected to the Internet through multiple upstream providers
must use BGP. However, most routers have only one upstream path and
can therefore use a simple static default route.

A good default strategy for a medium-sized site with a relatively stable local struc-
ture and a connection to someone else’s net is to use a combination of static and
dynamic routing. Routers within the local structure that do not lead to external
networks can use static routing, forwarding all unknown packets to a default ma-
chine that understands the outside world and does dynamic routing.

A network that is too complicated to be managed with this scheme should rely on
dynamic routing. Default static routes can still be used on leaf nets, but machines
on networks with more than one router should run routed or some other RIP re-
ceiver in passive mode.

15.6	 Routing daemons
You should not use UNIX and Linux systems as routers for production networks.
Dedicated routers are simpler, more reliable, more secure, and faster (even if they
are secretly running a Linux kernel). That said, it’s nice to be able to set up a new
subnet with only a $6 network card and a $20 switch. That’s a reasonable approach
for lightly populated test and auxiliary networks.

Systems that act as gateways to such subnets don’t need any help managing their own
routing tables. Static routes are perfectly adequate, both for the gateway machine
and for the machines on the subnet itself. However, if you want the subnet to be
reachable by other systems at your site, you need to advertise the subnet’s existence
and to identify the router to which packets bound for that subnet should be sent.
The usual way to do this is to run a routing daemon on the gateway.

UNIX and Linux systems can participate in most routing protocols through various
routing daemons. The notable exception is EIGRP, which, as far as we are aware,
has no widely available UNIX or Linux implementation.

Because routing daemons are uncommon on production systems, we don’t describe
their use and configuration in detail. However, the following sections outline the
common software options and point to detailed configuration information.

routed: obsolete RIP implementation
routed was for a long time the only standard routing daemon, and it’s still includ-
ed on a few systems. routed speaks only RIP, and poorly at that: even support for
RIPv2 is scattershot. routed does not speak RIPng, implementation of that protocol
being confined to modern daemons such as Quagga.

	 Routing daemons	 493

IP
 R

ou
tin

g

Where available, routed is useful chiefly for its “quiet” mode (-q), in which it lis-
tens for routing updates but does not broadcast any information of its own. Aside
from the command-line flag, routed normally does not require configuration. It’s
an easy and cheap way to get routing updates without having to deal with much
configuration hassle.

routed adds its discovered routes to the kernel’s routing table. Routes must be re-
heard at least every four minutes or they will be removed. However, routed knows
which routes it has added and does not remove static routes that were installed
with the route or ip commands.

Quagga: mainstream routing daemon
Quagga (quagga.net) is a development fork of Zebra, a GNU project started by
Kunihiro Ishiguro and Yoshinari Yoshikawa to implement multiprotocol routing
with a collection of independent daemons instead of a single monolithic applica-
tion. In real life, the quagga—a subspecies of zebra last photographed in 1870—is
extinct, but in the digital realm it is Quagga that survives and Zebra that is no lon-
ger under active development.

Quagga currently implements RIP (all versions), OSPF (versions 2 and 3), and BGP.
It runs on Linux, FreeBSD, and several other platforms. Quagga is either installed
by default or is available as an optional package through the system’s standard soft-
ware repository.

In the Quagga system, the core zebra daemon acts as a central clearing-house for
routing information. It manages the interaction between the kernel’s routing table
and the daemons for individual routing protocols (ripd, ripngd, ospfd, ospf6d,
and bgpd). It also controls the flow of routing information among protocols. Each
daemon has its own configuration file in the /etc/quagga directory.

You can connect to any of the Quagga daemons through a command-line interface
(vtysh) to query and modify its configuration. The command language itself is de-
signed to be familiar to users of Cisco’s IOS operating system; see the section on
Cisco routers below for some additional details. As in IOS, you use enable to enter

“superuser” mode, config term to enter configuration commands, and write to save
your configuration changes back to the daemon’s configuration file.

The official documentation at quagga.net is available in HTML or PDF form. Al-
though complete, it’s for the most part a workmanlike catalog of options and does
not provide much of an overview of the system. The real documentation action is
at quagga.net/docs. Look there for well-commented example configurations, FAQs,
and tips.

Although the configuration files have a simple format, you’ll need to understand
the protocols you’re configuring and have some idea of which options you want
to enable or configure. See the recommended reading list on page 496 for some
good books on routing protocols.

See page 399 for more
about manual mainte-
nance of routing tables.

http://quagga.net
http://quagga.net
http://quagga.net/docs

494	 Chapter 15	 IP Routing	

XORP: router in a box
XORP, the eXtensible Open Router Platform project, was started at around the same
time as Zebra, but its ambitions are more general. Instead of focusing on routing,
XORP aims to emulate all the functions of a dedicated router, including packet fil-
tering and traffic management. Check it out at xorp.org.

One interesting aspect of XORP is that in addition to running under several operating
systems (Linux, FreeBSD, macOS, and Windows Server), it’s also available as a live
CD that runs directly on PC hardware. The live CD is secretly based on Linux, but it
does go a long way toward turning a generic PC into a dedicated routing appliance.

15.7	 Cisco routers
Routers made by Cisco Systems, Inc., are the de facto standard for Internet routing
today. Having captured over 56% of the router market, Cisco’s products are well
known, and staff that know how to operate them are relatively easy to find. Before
Cisco, UNIX boxes with multiple network interfaces were often used as routers.
Today, dedicated routers are the favored gear to put in datacom closets and above
ceiling tiles where network cables come together.

Most of Cisco’s router products run an operating system called Cisco IOS, which is
proprietary and unrelated to UNIX. Its command set is rather large; the full docu-
mentation set fills up about 4.5 feet of shelf space. We could never fully cover Cisco
IOS here, but knowing a few basics can get you a long way.

By default, IOS defines two levels of access (user and privileged), both of which
are password protected. By default, you can simply ssh to a Cisco router to enter
user mode.

You are prompted for the user-level access password:

$ ssh acme-gw.acme.com 
Password: <password>

Upon entering the correct password, you receive a prompt from Cisco’s EXEC
command interpreter.

	 acme-gw.acme.com>

At this prompt, you can enter commands such as show interfaces to see the router’s
network interfaces or show ? to list the other things you can see.

To enter privileged mode, type enable and when asked, type the privileged password.
Once you have reached the privileged level, your prompt ends in a #:

	 acme-gw.acme.com#

Be careful—you can do anything from this prompt, including erasing the router’s
configuration information and its operating system. When in doubt, consult Cisco’s
manuals or one of the comprehensive books published by Cisco Press.

http://xorp.org
http://acme-gw.acme.com
http://acme-gw.acme.com
http://acme-gw.acme.com#

	 Cisco routers	 495

IP
 R

ou
tin

g

You can type show running to see the current running configuration of the rout-
er and show config to see the current nonvolatile configuration. Most of the time,
these are the same.

Here’s a typical configuration:

acme-gw.acme.com# show running
Current configuration:
version 12.4
hostname acme-gw
enable secret xxxxxxxx
ip subnet-zero

interface Ethernet0
	 description Acme internal network
		 ip address 192.108.21.254 255.255.255.0
		 no ip directed-broadcast
interface Ethernet1
	 description Acme backbone network
		 ip address 192.225.33.254 255.255.255.0
		 no ip directed-broadcast

ip classless
line con 0
transport input none

line aux 0
	 transport input telnet
line vty 0 4
	 password xxxxxxxx
	 login

end

The router configuration can be modified in a variety of ways. Cisco offers graphical
tools that run under some versions of UNIX/Linux and Windows. Real network ad-
ministrators never use these; the command prompt is always the sure bet. You can
also scp a config file to or from a router so you can edit it with your favorite editor.

To modify the configuration from the command prompt, type config term.

acme-gw.acme.com# config term
Enter configuration commands, one per line. End with CNTL/Z.
acme-gw(config)#

You can then type new configuration commands exactly as you want them to appear
in the show running output. For example, if you wanted to change the IP address
of the Ethernet0 interface in the configuration above, you could enter

interface Ethernet0
ip address 192.225.40.253 255.255.255.0

http://acme-gw.acme.com#
http://acme-gw.acme.com#

496	 Chapter 15	 IP Routing	

When you’ve finished entering configuration commands, press <Control-Z> to re-
turn to the regular command prompt. If you’re happy with the new configuration,
enter write mem to save the configuration to nonvolatile memory.

Here are some tips for a successful Cisco router experience:

•	 Name the router with the hostname command. This precaution helps
prevent accidents caused by configuration changes to the wrong router.
The hostname always appears in the command prompt.

•	 Always keep a backup router configuration on hand. You can scp or tftp
the running configuration to another system each night for safekeeping.

•	 It’s often possible to store a copy of the configuration in NVRAM or on a
removable jump drive. Do so!

•	 Control access to the router command line by putting access lists on the
router’s VTYs (VTYs are like PTYs on a UNIX system). This precaution
prevents unwanted parties from trying to break into your router.

•	 Control the traffic flowing through your networks (and possibly to the
outside world) by setting up access lists on each router interface.

•	 Keep routers physically secure. It’s easy to reset the privileged password
if you have physical access to a Cisco box.

If you have multiple routers and multiple router wranglers, check out the free tool
RANCID from shrubbery.net. With a name like RANCID it practically markets
itself, but here’s the elevator pitch: RANCID logs into your routers every night to
retrieve their configuration files. It diffs the configurations and lets you know about
anything that’s changed. It also automatically keeps the configuration files under
revision control (see page 235).

15.8	 Recommended reading
Perlman, Radia. Interconnections: Bridges, Routers, Switches, and Internetworking
Protocols (2nd Edition). Reading, MA: Addison-Wesley, 2000. This is the definitive
work in this topic area. If you buy just one book about networking fundamentals,
this should be it. Also, don’t ever pass up a chance to hang out with Radia—she’s a
lot of fun and holds a shocking amount of knowledge in her brain.

Edgeworth, Brad, Aaron Foss, and Ramiro Garza Rios. IP Routing on Cisco
IOS, IOS XE, and IOS XR: An Essential Guide to Understanding and Implementing
IP Routing Protocols. Indianapolis, IN: Cisco Press, 2014.

Huitema, Christian. Routing in the Internet (2nd Edition). Upper Saddle River,
NJ: Prentice Hall PTR, 2000. This book is a clear and well-written introduction to
routing from the ground up. It covers most of the protocols in common use and
also some advanced topics such as multicasting.

http://shrubbery.net

	 Recommended reading	 497

IP
 R

ou
tin

g

There are many routing-related RFCs. Table 15.3 shows the main ones.

Table 15.3	 Routing-related RFCs

RFC Title Authors

1256 ICMP Router Discovery Messages Deering
1724 RIP Version 2 MIB Extension Malkin, Baker
2080 RIPng for IPv6 Malkin, Minnear
2328 OSPF Version 2 Moy
2453 Routing Information Protocol Version 2 Malkin
4271 A Border Gateway Protocol 4 (BGP-4) Rekhter, Li, et al.
4552 Authentication/Confidentiality for OSPFv3 Gupta, Melam
4822 RIPv2 Cryptographic Authentication Atkinson, Fanto
4861 Neighbor Discovery for IPv6 Narten et al.
5175 IPv6 Router Advertisement Flags Option Haberman, Hinden
5308 Routing IPv6 with IS-IS Hopps
5340 OSPF for IPv6 Coltun et al.
5643 Management Information Base for OSPFv3 Joyal, Manral, et al.

498

The Internet delivers instant access to resources all over the world, and each of those
computers or sites has a unique name (e.g., google.com). However, anyone who
has tried to find a friend or a lost child in a crowded stadium knows that simply
knowing a name and yelling it loudly is not enough. Essential to finding anything
(or anyone) is an organized system for communicating, updating, and distributing
names and their locations.

Users and user-level programs like to refer to resources by name (e.g., amazon.com),
but low-level network software understands only IP addresses (e.g., 54.239.17.6).
Mapping between names and addresses is the best known and arguably most import-
ant function of DNS, the Domain Name System. DNS includes other elements and
features, but almost without exception they exist to support this primary objective.

Over the history of the Internet, DNS has been both praised and criticized. Its ini-
tial elegance and simplicity encouraged adoption in the early years and enabled the
Internet to grow quickly with little centralized management. As needs for additional
functionality grew, so did the DNS system. Sometimes, these functions were bolt-
ed on in a way that looks ugly today. Naysayers point out weaknesses in the DNS
infrastructure as evidence that the Internet is on the verge of collapse.

16 DNS: The Domain Name System

http://google.com
http://amazon.com

	 DNS architecture	 499

D
N

S

Say what you will, but the fundamental concepts and protocols of DNS have so far
withstood growth from a few hundred hosts in a single country to a world-wide
network that supports over 3 billion users across more than 1 billion hosts.1 No-
where else can we find an information system that has grown to this scale with so
few issues. Without DNS, the Internet would have failed long ago.

16.1	 DNS architecture
DNS is a distributed database. Under this model, one site stores the data for com-
puters it knows about, another site stores the data for its own set of computers, and
the sites cooperate and share data when one site needs to look up the other’s data.
From an administrative point of view, the DNS servers you have configured for
your domain answer queries from the outside world about names in your domain;
they also query other domains’ servers on behalf of your users.

Queries and responses
A DNS query consists of a name and a record type. The answer returned is a set of
“resource records” (RRs) that are responsive to the query (or alternatively, a response
indicating that the name and record type you asked for do not exist).

“Responsive” doesn’t necessarily mean “dispositive.” DNS servers are arranged into
a hierarchy, and it might be necessary to contact servers at several layers to answer
a particular query (see page 506).2 Servers that don’t know the answer to a query
return resource records that help the client locate a server that does.

The most common query is for an A record, which returns the IP address associated
with a name. Exhibit A illustrates a typical scenario.

Exhibit A	 A simple name lookup

Human Web browser
System library

and resolver Name server

gethostbyname(
 ”facebook.com”)

“Take me to
facebook.com.”

“Find the system
that hosts

facebook.com.”

“What is the
A record for

facebook.com?”

“The A record for
facebook.com is

31.13.73.36.”

	 1.	 User statistics are from internetlivestats.com/internet-users. Host statistics are from statista.com.
	 2.	 Name servers typically receive queries on UDP port 53.

http://$$$�facebook.com�
http://facebook.com
http://facebook.com
http://facebook.com?
http://facebook.com
http://internetlivestats.com/internet-users
http://statista.com

500	 Chapter 16	 DNS: The Domain Name System	

First, a human types the name of a desired site into a web browser. The browser then
calls the DNS “resolver” library to look up the corresponding address. The resolv-
er library constructs a query for an A record and sends it to a name server, which
returns the A record in its response. Finally, the browser opens a TCP connection
to the target host through the IP address returned by the name server.

DNS service providers
Years ago, one of the core tasks of every system administrator was to set up and
maintain a DNS server for their organization. Today, the landscape has changed. If
an organization maintains a DNS server at all, it is frequently for internal use only.3

Every organization still needs an external-facing DNS server, but it’s now common
to use one of the many commercial “managed” DNS providers for this function.
These services offer a GUI management interface and highly available, secure DNS
infrastructure for only pennies (or dollars) a day. Amazon Route 53, CloudFlare,
GoDaddy, DNS Made Easy, and Rackspace are just a few of the major providers.

Of course, you can still set up and maintain your own DNS server (internal or ex-
ternal) if you wish. You have dozens of DNS implementations to choose from, but
the Berkeley Internet Name Domain (BIND) system still dominates the Internet.
Over 75% of DNS servers run some form of it.4

Regardless of which path you choose, as a system administrator you need to un-
derstand the basic concepts and architecture of DNS. The first few sections of this
chapter focus on that important foundational knowledge. Starting on page 543,
we show some specific configurations for BIND.

16.2	 DNS for lookups
Regardless of whether you run your own name server, use a managed DNS service,
or have someone else providing DNS service for you, you’ll certainly want to con-
figure all of your systems to look up names in DNS.

Two steps are needed to make this happen. First, you configure your systems as
DNS clients. Second, you tell the systems when to use DNS as opposed to other
name lookup methods such as a static /etc/hosts file.

resolv.conf: client resolver configuration
Each host on the network should be a DNS client. You configure the client-side
resolver in the file /etc/resolv.conf. This file lists the name servers to which the
host can send queries.

	 3.	 Microsoft’s Active Directory system includes an integrated DNS server that meshes nicely with the
other Microsoft-flavored services found in corporate environments. However, Active Directory is
suitable only for internal use. It should never be used as an external (Internet-facing) DNS server be-
cause of potential security concerns.

	 4.	 According to the July, 2015 ISC Internet Domain Survey

	 DNS for lookups	 501

D
N

S

If your host gets its IP address and network parameters from a DHCP server, the
/etc/resolv.conf file is normally set up for you automatically. Otherwise, you must
edit the file by hand. The format is

search domainname ...
nameserver ipaddr

Up to three name servers can be listed. Here’s a complete example:

search atrust.com booklab.atrust.com
nameserver 63.173.189.1			 ; ns1
nameserver 174.129.219.225		 ; ns2

The search line lists the domains to query if a hostname is not fully qualified. For
example, if a user issues the command ssh coraline, the resolver completes the
name with the first domain in the search list and looks for coraline.atrust.com. If
no such name exists, the resolver also tries coraline.booklab.atrust.com. The num-
ber of domains that can be specified in a search directive is resolver-specific; most
allow between six and eight, with a limit of 256 characters.

The name servers listed in resolv.conf must be configured to allow your host to
submit queries. They must also be recursive; that is, they must answer queries to
the best of their ability and not try to refer you to other name servers; see page 505.

DNS servers are contacted in order. As long as the first one continues to answer
queries, the others are ignored. If a problem occurs, the query eventually times
out and the next name server is tried. Each server is tried in turn, up to four times.
The timeout interval increases with each failure. The default timeout interval is five
seconds, which seems like forever to impatient users.

nsswitch.conf: who do I ask for a name?
Both FreeBSD and Linux use a switch file, /etc/nsswitch.conf, to specify how host-
name-to-IP-address mappings should be performed and whether DNS should be
tried first, last, or not at all. If no switch file is present, the default behavior is

hosts: dns [!UNAVAIL=return] files

The !UNAVAIL clause means that if DNS is available but a name is not found there,
the lookup attempt should fail rather than continuing to the next entry (in this case,
the /etc/hosts file). If no name server is running (as might be the case during boot),
the lookup process does consult the hosts file.

Our example distributions all provide the following default nsswitch.conf entry:

hosts: files dns

This configuration gives precedence to the /etc/hosts file, which is always checked.
DNS is consulted only for names that are unresolvable through /etc/hosts.

There is really no best way to configure lookups—it depends on how your site is
managed. In general, we prefer to keep as much host information as possible in

See page 402 for
more information
about DHCP.

http://atrust.com
http://booklab.atrust.com
http://coraline.atrust.com
http://coraline.booklab.atrust.com

502	 Chapter 16	 DNS: The Domain Name System	

DNS but always preserve the ability to fall back to the static hosts file during the
boot process if necessary.

If name service is provided for you by an outside organization, you might be done
with DNS configuration after setting up resolv.conf and nsswitch.conf. If so, you
can skip the rest of this chapter, or read on to learn more.

16.3	 The DNS namespace
The DNS namespace is organized into a tree that contains both forward mappings
and reverse mappings. Forward mappings map hostnames to IP addresses (and
other records), and reverse mappings map IP addresses to hostnames. Every com-
plete hostname (e.g., nubark.atrust.com) is a node in the forward branch of the tree,
and (in theory) every IP address is a node in the reverse branch. Exhibit B shows
the general layout of the naming tree.

Exhibit B	 DNS zone tree

......

......

in-addr

arpa
. (root). (root)

com org net de au ...

amazon atrust ...

wwwwww nubark ...

6261... 63 ...

...173...

...189...

...1...

Reverse zones Forward zones

To allow the same DNS system to manage both names (which have the most signif-
icant information on the right), and IP addresses (which have the most significant
part on the left), the IP branch of the namespace is inverted by listing the octets of
the IP address backwards. For example, if host nubark.atrust.com has IP address
63.173.189.1, the corresponding node of the forward branch of the naming tree is

“nubark.atrust.com.” and the node of the reverse branch is “1.189.173.63.in-addr.arpa.”.5

Both of these names end with a dot, just as the full pathnames of files always start
with a slash. That makes them “fully qualified domain names” or FQDNs for short.

	 5.	 The in-addr.arpa portion of the name is a fixed suffix.

http://nubark.atrust.com
http://wwwwwwnubark..
http://wwwwwwnubark..
http://nubark.atrust.com
http://$$$�nubark.atrust.com
http://63.in-addr.arpa

	 How DNS works	 503

D
N

S

Outside the context of DNS, names like nubark.atrust.com (without the final dot)
are sometimes referred to as “fully qualified hostnames,” but this is a colloquialism.
Within the DNS system itself, the presence or absence of the trailing dot is of cru-
cial importance.

Two types of top-level domains exist: country code domains (ccTLDs) and generic
top-level domains (gTLDs). ICANN, the Internet Corporation for Assigned Names
and Numbers, accredits various agencies to be part of its shared registry project
for registering names in the gTLDs such as com, net, and org. To register for a
ccTLD name, check the IANA (Internet Assigned Numbers Authority) web page
iana.org/cctld to find the registry in charge of a particular country’s registration.

Registering a domain name
To obtain a second-level domain name (such as blazedgoat.com), you must apply
to a registrar for the appropriate top-level domain. To complete the domain reg-
istration forms, you must choose a name that is not already taken and identify a
technical contact person, an administrative contact person, and at least two hosts
that will be name servers for your domain. Fees vary among registrars, but these
days they are all generally quite inexpensive.

Creating your own subdomains
The procedure for creating a subdomain is similar to that for creating a second-level
domain, except that the central authority is now local (or more accurately, within
your own organization). Specifically, the steps are as follows:

•	 Choose a name that is unique in the local context.
•	 Identify two or more hosts to be servers for your new domain.6

•	 Coordinate with the administrator of the parent domain.

Parent domains should check to be sure that a child domain’s name servers are up
and running before performing the delegation. If the servers are not working, a

“lame delegation” results, and you might receive nasty email asking you to clean up
your DNS act. Page 575 covers lame delegations in more detail.

16.4	 How DNS works
Name servers around the world work together to answer queries. Typically, they
distribute information maintained by whichever administrator is closest to the
query target. Understanding the roles and relationships of name servers is import-
ant both for day-to-day operations and for debugging.

	 6.	 The two-or-more-servers rule is a policy, not a technical requirement. You make the rules in your
own subdomains, so you can get away with a single server if you want.

http://nubark.atrust.com
http://iana.org/cctld
http://blazedgoat.com

504	 Chapter 16	 DNS: The Domain Name System	

Name servers
A name server performs several chores:

•	 It answers queries about your site’s hostnames and IP addresses.
•	 It asks about both local and remote hosts on behalf of your users.
•	 It caches the answers to queries so that it can answer faster next time.
•	 It communicates with other local name servers to keep DNS data synchronized.

Name servers deal with “zones,” where a zone is essentially a domain minus its sub-
domains. You will often see the term “domain” used where a zone is what’s actually
meant, even in this book.

Name servers can operate in several different modes. The distinctions among them
fall along several axes, so the final categorization is often not tidy. To make things
even more confusing, a single server can play different roles with respect to dif-
ferent zones. Table 16.1 lists some of the adjectives used to describe name servers.

Table 16.1	 Name server taxonomy

Type of server Description

authoritative Officially represents a zone
	 master The master server for a zone; gets its data from a disk file
	 primary Another name for the master server
	 slave Copies its data from the master
	 secondary Another name for a slave server
	 stub Like a slave, but copies only name server data (not host data)
	 distribution A server advertised only within a domain (aka “stealth server”)
nonauthoritative a Answers a query from cache; doesn’t know if the data is still valid
	 caching Caches data from previous queries; usually has no local zones
	 forwarder Performs queries on behalf of many clients; builds a large cache
recursive Queries on your behalf until it returns either an answer or an error
nonrecursive Refers you to another server if it can’t answer a query

a.	 Strictly speaking, “nonauthoritative” is an attribute of a DNS query response, not a server.

These categorizations vary according to the name server’s source of data (authorita-
tive, caching, master, slave), the type of data saved (stub), the query path (forward-
er), the completeness of answers handed out (recursive, nonrecursive), and finally,
the visibility of the server (distribution). The next few sections provide additional
details on the most important of these distinctions; the others are described else-
where in this chapter.

	 How DNS works	 505

D
N

S

Authoritative and caching-only servers
Master, slave, and caching-only servers are distinguished by two characteristics:
where the data comes from, and whether the server is authoritative for the domain.
Each zone typically has one master name server.7 The master server keeps the of-
ficial copy of the zone’s data on disk. The system administrator changes the zone’s
data by editing the master server’s data files.

A slave server gets its data from the master server through a “zone transfer” op-
eration. A zone can have several slave name servers and must have at least one. A
stub server is a special kind of slave that loads only the NS (name server) records
from the master. It’s fine for the same machine to be both a master server for some
zones and a slave server for other zones.

A caching-only name server loads the addresses of the servers for the root domain
from a startup file and accumulates the rest of its data by caching answers to the
queries it resolves. A caching-only name server has no data of its own and is not
authoritative for any zone (except perhaps the localhost zone).

An authoritative answer from a name server is “guaranteed” to be accurate; a non-
authoritative answer might be out of date. However, a very high percentage of non-
authoritative answers are perfectly correct. Master and slave servers are authorita-
tive for their own zones, but not for information they may have cached about other
domains. Truth be told, even authoritative answers can be inaccurate if a sysadmin
changes the master server’s data but forgets to propagate the changes (e.g., doesn’t
change the zone’s serial number).

At least one slave server is required for each zone. Ideally, there should be at least
two slaves, one of which is in a location that does not share common infrastruc-
ture with the master. On-site slaves should live on different networks and different
power circuits. When name service stops, all normal network access stops, too.

Recursive and nonrecursive servers
Name servers are either recursive or nonrecursive. If a nonrecursive server has the
answer to a query cached from a previous transaction or is authoritative for the do-
main to which the query pertains, it provides an appropriate response. Otherwise,
instead of returning a real answer, it returns a referral to the authoritative servers
of another domain that are more likely to know the answer. A client of a nonrecur-
sive server must be prepared to accept and act on referrals.

Although nonrecursive servers might seem lazy, they usually have good reason not
to take on extra work. Authoritative-only servers (e.g., root servers and top-level
domain servers) are all nonrecursive, but since they may process tens of thousands
of queries per second we can excuse them for cutting corners.

	 7.	 Some sites use multiple masters or even no masters; we describe the single-master case.

See page 548 for
more information
about zone transfers.

506	 Chapter 16	 DNS: The Domain Name System	

A recursive server returns only real answers and error messages. It follows referrals
itself, relieving clients of this responsibility. In other respects, the basic procedure
for resolving a query is essentially the same.

For security, an organization’s externally accessible name servers should always be
nonrecursive. Recursive name servers that are visible to the world can be vulnera-
ble to cache poisoning attacks.

Note well: resolver libraries do not understand referrals. Any local name server
listed in a client’s resolv.conf file must be recursive.

Resource records
Each site maintains one or more pieces of the distributed database that makes up
the world-wide DNS system. Your piece of the database consists of text files that
contain records for each of your hosts; these are known as “resource records.” Each
record is a single line consisting of a name (usually a hostname), a record type, and
some data values. The name field can be omitted if its value is the same as that of
the previous line.

For example, the lines

nubark		 IN	 A	 63.173.189.1
			 IN	 MX	 10 mailserver.atrust.com.

in the “forward” file (called atrust.com), and the line

1			 IN	 PTR	 nubark.atrust.com.

in the “reverse” file (called 63.173.189.rev) associate nubark.atrust.com with the
IP address 63.173.189.1. The MX record routes email addressed to this machine to
the host mailserver.atrust.com.

The IN fields denote the record classes. In practice, this field is always IN for Internet.

Resource records are the lingua franca of DNS and are independent of the config-
uration files that control the operation of any given DNS server implementation.
They are also the pieces of data that flow around the DNS system and become
cached at various locations.

Delegation
All name servers read the identities of the root servers from a local config file or
have them built into the code. The root servers know the name servers for com,
net, edu, fi, de, and other top-level domains. Farther down the chain, edu knows
about colorado.edu, berkeley.edu, and so on. Each domain can delegate authority
for its subdomains to other servers.

Let’s inspect a real example. Suppose we want to look up the address for the machine
vangogh.cs.berkeley.edu from the machine lair.cs.colorado.edu. The host lair asks

See page 521 for
more information
about MX records.

http://mailserver.atrust.com
http://atrust.com
http://nubark.atrust.com
http://nubark.atrust.com
http://mailserver.atrust.com
http://colorado.edu
http://berkeley.edu
http://vangogh.cs.berkeley.edu
http://lair.cs.colorado.edu

	 How DNS works	 507

D
N

S

its local name server, ns.cs.colorado.edu, to figure out the answer. The following
illustration (Exhibit C) shows the subsequent events.

Exhibit C	 DNS query process for vangogh.cs.berkeley.edu

Recursive Nonrecursive

ns.cs.colorado.edulair edu

root (“.”)

cs.berkeley.edu

berkeley.edu
= Query
= Answer
= Referral

Q
A
R

1-Q

10-A

4-Q

5-R

2-Q

3-R

6-Q

7-R

9-A 8-Q

START

The numbers on the arrows between servers show the order of events, and a letter
denotes the type of transaction (query, referral, or answer). We assume that none
of the required information was cached before the query, except for the names and
IP addresses of the servers of the root domain.

The local server doesn’t know vangogh’s address. In fact, it doesn’t know anything
about cs.berkeley.edu or berkeley.edu or even edu. It does know servers for the root
domain, however, so it queries a root server about vangogh.cs.berkeley.edu and re-
ceives a referral to the servers for edu.

The local name server is a recursive server. When the answer to a query consists of
a referral to another server, the local server resubmits the query to the new server.
It continues to follow referrals until it finds a server that has the data it’s looking for.

In this case, the local name server sends its query to a server of the edu domain
(asking, as always, about vangogh.cs.berkeley.edu) and gets back a referral to the
servers for berkeley.edu. The local name server then repeats this same query on a
berkeley.edu server. If the Berkeley server doesn’t have the answer cached, it re-
turns a referral to the servers for cs.berkeley.edu. The cs.berkeley.edu server is au-
thoritative for the requested information, looks the answer up in its zone files, and
returns vangogh’s address.

When the dust settles, ns.cs.colorado.edu has cached vangogh’s address. It has also
cached data on the servers for edu, berkeley.edu, and cs.berkeley.edu.

You can view the query process in detail with dig +trace or drill -T.8

	 8.	 dig and drill are DNS query tools: dig from the BIND distribution and drill from NLnet Labs.

http://ns.cs.colorado.edu
http://vangogh.cs.berkeley.edu
http://cs.berkeley.edu
http://berkeley.edu
http://cs.berkeley.edu
http://berkeley.edu
http://vangogh.cs.berkeley.edu
http://vangogh.cs.berkeley.edu
http://berkeley.edu
http://berkeley.edu
http://cs.berkeley.edu
http://cs.berkeley.edu
http://ns.cs.colorado.edu
http://berkeley.edu
http://cs.berkeley.edu

508	 Chapter 16	 DNS: The Domain Name System	

Caching and efficiency
Caching increases the efficiency of lookups: a cached answer is almost free and is
usually correct because hostname-to-address mappings change infrequently. An
answer is saved for a period of time called the “time to live” (TTL), which is spec-
ified by the owner of the data record in question.

Most queries are for local hosts and can be resolved quickly. Users also inadvertently
help with efficiency because they repeat many queries; after the first instance of a
query, the repeats are more or less free.

Under normal conditions, your site’s resource records should use a TTL that is
somewhere between an hour and a day. The longer the TTL, the less network traffic
will be consumed by Internet clients obtaining fresh copies of the record.

If you have a specific service that is load-balanced across logical subnets (often called
“global server load balancing”), you may be required by your load-balancing vendor
to choose a shorter TTL, such as 10 seconds or 1 minute. The short TTL lets the load
balancer react quickly to inoperative servers and denial of service attacks. The sys-
tem still works correctly with short TTLs, but your name servers have to work hard.

In the vangogh example above, the TTLs were 42 days for the roots, 2 days for edu,
2 days for berkeley.edu, and 1 day for vangogh.cs.berkeley.edu. These are reasonable
values. If you are planning a massive renumbering, change the TTLs to a shorter
value well before you start.

DNS servers also implement negative caching. That is, they remember when a query
fails and do not repeat that query until the negative caching TTL value has expired.
Negative caching can potentially save answers of the following types:

•	 No host or domain matches the name queried.
•	 The type of data requested does not exist for this host.
•	 The server is not responding.
•	 The server is unreachable because of network problems.

The BIND implementation caches the first two types of negative data and allows
the negative cache times to be configured.

Multiple answers and round robin DNS load balancing
A name server often receives multiple records in response to a query. For example, the
response to a query for the name servers of the root domain would list all 13 servers.

You can take advantage of this balancing effect for your own servers by assigning
several different IP addresses (for different machines) to a single hostname:

www		 IN	 A	 192.168.0.1
		 IN	 A	 192.168.0.2
		 IN	 A	 192.168.0.3

http://berkeley.edu
http://vangogh.cs.berkeley.edu

	 How DNS works	 509

D
N

S

Most name servers return multirecord sets in a different order each time they re-
ceive a query, rotating them in round robin fashion. When a client receives a re-
sponse with multiple records, the most common behavior is to try the addresses
in the order returned by the DNS server.9

This scheme is commonly referred to as round robin DNS load balancing. How-
ever, it is a crude solution at best. Large sites use load-balancing software (such as
HAProxy; see page 710) or dedicated load-balancing appliances.

Debugging with query tools
Five command-line tools that query the DNS database are distributed with BIND:
nslookup, dig, host, drill and delv. nslookup and host are simple and have pretty
output, but you need dig or drill to get all the details. drill is better for following
DNSSEC signature chains. The name drill is a pun on dig (the Domain Informa-
tion Groper), implying you can get even more info from DNS with drill than you
can with dig. delv is new to BIND 9.10 and will eventually replace drill for DNS-
SEC debugging.

By default, dig and drill query the name servers configured in /etc/resolv.conf. A
@nameserver argument makes either command query a specific name server. The
ability to query a particular server lets you check to be sure that any changes you
make to a zone have been propagated to secondary servers and to the outside world.
This feature is especially useful if you use views (split DNS) and need to verify that
you have configured them correctly.

If you specify a record type, dig and drill query for that type only. The pseudo-type
any is a bit sneaky: instead of returning all data associated with a name, it returns
all cached data associated with the name. So, to get all records, you might have to
do dig domain NS followed by dig @ns1.domain domain any. (Authoritative data
counts as cached in this context.)

dig has about 50 options and drill about half that many. Either command accepts an
-h flag to list the various options. (You’ll probably want to pipe the output through
less.) For both tools, -x reverses the bytes of an IP address and does a reverse que-
ry. The +trace flag to dig or -T to drill shows the iterative steps in the resolution
process from the roots down.

dig and drill include the notation aa in the output flags if an answer is authorita-
tive (i.e., it comes directly from a master or slave server of that zone). The code ad
indicates that an answer was authenticated by DNSSEC. When testing a new con-
figuration, be sure that you look up data for both local and remote hosts. If you can
access a host by IP address but not by name, DNS is probably the culprit.

The most common use of dig is to determine what records are currently being re-
turned for a particular name. If only an AUTHORITY response is returned, you have

	 9.	 However, this behavior is not required. Some clients may behave differently.

See page 557 for
more information
about DNSSEC.

See page 541 for
more information
about split DNS.

510	 Chapter 16	 DNS: The Domain Name System	

been referred to another name server. If an ANSWER response is returned, your ques-
tion has been directly answered (and other information may be included as well).

It’s often useful to follow the delegation chain manually from the root servers to
verify that everything is in the right place. Below we look at an example of that
process for the name www.viawest.com. First, we query a root server to see who
is authoritative for viawest.com by requesting the start-of-authority (SOA) record:

$ dig @a.root-servers.net viawest.com soa
; <<>> DiG 9.8.3-P1 <<>> @a.root-servers.net viawest.com soa
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 7824
;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 14
;; WARNING: recursion requested but not available

;; QUESTION SECTION:
;viawest.com.		 IN	 SOA

;; AUTHORITY SECTION:

com.	 172800	 IN	 NS	 c.gtld-servers.net.
com.	 172800	 IN	 NS	 b.gtld-servers.net.
com.	 172800	 IN	 NS	 a.gtld-servers.net.
...

;; ADDITIONAL SECTION:
c.gtld-servers.net.	 172800	 IN	 A	 192.26.92.30
b.gtld-servers.net.	 172800	 IN	 A	 192.33.14.30
b.gtld-servers.net.	 172800	 IN	 AAAA	 2001:503:231d::2:30
a.gtld-servers.net.	 172800	 IN	 A	 192.5.6.30
...

;; Query time: 62 msec
;; SERVER: 198.41.0.4#53(198.41.0.4)
;; WHEN: Wed Feb 3 18:37:37 2016
;; MSG SIZE rcvd: 489

Note that the status returned is NOERROR. That tells us that the query returned a re-
sponse without notable errors. Other common status values are NXDOMAIN, which
indicates the name requested doesn’t exist (or isn’t registered), and SERVFAIL, which
usually indicates a configuration error on the name server itself.

This AUTHORITY SECTION tells us that the global top-level domain (gTLD) servers
are the next link in the authority chain for this domain. So, we pick one at random
and repeat the same query:

$ dig @c.gtld-servers.net viawest.com soa
; <<>> DiG 9.8.3-P1 <<>> @c.gtld-servers.net viawest.com soa
; (1 server found)
;; global options: +cmd

http://www.viawest.com
http://;viawest.com
http://c.gtld-servers.net.com
http://c.gtld-servers.net.com
http://b.gtld-servers.net.com
http://b.gtld-servers.net.com
http://a.gtld-servers.net
http://c.gtld-servers.net
http://b.gtld-servers.net
http://b.gtld-servers.net
http://a.gtld-servers.net
mailto:@c.gtld-servers.net
http://viawest.com
mailto:@c.gtld-servers.net
http://viawest.com

	 How DNS works	 511

D
N

S

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 9760
;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 2, ADDITIONAL: 2
;; WARNING: recursion requested but not available

;; QUESTION SECTION:
;viawest.com.		 IN	 SOA

;; AUTHORITY SECTION:
viawest.com.	 172800	 IN	 NS	 ns1.viawest.net.
viawest.com.	 172800	 IN	 NS	 ns2.viawest.net.

;; ADDITIONAL SECTION:
ns1.viawest.net.	 172800	 IN	 A	 216.87.64.12
ns2.viawest.net.	 172800	 IN	 A	 209.170.216.2

;; Query time: 52 msec
;; SERVER: 192.26.92.30#53(192.26.92.30)
;; WHEN: Wed Feb 3 18:40:48 2016
;; MSG SIZE rcvd: 108

This response is much more succinct, and we now know that the next server to
query is ns1.viawest.com (or ns2.viawest.com).

$ dig @ns1.viawest.net viawest.com soa
; <<>> DiG 9.8.3-P1 <<>> @ns2.viawest.net viawest.com soa
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 61543
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; QUESTION SECTION:
;viawest.com.		 IN	 SOA

;; ANSWER SECTION:
viawest.com.	 3600	 IN	 SOA	 mvec.viawest.net. hostmaster.

viawest.net. 2007112567 3600 1800 1209600 3600

;; AUTHORITY SECTION:
viawest.com.	 86400	 IN	 NS	 ns2.viawest.net.

;; ADDITIONAL SECTION:
ns2.viawest.net.	 3600	 IN	 A	 209.170.216.2

;; Query time: 5 msec
;; SERVER: 216.87.64.12#53(216.87.64.12)
;; WHEN: Wed Feb 3 18:42:20 2016
;; MSG SIZE rcvd: 126

This query returns an ANSWER for the viawest.com domain. We now know an author-
itative name server and can query for the name we actually want, www.viawest.com.

http://;viawest.com
http://viawest.com
http://ns1.viawest.net.viawest.com
http://ns1.viawest.net.viawest.com
http://ns2.viawest.net
http://ns1.viawest.net
http://ns2.viawest.net
http://ns1.viawest.com
http://ns2.viawest.com
mailto:@ns1.viawest.net
http://viawest.com
mailto:@ns2.viawest.net
http://viawest.com
http://;viawest.com
http://viawest.com
http://mvec.viawest.net
http://hostmaster.viawest.net
http://hostmaster.viawest.net
http://viawest.com
http://ns2.viawest.net
http://ns2.viawest.net
http://www.viawest.com

512	 Chapter 16	 DNS: The Domain Name System	

$ dig @ns1.viawest.net www.viawest.com any
; <<>> DiG 9.8.3-P1 <<>> @ns1.viawest.net www.viawest.com any
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 29968
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; QUESTION SECTION:
;www.viawest.com.		 IN	 ANY

;; ANSWER SECTION:
www.viawest.com.	 60	 IN	 CNAME	 hm-d8ebfa-via1.threatx.io.

;; AUTHORITY SECTION:
viawest.com.	 86400	 IN	 NS	 ns2.viawest.net.

;; ADDITIONAL SECTION:
ns2.viawest.net.	 3600	 IN	 A	 209.170.216.2

;; Query time: 6 msec
;; SERVER: 216.87.64.12#53(216.87.64.12)
;; WHEN: Wed Feb 3 18:46:38 2016
;; MSG SIZE rcvd: 117

This final query shows us that www.viawest.com has a CNAME record pointed at
hm-d8ebfa-via1.threatx.io, meaning that it is another name for the threatx host (a
host operated by a cloud-based distributed denial-of-service provider).

Of course, if you query a recursive name server, it will follow the entire delegation
chain on your behalf. But when debugging, it’s typically more useful to investigate
the chain link by link.

16.5	 The DNS database
A zone’s DNS database is a set of text files maintained by the system administrator
on the zone’s master name server. These text files are often called zone files. They
contain two types of entries: parser commands (things like $ORIGIN and $TTL) and
resource records. Only the resource records are really part of the database; the parser
commands just provide some shorthand ways to enter records.

Parser commands in zone files
Commands can be embedded in zone files to make the zone files more readable and
easier to maintain. The commands either influence the way the parser interprets
subsequent records or they expand into multiple DNS records themselves. Once a
zone file has been read and interpreted, none of these commands remain a part of
the zone’s data (at least, not in their original forms).

Zone file commands
are standardized in
RFCs 1035 and 2308.

http://www.viawest.com
http://www.viawest.com
http://www.viawest.com
http://www.viawest.com
http://www.viawest.com

	 The DNS database	 513

D
N

S

Three commands ($ORIGIN, $INCLUDE, and $TTL) are standard for all DNS imple-
mentations, and a fourth, $GENERATE, is found only in BIND. Commands must start
in column one and occur on a line by themselves.

Zone files are read and parsed from top to bottom in a single pass. As the name
server reads a zone file, it adds the default domain (or “origin”) to any names that
are not already fully qualified. The origin defaults to the domain name specified in
the name server’s configuration file. However, you can set the origin or change it
within a zone file by using the $ORIGIN directive:

$ORIGIN domain-name

The use of relative names where fully qualified names are expected saves lots of
typing and makes zone files much easier to read.

Many sites use the $INCLUDE directive in their zone database files to separate over-
head records from data records, to separate logical pieces of a zone file, or to keep
cryptographic keys in a file with restricted permissions. The syntax is

$INCLUDE filename [origin]

The specified file is read into the database at the point of the $INCLUDE directive. If
filename is not an absolute path, it is interpreted relative to the home directory of
the running name server.

If you supply an origin value, the parser acts as if an $ORIGIN directive precedes the
contents of the file being read. Watch out: the origin does not revert to its previous
value after the $INCLUDE has been executed. You’ll probably want to reset the origin,
either at the end of the included file or on the line following the $INCLUDE statement.

The $TTL directive sets a default value for the time-to-live field of the records that
follow it. It must be the first line of the zone file. The default units for the $TTL val-
ue are seconds, but you can also qualify numbers with h for hours, m for minutes,
d for days, or w for weeks. For example, the lines

$TTL 86400
$TTL 24h
$TTL 1d

all set the $TTL to one day.

Resource records
Each zone of the DNS hierarchy has a set of resource records associated with it. The
basic format of a resource record is

[name] [ttl] [class] type data

Fields are separated by whitespace (tabs or spaces) and can contain the special
characters shown in Table 16.2 on the next page.

514	 Chapter 16	 DNS: The Domain Name System	

Table 16.2	 Special characters in resource records

Character Meaning

; Introduces a comment
@ The current zone name
() Allows data to span lines
* Wild card (name field only)a

a.	 See page 522 for some cautionary statements.

The name field identifies the entity (usually a host or domain) that the record de-
scribes. If several consecutive records refer to the same entity, the name can be
omitted after the first record as long as the subsequent records begin with white-
space. If present, the name field must begin in column one.

A name can be either relative or absolute. Absolute names end with a dot and are
complete. Internally, the software deals only with absolute names; it appends the
current origin and a dot to any name that does not already end in a dot. This fea-
ture allows names to be shorter, but it also invites mistakes.

For example, if cs.colorado.edu were the current domain, the name “anchor” would
be interpreted as “anchor.cs.colorado.edu.”. If by mistake you entered the name as

“anchor.cs.colorado.edu”, the lack of a final dot would still imply a relative name,
resulting in the name “anchor.cs.colorado.edu.cs.colorado.edu.” This kind of mis-
take is common.

The ttl (time to live) field specifies the length of time, in seconds, that the record
can be cached and still be considered valid. It is often omitted, except in the root
server hints file. It defaults to the value set by the $TTL directive, which must be the
first line of the zone data file.

Increasing the value of the ttl parameter to about a week substantially reduces net-
work traffic and DNS load. However, once records have been cached outside your
local network, you cannot force them to be discarded. If you plan a massive re-
numbering and your old ttl was a week, lower the $TTL value (e.g., to one hour) at
least a week before your intended renumbering. This preparatory step makes sure
that records with week-long ttls are expired and replaced with records that have
one-hour ttls. You can then be certain that all your updates will propagate togeth-
er within an hour. Set the ttls back to their original value after you’ve completed
your update campaign.

Some sites set the TTL on the records for Internet-facing servers to a low value so that
if a server experiences problems (network failure, hardware failure, denial-of-service
attack, etc.), the administrators can respond by changing the server’s name-to-IP-
address mapping. Because the original TTLs were low, the new values will propagate
quickly. For example, the name google.com has a five-minute TTL, but Google’s
name servers have a TTL of four days (345,600 seconds):

http://cs.colorado.edu
http://$$$�anchor.cs.colorado.edu
http://$$$�anchor.cs.colorado.edu�
http://$$$�anchor.cs.colorado.edu.cs.colorado.edu
http://google.com

	 The DNS database	 515

D
N

S

google.com.	 300	 IN	 A	 216.58.217.46
google.com.	 345600	 IN	 NS	 ns1.google.com.
ns1.google.com.	 345600	 IN	 A	 216.239.32.10

We used dig to obtain these records; we truncated the output.

The class specifies the network type. IN for Internet is the default.

Many different types of DNS records are defined, but fewer than 10 are in com-
mon use; IPv6 adds a few more. We divide the resource records into four groups:

•	 Zone infrastructure records, which identify domains and their name servers
•	 Basic records, which map between names and addresses and route mail10

•	 Security records, which add authentication and signatures to zone files
•	 Optional records, which provide extra information about hosts or domains

The contents of the data field depend on the record type. A DNS query for a partic-
ular domain and record type returns all matching resource records from the zone
file. Table 16.3 lists the common record types.

Table 16.3	 DNS record types

Type Name Function

Zo
ne SOA Start Of Authority Defines a DNS zone

NS Name Server Identifies servers, delegates subdomains

Ba
sic

s

A IPv4 Address Name-to-address translation
AAAA IPv6 Address Name-to-IPv6-address translation
PTR Pointer Address-to-name translation
MX Mail Exchanger Controls email routing

Se
cu

rit
y

DS Delegation Signer Hash of signed child zone’s key-signing key
DNSKEY Public Key Public key for a DNS name
NSEC Next Secure Used with DNSSEC for negative answers
NSEC3  Next Secure v3 Used with DNSSEC for negative answers
RRSIG Signature Signed, authenticated resource record set

O
pt

io
na

l CNAME Canonical Name Nicknames or aliases for a host
SRV Service Gives locations of a well-known service
TXT Text Comments or untyped information

Some record types are obsolete, experimental, or not widely used. See your name
server’s implementation documentation for a complete list. Most records are main-
tained by hand (by editing text files or by entering them in a web GUI), but the se-

	 10.	 MX mail routing records fit in both the zone infrastructure pile and the basic records pile because
they can refer to entire zones as well as individual hosts.

http://google.com
http://google.com
http://ns1.google.com.ns1.google.com
http://ns1.google.com.ns1.google.com

516	 Chapter 16	 DNS: The Domain Name System	

curity resource records require cryptographic processing and so must be managed
with software tools. These records are described in the DNSSEC section beginning
on page 557.

The order of resource records in the zone file is arbitrary, but traditionally the SOA
record is first, followed by the NS records. The records for each host are usually
kept together. It’s common practice to sort by the name field, although some sites
sort by IP address so that it’s easier to identify unused addresses.

As we describe each type of resource record in detail in the next sections, we in-
spect some sample records from the atrust.com domain’s data files. The default
domain in this context is “atrust.com.”, so a host specified as “bark” really means

“bark.atrust.com.”.

The format and interpretation of each type of resource record is specified by the
IETF in the RFC series. In the upcoming sections, we list the specific RFCs relevant
to each record type (along with their years of origin) in a margin note.

The SOA record
An SOA (Start of Authority) record marks the beginning of a zone, a group of re-
source records located at the same place within the DNS namespace. The data for
a DNS domain usually includes at least two zones: one for translating hostnames
to IP addresses, called the forward zone, and others that map IP addresses back to
hostnames, called reverse zones.

Each zone has exactly one SOA record. The SOA record includes the name of the
zone, the primary name server for the zone, a technical contact, and various time-
out values. Comments are introduced by a semicolon. Here’s an example:

; Start of authority record for atrust.com
atrust.com.	 IN	 SOA	 ns1.atrust.com. hostmaster.atrust.com. (
	 2017110200		 ; Serial number
	 10800			 ; Refresh (3 hours)
	 1200			 ; Retry (20 minutes)
	 3600000			 ; Expire (40+ days)
	 3600) 			 ; Minimum (1 hour)

The name field of the SOA record (atrust.com. in this example) often contains the
symbol @, which is shorthand for the name of the current zone. The value of @ is
the domain name specified in the zone statement of named.conf. This value can be
changed from within the zone file with the $ORIGIN parser directive (see page 513).

This example has no ttl field. The class is IN for Internet, the type is SOA, and the
remaining items form the data field. The numerical parameters in parentheses are
timeout values and are often written on one line without comments.

“ns1.atrust.com.” is the zone’s master name server.11

	 11.	 Actually, any name server for the zone can be listed in the SOA record unless you are using dynamic
DNS. In that case, the SOA record must name the master server.

See page 376 for
more information
about RFCs.

SOA records
are specified in
RFC1035 (1987).

http://atrust.com
http://$$$�atrust.com
http://$$$�bark.atrust.com
http://atrust.com
http://atrust.com
http://ns1.atrust.com
http://hostmaster.atrust.com
http://atrust.com
http://$$$�ns1.atrust.com

	 The DNS database	 517

D
N

S

“hostmaster.atrust.com.” was originally intended to be the email address of the
technical contact in the format “user.host.” rather than the standard user@host.
Unfortunately, due to spam concerns and other reasons, most sites do not keep
this contact info updated.

The parentheses continue the SOA record over several lines.

The first numeric parameter is the serial number of the zone’s configuration data. The
serial number is used by slave servers to determine when to get fresh data. It can be
any 32-bit integer and should be incremented every time the data file for the zone
is changed. Many sites encode the file’s modification date in the serial number. For
example, 2017110200 would be the first change to the zone on November 2, 2017.

Serial numbers need not be continuous, but they must increase monotonically. If
by accident you set a really large value on the master server and that value is trans-
ferred to the slaves, then correcting the serial number on the master will not work.
The slaves request new data only if the master’s serial number is larger than theirs.

You can fix this problem in two ways:

•	 One fix is to exploit the properties of the sequence space in which the se-
rial numbers live. This procedure involves adding a large value (231) to the
bloated serial number, letting all the slave servers transfer the data, and
then setting the serial number to just what you want. This weird arithme-
tic, with explicit examples, is covered in detail in the O’Reilly book titled
DNS and BIND; RFC1982 describes the sequence space.

•	 A sneaky but more tedious way to fix the problem is to change the serial
number on the master, kill the slave servers, remove the slaves’ backup data
files so they are forced to reload from the master, and restart the slaves. It
does not work to just remove the files and reload; you must kill and re-
start the slave servers. This method gets hard if you follow best-practices
advice and have your slave servers geographically distributed, especially
if you are not the sysadmin for those slave servers.

It’s a common mistake to change the data files but forget to update the serial number.
Your name server will punish you by failing to propagate your changes to slave servers.

The next four entries in the SOA record are timeout values, in seconds, that control
how long data can be cached at various points throughout the world-wide DNS
database. Times can also be expressed in units of minutes, hours, days, or weeks by
addition of a suffix of m, h, d, or w, respectively. For example, 1h30m means 1 hour
and 30 minutes. Timeout values represent a tradeoff between efficiency (it’s cheap-
er to use an old value than to fetch a new one) and accuracy (new values are more
accurate). The four timeout fields are called refresh, update, expire, and minimum.

The refresh timeout specifies how often slave servers should check with the master
to see if the serial number of the zone’s configuration has changed. Whenever the
zone changes, slaves must update their copy of the zone’s data. The slave compares

http://$$$�hostmaster.atrust.com

518	 Chapter 16	 DNS: The Domain Name System	

the serial numbers; if the master’s serial number is larger, the slave requests a zone
transfer to update the data. Common values for the refresh timeout range from one
to six hours (3,600 to 21,600 seconds).

Instead of just waiting passively for slave servers to time out, master servers for
BIND notify their slaves every time a zone changes. However, it’s possible for an
update notification to be lost because of network congestion, so the refresh timeout
should still be set to a reasonable value.

If a slave server tries to check the master’s serial number but the master does not
respond, the slave tries again after the retry timeout period has elapsed. Our expe-
rience suggests that 20–60 minutes (1,200–3,600 seconds) is a good value.

If a master server is down for a long time, slaves will try to refresh their data many
times but always fail. Each slave should eventually decide that the master is never
coming back and that its data is surely out of date. The expire parameter determines
how long the slaves will continue to serve the domain’s data authoritatively in the
absence of a master. The system should be able to survive if the master server is
down for a few days, so this parameter should have a longish value. We recom-
mend a month or two.

The minimum parameter in the SOA record sets the time to live for negative answers
that are cached. The default for positive answers (i.e., actual records) is specified at
the top of the zone file with the $TTL directive. Experience suggests values of several
hours to a few days for $TTL and an hour to a few hours for the minimum. BIND
silently discards any minimum values greater than 3 hours.

The $TTL, expire, and minimum parameters eventually force everyone that uses
DNS to discard old data values. The initial design of DNS relied on the fact that
host data was relatively stable and did not change often. However, DHCP, mobile
hosts, and the Internet explosion have changed the rules. Name servers are des-
perately trying to cope with the dynamic update and incremental zone transfer
mechanisms described later.

NS records
NS (name server) records identify the servers that are authoritative for a zone (that
is, all the master and slave servers) and delegate subdomains to other organizations.
NS records are usually placed directly after a zone’s SOA record.

The format is

zone [ttl] [IN] NS hostname

For example:

			 NS	 ns1.atrust.com.
			 NS	 ns2.atrust.com.
booklab		 NS	 ubuntu.booklab.atrust.com.
			 NS	 ns1.atrust.com.

NS records are
specified in
RFC1035 (1987).

http://ns1.atrust.com
http://ns2.atrust.com.booklab
http://ns2.atrust.com.booklab
http://ubuntu.booklab.atrust.com
http://ns1.atrust.com

	 The DNS database	 519

D
N

S

The first two lines define name servers for the atrust.com domain. No name is listed
because it is the same as the name field of the SOA record that precedes the records;
the name can therefore be left blank. The class is also not listed because IN is the
default and does not need to be stated explicitly.

The third and fourth lines delegate a subdomain called booklab.atrust.com to the
name servers ubuntu.booklab.atrust.com and ns1.atrust.com. These records are ac-
tually part of the booklab subdomain, but they must also appear in the parent zone,
atrust.com, in order for the delegation to work. In a similar fashion, NS records for
atrust.com are stored in the .com zone file to define the atrust.com subdomain and
identify its servers. The .com servers refer queries about hosts in atrust.com to the
servers listed in NS records for atrust.com within the .com domain.

The list of name servers in the parent zone should be kept up to date with those in
the zone itself, if possible. Nonexistent servers listed in the parent zone can delay
name service, although clients will eventually stumble onto one of the functioning
name servers. If none of the name servers listed in the parent exist in the child, a
so-called lame delegation results; see page 575.

Extra servers in the child are OK as long as at least one of the child’s servers still has
an NS record in the parent. Check your delegations occasionally with dig or drill
to be sure they specify an appropriate set of servers; see page 509.

A records
A (address) records are the heart of the DNS database. They provide the mapping
from hostnames to IP addresses. A host usually has one A record for each of its
network interfaces. The format is

hostname [ttl] [IN] A ipaddr

For example:

ns1		 IN	 A	 63.173.189.1

In this example, the name field is not dot-terminated, so the name server adds the
default domain to it to form the fully qualified name “ns1.atrust.com.”. The record
associates that name with the IP address 63.173.189.1.

AAAA records
AAAA records are the IPv6 equivalent of A records. Records are independent of
the transport protocol used to deliver them; publishing IPv6 records in your DNS
zones does not mean that you must answer DNS queries over IPv6.

The format of an AAAA record is

hostname [ttl] [IN] AAAA ipaddr

For example:

f.root-servers.net.		 IN	 AAAA 2001:500:2f::f

See page 506 for
more information
about delegation.

A records are specified
in RFC1035 (1987).

AAAA records
are specified in
RFC3596 (2003).

http://atrust.com
http://booklab.atrust.com
http://ubuntu.booklab.atrust.com
http://ns1.atrust.com
http://atrust.com
http://atrust.com
http://atrust.com
http://atrust.com
http://atrust.com
http://$$$�ns1.atrust.com
http://f.root-servers.net

520	 Chapter 16	 DNS: The Domain Name System	

Each colon-separated chunk of the address represents four hex digits, with lead-
ing zeros usually omitted. Two adjacent colons stand for “enough zeros to fill out
the 128 bits of a complete IPv6 address.” An address can contain at most one such
double colon.

PTR records
PTR (pointer) records map from IP addresses back to hostnames. As described in
The DNS namespace starting on page 502, reverse mapping records live under the
in-addr.arpa domain and are named with the bytes of the IP address in reverse order.
For example, the zone for the 189 subnet in this example is 189.173.63.in-addr.arpa.

The general format of a PTR record is

addr [ttl] [IN] PTR hostname

For example, the PTR record in the 189.173.63.in-addr.arpa zone that corresponds
to ns1’s A record above is

1		 IN	 PTR	 ns1.atrust.com.

The name 1 does not end in a dot and therefore is relative. But relative to what?
Not atrust.com—for this sample record to be accurate, the default zone has to be

“189.173.63.in-addr.arpa.”.

You can set the zone by putting the PTR records for each subnet in their own file.
The default domain associated with the file is set in the name server configuration
file. Another way to do reverse mappings is to include records such as

1.189	 IN	 PTR	 ns1.atrust.com.

with a default domain of 173.63.in-addr.arpa. Some sites put all reverse records in
the same file and use $ORIGIN directives (see page 513) to specify the subnet. Note
that the hostname ns1.atrust.com ends with a dot to prevent the default domain,
173.63.in-addr.arpa, from being appended to its name.

Since atrust.com and 189.173.63.in-addr.arpa are different regions of the DNS
namespace, they constitute two separate zones. Each zone must have its own SOA
record and resource records. In addition to defining an in-addr.arpa zone for each
real network, you should also define one that takes care of the loopback network
(127.0.0.0), at least if you run BIND. See page 543 for an example.

This all works fine if subnets are defined on byte boundaries. But how do you han-
dle the reverse mappings for a subnet such as 63.173.189.0/26, where that last byte
can be in any of four subnets: 0-63, 64-127, 128-191, or 192-255? An elegant hack
defined in RFC2317 exploits CNAME resource records to accomplish this feat.

It’s important that A records match their corresponding PTR records. Mismatched
and missing PTR records cause authentication failures that can slow your system to
a crawl. This problem is annoying in itself; it can also facilitate denial-of-service at-
tacks against any application that requires the reverse mapping to match the A record.

PTR records
are specified in
RFC1035 (1987).

See page 388
for more details
about subnetting.

http://63.in-addr.arpa
http://63.in-addr.arpa
http://ns1.atrust.com
http://atrust.com$$$�for
http://63.in-addr.arpa
http://ns1.atrust.com
http://63.in-addr.arpa
http://ns1.atrust.com
http://63.in-addr.arpa
http://atrust.com
http://63.in-addr.arpa

	 The DNS database	 521

D
N

S

For IPv6, the reverse mapping information that corresponds to an AAAA address
record is a PTR record in the ip6.arpa top-level domain.

The “nibble” format reverses an AAAA address record by expanding each colon-sep-
arated address chunk to the full 4 hex digits and then reversing the order of those
digits and tacking on ip6.arpa at the end. For example, the PTR record that corre-
sponds to our sample AAAA record on page 519 would be

f.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.f.2.0.0.0.0.5.0.1.0.0.2.ip6.arpa.
PTR f.root-servers.net.

This line has been folded to fit the page. It’s unfortunately not very friendly for a
sysadmin to have to type or debug or even read. Of course, in your actual DNS zone
files, the $ORIGIN statement could hide some of the complexity.

MX records
The mail system uses mail exchanger (MX) records to route mail more efficiently.
An MX record preempts the destination specified by the sender of a message, in
most cases directing the message to a hub at the recipient’s site. This feature puts
the flow of mail into a site under the control of local sysadmins instead of senders.

The format of an MX record is

name [ttl] [IN] MX preference host ...

The records below route mail addressed to user@somehost.atrust.com to the machine
mailserver.atrust.com if it is up and accepting email. If mailserver is not available,
mail goes to mail-relay3.atrust.com. If neither machine named in the MX records
is accepting mail, the fallback behavior is to deliver the mail as originally addressed.

somehost	 IN	MX	 10 mailserver.atrust.com.
		 IN	MX	 20 mail-relay3.atrust.com.

Hosts with low preference values are tried first: 0 is the most desirable, and 65,535
is as bad as it gets.

MX records are useful in many situations:

•	 When you have a central mail hub or service provider for incoming mail
•	 When you want to filter mail for spam or viruses before delivering it
•	 When the destination host is down
•	 When the destination host isn’t directly reachable from the Internet
•	 When the local sysadmin knows where mail should be sent better than

your correspondents do (i.e., always)

A machine that accepts email on behalf of another host may need to configure its
mail transport program to enable this function. See pages 622 and 665 for a dis-
cussion of how to set up this configuration on sendmail and Postfix email servers,
respectively.

MX records
are specified in
RFC1035 (1987).

http://f.root-servers.net
mailto:user@somehost.atrust.com
http://mailserver.atrust.com
http://mail-relay3.atrust.com
http://mailserver.atrust.com
http://mail-relay3.atrust.com

522	 Chapter 16	 DNS: The Domain Name System	

Wild card MX records are also sometimes seen in the DNS database:

*		 IN	MX	 10 mailserver.atrust.com.

At first glance, this record seems like it would save lots of typing and add a default
MX record for all hosts. But wild card records don’t quite work as you might expect.
They match anything in the name field of a resource record that is not already listed
as an explicit name in another resource record.

Thus, you cannot use a star to set a default value for all your hosts. But perversely,
you can use it to set a default value for names that are not your hosts. This setup
causes lots of mail to be sent to your hub only to be rejected because the hostname
matching the star does not in fact belong to your domain. Ergo, avoid wild card
MX records.

CNAME records
CNAME records assign additional names to a host. These nicknames are commonly
used either to associate a function with a host or to shorten a long hostname. The real
name is sometimes called the canonical name (hence, “CNAME”). Some examples:

ftp		 IN	 CNAME	 anchor
kb		 IN	 CNAME	 kibblesnbits

The format of a CNAME record is

nickname [ttl] [IN] CNAME hostname

When DNS software encounters a CNAME record, it stops its query for the nick-
name and re-queries for the real name. If a host has a CNAME record, other re-
cords (A, MX, NS, etc.) for that host must refer to its real name, not its nickname.12

CNAME records can nest eight deep. That is, a CNAME record can point to another
CNAME, and that CNAME can point to a third CNAME, and so on, up to seven
times; the eighth target must be the real hostname. If you use CNAMEs, the PTR
record should point to the real name, not a nickname.

You can avoid CNAMEs altogether by publishing A records for both a host’s real
name and its nicknames. This configuration makes lookups slightly faster because
the extra layer of indirection is not needed.

RFC1033 requires the “apex” of a zone (sometimes called the “root domain” or
“naked domain”) to resolve to one or more A (and/or AAAA) records. The use of a
CNAME record is forbidden. In other words, you can do this:

www.yourdomain.com. 	 CNAME some-name.somecloud.com.

	 12.	 This rule for CNAMEs was explicitly relaxed for DNSSEC, which adds digital signatures to each DNS
resource record set. The RRSIG record for the CNAME refers to the nickname.

CNAME records
are specified in
RFC1035 (1987).

http://mailserver.atrust.com
http://www.yourdomain.com
http://some-name.somecloud.com

	 The DNS database	 523

D
N

S

but not this:

yourdomain.com. 			 CNAME some-name.somecloud.com.

This restriction is potentially vexatious, especially when you want the apex to point
somewhere within a cloud provider’s network and the server’s IP address is subject
to change. In this situation, a static A record is not a reliable option.

To fix the problem, you’ll need to use a managed DNS provider (such as AWS Route
53 or CloudFlare) that has developed some kind of system for hacking around the
RFC1033 requirement. Typically, these systems let you specify your apex records
in a manner similar to a CNAME, but they actually serve A records to the outside
world. The DNS provider does the work of keeping the A records synchronized to
the actual target.

SRV records
An SRV record specifies the location of services within a domain. For example, an
SRV record lets you query a remote domain for the name of its FTP server. Before
SRV, you had to hope the remote sysadmins had followed the prevailing custom
and added a CNAME for “ftp” to their server’s DNS records.

SRV records make more sense than CNAMEs for this application and are certainly
a better way for sysadmins to move services around and control their use. How-
ever, SRV records must be explicitly sought and parsed by clients, so they are not
used in all the places they probably should be. They are used extensively by Win-
dows, however.

SRV records resemble generalized MX records with fields that let the local DNS ad-
ministrator steer and load-balance connections from the outside world. The format is

service.proto.name [ttl] [IN] SRV pri weight port target

where service is a service defined in the IANA assigned numbers database (see
the list at iana.org/numbers.htm), proto is either tcp or udp, name is the domain
to which the SRV record refers, pri is an MX-style priority, weight is a weight used
for load balancing among several servers, port is the port on which the service
runs, and target is the hostname of the server that provides the service. To avoid a
second round trip, DNS servers usually return the A record of the target with the
answer to a SRV query.

A value of 0 for the weight parameter means that no special load balancing should
be done. A value of “.” for the target means that the service is not run at this site.

SRV records
are specified in
RFC2782 (2000).

http://yourdomain.com
http://some-name.somecloud.com
http://iana.org/numbers.htm

524	 Chapter 16	 DNS: The Domain Name System	

Here is an example snitched from RFC2782 and adapted for atrust.com:

_ftp._tcp		 SRV	 0 0 21 ftp-server.atrust.com.

; 1/4 of the connections to old box, 3/4 to the new one
_ssh._tcp		 SRV	 0 1 22 old-slow-box.atrust.com.
			 SRV	 0 3 22 new-fast-box.atrust.com.

; main server on port 80, backup on new box, port 8000
_http._tcp		 SRV	 0 0 80 www-server.atrust.com.
			 SRV	 10 0 8000 new-fast-box.atrust.com.

; so both http://www.atrust.com and http://atrust.com work
_http._tcp.www		 SRV	 0 0 80 www-server.atrust.com.
			 SRV	 10 0 8000 new-fast-box.atrust.com.

; block all other services (target = .)
*._tcp		 SRV	 0 0 0 .
*._udp		 SRV	 0 0 0 .

This example illustrates the use of both the weight parameter (for SSH) and the
priority parameter (HTTP). Both SSH servers are used, with the work being split
between them. The backup HTTP server is only used when the principal server is
unavailable. All other services are blocked, both for TCP and UDP. However, the
fact that other services do not appear in DNS does not mean that they are not ac-
tually running, just that you can’t locate them through DNS.

TXT records
A TXT record adds arbitrary text to a host’s DNS records. For example, some sites
have a TXT record that identifies them:

		 IN	 TXT	 "Applied Trust Engineering, Boulder, CO, USA"

This record directly follows the SOA and NS records for the atrust.com zone and
so inherits the name field from them.

The format of a TXT record is

name [ttl] [IN] TXT info ...

All info items must be quoted. Be sure the quotes are balanced—missing quotes
wreak havoc with your DNS data because all the records between the missing quote
and the next occurrence of a quote mysteriously disappear.

As with other resource records, servers return TXT records in random order. To
encode long items such as addresses, use long text lines rather than a collection of
several TXT records.

Because TXT records have no particular format, they are sometimes used to add
information for other purposes without requiring changes to the DNS system itself.

TXT records
are specified in
RFC1035 (1987).

	 The BIND software	 525

D
N

S

SPF, DKIM, and DMARC records
SPF (Sender Policy Framework), DKIM (DomainKeys Identified Mail), and DMARC
(Domain-based Message Authentication, Reporting, and Conformance) are stan-
dards that attempt to stem the Internet’s ever-increasing flow of unsolicited com-
mercial email (aka UCE or spam). Each of these systems distributes spam-fighting
information through DNS in the form of TXT records, so they are not true DNS
record types.13 For that reason, we cover these systems in Chapter 18, Electronic
Mail. See the material that starts on page 606.

DNSSEC records
Five resource record types are currently associated with DNSSEC, the cryptograph-
ically secured version of DNS.

DS and DNSKEY records store various types of keys and fingerprints. RRSIGs contain
the signatures of other records in the zone (record sets, really). Finally, NSEC and
NSEC3 records give DNS servers a way to sign nonexistent records, thus extending
cryptographic security to negative query responses. These six records differ from
most in that they are generated by software tools rather than being typed in by hand.

DNSSEC is a big topic in its own right, so we discuss these records and their use
in the DNSSEC section, which begins on page 557.

16.6	 The BIND software
BIND, the Berkeley Internet Name Domain system, is an open source software
package from the Internet Systems Consortium (ISC) that implements DNS for
Linux, UNIX, macOS, and Windows systems. There have been three main flavors
of BIND: BIND 4, BIND 8, and BIND 9, with BIND 10 currently under develop-
ment by ISC. We cover only BIND 9 in this book.

Components of BIND
The BIND distribution has four major components:

•	 A name server daemon called named that answers queries
•	 A resolver library that queries DNS servers on behalf of users
•	 Command-line interfaces to DNS: nslookup, dig, and host
•	 A program to remotely control named called rndc

The hardest BIND-related sysadmin chore is probably sorting through all the myr-
iad options and features that BIND supports and determining which ones make
sense for your situation.

	 13.	 This is a little bit of a lie. There is a defined DNS record type for SPF; however, the TXT record ver-
sion is preferred.

526	 Chapter 16	 DNS: The Domain Name System	

Configuration files
A complete configuration for named consists of the config file (named.conf), the
zone data files that contain address mappings for each host, and the root name
server hints file. Authoritative servers need named.conf and zone data files for
each zone for which they are the master server; caching servers need named.conf
and the root hints file.

named.conf has its own format; all the other files are collections of individual DNS
data records whose formats were discussed in The DNS database starting on page 512.

The named.conf file specifies the roles of this host (master, slave, stub, or caching-​
only) and the manner in which it should obtain its copy of the data for each zone
it serves. It’s also the place where options are specified—both global options related
to the overall operation of named and server- or zone-specific options that apply
to only a portion of the DNS traffic.

The config file consists of a series of statements whose syntax we describe as they
are introduced in subsequent sections. The format is unfortunately quite fragile—a
missing semicolon or unbalanced quote can wreak havoc.

Comments can appear anywhere that whitespace is appropriate. C, C++, and shell-
style comments are all understood:

/* This is a comment that can span lines. */
// Everything to the end of the line is a comment.
Everything to the end of the line is a comment.

Each statement begins with a keyword that identifies the type of statement. There
can be more than one instance of each type of statement, except for options and
logging. Statements and parts of statements can also be left out, invoking default
behavior for the missing items.

Table 16.4 lists the available statements; the Page column points to our discussion
of each statement in the upcoming sections.

Before describing these statements and the way they are used to configure named,
we need to describe a data structure that is used in many of the statements, the
address match list. An address match list is a generalization of an IP address that
can include the following items:

•	 An IP address, either IPv4 or IPv6 (e.g., 199.165.145.4 or fe80::202:b3ff:fe1e:8329)
•	 An IP network specified with a CIDR14 netmask (e.g., 199.165/16)
•	 The name of a previously defined access control list (see page 534)
•	 The name of a cryptographic authentication key
•	 The ! character to negate things

	 14.	 CIDR netmasks are described starting on page 391.

 	

	 The BIND software	 527

D
N

S

 ​

	
	
	
	
	

	 	

Table 16.4	 Statements used in named.conf

Statement Page Function

include 527 Interpolates a file
options 528 Sets global configuration options/defaults

acl 534 Defines access control lists
key 534 Defines authentication information

server 535 Specifies per-server options
masters 535 Defines a list of masters for stub and slave zones
logging 536 Specifies logging categories and their destinations

statistics-channels 536 Outputs real-time statistics in XML format
zone 536 Defines a zone of resource records

controls 540 Defines channels used to control named with rndc
view 541 Defines a view of the zone data
lwres – Specifies that named should be a resolver, too

Address match lists are used as parameters to many statements and options. Some
examples:

{ ! 1.2.3.13; 1.2.3/24; };
{ 128.138/16; 198.11.16/24; 204.228.69/24; 127.0.0.1; };

The first of these lists excludes the host 1.2.3.13 but includes the rest of the 1.2.3.0/24
network; the second defines the networks assigned to the University of Colorado.
The braces and final semicolons are not really part of the address match lists but
are included here for illustration; they would be part of the enclosing statements
of which the address match lists are a part.

When an IP address or network is compared to a match list, the list is searched in
order until a match is found. This “first match” algorithm makes the ordering of
entries important. For example, the first address match list above would not have
the desired effect if the two entries were reversed, because 1.2.3.13 would succeed
in matching 1.2.3.0/24 and the negated entry would never be encountered.

Now, on to the statements! Some are short and sweet; others almost warrant a
chapter unto themselves.

The include statement
To break up or better organize a large configuration, you can put different portions
of the configuration in separate files. Subsidiary files are brought into named.conf
with an include statement:

include "path";

528	 Chapter 16	 DNS: The Domain Name System	

If the path is relative, it is interpreted with respect to the directory specified in the
directory option.

A common use of include is to incorporate cryptographic keys that should not be
world-readable. Rather than forbidding read access to the entire named.conf file,
some sites keep keys in files with restrictive permissions that only named can read.
Those files are then included into named.conf.

Many sites put zone statements in a separate file and use the include statement to
pull them in. This configuration helps separate the parts of the configuration that
are relatively static from those that are likely to change frequently.

The options statement
The options statement specifies global options, some of which might later be over-
ridden for particular zones or servers. The general format is

options {
	 option;
	 option;
	 ...
};

If no options statement is present in named.conf, default values are used.

BIND has a lot of options—too many, in fact. The 9.9 release has more than 170,
which is a lot for sysadmins to wrap their heads around. Unfortunately, as soon as
the BIND folks think about removing some of the options that were a bad idea or
that are no longer necessary, they get pushback from sites who use and need those
obscure options. We do not cover the whole gamut of BIND options here; we have
biased our coverage and discuss only the ones whose use we recommend. (We also
asked the BIND developers for their suggestions on which options to cover, and
we followed their advice.)

For more complete coverage of the options, see one of the books on DNS and BIND
listed at the end of this chapter. You can also refer to the documentation shipped
with BIND. The ARM document in the doc directory of the distribution describes
each option and shows both syntax and default values. The file doc/misc/options
also contains a complete list of options.

As we wind our way through about a quarter of the possible options, we have added
a margin note as a mini index entry. The default values are listed in square brack-
ets beside each option. For most sites, the default values are just fine. Options are
listed in no particular order.

directory "path";			 [directory where the server was started]
key-directory "path";		 [same as directory entry]

The directory statement causes named to cd to the specified directory. Wherever
relative pathnames appear in named’s configuration files, they are interpreted rela-

File locations

	 The BIND software	 529

D
N

S

tive to this directory. The path should be an absolute path. Any output files (debug-
ging, statistics, etc.) are also written in this directory. The key-directory is where
cryptographic keys are stored; it should not be world-readable.

We like to put all the BIND-related configuration files (other than named.conf and
resolv.conf) in a subdirectory beneath /var (or wherever you keep your configura-
tion files for other programs). We use /var/named or /var/domain.

version "string";		 [real version number of the server]
hostname "string";		 [real hostname of the server]
server-id "string";		 [none]

The version string identifies the version of the name server software running on
the server. The hostname string identifies the server itself, as does the server-id
string. These options let you lie about the true values. Each of them puts data into
CHAOS-class (as opposed to IN-class, the default) TXT records where curious
onlookers can search for them with the dig command.

The hostname and server-id parameters are additions motivated by the use of any-
cast routing to duplicate instances of the root and gTLD servers.

notify yes | master-only | explicit | no; 	 [yes]
also-notify server-ipaddrs;			 [empty]
allow-notify address-match-list;		 [empty]

The notify and also-notify clauses apply only to master servers. allow-notify
applies only to slave servers.

Early versions of BIND synchronized zone files between master and slave servers
only when the refresh timeout in the zone’s SOA record had expired. These days,
the master named automatically notifies its peers whenever the corresponding zone
database has been reloaded, as long as notify is set to yes. The slave servers can
then rendezvous with the master to see if the file has changed, and if so, to update
their copies of the zone data.

You can use notify both as a global option and as a zone-specific option. It makes
the zone files converge much more quickly after you make changes. By default,
every authoritative server sends updates to every other authoritative server (a sys-
tem termed “splattercast” by Paul Vixie). Setting notify to master-only curbs this
chatter by sending notifications only to slave servers of zones for which this server
is the master. If the notify option is set to explicit, then named only notifies the
servers listed in the also-notify clause.

named normally figures out which machines are slave servers of a zone by looking
at the zone’s NS records. If also-notify is specified, a set of additional servers that
are not advertised with NS records can also be notified. This tweak is sometimes
necessary when your site has internal servers.

Name server identity

Zone synchronization

See page 538 for
more information
about stub zones.

530	 Chapter 16	 DNS: The Domain Name System	

The target of an also-notify is a list of IP addresses and, optionally, ports. You
must use the allow-notify clause in the secondaries’ named.conf files if you want
a name server other than the master to notify them.

For servers with multiple network interfaces, additional options specify the IP ad-
dress and port to use for outgoing notifications.

recursion yes | no;					 [yes]
allow-recursion { address-match-list };	 [all hosts]

The recursion option specifies whether named should process queries recursively
on behalf of your users. You can enable this option on an authoritative server of
your zones’ data, but that’s frowned upon. The best-practice recommendation is to
keep authoritative servers and caching servers separate.

If this name server should be recursive for your clients, set recursion to yes and
include an allow-recursion clause so that named can distinguish queries that
originate at your site from remote queries. named will act recursively for the former
and nonrecursively for the latter. If your name server answers recursive queries for
everyone, it is called an open resolver and can become a reflector for certain kinds
of attacks; see RFC5358.

recursive-clients number;		 [1000]
max-cache-size number;		 [unlimited]

If your server is handling an extraordinary amount of traffic, you may need to tweak
the recursive-clients and max-cache-size options. recursive-clients controls
the number of recursive lookups the server will process simultaneously; each re-
quires about 20KiB of memory. max-cache-size limits the amount of memory the
server will use for caching answers to queries. If the cache grows too large, named
deletes records before their TTLs expire to keep memory use under the limit.

use-v4-udp-ports { range begin end; };	 [range 1024 65535]
use-v6-udp-ports { range begin end; };	 [range 1024 65535]

avoid-v4-udp-ports { port-list };		 [empty]
avoid-v6-udp-ports { port-list };		 [empty]

query-source v4-address [port]	 [any]	 # CAUTION, don't use port
query-source-v6 v6-address [port]	 [any]	 # CAUTION, don't use port

Source ports have become important in the DNS world because of a DNS proto-
col weakness discovered by Dan Kaminsky, one that allows DNS cache poisoning
when name servers use predictable source ports and query IDs. The use- and
avoid- options for UDP ports (together with changes to the named software) have
mitigated this attack.

Some sysadmins formerly set a specific outgoing port number so they could config-
ure their firewalls to recognize it and accept UDP packets only for that port. How-
ever, this configuration is no longer safe in the post-Kaminsky era. Don’t use the

Query recursion

Cache memory use

IP port utilization

	 The BIND software	 531

D
N

S

query-source address options to specify a fixed outgoing port for DNS queries or
you will forfeit the Kaminsky protection that a large range of random ports provides.

The defaults for the use-* ranges are fine, and you shouldn’t need to change them.
But be aware of the implications: queries go out from random high-numbered
ports, and the answers come back to those same ports. Ergo, your firewall must be
prepared to accept UDP packets on random high-numbered ports.

If your firewall blocks certain ports in this range (for example, port 2049 for RPC)
then you have a small problem. When your name server sends a query and uses one
of the blocked ports as its source, the firewall blocks the answer. The name server
eventually stops waiting and sends out the query again. Not fatal, but annoying to
the user caught in the crossfire.

To forestall this problem, use the avoid-* options to make BIND stay away from
the blocked ports. Any high-numbered UDP ports blocked by your firewall should
be included in the list.15 If you update your firewall in response to some threatened
attack, be sure to update the port list here, too.

The query-source options let you specify the IP address to be used on outgoing
queries. For example, you might need to use a specific IP address to get through
your firewall or to distinguish between internal and external views.

forwarders { in_addr; in_addr; ... };	 [empty list]
forward only | first;				 [first]

Instead of having every name server perform its own external queries, you can des-
ignate one or more servers as forwarders. A run-of-the-mill server can look in its
cache and in the records for which it is authoritative. If it doesn’t find the answer it’s
looking for, it can then send the query on to a forwarder host. That way, the forward-
ers build up caches that benefit the entire site. The designation is implicit—nothing
in the configuration file of the forwarder explicitly says “Hey, you’re a forwarder.”

The forwarders option lists the IP addresses of the servers you want to use as for-
warders. They are queried in turn. The use of a forwarder circumvents the normal
DNS procedure of starting at a root server and following the chain of referrals. Be
careful not to create forwarding loops.

A forward-only server caches answers and queries forwarders, but it never queries
anyone else. If the forwarders do not respond, queries fail. A forward-first server
prefers to deal with forwarders, but if they do not respond, the forward-first server
will complete queries on its own.

Since the forwarders option has no default value, forwarding does not occur unless
it has been specifically configured.

	 15.	 Some firewalls are stateful and may be smart enough to recognize the DNS answer as being paired
with the corresponding query of a second ago. Such firewalls don’t need help from this option.

Forwarding

532	 Chapter 16	 DNS: The Domain Name System	

You can turn on forwarding either globally or within individual zone statements.

allow-query { address-match-list };		 [all hosts]
allow-query-cache { address-match-list };	 [all hosts]
allow-transfer { address-match-list };	 [all hosts]
allow-update { address-match-list };		 [none]
blackhole { address-match-list };		 [empty]

These options specify which hosts (or networks) can query your name server or its
cache, request block transfers of your zone data, or dynamically update your zones.
These match lists are a low-rent form of security and are susceptible to IP address
spoofing, so there’s some risk in relying on them. It’s probably not a big deal if some-
one tricks your server into answering a DNS query, but avoid the allow_update
and allow_transfer clauses; use cryptographic keys instead.

The blackhole address list identifies servers that you never want to talk to; named
does not accept queries from these servers and will never ask them for answers.

edns-udp-size number;	 [4096]
max-udp-size number;	 [4096]

All machines on the Internet must be capable of reassembling a fragmented UDP
packet of 512 bytes or fewer. Although this conservative requirement made sense
in the 1980s, it is laughably small by modern standards. Modern routers and fire-
walls can handle much larger packets, but it only takes one bad link in the IP chain
to spoil the whole path.

Since DNS by default uses UDP for queries and since DNS responses are often
larger than 512 bytes, DNS administrators have to worry about large UDP packets
being dropped. If a large reply gets fragmented and your firewall only lets the first
fragment through, the receiver gets a truncated answer and retries the query with
TCP. TCP is a more expensive protocol than UDP, and busy servers at the root or
TLDs don’t need increased TCP traffic because of everybody’s broken firewalls.

The edns-udp-size option sets the reassembly buffer size that the name server ad-
vertises through EDNS0, the extended DNS protocol. The max-udp-size option
sets the maximum packet size that the server will actually send. Both sizes are in
bytes. Reasonable values are in the 512–4,096 byte range.

dnssec-enable yes | no;				 [yes]
dnssec-validation yes | no;			 [yes]
dnssec-must-be-secure domain yes | no;	 [none]

These options configure support for DNSSEC. See the sections starting on page
557 for a general discussion of DNSSEC and a detailed description of how to set
up DNSSEC at your site.

An authoritative server needs the dnssec-enable option turned on. A recursive
server needs the dnssec-enable and dnssec-validation options turned on.

Permissions

Packet sizes

DNSSEC control

	 The BIND software	 533

D
N

S

dnssec-enable and dnssec-validation are turned on by default, which has var-
ious implications:

•	 An authoritative server of a signed zone answering a query with the
DNSSEC-aware bit turned on answers with the requested resource re-
cords and their signatures.

•	 An authoritative server of a signed zone answering a query with the
DNSSEC-aware bit not set answers with just the requested resource re-
cords, as in the pre-DNSSEC era.

•	 An authoritative server of an unsigned zone answers queries with just the
requested resource records; there are no signatures to include.

•	 A recursive server sends queries on behalf of users with the DNSSEC-aware
bit set.

•	 A recursive server validates the signatures included with signed replies
before returning data to the user.

The dnssec-must-be-secure option allows you to specify that you will only ac-
cept secure answers from particular domains, or, alternatively, that you don’t care
and that insecure answers are OK. For example, you might say yes to the domain
important-stuff.mybank.com and no to the domain marketing.mybank.com.

zone-statistics yes | no		 [no]

This option causes named to maintain per-zone statistics as well as global statistics.
Run rndc stats to dump the statistics to a file.

clients-per-query int;	 [10]	 # Clients waiting on same query
max-clients-per-query int;	[100]	 # Max clients before server drops
datasize int;	 [unlimited]	# Max memory server may use
files int;	 [unlimited]	# Max # of concurrent open files
lame-ttl int;	 [10min]	 # Secs to cache lame server data
max-acache-size int;	 []	 # Cache size for additional data
max-cache-size int;	 []	 # Max memory for cached answers
max-cache-ttl int;	 [1week]	 # Max TTL for caching positive data
max-journal-size int;	 []	 # Max size of transaction journal
max-ncache-ttl int;	 [3hrs]	 # Max TTL for caching negative data
tcp-clients int;	 [100]	 # Max simultaneous TCP clients

This long list of options can be used to tune named to run well on your hardware.
We don’t describe them in detail, but if you are having performance problems, these
options may suggest a starting point for your tuning efforts.

Whew, we are finally done with the options. Let’s get on to the rest of the configu-
ration language!

Statistics

Performance tuning

http://important-stuff.mybank.com
http://marketing.mybank.com

534	 Chapter 16	 DNS: The Domain Name System	

The acl statement
An access control list is just an address match list with a name:

acl acl-name {
	 address-match-list
};

You can use an acl-name anywhere an address match list is called for.

An acl must be a top-level statement in named.conf, so don’t try sneaking it in
amid your other option declarations. Also keep in mind that named.conf is read
in a single pass, so access control lists must be defined before they are used. Four
lists are predefined:

•	 any – all hosts
•	 localnets – all hosts on the local network(s)
•	 localhost – the machine itself
•	 none – nothing

The localnets list includes all of the networks to which the host is directly attached.
In other words, it’s a list of the machine’s network addresses modulo their netmasks.

The (TSIG) key statement
The key statement defines a “shared secret” (that is, a password) that authenticates
communication between two servers; for example, between the master server and
a slave for a zone transfer, or between a server and the rndc process that controls it.
Background information about BIND’s support for cryptographic authentication
is given in the DNS security issues section starting on page 551. Here, we touch
briefly on the mechanics of the process.

To build a key record, you specify both the cryptographic algorithm that you want
to use and the shared secret, represented as a base-64-encoded string (see page
554 for details):

key key-id {
	 algorithm string;
	 secret string;
};

As with access control lists, the key-id must be defined with a key statement before
it is used. To associate the key with a particular server, just include key-id in the
keys clause of that server’s server statement. The key is used both to verify requests
from that server and to sign the responses to those requests.

The shared secret is sensitive information and should not be kept in a world-read-
able file. Use an include statement to bring it into the named.conf file.

	 The BIND software	 535

D
N

S

The server statement
named can potentially talk to many servers, not all of them running current soft-
ware and not all of them even nominally sane. The server statement tells named
about the characteristics of its remote peers. The server statement can override
defaults for a particular server; it’s not required unless you want to configure keys
for zone transfers.

server ip_addr {
	 bogus yes | no;					 [no]
	 provide-ixfr yes | no;				 [yes]	
	 request-ixfr yes | no;				 [yes]
	 keys { key-id; key-id; ... };		 [none]
	 transfer-source ip-address [port];		 [closest interface]
	 transfer-source-v6 ipv6-address [port];	 [closest interface]
};

You can use a server statement to override the values of global configuration options
for individual servers. Just list the options for which you want nondefault behavior.
We have not shown all the server-specific options, just the ones we think you might
need. See the BIND documentation for a complete list.

If you mark a server as being bogus, named won’t send any queries its way. This
directive should be reserved for servers that are in fact bogus. bogus differs from
the global option blackhole in that it suppresses only outbound queries. By con-
trast, the blackhole option completely eliminates all forms of communication with
the listed servers.

A BIND name server acting as master for a dynamically updated zone performs
incremental zone transfers if provide-ixfr is set to yes. Likewise, a server acting
as a slave requests incremental zone transfers from the master if request-ixfr is
set to yes. Dynamic DNS is discussed in detail on page 549.

The keys clause identifies a key ID that has been previously defined in a key state-
ment for use with transaction signatures (see page 554). Any requests sent to the
remote server are signed with this key. Requests originating at the remote server
are not required to be signed, but if they are, the signature will be verified.

The transfer-source clauses give the IPv4 or IPv6 address of the interface (and
optionally, the port) that should be used as a source address (port) for zone transfer
requests. This clause is only needed when the system has multiple interfaces and
the remote server has specified a specific IP address in its allow-transfer clause;
the addresses must match.

The masters statement
The masters statement lets you name a set of one or more master servers by specify-
ing their IP addresses and cryptographic keys. You can then use this defined name in
the masters clause of zone statements instead of repeating the IP addresses and keys.

How can there be
more than one mas-
ter? See page 538.

536	 Chapter 16	 DNS: The Domain Name System	

The masters facility is helpful when multiple slave or stub zones get their data from
the same remote servers. If the addresses or cryptographic keys of the remote serv-
ers change, you can update the masters statement that introduces them rather than
changing many different zone statements.

The syntax is

masters name { ip_addr [port ip_port] [key key] ; ... } ;

The logging statement
named is the current holder of the “most configurable logging system on Earth”
award. Syslog put the prioritization of log messages into the programmer’s hands
and the disposition of those messages into the sysadmin’s hands. But for a given
priority, the sysadmin had no way to say, “I care about this message but not about
that message.” BIND added categories that classify log messages by type, and chan-
nels that broaden the choices for the disposition of messages. Categories are deter-
mined by the programmer, and channels by the sysadmin.

Since logging requires quite a bit of explanation and is somewhat tangential, we
discuss it in the debugging section beginning on page 568.

The statistics-channels statement
The statistics-channels statement lets you connect to a running named with
a browser to view statistics as they are accumulated. Since the stats of your name
server might be sensitive, you should restrict access to this data to trusted hosts at
your own site. The syntax is

statistics-channels {
	 inet (ip-addr | *) port port# allow { address-match-list } ;
	 ...
}

You can include multiple inet-port-allow sequences. The defaults are open, so be
careful! The IP address defaults to any, the port defaults to port 80 (normal HTTP),
and the allow clause defaults to letting anyone connect. To use statistics channels,
named must have been compiled with libxml2.

The zone statement
zone statements are the heart of the named.conf file. They tell named about the
zones for which it is authoritative and set the options that are appropriate for man-
aging each zone. A zone statement is also used by a caching server to preload the
root server hints (that is, the names and addresses of the root servers, which boot-
strap the DNS lookup process).

The exact format of a zone statement varies, depending on the role that named is
to play with respect to that zone. The possible zone types are master, slave, hint,

	 The BIND software	 537

D
N

S

forward, stub, and delegation-only. We do not describe stub zones (used by
BIND only) or delegation-only zones (used to stop the use of wild card records
in top-level zones to advertise a registrar’s services). The following brief sections
describe the other zone types.

Many of the global options covered earlier can become part of a zone statement and
override the previously defined values. We have not repeated those options here,
except to mention certain ones that are frequently used.

Configuring the master server for a zone
Here’s the format you need for a zone of which this named is the master server:

zone "domain-name" {
	 type master;
	 file "path";
};

The domain-name in a zone specification must always appear in double quotes.

The zone’s data is kept on disk in a human-readable (and human-editable) file. The
filename has no default, so you must provide a file statement when declaring a
master zone. A zone file is just a collection of DNS resource records in the formats
described starting on page 512.

Other server-specific attributes are also frequently specified within the zone state-
ment. For example:

	 allow-query { address-match-list };	 [any]
	 allow-transfer { address-match-list };	 [any]
	 allow-update { address-match-list };	 [none]
	 zone-statistics yes | no			 [no]

The access control options are not required, but it’s a good idea to use them. They
accept any kind of address match list, so you can configure security either in terms of
IP addresses or in terms of TSIG encryption keys. As usual, encryption keys are safer.

If dynamic updates are used for this zone, the allow-update clause must be pres-
ent with an address match list that limits the hosts from which updates can occur.
Dynamic updates apply only to master zones; the allow-update clause cannot be
used for a slave zone. Be sure that this clause includes just your own machines (e.g.,
DHCP servers) and not the whole Internet.16

The zone-statistics option makes named keep track of query/response statistics
such as the number and percentage of responses that were referrals, that resulted
in errors, or that demanded recursion.

With all these zone-specific options (and about 40 more we have not covered!), the
configuration is starting to sound complicated. However, a master zone declaration

	 16.	 You also need ingress filtering at your firewall; see page 440. Better yet, use TSIG for authentication.

See page 549 for more
information about
dynamic updates.

538	 Chapter 16	 DNS: The Domain Name System	

consisting of nothing but a pathname to the zone file is perfectly reasonable. Here
is an example, slightly modified, from the BIND documentation:

zone "example.com" {
	 type master;
	 file "forward/example.com";
	 allow-query { any; };
	 allow-transfer { my-slaves; };
}

Here, my-slaves would be an access control list you had previously defined.

Configuring a slave server for a zone
The zone statement for a slave is similar to that of a master:

zone "domain-name" {
	 type slave;
	 file "path";
	 masters { ip_addr [port ip_port] [key keyname]; ... };
	 allow-query { address-match-list };			 [any]
};

Slave servers normally maintain a complete copy of their zone’s database. The file
statement specifies a local file in which the replicated database can be stored. Each
time the server fetches a new copy of the zone, it saves the data in this file. If the
server crashes and reboots, the file can then be reloaded from the local disk with-
out being transferred across the network.

You shouldn’t edit this cache file, since it’s maintained by named. However, it can be
interesting to inspect if you suspect you have made an error in the master server’s
data file. The slave’s disk file shows you how named has interpreted the original zone
data. In particular, relative names and $ORIGIN directives have all been expanded.
If you see a name in the data file that looks like one of these

	 128.138.243.151.cs.colorado.edu.
	 anchor.cs.colorado.edu.cs.colorado.edu.

you can be pretty sure that you forgot a trailing dot somewhere.

The masters clause lists the IP addresses of one or more machines from which the
zone database can be obtained. It can also contain the name of a list of masters de-
fined by a previous masters statement.

We said that only one machine can be the master for a zone, so why is it possible to
list more than one address? Two reasons. First, the master machine might have more
than one network interface and therefore more than one IP address. It’s possible
for one interface to become unreachable (because of network or routing problems)
while others are still accessible. Therefore, it’s a good practice to list all the master
server’s topologically distinct addresses.

http://"example.com"
http://"forward/example.com"
http://151.cs.colorado.edu
http://anchor.cs.colorado.edu.cs.colorado.edu.you
http://anchor.cs.colorado.edu.cs.colorado.edu.you

	 The BIND software	 539

D
N

S

Second, named doesn’t care where the zone data comes from. It can pull the data-
base just as easily from a slave server as from the master. You could use this feature
to allow a well-connected slave server to serve as a sort of backup master, since
the IP addresses are tried in order until a working server is found. In theory, you
can also set up a hierarchy of servers, with one master serving several second-level
servers, which in turn serve many third-level servers.

Setting up the root server hints
Another form of zone statement points named toward a file from which it can pre-
load its cache with the names and addresses of the root name servers.

zone "." {
	 type hint;
	 file "path";
};

The “hints” are a set of DNS records that list servers for the root domain. They’re
needed to give a recursive, caching instance of named a place to start searching for
information about other sites’ domains. Without them, named would only know
about the domains it serves and their subdomains.

When named starts, it reloads the hints from one of the root servers. Ergo, you’ll
be fine as long as your hints file contains at least one valid, reachable root server.
As a fallback, the root server hints are also compiled into named.

The hints file is often called root.cache. It contains the response you would get if
you queried any root server for the name server records in the root domain. In fact,
you can generate the hints file in exactly this way with dig. For example:

$ dig @f.root-servers.net . ns > root.cache

Mind the dot. If f.root-servers.net is not responding, you can run the query without
specifying a particular server:

$ dig . ns > root.cache

The output will be similar; however, you will be obtaining the list of root servers from
the cache of a local name server, not from an authoritative source. That should be
just fine—even if you have not rebooted or restarted your name server for a year or
two, it has been refreshing its root server records periodically as their TTLs expire.

Setting up a forwarding zone
A zone of type forward overrides named’s default query path (ask the root first, then
follow referrals, as described on page 506) for a particular domain:

zone "domain-name" {
	 type forward;
	 forward only | first;
	 forwarders { ip_addr; ip_addr; ... };
};

mailto:@f.root-servers.net
http://f.root-servers.net

540	 Chapter 16	 DNS: The Domain Name System	

You might use a forward zone if your organization had a strategic working relation-
ship with some other group or company and you wanted to funnel traffic directly
to that company’s name servers, bypassing the standard query path.

The controls statement for rndc
The controls statement limits the interaction between the running named process
and rndc, the program a sysadmin can use to signal and control it. rndc can start
and stop named, dump its state, put it in debug mode, etc. rndc operates over the
network, and with improper configuration it might let anyone on the Internet mess
with your name server. The syntax is

controls {
	 inet addr port port allow { address-match-list } keys { key_list };
}

rndc talks to named on port 953 if you don’t specify a different port.

Allowing your name server to be controlled remotely is both handy and dangerous.
Strong authentication through a key entry in the allow clause is required; keys in
the address match list are ignored and must be explicitly stated in the keys clause
of the controls statement.

You can use the rndc-confgen command to generate an authentication key for use
between rndc and named. There are essentially two ways to set up use of the key:
you can have both named and rndc consult the same configuration file to learn the
key (e.g., /etc/rndc.key), or you can include the key in both the rndc’s and named’s
configuration files (/etc/rndc.conf for rndc and /etc/named.conf for named). The
latter option is more complicated, but it’s necessary when named and rndc will be
running on different computers. rndc-confgen -a sets up keys for localhost access.

When no controls statement is present, BIND defaults to the loopback address
for the address match list and looks for the key in /etc/rndc.key. Because strong
authentication is mandatory, the rndc command cannot control named if no key
exists. This precaution may seem draconian, but consider: even if rndc worked
only from 127.0.0.1 and this address was blocked from the outside world at your
firewall, you would still be trusting all local users not to tamper with your name
server. Any user could telnet to the control port and type “stop”—quite an effective
denial-of-service attack.

Here is an example of the output (to standard out) from rndc-confgen when a
256-bit key is requested. We chose 256 bits because it fits on the page; you would
normally choose a longer key and redirect the output to /etc/rndc.conf. The com-
ments at the bottom of the output show the lines you need to add to named.conf
to make named and rndc play together.

D
N

S

	 Split DNS and the view statement	 541

$./rndc-confgen -b 256
Start of rndc.conf
key "rndc-key" {
	 algorithm hmac-md5;
	 secret "orZuz5amkUnEp52zlHxD6cd5hACldOGsG/elP/dv2IY=";
};

options {
	 default-key "rndc-key";
	 default-server 127.0.0.1;
	 default-port 953;
};
End of rndc.conf

Use the following in named.conf, adjusting the allow list as needed:
key "rndc-key" {
#	 algorithm hmac-md5;
# 	 secret "orZuz5amkUnEp52zlHxD6cd5hACldOGsG/elP/dv2IY=";
};
#
controls {
#	 inet 127.0.0.1 port 953
# 	 allow { 127.0.0.1; } keys { "rndc-key"; };
};
End of named.conf

16.7	 Split DNS and the view statement
Many sites want the internal view of their network to be different from the view
seen from the Internet. For example, you might reveal all of a zone’s hosts to inter-
nal users but restrict the external view to a few well-known servers. Or, you might
expose the same set of hosts in both views but supply additional (or different) re-
cords to internal users. For example, the MX records for mail routing might point
to a single mail hub machine from outside the domain but point to individual
workstations from the perspective of internal users.

A split DNS configuration is especially useful for sites that use RFC1918 private IP
addresses on their internal networks. For example, a query for the hostname asso-
ciated with IP address 10.0.0.1 can never be answered by the global DNS system,
but it is meaningful within the context of the local network. Of the queries arriving
at the root name servers, 4%–5% are either from an IP address in one of the private
address ranges or about one of these addresses. Neither can be answered; both are
the result of misconfiguration, either of BIND’s split DNS or of Microsoft’s “domains.”

See page 392 for more
information about
private address spaces.

542	 Chapter 16	 DNS: The Domain Name System	

The view statement packages up a couple of access lists that control which clients
see which view, some options that apply to all the zones in the view, and finally, the
zones themselves. The syntax is

view view-name {
	 match-clients { address-match-list } ;		 [any]
	 match-destinations { address-match-list } ;	 [any]
	 match-recursive-only yes | no;			 [no]
	 view-option; ...
	 zone-statement; ...
} ;

Views have always had a match-clients clause that filters on queries’ source IP
addresses. It typically serves internal and external views of a site’s DNS data. For
finer control, you can now also filter on the query destination address and can re-
quire recursive queries.

The match-destinations clause looks at the destination address to which a query
was sent. It’s useful on multihomed machines (that is, machines with more than one
network interface) when you want to serve different DNS data depending on the
interface on which the query arrived. The match-recursive-only clause requires
queries to be recursive as well as to originate at a permitted client. Iterative queries
let you see what is in a site’s cache; this option prevents it.

Views are processed in order, so put the most restrictive views first. Zones in differ-
ent views can have the same names but take their data from different files. Views are
an all-or-nothing proposition; if you use them, all zone statements in your named
configuration file must appear in the context of a view.

Here is a simple example from the BIND 9 documentation. The two views define
the same zone, but with different data.

view "internal" {
	 match-clients { our_nets; };	 // Only internal networks
	 recursion yes;				 // Internal clients only
	 zone "example.com" {			 // Complete view of zone
		 type master;
		 file "example-internal.db";
	 };
};

view "external" {
	 match-clients { any; };		 // Allow all queries
	 recursion no;				 // But no recursion
	 zone "example.com" {			 // Only "public" hosts
		 type master;
		 file "example-external.db";
	 }
};

http://"example.com"
http://"example.com"

	 BIND configuration examples	 543

D
N

S

If the order of the views were reversed, no one would ever see the internal view. In-
ternal hosts would match the any value in the match-clients clause of the external
view before they reached the internal view.

Our second DNS configuration example starting on page 544 provides an addi-
tional example of views.

16.8	 BIND configuration examples
Now that we have explored the wonders of named.conf, let’s look at two complete
configuration examples:

•	 The localhost zone
•	 A small security company that uses split DNS

The localhost zone
The IPv4 address 127.0.0.1 refers to a host itself and should be mapped to the name

“localhost.”.17 Some sites map the address to “localhost.localdomain.” and some do
both. The corresponding IPv6 address is ::1.

If you forget to configure the localhost zone, your site may end up querying the
root servers for localhost information. The root servers receive so many of these
queries that the operators are considering adding a generic mapping between lo-
calhost and 127.0.0.1 at the root level. Other unusual names in the popular “bogus
TLD” category are lan, home, localdomain, and domain.

The forward mapping for the name localhost can be defined in the forward zone file
for the domain (with an appropriate $ORIGIN statement) or in its own file. Each serv-
er, even a caching server, is usually the master for its own reverse localhost domain.

Here are the lines in named.conf that configure localhost:

zone "localhost" { 				 // localhost forward zone
	 type master;
	 file "localhost";
	 allow-update { none; };
};

zone "0.0.127.in-addr.arpa" { 	 // localhost reverse zone
	 type master;
	 file "127.0.0";
	 allow-update { none; };
};

	 17.	 Actually, the whole class A network 127/8 refers to localhost, but most folks just use 127.0.0.1.

http://127.in-addr.arpa"

544	 Chapter 16	 DNS: The Domain Name System	

The corresponding forward zone file, localhost, contains the following lines:

$TTL 30d
; localhost.
@	 IN	 SOA	 localhost. postmaster.localhost. (
							 2015050801	 ; Serial
							 3600		 ; Refresh
							 1800		 ; Retry
							 604800		 ; Expiration
							 3600)		 ; Minimum

				 NS		 localhost.
				 A		 127.0.0.1

The reverse file, 127.0.0, contains:

$TTL 30d
; 0.0.127.in-addr.arpa
@	 IN			 SOA		 localhost. postmaster.localhost. (
							 2015050801	 ; Serial
							 3600		 ; Refresh
							 1800		 ; Retry
							 604800		 ; Expiration
							 3600)		 ; Minimum

				 NS		 localhost.
1				 PTR		 localhost.

The mapping for the localhost address (127.0.0.1) never changes, so the timeouts can
be large. Note the serial number, which encodes the date; the file was last changed
in 2015. Also note that only the master name server is listed for the localhost do-
main. The meaning of @ here is “0.0.127.in-addr.arpa.”.

A small security company
Our second example is for a small company that specializes in security consulting.
They run BIND 9 on a recent version of Red Hat Enterprise Linux and use views
to implement a split DNS system in which internal and external users see differ-
ent host data. They also use private address space internally; queries about those
addresses should never escape to the Internet to clutter up the global DNS system.
Here is their named.conf file, reformatted and commented a bit:

options {
	 directory "/var/domain";
	 version "root@atrust.com";
	 allow-transfer { 82.165.230.84; 71.33.249.193; 127.0.0.1; };
	 listen-on { 192.168.2.10; 192.168.2.1; 127.0.0.1; 192.168.2.12; };
};

include "atrust.key";				 // Mode 600 file

mailto:"root@atrust.com"

	 BIND configuration examples	 545

D
N

S

controls {
	 inet 127.0.0.1 allow { 127.0.0.1; } keys { atkey; };
};

view "internal" {		

	 match-clients { 192.168.0.0/16; 206.168.198.192/28; 172.29.0.0/24; };
	 recursion yes;

	 include "infrastructure.zones";	 // Root hints, localhost forw + rev

	 zone "atrust.com" {			 // Internal forward zone
		 type master;
		 file "internal/atrust.com";
	 };
	 zone "1.168.192.in-addr.arpa" {	 // Internal reverse zone
		 type master;
		 file "internal/192.168.1.rev";
		 allow-update { none; };
	 };
	 ... // Many zones omitted

	 include "internal/tmark.zones"; 	 // atrust.net, atrust.org slaves

}; // End of internal view

view "world" {					 // External view

	 match-clients { any; };
	 recursion no;

	 zone "atrust.com" {			 // External forward zone
		 type master;
		 file "world/atrust.com";
		 allow-update { none; };
	 };
	 zone "189.173.63.in-addr.arpa" {	 // External reverse zone
		 type master;
		 file "world/63.173.189.rev";
		 allow-update { none; };
	 };
	 include "world/tmark.zones"; 	 // atrust.net, atrust.org masters
	 zone "admin.com" {			 // Master zones only in world view
		 type master;
		 file "world/admin.com";
		 allow-update { none; };
	 };		
	 ... // Lots of master+slave zones omitted

}; // End of external view

http://"atrust.com"
http://"internal/atrust.com"
http://192.in-addr.arpa"
http://atrust.net
http://atrust.org
http://"atrust.com"
http://"world/atrust.com"
http://63.in-addr.arpa"
http://atrust.net
http://atrust.org
http://"admin.com"
http://"world/admin.com"

546	 Chapter 16	 DNS: The Domain Name System	

The file atrust.key defines the key named atkey:

key "atkey" {
	 algorithm hmac-md5;
	 secret "shared secret key goes here";
};

The file tmark.zones includes variations on the name atrust.com, both in different
top-level domains (net, org, us, info, etc.) and with different spellings (applied-trust.com,
etc.). The file infrastructure.zones contains the root hints and localhost files.

Zones are organized by view (internal or world) and type (master or slave), and the
naming convention for zone data files reflects this scheme. This server is recursive
for the internal view, which includes all local hosts, including many that use private
addressing. The server is not recursive for the external view, which contains only
selected hosts at atrust.com and the external zones for which they provide either
master or slave DNS service.

Snippets of the files internal/atrust.com and world/atrust.com are shown below.
First, the internal file:

; atrust.com - internal file

$TTL 86400
$ORIGIN atrust.com.
@	 3600	 SOA	ns1.atrust.com. trent.atrust.com. (
 		 2015110200 10800 1200 3600000 3600)
	 3600	 NS	 NS1.atrust.com.
	 3600	 NS	 NS2.atrust.com.
	 3600	 MX	 10 mailserver.atrust.com.
	 3600	 A	 66.77.122.161

ns1			 A	 192.168.2.11
ns2			 A	 66.77.122.161
www			 A	 66.77.122.161
mailserver	 A	 192.168.2.11
exchange		 A	 192.168.2.100
secure		 A	 66.77.122.161
...

You can see from the IP address ranges that this site is using RFC1918 private ad-
dresses internally. Note also that instead of assigning nicknames to hosts through
CNAMEs, this site has multiple A records that point to the same IP addresses.18
This approach works fine, but each IP address should have only one PTR record
in the reverse zone.

	 18.	 A records were at one time potentially faster to resolve than CNAMEs because they relieved clients
of the need to perform a second DNS query to obtain the address of a CNAME’s target. These days,
DNS servers are smarter and automatically include an A record for the target in the original query re-
sponse (if they know it).

http://atrust.com
http://applied-trust.com
http://atrust.com
http://internal/atrust.com
http://world/atrust.com
http://atrust.com
mailto:atrust.com.@
mailto:atrust.com.@
http://ns1.atrust.com
http://trent.atrust.com
http://NS1.atrust.com
http://NS2.atrust.com
http://mailserver.atrust.com

	 Zone file updating	 547

D
N

S

Here is the external view of that same domain from the file world/atrust.com:

; atrust.com - external file

$TTL 57600
$ORIGIN atrust.com.
@					 SOA	ns1.atrust.com. trent.atrust.com. (
							 2015110200 10800 1200 3600000 3600)
					 NS	 NS1.atrust.com.
					 NS	 NS2.atrust.com.
					 MX	 10 mailserver.atrust.com.
					 A	 66.77.122.161
ns1.atrust.com. 		 A	 206.168.198.209
ns2.atrust.com. 		 A	 66.77.122.161
www 				 A	 66.77.122.161
mailserver			 A	 206.168.198.209
secure				 A	 66.77.122.161

; reverse maps
exterior1			 A	 206.168.198.209
209.198.168.206		 PTR	exterior1.atrust.com.
exterior2			 A	 206.168.198.213
213.198.168.206		 PTR	exterior2.atrust.com.
...

As in the internal view, nicknames are implemented with A records. Only a few
hosts are actually visible in the external view (although that’s not immediately ap-
parent from these truncated excerpts). Machines that appear in both views (for
example, ns1) have RFC1918 private addresses internally but publicly registered
and assigned addresses externally.

The TTL in these zone files is set to 16 hours (57,600 seconds). For internal zones,
the TTL is one day (86,400 seconds).

16.9	 Zone file updating
To change a domain’s data (e.g., to add or delete a host), you update the zone data
files on the master server. You must also increment the serial number in the zone’s
SOA record. Finally, you must get your name server software to pick up and dis-
tribute your changes.

This final step varies depending on your software. For BIND, just run rndc reload
to signal named to pick up the changes. You can also kill and restart named, but
if your server is both authoritative for your zone and recursive for your users, this
operation discards cached data from other domains.

Updated zone data is propagated to slave servers of BIND masters right away be-
cause the notify option is on by default. If notifications are not turned on, your
slave servers will not pick up the changes until after refresh seconds, as set in the
zone’s SOA record (typically an hour later).

http://world/atrust.com:
http://atrust.com

548	 Chapter 16	 DNS: The Domain Name System	

If you have the notify option turned off, you can force BIND slaves to update
themselves by running rndc reload on each slave. This command makes the slave
check with the master, see that the data has changed, and request a zone transfer.

Don’t forget to modify both the forward and reverse zones when you change a
hostname or IP address. Forgetting the reverse files leaves sneaky errors: some
commands work and some don’t.

Changing a zone’s data but forgetting to change the serial number makes the changes
take effect on the master server (after a reload) but not on the slaves.

Do not edit data files on slave servers. These files are maintained by the name serv-
er, and sysadmins should not meddle with them. It’s fine to look at the BIND data
files as long as you don’t make changes.

Zone transfers
DNS servers are synchronized through a mechanism called a zone transfer. A zone
transfer can include the entire zone (called AXFR) or be limited to incremental
changes (called IXFR). By default, zone transfers use the TCP protocol on port 53.
BIND logs transfer-related information with category “xfer-in” or “xfer-out.”

A slave wanting to refresh its data must request a zone transfer from the master
server and make a backup copy of the zone data on disk. If the data on the master
has not changed, as determined by a comparison of the serial numbers (not the
actual data), no update occurs and the backup files are just touched. (That is, their
modification times are set to the current time.)

Both the sending and receiving servers remain available to answer queries during
a zone transfer. Only after the transfer is complete does the slave begin to use the
new data.

When zones are huge (like com) or dynamically updated (see the next section),
changes are typically small relative to the size of the entire zone. With IXFR, only
the changes are sent (unless they are larger than the complete zone, in which case
a regular AXFR transfer is done). The IXFR mechanism is analogous to the patch
program in that it makes changes to an old database to bring it into conformity
with a new database.

In BIND, IXFR is the default for any zones configured for dynamic update, and
named maintains a transaction log called zonename.jnl. You can set the options
provide-ixfr and request-ixfr in the server statements for individual peers. The
provide-ixfr option enables or disables IXFR service for zones for which this
server is the master. The request-ixfr option requests IXFRs for zones for which
this server is a slave.

provide-ixfr yes ;	 # In BIND server statement
request-ixfr yes ;	 # In BIND server statement

	 Zone file updating	 549

D
N

S

IXFRs work for zones that are edited by hand, too. Use the BIND zone option called
ixfr-from-differences to enable this behavior. IXFR requires the zone file to be
sorted in a canonical order. An IXFR request to a server that does not support it
automatically falls back to the standard AXFR zone transfer.

Dynamic updates
DNS was originally designed under the assumption that name-to-address map-
pings are relatively stable and do not change frequently. However, a site that uses
DHCP to dynamically assign IP addresses as machines boot and join the network
breaks this rule constantly. Two basic solutions are available: either add generic
(and static) entries to the DNS database, or provide some way to make small, fre-
quent changes to zone data.

The first solution should be familiar to anyone who has looked up the PTR record
for the IP address assigned to them by a mass-market (home) ISP. The DNS con-
figuration usually looks something like this:

dhcp-host1.domain.	 IN A	 192.168.0.1
dhcp-host2.domain.	 IN A	 192.168.0.2
...

Although this is a simple solution, it means that hostnames are permanently asso-
ciated with particular IP addresses and that computers therefore change hostnames
whenever they receive new IP addresses. Hostname-based logging and security
measures become very difficult in this environment.

The dynamic update feature outlined in RFC2136 offers an alternative solution. It
extends the DNS protocol to include an update operation, thereby allowing entities
such as DHCP daemons to notify name servers of the address assignments they
make. Dynamic updates can add, delete, or modify resource records.

When dynamic updates are enabled in BIND, named maintains a journal of dy-
namic changes (zonename.jnl) that it can consult in the event of a server crash.
named recovers the in-memory state of the zone by reading the original zone files
and then replaying the changes from the journal.

You cannot hand-edit a dynamically updated zone without first stopping the dy-
namic update stream. rndc freeze zone or rndc freeze zone class view will do the
trick. These commands sync the journal file to the master zone file on disk and
then delete the journal. You can then edit the zone file by hand. Unfortunately, the
original formatting of the zone file will have been destroyed by named’s monkey-
ing—the file will look like those maintained by named for slave servers.

Dynamic update attempts are refused while a zone is frozen. To reload the zone file
from disk and reenable dynamic updates, use rndc thaw with the same arguments
you used to freeze the zone.

The nsupdate program supplied with BIND 9 comes with a command-line interface
for making dynamic updates. It runs in batch mode, accepting commands from the

See page 402 for
more information
about DHCP.

550	 Chapter 16	 DNS: The Domain Name System	

keyboard or a file. A blank line or the send command signals the end of an update
and sends the changes to the server. Two blank lines signify the end of input. The
command language includes a primitive if statement to express constructs such
as “if this hostname does not exist in DNS, add it.” As predicates for an nsupdate
action, you can require a name to exist or not exist, or require a resource record
set to exist or not exist.

For example, here is a simple nsupdate script that adds a new host and also adds
a nickname for an existing host if the nickname is not already in use. The angle
bracket prompt is produced by nsupdate and is not part of the command script.

$ nsupdate
> update add newhost.cs.colorado.edu 86400 A 128.138.243.16
>
> prereq nxdomain gypsy.cs.colorado.edu
> update add gypsy.cs.colorado.edu CNAME evi-laptop.cs.colorado.edu

Dynamic updates to DNS are scary. They can potentially provide uncontrolled
write access to your important system data. Don’t try to use IP addresses for access
control—they are too easily forged. TSIG authentication with a shared-secret key
is better; it’s available and is easy to configure. BIND 9 supports both:

$ nsupdate -k keydir:keyfile

or

$ nsupdate -y keyname:secretkey 

Since the password goes on the command line in the -y form, anyone running w
or ps at the right moment can see it. For this reason, the -k form is preferred. For
more details on TSIG, see the section starting on page 554.

Dynamic updates to a zone are enabled in named.conf with an allow-update
or update-policy clause. allow-update grants permission to update any records
in accordance with IP- or key-based authentication. update-policy is a BIND 9
extension that allows fine-grained control for updates according to the hostname
or record type. It requires key-based authentication. Both forms can be used only
within zone statements, and they are mutually exclusive within a particular zone.

A good default for zones with dynamic hosts is to use update-policy to allow cli-
ents to update their A or PTR records but not to change the SOA record, NS re-
cords, or KEY records.

The syntax of an update-policy rule (of which there can be several) is

(grant|deny) identity nametype name [types] ;

The identity is the name of the cryptographic key needed to authorize the update.
The nametype has one of four values: name, subdomain, wildcard, or self. The
self option is particularly prized because it allows hosts to update only their own
records. Use it if your situation allows.

http://newhost.cs.colorado.edu
http://gypsy.cs.colorado.edu
http://gypsy.cs.colorado.edu
http://evi-laptop.cs.colorado.edu

	 DNS security issues 	 551

D
N

S

The name is the zone to be updated, and the types are the resource record types that
can be updated. If no types are specified, all types except SOA, NS, RRSIG, and
NSEC or NSEC3 can be updated.

Here’s a complete example:

update-policy { grant dhcp-key subdomain dhcp.cs.colorado.edu A } ;

This configuration allows anyone who knows the key dhcp-key to update address
records in the dhcp.cs.colorado.edu subdomain. This statement would appear in the
master server’s named.conf file within the zone statement for dhcp.cs.colorado.edu.
(There would be a key statement somewhere to define dhcp-key as well.)

The snippet below from the named.conf file at the computer science department
at the University of Colorado uses the update-policy statement to allow students
in a system administration class to update their own subdomains but not to mess
with the rest of the DNS environment.

zone "saclass.net" {
	 type master;
	 file "saclass/saclass.net";
	 update-policy {
		 grant feanor_mroe. subdomain saclass.net.;
		 grant mojo_mroe. subdomain saclass.net.;
		 grant dawdle_mroe. subdomain saclass.net.;
		 grant pirate_mroe. subdomain saclass.net.;
		 ...
	 };
...

16.10	 DNS security issues
DNS started out as an inherently open system, but it has steadily grown more and
more secure—or at least, securable. By default, anyone on the Internet can investi-
gate your domain with individual queries from tools such as dig, host, nslookup,
and drill. In some cases, they can dump your entire DNS database.

To address such vulnerabilities, name servers support various types of access control
that key off of host and network addresses or cryptographic authentication. Table
16.5 on the next page summarizes the security features that can be configured in
named.conf. The Page column shows where in this book to look for more information.

BIND can run in a chrooted environment under an unprivileged UID to minimize
security risks. It can also use transaction signatures to control communication between
master and slave servers and between the name servers and their control programs.

http://dhcp.cs.colorado.edu
http://dhcp.cs.colorado.edu
http://dhcp.cs.colorado.edu
http://"saclass.net"
http://"saclass/saclass.net"
http://saclass.net
http://saclass.net
http://saclass.net
http://saclass.net

552	 Chapter 16	 DNS: The Domain Name System	

Table 16.5	 Security features in BIND

Feature Context Page What it specifies

acl Various 534 Access control lists
allow-query options, zone 532 Who can query a zone or server
allow-recursion options 530 Who can make recursive queries
allow-transfer options, zone 532 Who can request zone transfers
allow-update zone 550 Who can make dynamic updates
blackhole options 532 Servers to completely ignore
bogus server 535 Servers never to query
update-policy zone 550 Who can make dynamic updates

Access control lists in BIND, revisited
ACLs are named address-match lists that can appear as arguments to statements
such as allow-query, allow-transfer, and blackhole. Their basic syntax was
described on page 534. ACLs can help beef up DNS security in a variety of ways.

Every site should at least have one ACL for bogus addresses and one ACL for local
addresses. For example:

acl bogusnets {			 // ACL for bogus networks
 	 0.0.0.0/8 ;			 // Default, wild card addresses
 	 1.0.0.0/8 ;			 // Reserved addresses
 	 2.0.0.0/8 ;			 // Reserved addresses
 	 169.254.0.0/16 ;	 // Link-local delegated addresses
 	 192.0.2.0/24 ;		 // Sample addresses, like example.com
 	 224.0.0.0/3 ;		 // Multicast address space
 	 10.0.0.0/8 ;		 // Private address space (RFC1918)19

 	 172.16.0.0/12 ;		 // Private address space (RFC1918)
 	 192.168.0.0/16 ;	 // Private address space (RFC1918)
} ;

acl cunets {				 // ACL for University of Colorado networks
	 128.138.0.0/16 ;	 // Main campus network
	 198.11.16/24 ;
	 204.228.69/24 ;
};

In the global options section of your config file, you could then include

allow-recursion { cunets; } ;
blackhole { bogusnets; } ;

	 19.	 Don’t make private addresses bogus if you use them and are configuring your internal DNS servers!

http://example.com

	 DNS security issues 	 553

D
N

S

It’s also a good idea to restrict zone transfers to legitimate slave servers. An ACL
makes things nice and tidy:

acl ourslaves {
	 128.138.242.1 ;			 // anchor
	 ...
} ;
acl measurements {
	 198.32.4.0/24 ;			 // Bill manning's measurements, v4 address
	 2001:478:6:0::/48 ;		 // Bill manning's measurements, v6 address
} ;

The actual restriction is implemented with a line such as

allow-transfer { ourslaves; measurements; } ;

Here, transfers are limited to our own slave servers and to the machines of an In-
ternet measurement project that walks the reverse DNS tree to determine the size
of the Internet and the percentage of misconfigured servers. Limiting transfers in
this way makes it impossible for other sites to dump your entire database with a
tool such as dig (see page 509).

Of course, you should still protect your network at a lower level through router
access control lists and standard security hygiene on each host. If those measures
are not possible, you can refuse DNS packets except to a gateway machine that you
monitor closely.

Open resolvers
An open resolver is a recursive, caching name server that accepts and answers que-
ries from anyone on the Internet. Open resolvers are bad. Outsiders can consume
your resources without your permission or knowledge, and if they are bad guys,
they might be able to poison your resolver’s cache.

Worse, open resolvers are sometimes used by miscreants to amplify distributed
denial of service attacks. The attacker sends queries to your resolver with a faked
source address that points back to the victim of the attack. Your resolver dutifully
answers the queries and sends some nice fat packets to the victim. The victim didn’t
initiate the queries, but it still has to route and process the network traffic. Multiply
by a bunch of open resolvers and it’s real trouble for the victim.

Statistics show that between 70% and 75% of caching name servers are currently
open resolvers—yikes! The site dns.measurement-factory.com/tools can help you
test your site. Go there, select the “open resolver test,” and type in the IP addresses
of your name servers. Alternatively, you can enter a network number or WHOIS
identifier to test all the associated servers.

Use access control lists in named.conf to limit your caching name servers to an-
swering queries from your own users.

http://dns.measurement-factory.com/tools

554	 Chapter 16	 DNS: The Domain Name System	

Running in a chrooted jail
If hackers compromise your name server, they can potentially gain access to the
system under the guise of the user as whom it runs. To limit the damage that some-
one could do in this situation, you can run the server in a chrooted environment,
run it as an unprivileged user, or both.

For named, the command-line flag -t specifies the directory to chroot to, and the
-u flag specifies the UID under which named should run. For example,

$ sudo named -u 53

initially starts named as root, but after named completes its rootly chores, it relin-
quishes its root privileges and runs as UID 53.

Many sites don’t bother to use the -u and -t flags, but when a new vulnerability is
announced, they must be faster to upgrade than the hackers are to attack.

The chroot jail cannot be empty since it must contain all the files the name server
normally needs to run: /dev/null, /dev/random, the zone files, configuration files,
keys, syslog target files, UNIX domain socket for syslog, /var, etc. It takes a bit of
work to set all this up. The chroot system call is performed after libraries have been
loaded, so you need not copy shared libraries into the jail.

Secure server-to-server communication with TSIG and TKEY
During the time when DNSSEC (covered in the next section) was being developed,
the IETF developed a simpler mechanism called TSIG (RFC2845) to allow secure
communication among servers through the use of “transaction signatures.” Ac-
cess control through transaction signatures is more secure than access control by
IP source addresses alone. TSIG can secure zone transfers between a master server
and its slaves and can also secure dynamic updates.

The TSIG seal on a message authenticates the peer and verifies that the data has not
been tampered with. Signatures are checked at the time a packet is received and
are then discarded; they are not cached and do not become part of the DNS data.

TSIG uses symmetric encryption. That is, the encryption key is the same as the
decryption key. This single key is called the “shared secret.” The TSIG specification
allows multiple encryption methods, and BIND implements quite a few. Use a dif-
ferent key for each pair of servers that want to communicate securely.

TSIG is much less expensive computationally than public key cryptography, but
because it requires manual configuration, it is only appropriate for a local network
on which the number of pairs of communicating servers is small. It does not scale
to the global Internet.

	 DNS security issues 	 555

D
N

S

Setting up TSIG for BIND
First, use BIND’s dnssec-keygen utility to generate a shared-secret host key for the
two servers, say, master and slave1:

$ dnssec-keygen -a HMAC-SHA256 -b 128 -n HOST master-slave1
Kmaster-slave1.+163+15496

The -b 128 flag tells dnssec-keygen to create a 128-bit key. We use 128 bits here just
to keep the keys short enough to fit on our printed pages. In real life, you might
want to use a longer key; 512 bits is the maximum allowed.

This command produces the following two files:

	 Kmaster-slave1.+163+15496.private
	 Kmaster-slave1.+163+15496.key

The 163 represents the SHA-256 algorithm, and 15496 is a number used as a key
identifier in case you have multiple keys for the same pair of servers.20 Both files
include the same key, but in different formats.

The .private file looks like this:

Private-key-format: v1.3
Algorithm: 163 (HMAC_SHA256)
Key: owKt6ZWOlu0gaVFkwOqGxA==
Bits: AAA=
Created: 20160218012956
Publish: 20160218012956
Activate: 20160218012956

and the .key file like this:

master-slave1. IN KEY 512 3 163 owKt6ZWOlu0gaVFkwOqGxA==

Note that dnssec-keygen added a dot to the end of the key names in both the file-
names and the contents of the .key file. The motivation for this convention is that
when dnssec-keygen is used for DNSSEC keys that are added to zone files, the
key names must be fully qualified domain names and must therefore end in a dot.
There should probably be two tools, one that generates shared-secret keys and one
that generates public-key key pairs.

You don’t actually need the .key file—it’s an artifact of dnssec-keygen’s being used
for two different jobs. Just delete it. The 512 in the KEY record is not the key length
but rather a flag bit that identifies the record as a DNS host key.

After all this complication, you may be disappointed to learn that the generated
key is really just a long random number. You could generate the key manually by
writing down an ASCII string of the right length (divisible by 4) and pretending
that it’s a base-64 encoding of something, or you could use mmencode to encode

	 20.	 The number looks random, but it is actually just a hash of the TSIG key.

556	 Chapter 16	 DNS: The Domain Name System	

a random string. The way you create the key is not important; it just has to exist
on both machines.

Copy the key from the .private file to both master and slave1 with scp, or cut and
paste it. Do not use telnet or ftp to copy the key; even internal networks might
not be secure.

The key must be included in both machines’ named.conf files. Since named.conf is
usually world-readable and keys should not be, put the key in a separate file that is
included in named.conf. The key file should have mode 600 and should be owned
by the named user.

For example, you could put the snippet

key master-slave1. {
	 algorithm hmac-md5 ;
	 secret "shared-key-you-generated" ;
} ;

in the file master-slave1.tsig. In the named.conf file, add the line

include "master-slave1.tsig" ;

near the top.

This part of the configuration simply defines the keys. For them to actually be used
to sign and verify updates, the master needs to require the key for transfers and
the slave needs to identify the master with a server statement and keys clause. For
example, you might add the line

allow-transfer { key master-slave1. ;} ;

to the zone statement on the master server, and the line

server master's-IP-address { keys { master-slave1. ; } ; } ;

to the slave’s named.conf file. If the master server allows dynamic updates, it can
also use the key in its allow-update clause in the zone statement.

Our example key name is pretty generic. If you use TSIG keys for many zones, you
might want to include the name of the zone in the key name to help you keep ev-
erything straight.

When you first turn on transaction signatures, run named at debug level 1 (see
page 568 for information about debug mode) for a while to see any error messag-
es that are generated.

When using TSIG keys and transaction signatures between master and slave servers,
keep the clocks of the servers synchronized with NTP. If the clocks are too far apart
(more than about 5 minutes), signature verification will not work. This problem
can be very hard to identify.

scp is part of the
OpenSSH suite. See
page 1016 for details.

	 DNS security issues 	 557

D
N

S

TKEY is a BIND mechanism that lets two hosts generate a shared-secret key au-
tomatically, without phone calls or secure copies to distribute the key. It uses an
algorithm called the Diffie-Hellman key exchange in which each side makes up a
random number, does some math on it, and sends the result to the other side. Each
side then mathematically combines its own number with the transmission it re-
ceived to arrive at the same key. An eavesdropper might overhear the transmission
but will be unable to reverse the math.21

Microsoft servers use TSIG in a nonstandard way called GSS-TSIG that exchanges
the shared secret through TKEY. If you need a Microsoft server to communicate
with BIND, use the tkey-domain and tkey-gssapi-credential options.

SIG(0) is another mechanism for signing transactions between servers or between
dynamic updaters and the master server. It uses public key cryptography; see RFCs
2535 and 2931 for details.

DNSSEC
DNSSEC is a set of DNS extensions that authenticate the origin of zone data and
verify its integrity by using public key cryptography. That is, the extensions allow
DNS clients to ask the questions “Did this DNS data really come from the zone’s
owner?” and “Is this really the data sent by that owner?”

DNSSEC relies on a cascading chain of trust. The root servers validate information
for the top-level domains, the top-level domains validate information for the sec-
ond-level domains, and so on.

Public key cryptosystems use two keys: one to encrypt (sign) and a different one
to decrypt (verify). Publishers sign their data with the secret “private” key. Anyone
can verify the validity of a signature with the matching “public” key, which is widely
distributed. If a public key correctly decrypts a zone file, then the zone must have
been encrypted with the corresponding private key. The trick is to make sure that
the public keys you use for verification are authentic. Public key systems allow one
entity to sign the public key of another, thereby vouching for the legitimacy of the
key; hence the term “chain of trust.”

The data in a DNS zone is too voluminous to be encrypted with public key cryp-
tography—the encryption would be too slow. Instead, since the data is not secret,
a secure hash is run on the data and the results of the hash are signed (encrypted)
by the zone’s private key. The results of the hash are like a fingerprint of the data
and are called a digital signature. The signatures are appended to the data they au-
thenticate as RRSIG records in the signed zone file.

To verify the signature, you decrypt it with the public key of the signer, run the data
through the same secure hash algorithm, and compare the computed hash value

	 21.	 The math involved is called the discrete log problem and relies on the fact that for modular arithme-
tic, taking powers is easy but taking logs to undo the powers is close to impossible.

558	 Chapter 16	 DNS: The Domain Name System	

with the decrypted hash value. If they match, you have authenticated the signer and
verified the integrity of the data.

In the DNSSEC system, each zone has its own public and private keys. In fact, it
has two sets of keys: a zone-signing key pair and a key-signing key pair. The private
zone-signing key signs each RRset (that is, each set of records of the same type for
the same host). The public zone-signing key verifies the signatures and is included
in the zone’s data in the form of a DNSKEY resource record.

Parent zones contain DS records that are hashes of the child zones’ self-signed key-
signing-key DNSKEY records. A name server verifies the authenticity of a child
zone’s DNSKEY record by checking it against the parent zone’s signature. To verify
the authenticity of the parent zone’s key, the name server can check the parent’s
parent, and so on back to the root. The public key for the root zone is widely pub-
lished and is included in the root hints file.

The DNSSEC specifications require that if a zone has multiple keys, each is tried
until the data is validated. This behavior is required so that keys can be rolled over
(changed) without interruptions in DNS service. If a DNSSEC-aware recursive
name server queries an unsigned zone, the unsigned answer that comes back is
accepted as valid. But problems occur when signatures expire or when parent and
child zones do not agree on the child’s current DNSKEY record.

DNSSEC policy
Before you begin deployment of DNSSEC, you should nail down (or at least think
about) a few policies and procedures. For example:

•	 What size keys will you use? Longer keys are more secure, but they make
for larger packets.

•	 How often will you change keys in the absence of a security incident?

We suggest that you keep a key log that records the date you generated each key, the
hardware and operating system used, the key tag assigned, the version of the key
generator software, the algorithm used, the key length, and the signature validity
period. If a cryptographic algorithm is later compromised, you can check your log
to see if you are vulnerable.

DNSSEC resource records
DNSSEC uses five resource record types that were referred to in the DNS database
section back on page 512 but were not described in detail: DS, DNSKEY, RRSIG,
NSEC, and NSEC3. We describe them here in general and then outline the steps
involved in signing a zone. Each of these records is created by DNSSEC tools rather
than by being typed into a zone file with a text editor.

The DS (Designated Signer) record appears only in the parent zone and indicates that
a subzone is secure (signed). It also identifies the key used by the child to self-sign

	 DNS security issues 	 559

D
N

S

its own KEY resource record set. The DS record includes a key identifier (a five-digit
number), a cryptographic algorithm, a digest type, and a digest of the public key
record allowed (or used) to sign the child’s key resource record. Here’s an example.22

example.com.	 IN	 DS	 682 5 1 12898DCF9F7C2E89A1AD20DBCE159E7…

The question of how to change existing keys in the parent and child zones has
been a thorny one that seemed destined to require cooperation and communica-
tion between parent and child. The creation of the DS record, the use of separate
key-signing and zone-signing keys, and the use of multiple key pairs have helped
address this problem.

Keys included in a DNSKEY resource record can be either key-signing keys (KSKs)
or zone-signing keys (ZSKs). A flag called SEP for “secure entry point” distinguishes
them. Bit 15 of the flags field is set to 1 for KSKs and to 0 for ZSKs. This conven-
tion makes the flags field of KSKs odd and of ZSKs even when they are treated as
decimal numbers. The values are currently 257 and 256, respectively.

Multiple keys can be generated and signed so that a smooth transition from one key
to the next is possible. The child can change its zone-signing keys without notify-
ing the parent; it must only coordinate with the parent if it changes its key-signing
key. As keys roll over, both the old key and the new key are valid for a certain in-
terval. Once cached values on the Internet have expired, the old key can be retired.

An RRSIG record is the signature of a resource record set (that is, the set of all re-
cords of the same type and name within a zone). RRSIG records are generated by
zone-signing software and added to the signed version of the zone file.

An RRSIG record contains a wealth of information:

•	 The type of record set being signed
•	 The signature algorithm used, encoded as a small integer
•	 The number of labels (dot-separated pieces) in the name field
•	 The TTL of the record set that was signed
•	 The time the signature expires (as yyyymmddhhssss)
•	 The time the record set was signed (also yyyymmddhhssss)
•	 A key identifier (a 5-digit number)
•	 The signer’s name (domain name)
•	 And finally, the digital signature itself (base-64-encoded)

Here’s an example:

			 RRSIG NS 5 2 57600 20090919182841 (
					 20090820182841 23301 example.com.
					 pMKZ76waPVTbIguEQNUojNVlVewHau4p…==)

NSEC or NSEC3 records are also produced as a zone is signed. Rather than signing
record sets, they certify the intervals between record set names and so allow for a

	 22.	 In this section, base-64-encoded hashes and keys have all been truncated to save space and better il-
lustrate the structure of the records.

http://example.com
http://example.com

560	 Chapter 16	 DNS: The Domain Name System	

signed answer of “no such domain” or “no such resource record set.” For example,
a server might respond to a query for A records named bork.atrust.com with an
NSEC record that certifies the nonexistence of any A records between bark.atrust.com
and bundt.atrust.com.

Unfortunately, the inclusion of the endpoint names in NSEC records allows some-
one to walk through the zone and obtain all of its valid hostnames. NSEC3 fixes
this feature by including hashes of the endpoint names rather than the endpoint
names themselves, but it is more expensive to compute: more security, less perfor-
mance. NSEC and NSEC3 are both in current use, and you can choose between
them when you generate your keys and sign your zones.

Unless protecting against a zone walk is critically important for your site, we rec-
ommend that you use NSEC for now.

Turning on DNSSEC
Two separate workflows are involved in deploying signed zones: a first that creates
keys and signs zones, and a second that serves the contents of those signed zones.
These duties need not be implemented on the same machine. In fact, it is better to
quarantine the private key and the CPU-intensive signing process on a machine
that is not publicly accessible from the Internet. (Of course, the machine that ac-
tually serves the data must be visible to the Internet.)

The first step in setting up DNSSEC is to organize your zone files so that all the
data files for a zone are in a single directory. The tools that manage DNSSEC zones
expect this organization.

Next, enable DNSSEC on your servers with the named.conf options

options {
	 dsnsec-enable yes;
}

for authoritative servers, and

options {
	 dsnsec-enable yes;
	 dnssec-validation yes;
}

for recursive servers. The dnssec-enable option tells your authoritative servers to
include DNSSEC record set signatures in their responses when answering queries
from DNSSEC-aware name servers. The dnssec-validation option makes named
verify the legitimacy of signatures it receives in responses from other servers.

Key pair generation
You must generate two key pairs for each zone you want to sign: a zone-signing
(ZSK) pair and a key-signing (KSK) pair. Each pair consists of a public key and a
private key. The KSK’s private key signs the ZSK and creates a secure entry point for

http://bork.atrust.com
http://bark.atrust.com
http://bundt.atrust.com

	 DNS security issues 	 561

D
N

S

the zone. The ZSK’s private key signs the zone’s resource records. The public keys
are then published to allow other sites to verify your signatures.

The commands

$ dnssec-keygen -a RSASHA256 -b 1024 -n ZONE example.com
Kexample.com.+008+29718
$ dnssec-keygen -a RSASHA256 -b 2048 -n ZONE -f KSK example.com
Kexample.com.+008+05005

generate for example.com a 1,024-bit ZSK pair that uses the RSA and SHA-256 al-
gorithms and a corresponding 2,048-bit KSK pair.23 The outstanding issue of UDP
packet size limits suggests that it’s best to use short zone-signing keys and to change
them often. You can use longer key-signing keys to help recover some security.

It can take a while—minutes—to generate these keys. The limiting factor is typi-
cally not CPU power but the entropy available for randomization. On Linux, you
can install the haveged daemon to harvest entropy from additional sources and
thereby speed up key generation.

dnssec-keygen prints to standard out the base filename of the keys it has gener-
ated. In this example, example.com is the name of the key, 008 is the identifier of
the RSA/SHA-256 algorithm suite, and 29718 and 05005 are hashes called the key
identifiers, key footprints, or key tags. As when generating TSIG keys, each run of
dnssec-keygen creates two files (.key and .private):

Kexample.com.+008+29718.key		 # Public zone-signing key
Kexample.com.+008+29718.private	 # Private zone-signing key

Several encryption algorithms are available, each with a range of possible key lengths.
You can run dnssec-keygen with no arguments to see the current list of supported
algorithms. BIND can also use keys generated by other software.

Depending on the version of your software, some of the available algorithm names
might have NSEC3 appended or prepended to them. If you want to use NSEC3
records instead of NSEC records for signed negative answers, you must generate
NSEC3-compatible keys with one of the NSEC3-specific algorithms; see the man
page for dnssec-keygen.

The .key files each contain a single DNSKEY resource record for example.com. For
example, here is the zone-signing public key, truncated to fit the page. You can tell
it’s a ZSK because the flags field is 256, rather than 257 for a KSK.

example.com.	 IN	 DNSKEY 256 3 8 AwEAAcyLrgENt8OJ4PIQiv2ZhWwSviA…

These public keys must be $INCLUDEd or inserted into the zone file, either at the end
or right after the SOA record. To copy the keys into the zone file, you can append
them with cat24 or paste them in with a text editor.

	 23.	 2,048 bits is surely overkill; many sites use 1,500 or fewer.
	 24.	 Use a command like cat Kexample.com.+*.key >> zonefile. The >> appends to the zonefile rather

than replacing it entirely, as > would. (Don’t mess this one up!)

http://example.com
http://Kexample.com
http://example.com
http://Kexample.com
http://example.com
http://example.com
http://Kexample.com
http://Kexample.com
http://example.com
http://example.com
http://Kexample.com

562	 Chapter 16	 DNS: The Domain Name System	

Ideally, the private key portion of any key pair would be kept off-line, or at least on
a machine that is not on the public Internet. This precaution is impossible for dy-
namically updated zones and impractical for zone-signing keys, but it is perfectly
reasonable for key-signing keys, which are presumably quite long-lived. Consider
a hidden master server that is not accessible from outside for the ZSKs. Print out
the private KSK or write it to a USB memory stick and then lock it in a safe until
you need it again.

While you’re locking away your new private keys, it’s also a good time to enter the
new keys into your key log file. You don’t need to include the keys themselves, just
the IDs, algorithms, date, purpose, and so on.

The default signature validity periods are one month for RRSIG records (ZSK
signatures of resource record sets) and three months for DNSKEY records (KSK
signatures of ZSKs). Current best practice suggests ZSKs of length 1,024 that are
used for three months to a year and KSKs of length 1,280 that are used for a year
or two.25 Since the recommended key retention periods are longer than the default
signature validity periods, you must either specify a longer validity period when
signing zones or periodically re-sign the zones, even if the key has not changed.

Zone signing
Now that you’ve got keys, you can sign your zones with the dnssec-signzone com-
mand, which adds RRSIG and NSEC or NSEC3 records for each resource record
set. These commands read your original zone file and produce a separate, signed
copy named zonefile.signed.

The syntax is

dnssec-signzone [-o zone] [-N increment] [-k KSKfile] zonefile [ZSKfile]

where zone defaults to zonefile and the key files default to the filenames produced
by dnssec-keygen as outlined above.

If you name your zone data files after the zones and maintain the names of the
original key files, the command reduces to

dnssec-signzone [-N increment ] zonefile

The -N increment flag automatically increments the serial number in the SOA re-
cord so that you can’t forget. You can also specify the value unixtime to update the
serial number to the current UNIX time (seconds since January 1, 1970) or the value
keep to prevent dnssec-signzone from modifying the original serial number. The
serial number is incremented in the signed zone file but not in the original zone file.

Here’s a spelled-out example that uses the keys generated above:

$ sudo dnssec-signzone -o example.com -N increment
-k Kexample.com.+008+05005 example.com Kexample.com.+008+29718

	 25.	 The web site keylength.com tabulates a variety of organizations’ recommendations regarding the sug-
gested lengths of cryptographic keys.

http://example.com
http://Kexample.com
http://example.com
http://Kexample.com
http://keylength.com

	 DNS security issues 	 563

D
N

S

The signed file is sorted in alphabetical order and includes the DNSKEY records we
added by hand and the RRSIG and NSEC records generated during signing. The
zone’s serial number has been incremented.

If you generated your keys with an NSEC3-compatible algorithm, you would sign
the zone as above but with a -3 salt flag. Table 16.6 shows some other useful options.

Table 16.6	 Useful options for dnssec-signzone

Option Function

-g Generates DS record(s) to be included in the parent zone
-s start-time Sets the time at which the signatures become valid
-e end-time Sets the time at which the signatures expire

-t Prints statistics

The dates and times for signature validity can be expressed as absolute times in the
format yyyymmddhhmmss or as times relative to now in the format +N, where N is
in seconds. The default signature validity period is from an hour in the past to 30
days in the future. Here is an example in which we specify that signatures should
be valid until the end of the calendar year 2017:

$ sudo dnssec-signzone -N increment -e 20171231235959 example.com

Signed zone files are typically four to ten times larger than the original zone, and
all your nice logical ordering is lost. A line such as

mail-relay			 A	 63.173.189.2

becomes several lines:

mail-relay.example.com. 57600 A 63.173.189.2
	 57600	 RRSIG	 A 8 3 57600 20090722234636 (
					 20150622234636 23301 example.com.
					 Y7s9jDWYuuXvozeU7zGRdFCl+rzU8cLiwoev
					 0I2TGfLlbhsRgJfkpEYFVRUB7kKVRNguEYwk
					 d2RSkDJ9QzRQ+w==)
	 3600	 NSEC	 mail-relay2.example.com. A RRSIG NSEC
	 3600	 RRSIG	 NSEC 8 3 3600 20090722234636 (
 					 20150622234636 23301 example.com.
					 42QrXP8vpoChsGPseProBMZ7twf7eS5WK+4O
					 WNsN84hF0notymRxZRIZypqWzLIPBZAUJ77R
					 HP0hLfBDoqmZYw==)

In practical terms, a signed zone file is no longer human-readable, and it cannot be
edited by hand because of the RRSIG and NSEC or NSEC3 records. No user-ser-
viceable parts inside!

http://example.com
http://mail-relay.example.com
http://example.com
http://mail-relay2.example.com
http://example.com

564	 Chapter 16	 DNS: The Domain Name System	

With the exception of DNSKEY records, each resource record set (resource records
of the same type for the same name) gets one signature from the ZSK. DNSKEY
resource records are signed by both the ZSK and the KSK, so they have two RR-
SIGs. The base-64 representation of a signature ends in however many equal signs
are needed to make the length a multiple of 4.

Once your zones are signed, all that remains is to point your name server at the
signed versions of the zone files. If you’re using BIND, look for the zone statement
that corresponds to each zone in named.conf and change the file parameter from
example.com to example.com.signed.

Finally, restart the name server daemon, telling it to reread its configuration file
with sudo rndc reconfig followed by sudo rndc flush.

You are now serving a DNSSEC signed zone! To make changes, you can edit either
the original unsigned zone or the signed zone and then re-sign the zone. Editing
a signed zone is something of a logistical nightmare, but it is much quicker than
re-signing the entire zone. Be sure to remove the RRSIG records that correspond
to any records that you change. You probably want to make identical changes to
the unsigned zone to avoid version skew.

If you pass a signed zone as the argument to dnssec-signzone, any unsigned records
are signed and the signatures of any records that are close to expiring are renewed.

“Close to expiring” is defined as being three-quarters of the way through the valid-
ity period. Re-signing typically results in changes, so make sure you increment the
zone’s serial number by hand or use dnssec-signzone -N increment to automati-
cally increment the zone’s serial number.

That’s all there is to the local part of DNSSEC configuration. What’s left is the thorny
problem of getting your island of secure DNS connected to other trusted, signed
parts of the DNS archipelago.

The DNSSEC chain of trust
Continuing with our example DNSSEC setup, example.com is now signed and
its name servers have DNSSEC enabled. This means that when querying they use
EDNS0, the extended DNS protocol, and set the DNSSEC-aware option in the DNS
header of the packet. When answering a query that arrives with that bit set, they
include the signature data with their answer.

A client that receives signed answers can validate the response by checking the re-
cord’s signatures with the appropriate public key. But it gets this key from the zone’s
own DNSKEY record, which is rather suspicious if you think about it. What’s to stop
an impostor from serving up both fake records and a fake key that validates them?

The canonical solution is that you give your parent zone a DS record to include in
its zone file. By virtue of coming from the parent zone, the DS record is certified
by the parent’s private key. If the client trusts your parent zone, it should then trust
that the parent zone’s DS record accurately reflects your zone’s public key.

http://example.com
http://example.com.signed
http://example.com

	 DNS security issues 	 565

D
N

S

The parent zone is in turn certified by its parent, and so on back to the root.

DNSSEC key rollover
Key rollover has always been a troublesome issue in DNSSEC. In fact, the original
specifications were changed specifically to address the issue of the communication
needed between parent and child zones whenever keys were created, changed, or
deleted. The new specifications are called DNSSEC-bis.

ZSK rollover is relatively straightforward and does not involve your parent zone or
any trust anchor issues. The only tricky part is the timing. Keys have an expiration
time, so rollover must occur well before that time. However, keys also have a TTL,
defined in the zone file. To illustrate, assume that the TTL is one day and that keys
don’t expire for another week. The following steps are then involved:

•	 Generate a new ZSK.
•	 Include it in the zone file.
•	 Sign or re-sign the zone with the KSK and the old ZSK.
•	 Signal the name server to reload the zone; the new key is now there.
•	 Wait 24 hours (the TTL); now everyone has both the old and new keys.
•	 Sign the zone again with the KSK and the new ZSK.
•	 Signal the name server to reload the zone.
•	 Wait another 24 hours; now everyone has the new signed zone.
•	 Remove the old ZSK at your leisure, e.g., the next time the zone changes.

This scheme is called prepublishing. Obviously, you must start the process at least
two TTLs before the point at which you need to have everyone using the new key.
The waiting periods guarantee that any site with cached values always has a cached
key that corresponds to the cached data.

Another variable that affects this process is the time it takes for your slowest slave
server to update its copy of your zone when notified by the master server. So don’t
wait until the last minute to start your rollover process or to re-sign zones whose
signatures are expiring. Expired signatures do not validate, so sites that verify DNS-
SEC signatures will not be able to do DNS lookups for your domain.

The mechanism to roll over a KSK is called double signing and it’s also pretty
straightforward. However, you will need to communicate your new DS record to
your parent. Make sure you have positive acknowledgement from the parent before
you switch to just the new key. Here are the steps:

•	 Create a new KSK.
•	 Include it in the zone file.
•	 Sign the zone with both old and new KSKs and the ZSK.
•	 Signal the name server to reload the zone.
•	 Wait 24 hours (the TTL); now everyone has the new key.
•	 After confirmation, delete the old KSK record from the zone.
•	 Re-sign the zone with the new KSK and ZSK.

566	 Chapter 16	 DNS: The Domain Name System	

DNSSEC tools
With the advent of BIND 9.10 comes a new debugging tool. The Domain Entity
Lookup and Validation engine (DELV) looks much like dig but has a better under-
standing of DNSSEC. In fact, delv checks the DNSSEC validation chain with the
same code that is used by the BIND 9 named itself.

In addition to the DNSSEC tools that come with BIND, four other deployment and
testing toolsets might be helpful: ldns, DNSSEC-Tools (formerly Sparta), RIPE, and
OpenDNSSEC (opendnssec.org).

ldns tools, nlnetlabs.nl/projects/ldns
ldns, from the folks at NLnet Labs, is a library of routines for writing DNS tools and
a set of example programs that use this library. We list the tools and what each one
does below. The tools are all in the examples directory except for drill, which has
its own directory in the distribution. Man pages can be found with the commands.
The top-level README file gives very brief installation instructions.

•	 ldns-chaos shows the name server ID info stored in the CHAOS class.
•	 ldns-compare-zones shows the differences between two zone files.
•	 ldns-dpa analyzes DNS packets in tcpdump trace files.
•	 ldns-key2ds converts a DNSKEY record to a DS record.
•	 ldns-keyfetcher fetches DNSSEC public keys for zones.
•	 ldns-keygen generates TSIG keys and DNSSEC key pairs.
•	 ldns-notify makes a zone’s slave servers check for updates.
•	 ldns-nsec3-hash prints the NSEC3 hash for a name.
•	 ldns-read-zone reads a zone and prints it in various formats.
•	 ldns-revoke sets the revoke flag on a DNSKEY key RR (RFC5011).
•	 ldns-rrsig prints human-readable expiration dates from RRSIGs.
•	 ldns-signzone signs a zone file with either NSEC or NSEC3.
•	 ldns-update sends a dynamic update packet.
•	 ldns-verify-zone makes sure RRSIG, NSEC, and NSEC3 records are OK.
•	 ldns-walk walks through a zone by following the DNSSEC NSEC records.
•	 ldns-zcat reassembles zone files split with ldns-zsplit.
•	 ldns-zsplit splits a zone into chunks so it can be signed in parallel.

Many of these tools are simple and do only one tiny DNS chore. They were written
as example uses of the ldns library and demonstrate how simple the code becomes
when the library does all the hard bits for you.

dnssec-tools.org
DNSSec-tools builds on the BIND tools and includes the following commands:

•	 dnspktflow traces the flow of DNS packets during a query/response se-
quence captured by tcpdump and produces a cool diagram.

•	 donuts analyzes zone files and finds errors and inconsistencies.
•	 donutsd runs donuts at intervals and warns of problems.

http://opendnssec.org
http://nlnetlabs.nl/projects/ldns
http://dnssec-tools.org

	 DNS security issues 	 567

D
N

S

•	 mapper maps zone files, showing secure and insecure portions.
•	 rollerd, rollctl, and rollinit automate key rollovers by using the prepub-

lishing scheme for ZSKs and the double signature method for KSKs. See
page 565 for the details of these schemes.

•	 trustman manages trust anchors and includes an implementation of
RFC5011 key rollover.

•	 validate validates signatures from the command-line.
•	 zonesigner generates keys and signs zones.

The web site contains good documentation and tutorials for all of these tools. The
source code is available for download and is covered by the BSD license.

RIPE tools, ripe.net
RIPE’s tools act as a front end to BIND’s DNSSEC tools and focus on key man-
agement. They have friendlier messages since they run and package up the many
arguments and commands into more intuitive forms.

OpenDNSSEC, opendnssec.org
OpenDNSSEC is a set of tools that takes unsigned zones, adds the signatures and
other records for DNSSEC, and passes it on to the authoritative name servers for
that zone. This automation greatly simplifies the initial setup of DNSSEC.

Debugging DNSSEC
DNSSEC interoperates with both signed and unsigned zones, and with both DNS-
SEC-aware and DNSSEC-oblivious name servers. Ergo, incremental deployment
is possible, and it usually just works. But not always.

DNSSEC is a distributed system with lots of moving parts. Servers, resolvers, and
the paths among them can all experience problems. A problem seen locally may
originate far away, so tools like SecSpider and Vantages that monitor the distributed
state of the system can be helpful. Those tools, the utilities mentioned in the previ-
ous section, and your name server log files are your primary debugging weapons.

Make sure that you route the DNSSEC logging category in named.conf to a file on
the local machine. It’s helpful to separate out the DNSSEC-related messages so that
you don’t route any other logging categories to this file. Here is an example logging
specification for named:

channel dnssec-log {
	 file "/var/log/named/dnssec.log" versions 4 size 10m ;
	 print-time yes ;
	 print-category yes ;
	 print-severity yes ;
	 severity debug 3 ;
} ;
category dnssec { dnssec-log; } ;

http://ripe.net
http://opendnssec.org

568	 Chapter 16	 DNS: The Domain Name System	

In BIND, set the debugging level to 3 or higher to see the validation steps taken by
a recursive BIND server trying to validate a signature. This logging level produces
about two pages of logging output per signature verified. If you are monitoring a
busy server, log data from multiple queries will likely be interleaved. Sorting through
the mess can be challenging and tedious.

drill has two particularly useful flags: -T to trace the chain of trust from the root
to a specified host, and -S to chase the signatures from a specified host back to the
root. Here’s some made-up sample output from drill -S snitched from the DNSSEC
HOWTO at NLnet Labs:

$ drill -S -k ksk.keyfile example.net SOA
DNSSEC Trust tree:
example.net. (SOA)
|---example.net. (DNSKEY keytag: 17000)
	 |---example.net. (DNSKEY keytag: 49656)
	 |---example.net. (DS keytag: 49656)
		 |---net. (DNSKEY keytag: 62972)
			 |---net. (DNSKEY keytag: 13467)
			 |---net. (DS keytag: 13467)
				 |---. (DNSKEY keytag: 63380)
					 |---. (DNSKEY keytag: 63276) ;; Chase successful

If a validating name server cannot verify a signature, it returns a SERVFAIL indi-
cation. The underlying problem could be a configuration error by someone at one
of the zones in the chain of trust, bogus data from an interloper, or a problem in
the setup of the validating recursive server itself. Try drill to chase the signatures
along the chain of trust and see where the problem lies.

If all the signatures are verified, try querying the troublesome site with dig and
then with dig +cd. (The cd flag turns off validation.) Try this at each of the zones
in the chain of trust to see if you can find the problem. You can work your way up
or down the chain of trust. The likely result will be an expired trust anchor or ex-
pired signatures.

16.11	 BIND debugging
BIND provides three basic debugging tools: logging, described below; a control
program, described starting on page 574; and a command-line query tool, de-
scribed on page 575.

Logging in BIND
named’s logging facilities are flexible enough to make your hair stand on end. BIND
originally just used syslog to report error messages and anomalies. Recent versions
generalize the syslog concepts by adding another layer of indirection and support
for logging directly to files. Before you dive in, check the mini-glossary of BIND
logging terms shown in Table 16.7.

See Chapter 10
for more informa-
tion about syslog.

http://example.net
http://example.net
http://-example.net
http://-example.net
http://-example.net

	 BIND debugging	 569

D
N

S

Table 16.7	 A BIND logging lexicon

Term What it means

category A class of messages that named can generate; for example, messages
about dynamic updates or messages about answering queries

module The name of the source module that generates a message
severity The “badness” of an error message; what syslog refers to as a priority
channel A place where messages can go: syslog, a file, or /dev/null a

facility A syslog facility name. DNS does not have its own specific facility, but
you have your pick of all the standard ones

a.	 /dev/null is a pseudo-device that throws away all input.

You configure BIND logging with a logging statement in named.conf. You first
define channels, the possible destinations for messages. You then direct various
categories of message to go to particular channels.

When a message is generated, it is assigned a category, a module, and a severity at
its point of origin. It is then distributed to all the channels associated with its cat-
egory and module. Each channel has a severity filter that tells what severity level
a message must have to get through. Channels that lead to syslog stamp messages
with the designated facility name. Messages that go to syslog are also filtered ac-
cording to the rules in /etc/syslog.conf. Here’s the outline of a logging statement:

logging {
	 channel-def;
	 channel-def;
	 ...
	 category category-name {
		 channel-name;
		 channel-name;
		 ...
	 };
};

Channels
A channel-def looks slightly different according to whether the channel is a file
channel or a syslog channel. You must choose file or syslog for each channel; a
channel can’t be both at the same time.

channel channel-name {
	 file path [ versions numvers | unlimited ] [ size sizespec ];
	 syslog facility;
	 severity severity;
	 print-category yes | no;
	 print-severity yes | no;
	 print-time yes | no;
};

570	 Chapter 16	 DNS: The Domain Name System	

For a file channel, numvers tells how many backup versions of a file to keep, and
sizespec specifies how large the file should be allowed to grow (examples: 2048,
100k, 20m, unlimited, default) before it is automatically rotated. If you name a file
channel mylog, the rotated versions are mylog.0, mylog.1, and so on.

In the syslog case, facility names the syslog facility under which to log the message.
It can be any standard facility. In practice, only daemon and local0 through local7
are reasonable choices.

The rest of the statements in a channel-def are optional. severity can have the values
(in descending order) critical, error, warning, notice, info, or debug (with an
optional numeric level, e.g., severity debug 3). The value dynamic is also recog-
nized and matches the server’s current debug level.

The various print options add or suppress message prefixes. Syslog prepends the
time and reporting host to each message logged, but not the severity or the cate-
gory. The source filename (module) that generated the message is also available as
a print option. It makes sense to enable print-time only for file channels—syslog
adds its own time stamps, so there’s no need to duplicate them.

The four channels listed in Table 16.8 are predefined by default. These defaults
should be fine for most installations.

Table 16.8	 Predefined logging channels in BIND

Channel name What it does

default_syslog Sends to syslog with facility daemon, severity info
default_debug Logs to the file named.run with severity set to dynamic
default_stderr Sends to standard error of the named process with severity info
null Discards all messages

Categories
Categories are determined by the programmer at the time the code is written. They
organize log messages by topic or functionality instead of just by severity. Table
16.9 shows the current list of message categories.

Log messages
The default logging configuration is

logging {
	 category default { default_syslog; default_debug; };
};

See page 309 for a list
of syslog facility names.

 	

  

	

	 BIND debugging	 571

D
N

S

 	

	

Table 16.9	 BIND logging categories

Category What it includes

client Client requests
config Configuration file parsing and processing
database Messages about database operations
default Default for categories without specific logging options
delegation-only Queries forced to NXDOMAIN by delegation-only zones
dispatch Dispatching of incoming packets to server modules
dnssec DNSSEC messages
edns-disabled Info about broken servers
general Catchall for unclassified messages
lame-servers Servers that are supposed to be serving a zone, but aren’t a

network Network operations
notify Messages about the “zone changed” notification protocol
queries A short log message for every query the server receives (!)
resolver DNS resolution, e.g., recursive lookups for clients
security Approved/unapproved requests
unmatched Queries named cannot classify (bad class, no view)
update Messages about dynamic updates
update-security Approval or denial of update requests
xfer-in Zone transfers that the server is receiving
xfer-out Zone transfers that the server is sending

a.	 Either the parent zone or the child zone could be at fault; hard to tell without investigating.

You should watch the log files when you make major changes to BIND and perhaps
increase the logging level. Later, reconfigure to preserve only serious messages once
you have verified that named is stable.

Query logging can be quite educational. You can verify that your allow clauses are
working, see who is querying you, identify broken clients, etc. It’s a good check to
perform after major reconfigurations, especially if you have a good sense of what
your query load looked like before the changes.

To start query logging, just direct the queries category to a channel. Writing to
syslog is less efficient than writing directly to a file, so use a file channel on a lo-
cal disk when you are logging every query. Have lots of disk space and be ready to
turn query logging off once you obtain enough data. (rndc querylog dynamically
toggles query logging on and off.)

Views can be pesky to debug, but fortunately, the view that matched a particular
query is logged along with the query.

572	 Chapter 16	 DNS: The Domain Name System	

Some common log messages are listed below:

•	 Lame server resolving xxx. If you get this message about one of your own
zones, you have configured something incorrectly. The message is harm-
less if it’s about some zone out on the Internet; it’s someone else’s problem.
A good one to throw away by directing it to the null channel.

•	  …query (cache) xxx denied. This can be either misconfiguration of the
remote site, abuse, or a case in which someone has delegated a zone to
you, but you have not configured it.

•	 Too many timeouts resolving xxx: disabling EDNS. This message can result
from a broken firewall not admitting UDP packets over 512 bytes long or
not admitting fragments. It can also be a sign of problems at the specified
host. Verify that the problem is not your firewall and consider redirecting
these messages to the null channel.

•	 Unexpected RCODE (SERVFAIL) resolving xxx. This can be an attack or,
more likely, a sign of something repeatedly querying a lame zone.

•	 Bad referral. This message indicates a miscommunication among a zone’s
name servers.

•	 Not authoritative for. A slave server is unable to get authoritative data for
a zone. Perhaps it’s pointing to the wrong master, or perhaps the master
had trouble loading the zone in question.

•	 Rejected zone. named rejected a zone file because it contained errors.

•	 No NS RRs found. A zone file did not include NS records after the SOA re-
cord. It could be that the records are missing, or it could be that they don’t
start with a tab or other whitespace. In the latter case, the records are not
attached to the zone of the SOA record and are therefore misinterpreted.

•	 No default TTL set. The preferred way to set the default TTL for resource
records is with a $TTL directive at the top of the zone file. This error mes-
sage indicates that the $TTL is missing; it is required in BIND 9.

•	 No root name server for class. Your server is having trouble finding the root
name servers. Check your hints file and the server’s Internet connectivity.

•	Address already in use. The port on which named wants to run is already
being used by another process, probably another copy of named. If you
don’t see another named around, it might have crashed and left an rndc
control socket open that you’ll have to track down and remove. A good
way to fix the problem is to stop the named process with rndc and then
restart named:

	 $ sudo rndc stop
	 $ sudo /usr/sbin/named ...

	 BIND debugging	 573

D
N

S

•	  …updating zone xxx: update unsuccessful. A dynamic update for a zone
was attempted but refused, most likely because of the allow-update or
update-policy clause in named.conf for this zone. This is a common error
message and often is caused by misconfigured Windows boxes.

Sample BIND logging configuration
The following snippet from the ISC named.conf file for a busy TLD name server
illustrates a comprehensive logging regimen.

logging {
	 channel default-log { # Default channel, to a file
		 file "log/named.log" versions 3 size 10m;
		 print-time yes;
		 print-category yes;
		 print-severity yes;
		 severity info;
	 };
	 channel xfer-log { # Zone transfers channel, to a file
		 file "log/xfer.log" versions 3 size 10m;
		 print-category yes;
		 print-severity yes;
		 print-time yes;
		 severity info;
	 };
	 channel dnssec-log { # DNSSEC channel, to a file
		 file "log/dnssec.log" versions 3 size 1M;
		 severity debug 1;
		 print-severity yes;
		 print-time yes;
	 };
	 category default { default-log; default_debug; };
	 category dnssec { dnssec-log; };
	 category xfer-in { xfer-log; };
	 category xfer-out { xfer-log; };
	 category notify { xfer-log; };
};

Debug levels in BIND
named debug levels are denoted by integers from 0 to 100. The higher the number,
the more verbose the output. Level 0 turns debugging off. Levels 1 and 2 are fine
for debugging your configuration and database. Levels beyond about 4 are appro-
priate for the maintainers of the code.

You invoke debugging on the named command line with the -d flag. For example,

$ sudo named -d2

574	 Chapter 16	 DNS: The Domain Name System	

would start named at debug level 2. By default, debugging information is written to
the file named.run in the current working directory from which named is started.
The named.run file grows fast, so don’t go out for a beer while debugging or you
might have bigger problems when you return.

You can also turn on debugging while named is running with rndc trace, which
increments the debug level by 1, or with rndc trace level, which sets the debug
level to the value specified. rndc notrace turns debugging off completely. You can
also enable debugging by defining a logging channel that includes a severity spec-
ification such as

severity debug 3;

which sends all debugging messages up to level 3 to that particular channel. Other
lines in the channel definition specify the destination of those debugging messages.
The higher the severity level, the more information is logged.

Watching the logs or the debugging output illustrates how often DNS is misconfig-
ured in the real world. That pesky little dot at the end of names (or rather, the lack
thereof) accounts for an alarming amount of DNS traffic.

Name server control with rndc
Table 16.10 shows some of the options accepted by rndc. Typing rndc with no ar-
guments lists the available commands and briefly describes what they do. Earlier
incantations of rndc used signals, but with over 25 commands, the BIND folks ran
out of signals long ago. Commands that produce files put them in whatever direc-
tory is specified as named’s home in named.conf.

rndc reload makes named reread its configuration file and reload zone files. The
reload zone command is handy when only one zone has changed and you don’t
want to reload all the zones, especially on a busy server. You can also specify a class
and view to reload only the selected view of the zone’s data.

Note that rndc reload is not sufficient to add a completely new zone; that requires
named to read both the named.conf file and the new zone file. For new zones, use
rndc reconfig, which rereads the config file and loads any new zones without dis-
turbing existing zones.

rndc freeze zone stops dynamic updates and reconciles the journal of dynamic up-
dates to the data files. After freezing the zone, you can edit the zone data by hand.
As long as the zone is frozen, dynamic updates are refused. Once you’ve finished
editing, use rndc thaw zone to start accepting dynamic updates again.

rndc dumpdb instructs named to dump its database to named_dump.db. The
dump file is big and includes not only local data but also any cached data the name
server has accumulated.

 	  

	

	 BIND debugging	 575

D
N

S

Table 16.10	 rndc commands a

Command Function

dumpdb Dumps the DNS database to named_dump.db
flush [view] Flushes all caches or those for a specified view
flushname name [view] Flushes the specified name from the server’s cache
freeze zone [class [view]] Suspends updates to a dynamic zone
thaw zone [class [view]] Resumes updates to a dynamic zone
halt Halts named without writing pending updates
querylog Toggles tracing of incoming queries
notify zone [class [view]] Resends notification messages for zone
notrace Turns off debugging
reconfig Reloads the config file and loads any new zones
recursing Dumps queries currently recursing, named.recursing
refresh zone [class [view]] Schedules maintenance for a zone
reload Reloads named.conf and zone files
reload zone [class [view]] Reloads only the specified zone or view
retransfer zone [class [view]] Recopies the data for zone from the master server
stats Dumps statistics to named.stats
status Displays the current status of the running named
stop Saves pending updates and then stops named
trace Increments the debug level by 1
trace level Changes the debug level to the value level
validation newstate Enables/disables DNSSEC validation on the fly

a.	 The class argument here is the same as for resource records, typically IN for Internet.

Your versions of named and rndc must match or you will see an error message
about a protocol version mismatch. They’re normally installed together on indi-
vidual machines, but version skew can be an issue when you are trying to control
a named on another computer.

Command-line querying for lame delegations
When you apply for a domain name, you are asking for a part of the DNS naming
tree to be delegated to your name servers and your DNS administrator. If you nev-
er use the domain or you change the name servers or their IP addresses without
coordinating with your parent zone, a “lame delegation” results.

The effects of a lame delegation can be really bad. If one of your servers is lame, your
DNS system is less efficient. If all the name servers for a domain are lame, no one
can reach you. All queries start at the root unless answers are cached, so lame serv-
ers and lazy software that doesn’t do negative caching of SERVFAIL errors increase
the load of everyone on the path from the root to the lame domain.

576	 Chapter 16	 DNS: The Domain Name System	

The doc (“domain obscenity control”) command can help you identify lame del-
egations, but you can also find them just by reviewing your log files.26 Here’s an
example log message:

Jul 19 14:37:50 nubark named[757]: lame server resolving 'w3w3.com' (in
'w3w3.com'?): 216.117.131.52#53

Digging for name servers for w3w3.com at one of the .com gTLD servers yields the
results below. We have truncated the output to tame dig’s verbosity; the +short flag
to dig limits the output even more.

$ dig @e.gtld-servers.net w3w3.com ns
;; ANSWER SECTION:
w3w3.com.	 172800	 IN	 NS	 ns0.nameservices.net.
w3w3.com.	 172800	 IN	 NS	 ns1.nameservices.net.

If we query each of these servers in turn, we get an answer from ns0 but not from ns1:

$ dig @ns0.nameservices.net w3w3.com ns
;; ANSWER SECTION:
w3w3.com.	 14400	 IN	 NS	 ns0.nameservices.net.
w3w3.com.	 14400	 IN	 NS	 ns1.nameservices.net.

$ dig @ns1.nameservices.net w3w3.com ns
;; QUESTION SECTION:
;w3w3.com.	 IN	 NS

;; AUTHORITY SECTION:
com.	 92152	 IN	 NS	 M.GTLD-SERVERS.NET.
com.	 92152	 IN	 NS	 I.GTLD-SERVERS.NET.
com.	 92152	 IN	 NS	 E.GTLD-SERVERS.NET.

The server ns1.nameservices.net has been delegated responsibility for w3w3.com
by the .com servers, but it does not accept that responsibility. It is misconfigured,
resulting in a lame delegation. Clients trying to look up w3w3.com will experi-
ence slow service. If w3w3.com is paying nameservices.net for DNS service, they
deserve a refund!

Sometimes when you dig at an authoritative server in an attempt to find lameness,
dig returns no information. Try the query again with the +norecurse flag so that
you can see exactly what the server in question knows.

16.12	 Recommended reading
DNS and BIND are described by a variety of sources, including the documenta-
tion that comes with the distributions, chapters in several books on Internet topics,
books in the O’Reilly Nutshell series, books from other publishers, and various
on-line resources.

	 26.	 Many sites point their lame-servers logging channel to /dev/null and don’t fret about other people’s
lame delegations. That’s fine as long as your own domain is squeaky clean and is not itself a source or
victim of lame delegations.

http://'w3w3.com'
http://'w3w3.com'?
http://w3w3.com
http://the.com
http://the.com
mailto:@e.gtld-servers.net
http://w3w3.com
http://w3w3.com
http://ns0.nameservices.net.w3w3.com
http://ns0.nameservices.net.w3w3.com
http://ns1.nameservices.net
mailto:@ns0.nameservices.net
http://w3w3.com
http://w3w3.com
http://ns0.nameservices.net.w3w3.com
http://ns0.nameservices.net.w3w3.com
http://ns1.nameservices.net
mailto:@ns1.nameservices.net
http://w3w3.com
http://;w3w3.com
http://M.GTLD-SERVERS.NET.com
http://M.GTLD-SERVERS.NET.com
http://I.GTLD-SERVERS.NET.com
http://I.GTLD-SERVERS.NET.com
http://E.GTLD-SERVERS.NET
http://ns1.nameservices.net
http://w3w3.com
http://the.com
http://the.com
http://w3w3.com
http://w3w3.com
http://nameservices.net

	 Recommended reading	 577

D
N

S

Books and other documentation
The Nominum and ISC BIND Development Teams. BIND 9 Administrator Ref-
erence Manual. This manual is included in the BIND distribution (doc/arm) from
isc.org and is also available separately from the same site. It outlines the adminis-
tration and management of BIND 9.

Liu, Cricket, and Paul Albitz. DNS and BIND (5th Edition). Sebastopol, CA:
O’Reilly Media, 2006. This is pretty much the BIND bible, although it’s getting a
bit long in the tooth.

Liu, Cricket. DNS & BIND Cookbook. Sebastopol, CA: O’Reilly Media, 2002. This
baby version of the O’Reilly DNS book is task oriented and gives clear instructions
and examples for various name server chores. Dated, but still useful.

Liu, Cricket. DNS and BIND on IPv6. Sebastopol, CA: O’Reilly Media, 2011.
This is an IPv6-focused addendum to DNS and BIND. It’s short and includes only
IPv6-related material.

Lucas, Michael W. DNSSEC Mastery: Securing the Domain Name System with
BIND. Grosse Point Woods, MI: Tilted Windmill Press, 2013.

On-line resources
The web sites isc.org, dns-oarc.net, ripe.net, and nlnetlabs.nl contain a wealth of DNS
information, research, measurement results, presentations, and other good stuff.

All the nitty-gritty details of the DNS protocol, resource records, and the like are
summarized at iana.org/assignments/dns-parameters. This document contains a
nice mapping from a DNS fact to the RFC that specifies it.

The DNSSEC HOWTO, a tutorial in disguise by Olaf Kolkman, is a 70-page docu-
ment that covers the ins and outs of deploying and debugging DNSSEC. Get it at
nlnetlabs.nl/dnssec_howto/dnssec_howto.pdf.

The RFCs
The RFCs that define the DNS system are available from rfc-editor.org. We former-
ly listed a page or so of the most important DNS-related RFCs, but there are now
so many (more than 100, with another 50 Internet drafts) that you are better off
searching rfc-editor.org to access the entire archive.

Refer to the doc/rfc and doc/draft directories of the current BIND distribution to
see the entire complement of DNS-related RFCs.

http://isc.org
http://isc.org
http://dns-oarc.net
http://ripe.net
http://nlnetlabs.nl
http://iana.org/assignments/dns-parameters
http://nlnetlabs.nl/dnssec_howto/dnssec_howto.pdf
http://rfc-editor.org
http://rfc-editor.org

578

Both users and system administrators would like account information to magically
propagate to all an environment’s computers so that a user can log in to any sys-
tem with the same credentials. The common term for this feature is “single sign-on”
(SSO), and the need for it is universal.

SSO involves two core security concepts: identity and authentication. A user iden-
tity is the abstract representation of an individual who needs access to a system or
an application. It typically includes attributes such as a username, password, user
ID, and email address. Authentication is the act of proving that an individual is the
legitimate owner of an identity.

This chapter focuses on SSO as a component of UNIX and Linux systems within a
single organization. For interorganizational SSO (such as might be needed to inte-
grate your systems with a Software-as-a-Service provider), several standards-based
and commercial SSO solutions are available. For those cases, we recommend learning
about Security Assertion Markup Language (SAML) as a first step on your journey.

17 Single Sign-On

	 Core SSO elements	 579

Si
ng

le
 S

ig
n-

O
n

17.1	 Core SSO elements
Although there are many ways to set up SSO, four elements are typically required
in every scenario:

•	 A centralized directory store that contains user identity and authorization
information. The most common solutions are directory services based
on the Lightweight Directory Access Protocol (LDAP). In environments
that mix Windows, UNIX, and Linux systems, the ever-popular Micro-
soft Active Directory service is a good choice. Active Directory includes
a customized, nonstandard LDAP interface.

•	 A tool for managing user information in the directory. For native LDAP
implementations, we recommend phpLDAPadmin or Apache Directory
Studio. Both are easy-to-use, web-based tools that let you import, add,
modify, and delete directory entries. If you’re a Microsoft Active Direc-
tory fan-person, you can use the Windows-native MMC snap-in “Active
Directory Users and Computers” to manage information in the directory.

•	 A mechanism for authenticating user identities. You can authenticate us-
ers directly against an LDAP store, but it’s also common to use the Ker-
beros ticket-based authentication system originally developed at MIT.1 In
Windows environments, Active Directory supplies LDAP access to user
identities and uses a customized version of Kerberos for authentication.

	 Authentication on modern UNIX and Linux systems goes through the
Pluggable Authentication Module system, aka PAM. You can use the Sys-
tem Security Services Daemon (sssd) to aggregate access to user identity
and authentication services, then point PAM at sssd.

•	 Centralized-identity-and-authentication-aware versions of the C library
routines that look up user attributes. These routines (e.g., getpwent) his-
torically read flat files such as /etc/passwd and /etc/group and answered
queries from their contents. These days, the data sources are configured
in the name service switch file, /etc/nsswitch.conf.

Exhibit A on the next page illustrates the high-level relationships of the various
components in a typical configuration. This example uses Active Directory as the
directory server. Note that both time synchronization (NTP) and hostname map-
ping (DNS) are critical for environments that use Kerberos because authentication
tickets are time stamped and have a limited validity period.

In this chapter, we cover core LDAP concepts and introduce two specific LDAP
servers for UNIX and Linux. We then discuss the steps needed to make a machine
use a centralized directory service to process logins.

	 1.	 The security community is divided over whether authentication is most secure when performed
through LDAP or Kerberos. The road of life is paved with flat squirrels that couldn’t decide. Pick an
option and don’t look back.

580	 Chapter 17	 Single Sign-On	

Exhibit A	 SSO components

sssd

LDAP glue

Kerberos glue

Active Directory
server

pam_sss

ntpd

DNS resolver

Local system External servers

Auth provider

ID provider

PAM

nss_sss
NTP server

DNS server

login, getty,
window server

C library
getpwent()

getpwnam()

17.2	 LDAP: “lightweight” directory services
A directory service is just a database, but one that makes a few assumptions. Any
kind of data that matches the assumptions is a candidate for inclusion in the direc-
tory. The basic assumptions are as follows:

•	 Data objects are relatively small.
•	 The database will be widely replicated and cached.
•	 The information is attribute-based.
•	 Data are read often but written infrequently.
•	 Searching is a common operation.

The current IETF standards-track protocol that fills this role is the Lightweight
Directory Access Protocol (LDAP).2 LDAP was originally a gateway protocol that
allowed TCP/IP clients to talk to an older directory service called X.500, which is
now obsolete.

Microsoft’s Active Directory is the most common instantiation of LDAP, and many
sites use Active Directory for both Windows and UNIX/Linux authentication. For
environments in which Active Directory isn’t a candidate, the OpenLDAP package
(openldap.org) has become the standard implementation. The cleverly named 389
Directory Server (formerly known as the Fedora Directory Server and the Netscape
Directory Server) is also open source and can be found at port389.org.3

Uses for LDAP
Until you’ve had some experience with it, LDAP can be a slippery fish to grab hold
of. LDAP by itself doesn’t solve any specific administrative problem. Today, the most

	 2.	 Ironically, LDAP is anything but lightweight.
	 3.	 TCP port 389 is the default port for all LDAP implementations.

http://openldap.org
http://port389.org

	 LDAP: “lightweight” directory services	 581

Si
ng

le
 S

ig
n-

O
n

common use of LDAP is to act as a central repository for login names, passwords,
and other account attributes. However, LDAP can be used in many other ways:

•	 LDAP can store additional directory information about users, such as
phone numbers, home addresses, and office locations.

•	 Most mail systems—including sendmail, Exim, and Postfix—can draw
a large part of their routing information from LDAP. See page 624 for
more information about using LDAP with sendmail.

•	 LDAP makes it easy for applications (even those written by other teams
and departments) to authenticate users without having to worry about
the exact details of account management.

•	 LDAP is well supported by common scripting languages such as Perl
and Python through code libraries. Ergo, LDAP can be an elegant way
to distribute configuration information for locally written scripts and
administrative utilities.

•	 LDAP is well supported as a public directory service. Most major email
clients can read user directories stored in LDAP. Simple LDAP searches
are also supported by many web browsers through an LDAP URL type.

The structure of LDAP data
LDAP data takes the form of property lists, which are known in the LDAP world
as “entries.” Each entry consists of a set of named attributes (such as description
or uid) along with those attributes’ values. Every attribute can have multiple val-
ues. Windows users might recognize this structure as being similar to that of the
Windows registry.

As an example, here’s a typical (but simplified) /etc/passwd line expressed as an
LDAP entry:

dn: uid=ghopper,ou=People,dc=navy,dc=mil
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: shadowAccount
uid: ghopper
cn: Grace Hopper
userPassword: {crypt}1pZaGA2RL$MPDJoc0afuhHY6yk8HQFp0
loginShell: /bin/bash
uidNumber: 1202
gidNumber: 1202
homeDirectory: /home/ghopper

582	 Chapter 17	 Single Sign-On	

This notation is a simple example of LDIF, the LDAP Data Interchange Format,
which is used by most LDAP-related tools and server implementations. The fact
that LDAP data can be easily converted back and forth from plain text is part of
the reason for its success.

Entries are organized into a hierarchy through the use of “distinguished names” (at-
tribute name: dn) that form a sort of search path. As in DNS, the “most significant bit”
goes on the right. In the example above, the DNS name navy.mil has structured the
top levels of the LDAP hierarchy. It has been broken down into two domain compo-
nents (dc’s), “navy” and “mil,” but this is only one of several common conventions.

Every entry has exactly one distinguished name. Entries are entirely separate from
one another and have no hierarchical relationship except as is implicitly defined by
the dn attributes. This approach enforces uniqueness and gives the implementation
a hint as to how to efficiently index and search the data. Various LDAP consumers
use the virtual hierarchy defined by dn attributes, but that’s more a data-structuring
convention than an explicit feature of the LDAP system. There are, however, provi-
sions for symbolic links between entries and for referrals to other servers.

LDAP entries are typically schematized through the use of an objectClass attri-
bute. Object classes specify the attributes that an entry can contain, some of which
may be required for validity. The schemata also assign a data type to each attribute.
Object classes nest and combine in the traditional object-oriented fashion. The top
level of the object class tree is the class named top, which specifies merely that an
entry must have an objectClass attribute.

Table 17.1 shows some common LDAP attributes whose meanings might not be
immediately apparent. These attributes are case-insensitive.

Table 17.1	 Some common attribute names found in LDAP hierarchies

Attribute Stands for What it is

o Organization Often identifies a site’s top-level entry a

ou Organizational unit A logical subdivision, e.g., “marketing”
cn Common name The most natural name to represent the entry
dc Domain component Used at sites that model their hierarchy on DNS

objectClass Object class Schema to which this entry’s attributes conform

a.	 Typically not used by sites that model their LDAP hierarchy on DNS

OpenLDAP: the traditional open source LDAP server
OpenLDAP is an extension of work originally done at the University of Michigan;
it now continues as an open source project. It’s shipped with most Linux distribu-
tions, although it is not necessarily included in the default installation. The docu-
mentation is perhaps best described as “brisk.”

	 LDAP: “lightweight” directory services	 583

Si
ng

le
 S

ig
n-

O
n

In the OpenLDAP distribution, slapd is the standard LDAP server daemon. In an
environment with multiple OpenLDAP servers, slurpd runs on the master serv-
er and handles replication by pushing changes out to slave servers. A selection of
command-line tools enable the querying and modification of LDAP data.

Setup is straightforward. First, create an /etc/openldap/slapd.conf file by copying
the sample installed with the Open-LDAP server. These are the lines you need to
pay attention to:

database bdb
suffix "dc=mydomain, dc=com"
rootdn "cn=admin, dc=mydomain, dc=com"
rootpw {crypt}abJnggxhB/yWI
directory /var/lib/ldap

The database format defaults to Berkeley DB, which is fine for data that will live
within the OpenLDAP system. You can use a variety of other back ends, including
ad hoc methods such as scripts that create the data on the fly.

suffix is your “LDAP basename.” It’s the root of your portion of the LDAP name-
space, similar in concept to your DNS domain name. In fact, this example illustrates
the use of a DNS domain name as an LDAP basename, which is a common practice.

rootdn is your administrator’s name, and rootpw is the administrator’s hashed pass-
word. Note that the domain components leading up to the administrator’s name
must also be specified. You can use slappasswd to generate the value for this field;
just copy and paste its output into the file.

Because of the presence of this password hash, make sure that the slapd.conf file
is owned by root and that its permissions are 600.

Edit /etc/openldap/ldap.conf to set the default server and basename for LDAP
client requests. It’s pretty straightforward—just set the argument of the host entry
to the hostname of your server and set the base to the same value as the suffix
in the slapd.conf file. Make sure both lines are uncommented. Here’s an example
from atrust.com:

BASE	 dc=atrust,dc=com
URI		 ldap://atlantic.atrust.com

At this point, you can start up slapd simply by running it with no arguments.

389 Directory Server: alternative open source LDAP server
Like OpenLDAP, the 389 Directory Server (port389.org) is an extension of the work
done at the University of Michigan. However, it spent some years in the commercial
world (at Netscape) before returning as an open source project.

There are several reasons to consider the 389 Directory Server as an alternative
to OpenLDAP, but its superior documentation is one clear advantage. The 389

http://atrust.com:
http:///atlantic.atrust.com
http://port389.org

584	 Chapter 17	 Single Sign-On	

Directory Server comes with several professional grade administration and use
guides, including detailed installation and deployment instructions.

A few other key features of the 389 Directory Server are

•	 Multimaster replication for fault tolerance and superior write performance
•	 Active Directory user and group synchronization
•	 A graphical console for all facets of user, group, and server management
•	 On-line, zero-downtime, LDAP-based update of schema, configuration,

management, and in-tree Access Control Information (ACIs)

389 Directory Server has a much more active development community than does
OpenLDAP. We generally recommend it over OpenLDAP for new installations.

From an administrative standpoint, the structure and operation of the two open
source servers are strikingly similar. This fact is perhaps not too surprising since
both packages were built on the same original code base.

LDAP Querying
To administer LDAP, you need to be able to see and manipulate the contents of
the database. The phpLDAPadmin tool mentioned earlier is one of the nicer free
tools for this purpose because it gives you an intuitive point-and-click interface.
If phpLDAPadmin isn’t an option, ldapsearch (distributed with both OpenLDAP
and 389 Directory Server) is an analogous command-line tool that produces output
in LDIF format. ldapsearch is especially good for use in scripts and for debugging
environments in which Active Directory is acting as the LDAP server.

The following example query uses ldapsearch to look up directory information
for every user whose cn starts with “ned.” In this case, there’s only one result. The
meanings of the various command-line flags are discussed below.

$ ldapsearch -h atlantic.atrust.com -p 389
-x -D "cn=trent,cn=users,dc=boulder,dc=atrust,dc=com" -W
-b "cn=users,dc=boulder,dc=atrust,dc=com" "cn=ned*"

Enter LDAP Password: <password>

LDAPv3
base <cn=users,dc=boulder,dc=atrust,dc=com> with scope sub
filter: cn=ned*
requesting: ALL
#
ned, Users, boulder.atrust.com
dn: cn=ned,cn=Users,dc=boulder,dc=atrust,dc=com
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: user
cn: ned
sn: McClain

http://atlantic.atrust.com
http://boulder.atrust.com

	 LDAP: “lightweight” directory services	 585

Si
ng

le
 S

ig
n-

O
n

telephoneNumber: 303 555 4505
givenName: Ned
distinguishedName: cn=ned,cn=Users,dc=boulder,dc=atrust,dc=com
displayName: Ned McClain
memberOf: cn=Users,cn=Builtin,dc=boulder,dc=atrust,dc=com
memberOf: cn=Enterprise Admins,cn=Users,dc=boulder,dc=atrust,dc=com
name: ned
sAMAccountName: ned
userPrincipalName: ned@boulder.atrust.com
lastLogonTimestamp: 129086952498943974
mail: ned@atrust.com

ldapsearch’s -h and -p flags specify the host and port of the LDAP server you want
to query, respectively.

You usually need to authenticate yourself to the LDAP server. In this case, the -x
flag requests simple authentication (as opposed to SASL). The -D flag identifies the
distinguished name of a user account that has the privileges needed to execute the
query, and the -W flag makes ldapsearch prompt for the corresponding password.

The -b flag tells ldapsearch where in the LDAP hierarchy to start the search. This
parameter is known as the baseDN; hence the b. By default, ldapsearch returns all
matching entries below the baseDN. You can tweak this behavior with the ‑s flag.

The last argument is a “filter,” which is a description of what you’re searching for. It
doesn’t require an option flag. This filter, cn=ned*, returns all LDAP entries that
have a common name that starts with “ned”. The filter is quoted to protect the star
from shell globbing.

To extract all entries below a given baseDN, just use objectClass=* as the search
filter—or leave the filter out, since this is the default.

Any arguments that follow the filter select specific attributes to return. For exam-
ple, if you added mail givenName to the command line above, ldapsearch would
return only the values of matching attributes.

Conversion of passwd and group files to LDAP
If you are moving to LDAP and your existing user and group information is stored
in flat files, you may want to migrate your existing data. RFC2307 defines the stan-
dard mapping from traditional UNIX data sets, such as the passwd and group
files, into the LDAP namespace. It’s a useful reference document for sysadmins
who want to use LDAP in a UNIX environment, at least in theory. In practice, the
specifications are a lot easier for computers to read than for humans; you’re better
off looking at examples.

Padl Software offers a free set of Perl scripts that migrate existing flat files or NIS
maps to LDAP. It’s available from padl.com/OSS/MigrationTools.html, and the
scripts are straightforward to run. They can be used as filters to generate LDIF, or

mailto:ned@boulder.atrust.com
mailto:ned@atrust.com
http://padl.com/OSS/MigrationTools.html

586	 Chapter 17	 Single Sign-On	

they can be run against a live server to upload the data directly. For example, the
migrate_group script converts this line from /etc/group:

csstaff:x:2033:evi,matthew,trent

to the following LDIF:

dn: cn=csstaff,ou=Group,dc=domainname,dc=com
cn: csstaff
objectClass: posixGroup
objectClass: top
userPassword: {crypt}x
gidNumber: 2033
memberuid: evi
memberuid: matthew
memberuid: trent

17.3	 Using directory services for login
Once you have a directory service set up, complete the following configuration
chores so your system can enter SSO paradise:

•	 If you’re planning to use Active Directory with Kerberos, configure Ker-
beros and join the system to the Active Directory domain.

•	 Configure sssd to communicate with the appropriate identity and authen-
tication stores (LDAP, Active Directory, or Kerberos).

•	 Configure the name service switch, nsswitch.conf, to use sssd as a source
of user, group, and password information.

•	 Configure PAM to service authentication requests through sssd.4

We walk through these procedures below.

Kerberos
Kerberos is a ticket-based authentication system that uses symmetric key cryptog-
raphy. Its recent popularity has been driven primarily by Microsoft, which uses it
as part of Active Directory and Windows authentication. For SSO purposes, we
describe how to integrate with an Active Directory Kerberos environment on both
Linux and FreeBSD. If you’re using an LDAP server other than Active Directory
or if you want to authenticate against Active Directory through the LDAP path
rather than the Kerberos path, you can skip to the discussion of sssd on page 589.

	 4.	 Some software uses the traditional getpwent family of library routines to look up user information,
whereas modern services often directly call the PAM authentication routines. Configure both PAM
and nsswitch.conf to ensure a fully functional environment.

See page 1015 for
general information
about Kerberos.

	 Using directory services for login	 587

Si
ng

le
 S

ig
n-

O
n

Linux Kerberos configuration for AD integration
Sysadmins often want their Linux systems to be members of an Active Directory
domain. In the past, the complexity of this configuration drove some of those sys-
admins to drink. Fortunately, the debut of realmd has made this task much simpler.
realmd acts as a configuration tool for both sssd and Kerberos.

Before attempting to join an Active Directory domain, verify the following:

•	 realmd is installed on the Linux system you’re joining to the domain.
•	 sssd is installed (see below).
•	 ntpd is installed and running.
•	 You know the correct name of your AD domain.
•	 You have credentials for an AD account that is allowed to join systems

to the domain. This action results in a Kerberos ticket-granting ticket
(TGT) being issued to the system so that it can perform authentication
operations going forward without access to an administrator’s password.

For example, if your AD domain name is ULSAH.COM and the AD account trent
is allowed to join systems to the domain, you can use the following command to
join your system to the domain:

$ sudo realm join --user=trent ULSAH.COM

You can then verify the result:

$ realm list
ulsah.com
 type: kerberos
 realm-name: ULSAH.COM
 domain-name: ulsah.com
 configured: kerberos-member
 server-software: active-directory
 client-software: sssd
 required-package: sssd
 required-package: adcli
 required-package: samba-common
 login-formats: %U@ulsah.com
 login-policy: allow-real logins

FreeBSD Kerberos configuration for AD integration
Kerberos is infamous for its complex configuration process, especially on the server
side. Unfortunately, FreeBSD has no slick tool akin to Linux’s realmd that config-
ures Kerberos and joins an Active Directory domain in one step. However, you need
to set up only the client side of Kerberos. The configuration file is /etc/krb5.conf.

First, double-check that the system’s fully qualified domain name has been includ-
ed in /etc/hosts and that NTP is configured and working. Then edit krb5.conf to
add the realm as shown in the following example. Substitute the name of your site’s
AD domain for ULSAH.COM.

http://ULSAH.COM
http://ULSAH.COM
http://ulsah.com
http://ULSAH.COM
http://ulsah.com
mailto:login-formats:%U@ulsah.com
mailto:login-formats:%U@ulsah.com
http://ULSAH.COM

588	 Chapter 17	 Single Sign-On	

[logging]
	 default = FILE:/var/log/krb5.log
[libdefaults]
	 clockskew = 300
	 default_realm = ULSAH.COM
	 kdc_timesync = 1
	 ccache_type = 4
	 forwardable = true
	 proxiable = true
[realms]
	 ULSAH.COM = {
		 kdc = dc.ulsah.com
		 admin_server = dc.ulsah.com
		 default_domain = ULSAH
	 }
[domain_realm]
	 .ulsah.com = ULSAH.COM
	 ulsah.com = ULSAH.COM

Several values are of interest in the example above. A 5-minute clock skew is al-
lowed even though the time is set through NTP. This leeway allows the system to
function even in the event of an NTP problem. The default realm is set to the AD
domain, and the key distribution center (or KDC) is configured as an AD domain
controller. krb5.log might come in handy for debugging.

Request a ticket from the Active Directory controller by running the kinit com-
mand. Specify a valid domain user account. The “administrator” account is usually
a good test, but any account will do. When prompted, type the domain password.

$ kinit administrator@ULSAH.COM
Password for administrator@ULSAH.COM: <password>

Use klist to show the Kerberos ticket:

$ klist
Ticket cache: FILE:/tmp/krb5cc_1000
Default principal: administrator@ULSAH.COM

Valid starting Expires Service principal
04/30/17 13:40:19 04/30/17 23:40:21 krbtgt/ULSAH.COM@ULSAH.COM
 renew until 05/01/17 13:40:19

Kerberos 4 ticket cache: /tmp/tkt1000
klist: You have no tickets cached

If a ticket is displayed, authentication was successful. In this case, the ticket is valid
for 10 hours and can be renewed for 24 hours. You can use the kdestroy command
to invalidate the ticket.

The last step is to join the system to the domain, as shown below. The administrator
account used (in this case, trent) must have the appropriate privileges on the Active
Directory server to join systems to the domain.

http://ULSAH.COM
http://ULSAH.COM
http://dc.ulsah.com
http://dc.ulsah.com
http://.ulsah.com
http://ULSAH.COM
http://ulsah.com
http://ULSAH.COM
mailto:administrator@ULSAH.COM
mailto:administrator@ULSAH.COM:
mailto:administrator@ULSAH.COM
mailto:krbtgt/ULSAH.COM@ULSAH.COM

	 Using directory services for login	 589

Si
ng

le
 S

ig
n-

O
n

$ net ads join -U trent
Enter trent's password: <password>
Using short domain -- ULSAH
Joined 'example.ulsah.com' to domain 'ULSAH.COM'

See the man page for krb5.conf for additional configuration options.

sssd: the System Security Services Daemon
The UNIX and Linux road to SSO nirvana has been a rough one. Years ago, it was
common to set up independent authentication for every service or application. This
approach often resulted in a morass of separate configurations and undocumented
dependencies that were impossible to manage over time. Users’ passwords would
work with one application but not another, causing frustration for everyone.

Microsoft formerly published extensions (originally called “Services for UNIX,”
then “Windows Security and Directory Services for UNIX,” and finally, “Identity
Management for UNIX” in Windows Server 2012) that facilitated the housing of
UNIX users and groups within Active Directory. Putting the authority for managing
these attributes in a non-UNIX system was an unnatural fit, however. To the relief
of many, Microsoft discontinued this feature as of Windows Server 2016.

These issues needed some kind of comprehensive solution, and that’s just what we
got with sssd, the System Security Services Daemon. Available for both Linux and
FreeBSD, sssd is a one-stop shop for user identity wrangling, authentication, and
account mapping. It can also cache credentials off-line, which is useful for mobile de-
vices. sssd supports authentication both through native LDAP and through Kerberos.

You configure sssd through the sssd.conf file. Here’s a basic example for an envi-
ronment that uses Active Directory as the directory service:

[sssd]
services = nss, pam
domains = ULSAH.COM

[domain/ULSAH.COM]
id_provider = ad
access_provider = ad

 If you are using a non-AD LDAP server, your sssd.conf file might look more like this:

[sssd]
services = nss, pam
domains = LDAP

[domain/LDAP]
id_provider = ldap
auth_provider = ldap
ldap_uri = ldap://ldap.ulsah.com
ldap_user_search_base = dc=ulsah,dc=com
tls_reqcert = demand
ldap_tls_cacert = /etc/pki/tls/certs/ca-bundle.crt

http://'example.ulsah.com'
http://'ULSAH.COM'
http://ULSAH.COM
http://domain/ULSAH.COM
http:///ldap.ulsah.com

590	 Chapter 17	 Single Sign-On	

For obvious security reasons, sssd does not allow authentication over an unencrypt-
ed channel, so the use of LDAPS/TLS is required. Setting the tls_reqcert attribute
to demand in the example above forces sssd to validate the server certificate as an
additional check. sssd drops the connection if the certificate is found to be deficient.

Once sssd is up and running, you must tell the system to use it as the source for
identity and authentication information. Configuring the name service switch and
configuring PAM are the next steps in this process.

nsswitch.conf: the name service switch
The name service switch (NSS) was developed to ease selection among various con-
figuration databases and name resolution mechanisms. All the configuration goes
into the /etc/nsswitch.conf file.

The syntax is simple: for a given type of lookup, you simply list the sources in the
order they should be consulted. The system’s local passwd and group files should
always be consulted first (specified by files), but you can then punt to Active Di-
rectory or another directory service by way of sssd (specified by sss). These entries
do the trick:

passwd:	files sss
group:	 files sss
shadow:	files sss

Once you’ve configured the nsswitch.conf file, you can test the configuration with
the command getent passwd. This command prints the user accounts defined by
all sources in /etc/passwd format:

$ getent passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
...
bwhaley:x:10006:10018::/home/bwhaley:/bin/sh
guest:*:10001:10001:Guest:/home/ULSAH/guest:/bin/bash
ben:*:10002:10000:Ben Whaley:/home/ULSAH/ben:/bin/bash
krbtgt:*:10003:10000:krbtgt:/home/ULSAH/krbtgt:/bin/bash

The only way to distinguish local users from domain accounts is by user ID and by
the path of the home directory, as seen in the last three entries above.

PAM: cooking spray or authentication wonder?
PAM stands for “pluggable authentication modules.” The PAM system relieves pro-
grammers of the chore of implementing direct connections to authentication sys-
tems and gives sysadmins flexible, modular control over the system’s authentication
methods. Both the concept and the term come from Sun Microsystems (now part
of Oracle *sniff*) and from a 1996 paper by Samar and Lai of SunSoft.

	 Using directory services for login	 591

Si
ng

le
 S

ig
n-

O
n

In the distant past, commands like login included hardwired authentication code
that prompted the user for a password, tested the password against the encrypt-
ed version obtained from /etc/shadow (/etc/passwd at that time), and rendered a
judgment as to whether the two passwords matched. Of course, other commands
(e.g., passwd) contained similar code. It was impossible to change authentication
methods without source code, and administrators had little or no control over
details such as whether the system should accept “password” as a valid password.
PAM changed all that.

PAM puts the system’s authentication routines into a shared library that login and
other programs can call. By separating authentication functions into a discrete
subsystem, PAM makes it easy to integrate new advances in authentication and en-
cryption into the computing environment. For instance, multifactor authentication
is supported without changes to the source code of login and passwd.

For the sysadmin, setting the right level of security for authentication has become
a simple configuration task. Programmers win, too, since they no longer have to
write tedious authentication code. More importantly, their authentication systems
are implemented correctly on the first try. PAM can authenticate all sorts of activ-
ities: user logins, other forms of system access, use of protected web sites, even the
configuration of applications.

PAM configuration
PAM configuration files are a series of one-liners, each of which names a particular
PAM module to be used on the system. The general format is

module-type control-flag module-path [ arguments ]

Fields are separated by whitespace.

The order in which modules appear in the PAM configuration file is important. For
example, the module that prompts the user for a password must come before the
module that checks that password for validity. One module can pass its output to
the next by setting either environment variables or PAM variables.

The module-type parameter—auth, account, session, or password—determines
what the module is expected to do. auth modules identify the user and grant group
memberships. Modules that do account chores enforce restrictions such as limit-
ing logins to particular times of day, limiting the number of simultaneous users,
or limiting the ports on which logins can occur. (For example, you would use an
account-type module to restrict root logins to the console.) session chores include
tasks that are done before or after a user is granted access; for example, mounting
the user’s home directory. Finally, password modules change a user’s password or
passphrase.

The control-flag specifies how the modules in the stack should interact to produce an
ultimate result for the stack. Table 17.2 on the next page shows the common values.

592	 Chapter 17	 Single Sign-On	

Table 17.2	 PAM control flags

Flag
Stop on
failure?

Stop on
success? Comments

include  – – Includes another file at this point in the stack
optional No No Significant only if this is the lone module
required No No Failure eventually causes the stack to fail
requisite Yes No Same as required, but fails stack immediately
sufficient No Yes The name is kind of a lie; see comments below

If PAM could simply return a failure code as soon as the first individual module in
a stack failed, the control-flags system would be simpler. Unfortunately, the system
is designed so that most modules get a chance to run regardless of their sibling
modules’ success or failure, and this fact causes some subtleties in the flow of con-
trol. (The intent is to prevent an attacker from learning which module in the PAM
stack caused the failure.)

required modules are required to succeed; a failure of any one of them guarantees
that the stack as a whole will eventually fail. However, the failure of a module that
is marked required doesn’t immediately stop execution of the stack. If you want
that behavior, use the requisite control flag instead of required.

The success of a sufficient module aborts the stack immediately. However, the ulti-
mate result of the stack isn’t guaranteed to be a success because sufficient modules
can’t override the failure of earlier required modules. If an earlier required mod-
ule has already failed, a successful sufficient module aborts the stack and returns
failure as the overall result.

Before you modify your systems’ security settings, make sure you understand the
system thoroughly and that you double-check the particulars. (You won’t config-
ure PAM every day. How long will you remember which version is requisite and
which is required?)

PAM example
An example /etc/pam.d/login file from a Linux system running sssd is reproduced
below. We expanded the included files to form a more coherent example.

auth requisite pam_nologin.so
auth [user_unknown=ignore success=ok ignore=ignore auth_err=die
 default=bad] pam_securetty.so
auth required pam_env.so
auth sufficient pam_unix2.so
auth sufficient pam_sss.so use_first_pass

account required pam_unix2.so
account [default=bad success=ok user_unknown=ignore] pam_sss.so

	 Using directory services for login	 593

Si
ng

le
 S

ig
n-

O
n

password requisite pam_pwcheck.so nullok cracklib
password required pam_unix2.so use_authtok nullok
password sufficient pam_sss.so use_authtok

session required pam_loginuid.so
session required pam_limits.so
session required pam_unix2.so
session sufficient pam_sss.so
session optional pam_umask.so
session required pam_lastlog.so nowtmp
session optional pam_mail.so standard
session optional pam_ck_connector.so

The auth stack includes several modules. On the first line, the pam_nologin module
checks for the existence of the /etc/nologin file. If it exists, the module aborts the
login immediately unless the user is root. The pam_securetty module ensures that
root can log in only on terminals listed in /etc/securetty. This line uses an alterna-
tive Linux syntax described in the pam.conf man page. In this case, the requested
behavior is similar to that of the required control flag. pam_env sets environment
variables from /etc/security/pam_env.conf, then pam_unix2 checks the user’s cre-
dentials by performing standard UNIX authentication. If the user doesn’t have a
local UNIX account, pam_sss attempts authentication through sssd. If any of these
modules fail, the auth stack returns an error.

The account stack includes only the pam_unix2 and pam_sss modules. In this
context, they assess the validity of the account itself. The modules return an error
if, for example, the account has expired or the password must be changed. In the
latter case, the relevant module collects a new password from the user and passes
it on to the password modules.

The pam_pwcheck line checks the strength of proposed new passwords by calling
the cracklib library. It returns an error if a new password does not meet the re-
quirements. However, it also allows empty passwords because of the nullok flag.
The pam_unix2 and pam_sss lines update the actual password.

Finally, the session modules perform several housekeeping chores. pam_loginuid
sets the kernel’s loginuid process attribute to the user’s UID. pam_limits reads
resource usage limits from /etc/security/limits.conf and sets the corresponding
process parameters that enforce them. pam_unix2 and pam_sss log the user’s access
to the system, and pam_umask sets an initial file creation mode. The pam_lastlog
module displays the user’s last login time as a security check, and the pam_mail
module prints a note if the user has new mail. Finally, pam_ck_connector notifies
the ConsoleKit daemon (a system-wide daemon that manages login sessions) of
the new login.

At the end of the process, the user has been successfully authenticated and PAM
returns control to login.

594	 Chapter 17	 Single Sign-On	

17.4	 Alternative approaches
Although LDAP is currently the most popular method for centralizing user identi-
ty and authentication information within an organization, many other approaches
have emerged over the decades. Two older options, NIS and rsync, are still in use
in some isolated pockets.

NIS: the Network Information Service
NIS, released by Sun in the 1980s, was the first “prime time” administrative data-
base. It was originally called the Sun Yellow Pages, but eventually had to be re-
named for legal reasons. NIS commands still begin with the letters yp, so it’s hard
to forget the original name. NIS was widely adopted and is still supported in both
FreeBSD and Linux.

These days, however, NIS is an old gray mare. NIS should not be used for new de-
ployments, and existing deployments should be migrated to a modern day alter-
native such as LDAP.

rsync: transfer files securely
rsync, written by Andrew Tridgell and Paul Mackerras, is a bit like a souped-up
version of scp that is scrupulous about preserving links, modification times, and
permissions. It is network efficient because it looks inside individual files and at-
tempts to transmit only the differences between versions.

One quick-and-dirty approach to distributing files such as /etc/passwd and /etc/group
is to set up a cron job to rsync them from a master server. Although this scheme is
easy to set up and might be useful in a pinch, it requires that all changes be applied
directly to the master, including user password changes.

As an example, the command

rsync -gopt -e ssh /etc/passwd /etc/shadow lollipop:/etc

transfers the /etc/passwd and /etc/shadow files to the machine lollipop. The -gopt
options preserve the permissions, ownerships, and modification times of the file.
rsync uses ssh as the transport, and so the connection is encrypted. However, sshd
on lollipop must be configured not to require a password if you want to run this
command from a script. Of course, such a setup has significant security implica-
tions. Coder beware!

With the --include and --exclude flags you can specify a list of regular expressions
to match against filenames, so you can set up a sophisticated set of transfer criteria.
If the command line gets too unwieldy, you can read the patterns from separate
files with the --include-file and --exclude-file options.

Configuration management tools such as Ansible are another common way to
distribute files among systems. See Chapter 23, Configuration Management, for
more details.

	 Recommended reading	 595

Si
ng

le
 S

ig
n-

O
n

17.5	 Recommended reading
A good general introduction to LDAP is LDAP for Rocket Scientists, which covers
LDAP architecture and protocol. Find it on-line at zytrax.com/books/ldap. Another
good source of information is the LDAP-related RFCs, which are numerous and
varied. As a group, they tend to convey an impression of great complexity, which
is somewhat unrepresentative of average use. Table 17.3 list some of the most im-
portant of these RFCs.

Table 17.3	 Important LDAP-related RFCs

RFC Title

2307 An Approach for Using LDAP as a Network Information Service
2820 Access Control Requirements for LDAP
2849 LDAP Data Interchange Format (LDIF)—Technical Specification
3112 LDAP Authentication Password Schema
3672 Subentries in the Lightweight Directory Access Protocol (LDAP)
4511 LDAP: The Protocol
4512 LDAP: Directory Information Models
4513 LDAP: Authentication Methods and Security Mechanisms
4514 LDAP: String Representation of Distinguished Names
4515 LDAP: String Representation of Search Filters
4516 LDAP: Uniform Resource Locator
4517 LDAP: Syntaxes and Matching Rules
4519 LDAP: Schema for User Applications

In addition, there are a couple of oldie-but-goodie books on LDAP:

Carter, Gerald. LDAP System Administration. Sebastopol, CA: O’Reilly
Media, 2003.

Voglmaier, Reinhard. The ABCs of LDAP: How to Install, Run, and Administer
LDAP Services. Boca Raton, FL: Auerbach Publications, 2004.

There’s also a decent book focused entirely on PAM:

Lucas, Michael. PAM Mastery. North Charleston, SC: CreateSpace, 2016.

Finally, the O’Reilly book on Active Directory is excellent:

Desmond, Brian, Joe Richards, Robbie Allen, and Alistair G. Lowe-Norris. Active
Directory: Designing, Deploying, and Running Active Directory. Sebastopol, CA: O’Reilly
Media, 2013.

http://zytrax.com/books/ldap

596

Decades ago, cooking a chicken dinner involved not just frying the chicken, but
selecting a tender young chicken out of the coop, terminating it with a kill signal,
plucking the feathers, etc. Today, most of us just buy a package of chicken at the
grocery store or butcher shop and skip the mess.

Email has evolved in a similar way. Ages ago, it was common for organizations to
hand-craft their email infrastructure, sometimes to the point of predetermining
exact mail routing. Today, many organizations use packaged, cloud-hosted email
services such as Google Gmail or Microsoft Office 365.

Even if your email system runs in the cloud, you will still have occasion to under-
stand, support, and interact with it as an administrator. If your site uses local email
servers, the workload expands even further to include configuration, monitoring,
and testing chores.

If you find yourself in one of these more hands-on scenarios, this chapter is for you.
Otherwise, skip this material and spend your email administration time responding
to messages from wealthy foreigners who need help moving millions of dollars in
exchange for a large reward.1

	 1.	 Just kidding, of course.

18 Electronic Mail

	 Mail system architecture	 597

Em
ai

l

18.1	 Mail system architecture
A mail system consists of several distinct components:

•	 A “mail user agent” (MUA or UA) that lets users read and compose mail
•	 A “mail submission agent” (MSA) that accepts outgoing mail from an

MUA, grooms it, and submits it to the transport system
•	 A “mail transport agent” (MTA) that routes messages among machines
•	 A “delivery agent” (DA) that places messages in a local message store 2
•	 An optional “access agent” (AA) that connects the user agent to the mes-

sage store (e.g., through the IMAP or POP protocol)

Note that these functional divisions are somewhat abstract. Real-world mail sys-
tems break out these roles into somewhat different packages.

Attached to some of these functions are tools for recognizing spam, viruses, and
(outbound) internal company secrets. Exhibit A illustrates how the various pieces
fit together as a message winds its way from sender to receiver.

Exhibit A	 Mail system components

Host A – sender Host B – receiver

= User agent
= Submission agent
= Transport agent
= Delivery agent
= Access agent

UA
MSA
MTA

DA
AA

Thunderbird
UA

sendmail
Exim

MS Exchange
Post�x
(port 25)

MTA

sendmail
Exim

MS Exchange
Post�x
(port 25)

MTA

local
mail.local

(port 25)

DA

to local user agents

UW imapd
AA

Cyrus
AA

(port 587)

MSA

In
te

rn
et

MS Outlook
UA

macOS Mail
UA

Alpine
UA

/bin/mail
UA

User agents
Email users run a user agent (sometimes called an email client) to read and com-
pose messages. Email messages originally consisted only of text, but a standard
known as Multipurpose Internet Mail Extensions (MIME) now encodes text for-
mats and attachments (including viruses) into email. It is supported by most user
agents. Since MIME generally does not affect the addressing or transport of mail,
we do not discuss it further.

	 2.	 The receiving users’ mailboxes or, sometimes, a database

598	 Chapter 18	 Electronic Mail	

/bin/mail was the original user agent, and it remains the “good ol’ standby” for
reading text email messages at a shell prompt. Since email on the Internet has
moved far beyond the text era, text-based user agents are no longer practical for
most users. But we shouldn’t throw /bin/mail away; it’s still a handy interface for
scripts and other programs.

One of the elegant features illustrated in Exhibit A is that a user agent doesn’t nec-
essarily need to be running on the same system—or even on the same platform—as
the rest of your mail system. Users can reach their email from a Windows laptop or
smartphone through access agent protocols such as IMAP and POP.

Submission agents
MSAs, a late addition to the email pantheon, were invented to offload some of the
computational tasks of MTAs. MSAs make it easy for mail hub servers to distin-
guish incoming from outbound email (when making decisions about allowing re-
laying, for example) and give user agents a uniform and simple configuration for
outbound mail.

The MSA is a sort of “receptionist” for new messages being injected into the system
by local user agents. An MSA sits between the user agent and the transport agent
and takes over several functions that were formerly a part of the MTA’s job. An
MSA implements secure (encrypted and authenticated) communication with user
agents and often does minor header rewriting and cleanup on incoming messages.
In many cases, the MSA is really just the MTA listening on a different port with a
different configuration applied.

MSAs speak the same mail transfer protocol used by MTAs, so they appear to be
MTAs from the perspective of user agents. However, they typically listen for con-
nections on port 587 rather than port 25, the MTA standard. For this scheme to
work, user agents must connect on port 587 instead of port 25. If your user agents
cannot be taught to use port 587, you can still run an MSA on port 25, but you
must do so on a system other than the one that runs your MTA; only one process
at a time can listen on a particular port.

If you use an MSA, be sure to configure your transport agent so that it doesn’t
duplicate any of the rewriting or header fix-up work done by the MSA. Duplicate
processing won’t affect the correctness of mail handling, but it does represent use-
less extra work.

Since your MSA uses your MTA to relay messages, the MSA and MTA must use
SMTP-AUTH to authenticate each other. Otherwise, you create a so-called open
relay that spammers can exploit and that other sites will blacklist you for.

Transport agents
A transport agent must accept mail from a user agent or submission agent, under-
stand the recipients’ addresses, and somehow get the mail to the correct hosts for

See page 604 for more
information about
SMTP authentication.

	 Mail system architecture	 599

Em
ai

l

delivery. Transport agents speak the Simple Mail Transport Protocol (SMTP), which
was originally defined in RFC821 but has now been superseded and extended by
RFC5321. The extended version is called ESMTP.

An MTA’s list of chores, as both a mail sender and receiver, includes

•	 Receiving email messages from remote mail servers
•	 Understanding the recipients’ addresses
•	 Rewriting addresses to a form understood by the delivery agent
•	 Forwarding the message to the next responsible mail server or passing it

to a local delivery agent to be saved to a user’s mailbox

The bulk of the work involved in setting up a mail system relates to the configura-
tion of the MTA. In this book, we cover three open source MTAs: sendmail, Exim,
and Postfix.

Local delivery agents
A delivery agent, sometimes called a local delivery agent (LDA), accepts mail from a
transport agent and delivers it to the appropriate recipients’ mailboxes on the local
machine. As originally specified, email can be delivered to a person, to a mailing
list, to a file, or even to a program. However, the last two types of recipients can
weaken the security and safety of your system.

MTAs usually include a built-in local delivery agent for easy deliveries. procmail
(procmail.org) and Maildrop (courier-mta.org/maildrop) are LDAs that can filter
or sort mail before delivering it. Some access agents (AAs) also have built-in LDAs
that do both delivery and local housekeeping chores.

Message stores
A message store is the final resting place of an email message once it has completed
its journey across the Internet and been delivered to recipients.

Mail has traditionally been stored in either mbox format or Maildir format. The
former stores all mail in a single file, typically /var/mail/username, with individual
messages separated by a special From line. Maildir format stores each message in
a separate file. A file for each message is more convenient but creates directories
with many, many small files; some filesystems may not be amused.

Flat files in mbox or Maildir format are still widely used, but ISPs with thousands
or millions of email clients have typically migrated to other technologies for their
message stores, usually databases. Unfortunately, that means that message stores
are becoming more opaque.

Access agents
Two protocols access message stores and download email messages to a local de-
vice (workstation, laptop, smartphone, etc.): Internet Message Access Protocol

http://procmail.org
http://courier-mta.org/maildrop

600	 Chapter 18	 Electronic Mail	

version 4 (IMAP4) and Post Office Protocol version 3 (POP3). Earlier versions of
these protocols had security issues. Be sure to use a version (IMAPS or POP3S)
that incorporates SSL encryption and hence does not transmit passwords in cleart-
ext over the Internet.

IMAP is significantly better than POP. It delivers your mail one message at a time
rather than all at once, which is kinder to the network (especially on slow links)
and better for someone who travels from location to location. IMAP is especially
good at dealing with the giant attachments that some folks like to send: you can
browse the headers of your messages and not download the attachments until you
are ready to deal with them.

18.2	 Anatomy of a mail message
A mail message has three distinct parts:

•	 Envelope
•	 Headers
•	 Body of the message

The envelope determines where the message will be delivered or, if the message can’t
be delivered, to whom it should be returned. The envelope is invisible to users and
is not part of the message itself; it’s used internally by the MTA.

Envelope addresses generally agree with the From and To lines of the header when
the sender and recipient are individuals. The envelope and headers might not agree
if the message was sent to a mailing list or was generated by a spammer who is
trying to conceal his identity.

Headers are a collection of property/value pairs as specified in RFC5322 (updat-
ed by RFC6854). They record all kinds of information about the message, such as
the date and time it was sent, the transport agents through which it passed on its
journey, and who it is to and from. The headers are a bona fide part of the mail
message, but user agents typically hide the less interesting ones when displaying
messages for the user.

The body of the message is the content to be sent. It usually consists of plain text,
although that text often represents a mail-safe encoding for various types of binary
or rich-text content.

Dissecting mail headers to locate problems within the mail system is an essential
sysadmin skill. Many user agents hide the headers, but there is usually a way to see
them, even if you have to use an editor on the message store.

Below are most of the headers (with occasional truncations indicated by …) from
a typical nonspam message. We removed another half page of headers that Gmail
uses as part of its spam filtering.

	 Anatomy of a mail message	 601

Em
ai

l

Delivered-To: sailingevi@gmail.com
Received: by 10.231.39.205 with SMTP id…; Fri, 24 May 2013 08:14:27

-700 (PDT)3

Received: by 10.114.163.26 with SMTP id…; Fri, 24 May 2013 08:14:26
-700 (PDT)

Return-Path: <david@schweikert.ch>
Received: from mail-relay.atrust.com

(mail-relay.atrust.com [63.173.189.2]) by mx.google.com with
ESMTP id 17si2166978pxi.34.2009.10.16.08.14.20; Fri, 24 May 2013
08:14:25 -0700 (PDT)

Received-SPF: fail (google.com: domain of david@schweikert.ch does not
designate 63.173.189.2 as permitted sender) client-ip=63.173.189.2;

Authentication-Results: mx.google.com; spf=hardfail (google.com: domain
of david@schweikert.ch does not designate 63.173.189.2 as permitted
sender) smtp.mail=david@schweikert.ch

Received: from mail.schweikert.ch (nigel.schweikert.ch [88.198.52.145])
	 by mail-relay.atrust.com (8.12.11/8.12.11) with ESMTP id n9GFEDKA0

for <evi@atrust.com>; Fri, 24 May 2013 09:14:14 -0600
Received: from localhost (localhost.localdomain [127.0.0.1]) by mail.

schweikert.ch (Postfix) with ESMTP id 3251112DA79; Fri, 24 May 2013
17:14:12 +0200 (CEST)

X-Virus-Scanned: Debian amavisd-new at mail.schweikert.ch
Received: from mail.schweikert.ch ([127.0.0.1]) by localhost (mail.

schweikert.ch [127.0.0.1]) (amavisd-new, port 10024) with ESMTP id
dV8BpT7rhJKC; Fri, 24 May 2013 17:14:07 +0200 (CEST)

Received: by mail.schweikert.ch (Postfix, from userid 1000)
	 id 2A15612DB89; Fri, 24 May 2013 17:14:07 +0200 (CEST)
Date: Fri, 24 May 2013 17:14:06 +0200
From: David Schweikert <david@schweikert.ch>
To: evi@atrust.com
Cc: Garth Snyder <garth@garthsnyder.com>
Subject: Email chapter comments
Hi evi,

I just finished reading the email chapter draft, and I was pleased to see
...

To decode this beast, start reading the Received lines, but start from the bottom
(sender side). This message went from David Schweikert’s home machine in the
schweikert.ch domain to his mail server (mail.schweikert.ch), where it was scanned
for viruses. It was then forwarded to the recipient evi@atrust.com. However, the
receiving host mail-relay.atrust.com sent it on to sailingevi@gmail.com, where it
entered Evi’s mailbox.

Midway through the headers, you see an SPF (Sender Policy Framework) valida-
tion failure, an indication that the message has been flagged as spam. This failure
happened because Google checked the IP address of mail-relay.atrust.com and
compared it with the SPF record at schweikert.ch; of course, it doesn’t match. This

	 3.	 In memory of Evi, who originally owned this chapter, this historical example has been kept intact.

See page 606 for more
information about SPF.

mailto:sailingevi@gmail.com
mailto:<david@schweikert.ch
http://mail-relay.atrust.com
http://mail-relay.atrust.com
http://mx.google.com
http://google.com:
mailto:david@schweikert.ch
http://mx.google.com
http://google.com:
mailto:david@schweikert.ch
mailto:smtp.mail=david@schweikert.ch
http://mail.schweikert.ch
http://nigel.schweikert.ch
http://mail-relay.atrust.com
mailto:<evi@atrust.com
http://mail.schweikert.ch
http://mail.schweikert.ch
http://mail.schweikert.ch
http://mail.schweikert.ch
http://mail.schweikert.ch
http://mail.schweikert.ch
http://mail.schweikert.ch
mailto:<david@schweikert.ch
mailto:evi@atrust.com
mailto:<garth@garthsnyder.com
http://schweikert.ch
http://mail.schweikert.ch
mailto:evi@atrust.com
http://mail-relay.atrust.com
mailto:sailingevi@gmail.com
http://mail-relay.atrust.com
http://schweikert.ch

602	 Chapter 18	 Electronic Mail	

is an inherent weakness of relying on SPF records to identify forgeries—they don’t
work for mail that has been relayed.

You can often see the MTAs that were used (Postfix at schweikert.ch, sendmail 8.12
at atrust.com), and in this case, you can also see that virus scanning was performed
through amavisd-new on port 10,024 on a machine running Debian Linux. You can
follow the progress of the message from the Central European Summer Time zone
(CEST +0200), to Colorado (-0600), and on to the Gmail server (PDT ‑0700); the
numbers are the differences between local time and UTC, Coordinated Universal
Time. A lot of info is stashed in the headers!

Here are the headers, again truncated, from a spam message:

Delivered-To: sailingevi@gmail.com
Received: by 10.231.39.205 with SMTP id…; Fri, 19 Oct 2009 08:59:32

-0700…
Received: by 10.231.5.143 with SMTP id…; Fri, 19 Oct 2009 08:59:31

-0700…
Return-Path: <smotheringl39@sherman.dp.ua>
Received: from mail-relay.atrust.com (mail-relay.atrust.com

[63.173.189.2]) …
Received-SPF: neutral (google.com: 63.173.189.2 is neither

permitted nor denied by best guess record for domain of
smotheringl39@sherman.dp.ua) client-ip=63.173.189.2;

Authentication-Results: mx.google.com; spf=neutral (google.
com: 63.173.189.2 is neither permitted nor denied by best
guess record for domain of smotheringl39@sherman.dp.ua)
smtp.mail=smotheringl39@sherman.dp.ua

Received: from SpeedTouch.lan (187-10-167-249.dsl.telesp.net.br
[187.10.167.249] (may be forged)) by mail-relay.atrust.com …

Received: from 187.10.167.249 by relay2.trifle.net; Fri, 19 Oct 2009
13:59: …

From: "alert@atrust.com" <alert@atrust.com>
To: <ned@atrust.com>
Subject: A new settings file for the ned@atrust.com mailbox
Date: Fri, 19 Oct 2009 13:59:12 -0300 …

According to the From header, this message’s sender is alert@atrust.com. But ac-
cording to the Return-Path header, which contains a copy of the envelope sender,
the originator was smotheringl39@sherman.dp.ua, an address in the Ukraine. The
first MTA that handled the message is at IP address 187.10.167.249, which is in
Brazil. Sneaky spammers…4

The SPF check at Google fails again, this time with a “neutral” result because the
domain sherman.dp.ua does not have an SPF record with which to compare the IP
address of mail-relay.atrust.com.

	 4.	 It’s important to note that many of the lines in the header, including the Received lines, may have
been forged. Use this data with extreme caution.

http://schweikert.ch
http://atrust.com
mailto:sailingevi@gmail.com
http://mail-relay.atrust.com
http://mail-relay.atrust.com
http://google.com:
http://mx.google.com
http://google.com:
http://google.com:
http://249.dsl.telesp.net.br
http://mail-relay.atrust.com
http://relay2.trifle.net
mailto:"alert@atrust.com"
mailto:<alert@atrust.com
mailto:<ned@atrust.com
mailto:ned@atrust.com
mailto:alert@atrust.com
http://mail-relay.atrust.com

	 The SMTP protocol	 603

Em
ai

l

The recipient information is also at least partially untrue. The To header says the
message is addressed to ned@atrust.com. However, the envelope recipient address-
es must have included evi@atrust.com in order for the message to be forwarded to
sailingevi@gmail.com for delivery.

18.3	 The SMTP protocol
The Simple Mail Transport Protocol (SMTP) and its extended version, ESMTP,
have been standardized in the RFC series (RFC5321, updated by RFC7504) and
are used for most message hand-offs among the various pieces of the mail system:

•	 UA-to-MSA or -MTA as a message is injected into the mail system
•	 MSA-to-MTA as the message starts its delivery journey
•	 MTA- or MSA-to-antivirus or -antispam scanning programs
•	 MTA-to-MTA as a message is forwarded from one site to another
•	 MTA-to-DA as a message is delivered to the local message store

Because the format of messages and the transfer protocol are both standardized, my
MTA and your MTA don’t have to be the same or even know each other’s identity;
they just have to both speak SMTP or ESMTP. Your various mail servers can run
different MTAs and interoperate just fine.

True to its name, SMTP is…simple. An MTA connects to your mail server and says,
“Here’s a message; please deliver it to user@your.domain.” Your MTA says “OK.”

Requiring strict adherence to the SMTP protocol has become a technique for fight-
ing spam and malware, so it’s important for mail administrators to be somewhat fa-
miliar with the protocol. The language has only a few commands; Table 18.1 shows
the most important ones.

Table 18.1	 SMTP commands

Command Function

HELO hostname Identifies the connecting host if speaking SMTP
EHLO hostname Identifies the connecting host if speaking ESMTP
MAIL FROM: revpath Initiates a mail transaction (envelope sender)
RCPT TO: fwdpath a Identifies envelope recipient(s)
VRFY address Verifies that address is valid (deliverable)
EXPN address Shows expansion of aliases and .forward mappings
DATA Begins the message body (preceded by headers) b

QUIT Ends the exchange and closes the connection
RSET Resets the state of the connection
HELP Prints a summary of SMTP commands

a.	 There can be multiple RCPT commands for a message.
b.	You terminate the body by entering a dot on its own line.

mailto:ned@atrust.com
mailto:evi@atrust.com
mailto:sailingevi@gmail.com

604	 Chapter 18	 Electronic Mail	

You had me at EHLO
ESMTP speakers start conversations with EHLO instead of HELO. If the process
at the other end understands and responds with an OK, then the participants ne-
gotiate supported extensions and agree on a lowest common denominator for the
exchange. If the peer returns an error in response to the EHLO, then the ESMTP
speaker falls back to SMTP. But today, almost everything uses ESMTP.

A typical SMTP conversation to deliver an email message goes as follows: HELO
or EHLO, MAIL FROM:, RCPT TO:, DATA, and QUIT. The sender does most
of the talking, with the recipient contributing error codes and acknowledgments.

SMTP and ESMTP are both text-based protocols, so you can use them directly
when debugging the mail system. Just telnet to TCP port 25 or 587 and start en-
tering SMTP commands. See the example on page 605.

SMTP error codes
Also specified in the RFCs that define SMTP are a set of temporary and permanent
error codes. These were originally three-digit codes (e.g., 550), with each digit being
interpreted separately. A first digit of 2 indicated success, a 4 signified a temporary
error, and a 5 indicated a permanent error.

The three-digit error code system did not scale, so RFC3463 (updated by RFCs 3886,
4468, 4865, 4954, and 5248) restructured it to create more flexibility. It defined an
expanded error code format known as a delivery status notification or DSN. DSNs
have the format X.X.X instead of the old XXX, and each of the individual Xs can
be a multidigit number. The initial X must still be 2, 4, or 5. The second digit spec-
ifies a topic, and the third provides the details. The new system uses the second
number to distinguish host errors from mailbox errors. Table 18.2 lists a few of the
DSN codes. RFC3463’s Appendix A shows them all.

SMTP authentication
RFC4954 (updated by RFC5248) defines an extension to the original SMTP protocol
that allows an SMTP client to identify and authenticate itself to a mail server. The
server might then let the client relay mail through it. The protocol supports several
different authentication mechanisms. The exchange is as follows:

1.	 The client says EHLO, announcing that it speaks ESMTP.

2.	 The server responds and advertises its authentication mechanisms.

3.	 The client says AUTH and names a specific mechanism that it wants to
use, optionally including its authentication data.

4.	 The server accepts the data sent with AUTH or starts a challenge and
response sequence with the client.

5.	 The server either accepts or denies the authentication attempt.

 	

	 Spam and malware	 605

Em
ai

l

	

	

	

	

	

Table 18.2	 RFC3463 delivery status notifications

Temporary Permanent Meaning

4.2.1 5 2.1 Mailbox is disabled
4.2.2 5 2.2 Mailbox is full
4.2.3 5 2.3 Message is too long
4.4.1 5.4.1 No answer from host
4.4.4 5.4.4 Unable to route
4.5.3 5.5.3 Too many recipients
4.7.1 5.7.1 Delivery not authorized, message refused
4.7.* 5.7.* Site policy violation

To see what authentication mechanisms a server supports, you can telnet to port 25
and say EHLO. For example, here is a truncated conversation with the mail server
mail-relay.atrust.com (the commands we typed are in bold):

$ telnet mail-relay.atrust.com 25
Trying 192.168.2.1...
Connected to mail-relay.atrust.com.
Escape character is '^]'.
220 mail-relay.atrust.com ESMTP AT Mail Service 28.1.2/28.1.2; Mon, 12

Sep 2016 18:05:55 -0600
ehlo booklab.atrust.com
250-mail-relay.atrust.com Hello [192.168.22.35], pleased to meet you
250-ENHANCEDSTATUSCODES
250-PIPELINING
250-8BITMIME
250-SIZE
250-DSN
250-ETRN
250-AUTH LOGIN PLAIN
250-DELIVERBY
250 HELP

In this case, the mail server supports the LOGIN and PLAIN authentication mech-
anisms. sendmail, Exim, and Postfix all support SMTP authentication; details of
configuration are covered on pages 632, 651, and 670, respectively.

18.4	 Spam and malware
Spam is the jargon word for junk mail, also known as unsolicited commercial email
or UCE. It is one of the most universally hated aspects of the Internet. Once upon
a time, system administrators spent many hours each week hand-tuning block lists
and adjusting decision weights in home-grown spam filtering tools. Unfortunately,

http://mail-relay.atrust.com
http://mail-relay.atrust.com
http://mail-relay.atrust.com
http://mail-relay.atrust.com
http://booklab.atrust.com
http://250-mail-relay.atrust.com

606	 Chapter 18	 Electronic Mail	

spammers have become so crafty and commercialized that these measures are no
longer an effective use of system administrators’ time.

In this section we cover the basic antispam features of each MTA. However, there’s
a certain futility to any attempt to fight spam as a lone vigilante. You should really
pay for a cloud-based spam-fighting service (such as McAfee SaaS Email Protection,
Google G Suite, or Barracuda) and leave the spam fighting to the professionals who
love that stuff. They have better intelligence about the state of the global emailsphere
and can react far more quickly to new information than you can.

Spam has become a serious problem because although the absolute response rate
is low, the responses per dollar spent is high. (A list of 30 million email addresses
costs about $20.) If it didn’t work for the spammers, it wouldn’t be such a problem.
Surveys show that 95%–98% of all mail is spam.

There are even venture-capital-funded companies whose entire mission is to deliv-
er spam less expensively and more efficiently (although they typically call it “mar-
keting email” rather than spam). If you work at or buy services from one of these
companies, we’re not sure how you sleep at night.

In all cases, advise your users to simply delete the spam they receive. Many spam
messages contain instructions that purport to explain how recipients can be removed
from the mailing list. If you follow those instructions, however, the spammers may
remove you from the current list, but they immediately add you to several other
lists with the annotation “reaches a real human who reads the message.” Your email
address is then worth even more.

Forgeries
Forging email is trivial; many user agents let you fill in the sender’s address with
anything you want. MTAs can use SMTP authentication between local servers, but
that doesn’t scale to Internet sizes. Some MTAs add warning headers to outgoing
local messages that they think might be forged.

Any user can be impersonated in mail messages. Be careful if email is your orga-
nization’s authorization vehicle for things like door keys, access cards, and money.
The practice of targeting users with forged email is commonly called “phishing.”
You should warn administrative users of this fact and suggest that if they see sus-
picious mail that appears to come from a person in authority, they should verify
the validity of the message. Caution is doubly appropriate if the message asks that
unreasonable privileges be given to an unusual person.

SPF and Sender ID
The best way to fight spam is to stop it at its source. This sounds simple and easy, but
in reality it’s almost an impossible challenge. The structure of the Internet makes
it difficult to track the real source of a message and to verify its authenticity. The
community needs a sure-fire way to verify that the entity sending an email is actu-

	 Message privacy and encryption	 607

Em
ai

l

ally who or what it claims to be. Many proposals have addressed this problem, but
SPF and Sender ID have achieved the most traction.

SPF, or Sender Policy Framework, has been described by the IETF in RFC7208.
SPF defines a set of DNS records through which an organization can identify its
official outbound mail servers. MTAs can then refuse email purporting to be from
that organization’s domain if the email does not originate from one of these offi-
cial sources. Of course, the system only works well if the majority of organizations
publish SPF records.

Sender ID and SPF are virtually identical in form and function. However, key parts
of Sender ID are patented by Microsoft, and hence it has been the subject of much
controversy. As of this writing (2017), Microsoft is still trying to strong-arm the
industry into adopting its proprietary standards. The IETF chose not to choose
and published RFC4406 on Sender ID and RFC7208 on SPF. Organizations that
implement this type of spam avoidance strategy typically use SPF.

Messages that are relayed break both SPF and Sender ID, which is a serious flaw in
these systems. The receiver consults the SPF record for the original sender to dis-
cover its list of authorized servers. However, those addresses won’t match any relay
machines that were involved in transporting the message. Be careful what decisions
you make in response to SPF failures.

DKIM
DKIM (DomainKeys Identified Mail) is a cryptographic signature system for email
messages. It lets the receiver verify not only the sender’s identity but also the fact
that a message has not been tampered with in transit. The system uses DNS re-
cords to publish a domain’s cryptographic keys and message-signing policy. DKIM
is supported by all the MTAs described in this chapter, but real-world deployment
has been extremely rare.

18.5	 Message privacy and encryption
By default, all mail is sent unencrypted. Educate your users that they should never
send sensitive data through email unless they make use of an external encryption
package or your organization has provided a centralized encryption solution for
email. Even with encryption, electronic communication can never be guaranteed
to be 100% secure.5 You pays your money and you takes your chances.

Historically, the most common external encryption packages have been Pretty Good
Privacy (PGP), its GNUified clone GPG, and S/MIME. Both S/MIME and PGP are
documented in the RFC series, with S/MIME being on the standards track. Most
common user agents support plug-ins for both solutions.

	 5.	 Computer security expert Donald J. Trump: “I don’t believe in it [email] because I think it can be
hacked, for one thing. But when I send an email—if I send one—I send one almost never. I’m just not
a believer in email.” Wise words.

608	 Chapter 18	 Electronic Mail	

These standards offer a basis for email confidentiality, authentication, message
integrity assurance, and nonrepudiation of origin.6 But although PGP/GPG and
S/MIME are potentially viable solutions for tech-savvy users who care about pri-
vacy, they have proved too cumbersome for unsophisticated users. Both require
some facility with cryptographic key management and an understanding of the
underlying encryption strategy.

Most organizations that handle sensitive data in email (especially ones that commu-
nicate with the public, such as health care institutions) opt for a centralized service
that uses proprietary technology to encrypt messages. Such systems can use either
on-premises solutions (such as Cisco’s IronPort) that you deploy in your data cen-
ter or cloud-based services (such as Zix, zixcorp.com) that can be configured to
encrypt outbound messages according to their contents or other rules. Centralized
email encryption is one category of service for which it’s best to use a commercial
solution rather than rolling your own.

At least in the email realm, data loss prevention (DLP) is a kissing cousin to cen-
tralized encryption. DLP systems seek to avoid—or at least, detect—the leakage of
proprietary information into the stream of email leaving your organization. They
scan outbound email for potentially sensitive content. Suspicious messages can be
flagged, blocked, or returned to their senders. Our recommendation is that you
choose a centralized encryption platform that also includes DLP capability; it’s one
less platform to manage.

In addition to encrypting transport between MTAs, it’s important to ensure that
user-agent-to-access-agent communication is always encrypted, especially because
this channel typically employs some form of user credentials to connect. Make
sure that only the secure, TLS-using versions of the IMAP and POP protocols are
allowed by access agents. (These are known as IMAPS and POP3S, respectively.)

18.6	 Mail aliases
Another concept that is common to all MTAs is the use of aliases. Aliases allow mail
to be rerouted either by the system administrator or by individual users.7 Aliases
can define mailing lists, forward mail among machines, or allow users to be referred
to by more than one name. Alias processing is recursive, so it’s legal for an alias to
point to other destinations that are themselves aliases.

Sysadmins often use role or functional aliases (e.g., printers@example.com) to route
email about a particular issue to whatever person is currently handling that issue.
Other examples might include an alias that receives the results of a nightly security
scan or an alias for the postmaster in charge of email.

	 6.	 Pro tip: If you use PGP/GPG or S/MIME, you can increase your odds of remaining secure by ensur-
ing that your public key or certificate is expired and replaced frequently. Long-term use of a key in-
creases the likelihood that it will be compromised without your awareness.

	 7.	 Technically, aliases are configured only by sysadmins. A user’s control of mail routing through the use
of a .forward file is not really aliasing, but we have lumped them together here.

See page 1008 for
more informa-
tion about TLS.

http://zixcorp.com
mailto:printers@example.com

	 Mail aliases	 609

Em
ai

l

The most common method for configuring aliases is to use a simple flat file such as
the /etc/mail/aliases file discussed later in this section. This method was originally
introduced by sendmail, but Exim and Postfix support it, too.

Most user agents also provide some sort of “aliasing” feature (usually called “my
groups,” “my mailing lists,” or something of that nature). However, the user agent
expands such aliases before mail ever reaches an MSA or MTA. These aliases are
internal to the user agent and don’t require support from the rest of the mail system.

Aliases can also be defined in a forwarding file in the home directory of each user,
usually ~/.forward. These aliases, which use a slightly nonstandard syntax, apply
to all mail delivered to that particular user. They’re often used to forward mail to a
different account or to implement automatic “I’m on vacation” responses.

MTAs look for aliases in the global aliases file (/etc/mail/aliases or /etc/aliases)
and then in recipients’ forwarding files. Aliasing is applied only to messages that
the transport agent considers to be local.

The format of an entry in the aliases file is

local-name: recipient1,recipient2,...

where local-name is the original address to be matched against incoming messages
and the recipient list contains either recipient addresses or the names of other aliases.
Indented lines are considered continuations of the preceding lines.

From mail’s point of view, the aliases file supersedes /etc/passwd, so the entry

david: david@somewhere-else.edu

would prevent the local user david from ever receiving any mail. Therefore, admin-
istrators and adduser tools should check both the passwd file and the aliases file
when selecting new usernames.

The aliases file should always contain an alias named “postmaster” that forwards mail
to whoever maintains the mail system. Similarly, an alias for “abuse” is appropriate
in case someone outside your organization needs to contact you regarding spam
or suspicious network behavior that originates at your site. An alias for automatic
messages from the MTA must also be present; it’s usually called Mailer-Daemon
and is often aliased to postmaster.

Sadly, the mail system is so commonly abused these days that some sites configure
their standard contact addresses to throw mail away instead of forwarding it to a
human user. Entries such as

Basic system aliases -- these MUST be present
mailer-daemon:	 postmaster
postmaster:		 "/dev/null"

are common. We don’t recommend this practice, because humans who are having
trouble reaching your site by email do sometimes write to the postmaster address.

mailto:david@somewhere-else.edu

610	 Chapter 18	 Electronic Mail	

A better paradigm might be

Basic system aliases -- these MUST be present
mailer-daemon:	 "/dev/null"
postmaster:		 root

You should redirect root’s mail to your site’s sysadmins or to someone who logs in
every day. The bin, sys, daemon, nobody, and hostmaster accounts (and any other
site-specific pseudo-user accounts you set up) should all have similar aliases.

In addition to a list of users, aliases can refer to

•	 A file containing a list of addresses
•	 A file to which messages should be appended
•	 A command to which messages should be given as input

These last two targets should push your “What about security?” button, because the
sender of a message totally determines its content. Being able to append that con-
tent to a file or deliver it as input to a command sounds pretty scary. Many MTAs
either disallow these alias targets or severely limit the commands and file permis-
sions that are acceptable.

Aliases can cause mail loops. MTAs try to detect loops that would cause mail to be
forwarded back and forth forever and return the errant messages to the sender. To
determine when mail is looping, an MTA can count the number of Received lines
in a message’s header and stop forwarding it when the count reaches a preset limit
(usually 25). Each visit to a new machine is called a “hop” in email jargon; returning
a message to the sender is known as “bouncing” it. So a more typically jargonized
summary of loop handling would be, “Mail bounces after 25 hops.”8 Another way
MTAs can detect mail loops is by adding a Delivered-To header for each host to
which a message is forwarded. If an MTA finds itself wanting to send a message
to a host that’s already mentioned in a Delivered-To header, it knows the message
has traveled in a loop.

Getting aliases from files
The :include: directive in the aliases file (or a user’s .forward file) allows the list of
targets for the alias to be taken from the specified file. It is a great way to let users
manage their own local mailing lists. The included file can be owned by the user
and changed without involving a system administrator. However, such an alias can
also become a tasty and effective spam expander, so don’t let email from outside
your site be directed there.

	 8.	 In this chapter, we sometimes call a returned message a “bounce” and sometimes call it an “error.”
What we really mean is that a delivery status notification (DSN, a specially formatted email message)
has been generated. Such a notification usually means that a message was undeliverable and is there-
fore being returned to the sender.

	 Mail aliases	 611

Em
ai

l

When setting up a list to use :include:, the sysadmin must enter the alias into the
global aliases file, create the included file, and chown the included file to the user
that is maintaining the mailing list. For example, the aliases file might contain

sa-book: :include:/usr/local/mail/ulsah.authors

The file ulsah.authors should be on a local filesystem and should be writable only
by its owner. To be complete, we should also include aliases for the mailing list’s
owner so that errors (bounces) are sent to the owner of the list and not to the sender
of a message addressed to the list:

owner-sa-book: evi

Mailing to files
If the target of an alias is an absolute pathname, messages are appended to the spec-
ified file. The file must already exist. For example:

cron-status: /usr/local/admin/cron-status-messages

If the pathname includes special characters, it must be enclosed in double quotes.

It’s useful to be able to send mail to files, but this feature arouses the interest of the
security police and is therefore restricted. This syntax is only valid in the aliases
file and in a user’s .forward file (or in a file that’s interpolated into one of these files
with the :include: directive). A filename is not understood as a normal address,
so mail addressed to /etc/passwd@example.com would bounce.

If the destination file is referenced from the aliases file, it must be world-writable
(not advisable), setuid but not executable, or owned by the MTA’s default user. The
identity of the default user is set in the MTA’s configuration file.

If the file is referenced in a .forward file, it must be owned and writable by the orig-
inal message recipient, who must be a valid user with an entry in the passwd file
and a valid shell that’s listed in /etc/shells. For files owned by root, use mode 4644
or 4600, setuid but not executable.

Mailing to programs
An alias can also route mail to the standard input of a program. This behavior is
specified with a line such as

autolog: "|/usr/local/bin/autologger"

It’s even easier to create security holes with this feature than with mailing to a file,
so once again it is only permitted in aliases, .forward, or :include: files, and often
requires the use of a restricted shell.

mailto:to/etc/passwd@example.com
mailto:to/etc/passwd@example.com

612	 Chapter 18	 Electronic Mail	

Building the hashed alias database
Since entries in the aliases file are unordered, it would be inefficient for the MTA to
search this file directly. Instead, a hashed version is constructed with the Berkeley DB
system. Hashing significantly speeds alias lookups, especially when the file gets large.

The file derived from /etc/mail/aliases is called aliases.db. If you are running Postfix
or sendmail, you must rebuild the hashed database with the newaliases command
every time you change the aliases file. Exim detects changes to the aliases file au-
tomatically. Save the error output if you run newaliases automatically—you might
have introduced formatting errors in the aliases file.

18.7	 Email configuration
The heart of an email system is its MTA, or mail transport agent. sendmail is the
original UNIX MTA, written by Eric Allman while he was a graduate student many
years ago. Since then, a host of other MTAs have been developed. Some of them are
commercial products and some are open source implementations. In this chapter,
we cover three open source mail-transport agents: sendmail, Postfix by Wietse
Venema of IBM Research, and Exim by Philip Hazel of the University of Cambridge.

Configuration of the MTA can be a significant sysadmin chore. Fortunately, the
default or sample configurations that ship with MTAs are often close to what the
average site needs. You need not start from scratch when configuring your MTA.

SecuritySpace (securityspace.com) does a survey monthly to determine the market
share of the various MTAs. In their June 2017 survey, 1.7 million out of 2 million
MTAs surveyed replied with a banner that identified the MTA software in use. Ta-
ble 18.3 shows these results, as well as the SecuritySpace results for 2009 and some
2001 values from a different survey.

Table 18.3	 Mail transport agent market share

MTA Source Default MTA on

Market share

2017 2009 2001

Exim exim.org Debian 56% 30% 8%
Postfix postfix.org Red Hat, Ubuntu 33% 20% 2%
Exchange microsoft.com/exchange – 1% 20% 4%
sendmail sendmail.org FreeBSD 5% 19% 60%
All others – – <3% ea <3% ea < 3% ea

The trend is clearly away from sendmail and toward Exim and Postfix, with Micro-
soft dropping to almost nothing. Keep in mind that this data includes only MTAs
that are directly exposed to the Internet.

http://securityspace.com
http://Exchangemicrosoft.com/exchange$$$�

Em
ai

l

	 sendmail	 613

For each of the MTAs we cover, we include details on the common areas of interest:

•	 Configuration of simple clients
•	 Configuration of an Internet-facing mail server
•	 Control of both inbound and outbound mail routing
•	 Stamping of mail as coming from a central server or the domain itself
•	 Security
•	 Debugging

If you are implementing a mail system from scratch and have no site politics or bi-
ases to deal with, you may find it hard to choose an MTA. sendmail is largely out
of vogue, with the possible exception of pure FreeBSD sites. Exim is powerful and
highly configurable but suffers in complexity. Postfix is simpler, faster, and was de-
signed with security as a primary goal. If your site or your sysadmins have a history
with a particular MTA, it’s probably not worth switching unless you need features
that are not available from your old MTA.

sendmail configuration is covered in the next section. Exim configuration begins
on page 640, and Postfix configuration on page 658.

18.8	 sendmail
The sendmail distribution is available in source form from sendmail.org, but it’s
rarely necessary to build sendmail from scratch these days.9 If you must do so, refer
to the top-level INSTALL file for instructions. To tweak some of the build defaults,
look up sendmail’s assumptions in devtools/OS/your-OS-name. Add features by
editing devtools/Site/site.config.m4.

sendmail uses the m4 macro preprocessor not only for compilation but also for
configuration. An m4 configuration file is usually named hostname.mc and is then
translated from a slightly user-friendly syntax into a totally inscrutable low-level
language in the file hostname.cf, which is in turn installed as /etc/mail/sendmail.cf.

To see what version of sendmail is installed on your system and how it was com-
piled, try the following command:

linux$ /usr/sbin/sendmail -d0.1 -bt < /dev/null
Version 8.13.8
 Compiled with: DNSMAP HESIOD HES_GETMAILHOST LDAPMAP LOG MAP_REGEX

MATCHGECOS MILTER MIME7TO8 MIME8TO7 NAMED_BIND NETINET NETINET6
NETUNIX NEWDB NIS PIPELINING SASLv2 SCANF SOCKETMAP STARTTLS
TCPWRAPPERS USERDB USE_LDAP_INIT

============ SYSTEM IDENTITY (after readcf) ============
 (short domain name) $w = ross
 (canonical domain name) $j = ross.atrust.com
 (subdomain name) $m = atrust.com
 (node name) $k = ross.atrust.com
==

	 9.	 As of October 2013, sendmail is supported and distributed by Proofpoint, Inc., a public company.

http://sendmail.org
http://ross.atrust.com
http://atrust.com
http://ross.atrust.com

614	 Chapter 18	 Electronic Mail	

This command puts sendmail in address test mode (-bt) and debug mode (-d0.1)
but gives it no addresses to test (</dev/null). A side effect is that sendmail tells
us its version and the compiler flags it was built with. Once you know the version
number, you can look at the sendmail.org web site to see if any known security
vulnerabilities are associated with that release.

To find the sendmail files on your system, look at the beginning of the installed
/etc/mail/sendmail.cf file. The comments there mention the directory in which
the configuration was built. That directory should in turn lead you to the .mc file
that is the original source of the configuration.

Most vendors that ship sendmail include not only the binary but also the cf direc-
tory from the distribution tree, which they hide somewhere among the operating
system files. Table 18.4 will help you find it.

Table 18.4	 Config directory locations

System Directory

Ubuntu /usr/share/sendmail
Debian /usr/share/sendmail
Red Hat /etc/mail
CentOS /etc/mail
FreeBSD /etc/mail

The switch file
Most systems have a “service switch” configuration file, /etc/nsswitch.conf, that
enumerates the methods that can satisfy various standard queries such as user and
host lookups. If more than one resolution method is listed for a given type of que-
ry, the service switch file also determines the order in which the various methods
are consulted.

The existence of the service switch is normally transparent to software. However,
sendmail likes to exert fine-grained control over its lookups, so it currently ignores
the system switch file and instead uses its own internal service configuration file
(/etc/mail/service.switch).

Two fields in the switch file impact the mail system: aliases and hosts. The pos-
sible values for the hosts service are dns, nis, nisplus, and files. For aliases, the
possible values are files, nis, nisplus, and ldap. Support for the mechanisms you
use (except files) must be compiled into sendmail before the service can be used.

The service switch is
covered in more detail
starting on page 590.

http://sendmail.org

Em
ai

l

	 sendmail	 615

Starting sendmail
sendmail should not be controlled by inetd or systemd, so it must be explicitly
started at boot time. See Chapter 2, Booting and System Management Daemons,
for startup details.

The flags that sendmail is started with determine its behavior. You can run it in
several different modes, selected with the -b flag. -b stands for “be” or “become”
and is always used with another flag that determines the role sendmail will play.
Table 18.5 lists the legal values and also includes the -A flag, which selects between
MTA and MSA behavior.

Table 18.5	 Command-line flags for sendmail’s major modes

Flag Meaning

-Ac Uses the submit.cf config file and acts as an MSA
-Am Uses the sendmail.cf config file and acts as an MTA

-ba Runs in ARPANET mode (expects CR/LF at the ends of lines)
-bd Runs in daemon mode and listens for connections on port 25
-bD Runs in daemon mode, but in the foreground rather than the background a

-bh Views recent connection info (same as hoststat)
-bH Purges disk copy of outdated connection info (same as purgestat)
-bi Initializes hashed aliases (same as newaliases)

-bm Runs as a mailer, delivers mail in the usual way (default)
-bp Prints the mail queue (same as mailq)
-bP Prints the number of entries in queues via shared memory
-bs Enters SMTP server mode (on standard input, not port 25)
-bt Enters address test mode
-bv Verifies mail addresses only; doesn’t send mail

a.	 Use this mode for debugging so you can see the error and debugging messages.

If you are configuring a server that will accept incoming mail from the Internet,
run sendmail in daemon mode (-bd). In this mode, sendmail listens on network
port 25 and waits for work.10 You will usually specify the -q flag, too—it sets the
interval at which sendmail processes the mail queue. For example, -q30m runs the
queue every thirty minutes and ‑q1h runs it every hour.

sendmail normally tries to deliver messages immediately, saving them in the queue
only momentarily to guarantee reliability. But if your host is too busy or the desti-
nation machine is unreachable, sendmail queues messages and tries to send them
again later. sendmail uses persistent queue runners that are usually started at boot
time. It does locking, so multiple, simultaneous queue runs are safe. You can use

	 10.	 The ports that sendmail listens on are determined by DAEMON_OPTIONS; port 25 is the default.

616	 Chapter 18	 Electronic Mail	

the “queue groups” configuration feature to facilitate delivery of large mailing lists
and queues.

sendmail reads its configuration file, sendmail.cf, only when it starts up. Therefore,
you must either kill and restart sendmail or send it a HUP signal when you change
the config file. sendmail creates a sendmail.pid file that contains its process ID
and the command that started it. You should start sendmail with an absolute path
because it re-execs itself on receipt of the HUP signal. The sendmail.pid file allows
the process to be HUPed with the command

$ sudo kill -HUP `head -1 sendmail.pid`

The location of the PID file is OS dependent. It’s usually /var/run/sendmail.pid or
/etc/mail/sendmail.pid but can be set in the config file with the confPID_FILE option:

define(confPID_FILE, `/var/run/sendmail.pid')

Mail queues
sendmail uses at least two queues: /var/spool/mqueue when acting as an MTA
on port 25, and /var/spool/clientmqueue when acting as an MSA on port 587.11
All messages make at least a brief stop in the queue before being sent on their way.

A queued message is saved in pieces in several different files. Table 18.6 shows the
six possible pieces. Each filename has a two-letter prefix that identifies the piece,
followed by a random ID built from sendmail’s process ID.

Table 18.6	 Prefixes for files in the mail queue

Prefix File contents

qf The message header and control file
df The body of the message
tf A temporary version of the qf file while the qf file is being updated
Tf A notice that 32 or more failed locking attempts have occurred
Qf A notice that the message bounced and could not be returned
xf Temporary transcript file of error messages from mailers

If subdirectories qf, df, or xf exist in a queue directory, then those pieces of the
message are put in the proper subdirectory. The qf file contains not only the mes-
sage header but also the envelope addresses, the date at which the message should
be returned as undeliverable, the message’s priority in the queue, and the reason
the message is in the queue. Each line begins with a single-letter code that identi-
fies the rest of the line.

	 11.	 sendmail can use multiple queues beneath mqueue to increase performance.

Em
ai

l

	 sendmail	 617

Each message that is queued must have a qf and df file. All the other prefixes are
used by sendmail during attempted delivery. When a machine crashes and reboots,
the startup sequence for sendmail should delete the tf, xf, and Tf files from each
queue. If you are the sysadmin responsible for mail, check occasionally for Qf files
in case local configuration is causing the bounces. An occasional glance at the queue
directories lets you spot problems before they become disasters.

The mail queue opens up several opportunities for things to go wrong. For exam-
ple, the filesystem can fill up (avoid putting /var/spool/mqueue and /var/log on
the same partition), the queue can become clogged, or orphaned mail messages
can get stuck in the queue. sendmail has configuration options to help with per-
formance on busy machines.

sendmail configuration
sendmail is controlled by a single configuration file, typically called /etc/mail/sendmail.cf
for a sendmail running as an MTA or /etc/mail/submit.cf for a sendmail acting
as an MSA. The flags with which sendmail is started determine which config file it
uses: -bm, -bs, and -bt use submit.cf if it exists, and all other modes use sendmail.cf.
You can change these names with command-line flags or config file options, but
it is best not to.

The raw config file format was designed to be easy to parse by machines, not humans.
The m4 source (.mc) file from which the .cf file is generated is an improvement, but
its picky and rigid syntax isn’t going to win any awards for user friendliness either.
Fortunately, many of the paradigms you might want to set up have already been
hammered out by others with similar needs and are supplied in the distribution
as prepackaged features.

sendmail configuration involves several steps:

1.	 Determine the role of the machine you are configuring: client, server,
Internet-facing mail receiver, etc.

2.	 Choose the features needed to implement that role and build an .mc file
for the configuration

3.	 Compile the .mc file with m4 to produce a .cf config file

We cover the features commonly used for site-wide, Internet-facing servers and for
little desktop clients. For more detailed coverage, we refer you to two key pieces of
documentation on the care and feeding of sendmail: the O’Reilly book sendmail
by Bryan Costales et al. and the file cf/README from the distribution.

The m4 preprocessor
m4, originally intended as a front end for programming languages, lets users write
more readable (or perhaps more cryptic) programs. m4 is powerful enough to be

618	 Chapter 18	 Electronic Mail	

useful in many input transformation situations, and it works nicely for sendmail
configuration files.

m4 macros have the form

name(arg1, arg2, ..., argn)

There cannot be any space between the name and the opening parenthesis. Left and
right single quotes (that is, backticks and “normal” single quotes) designate strings
as arguments. m4’s quote conventions are weird, since the left and right quotes are
different characters. Quotes nest, too.

m4 has some built-in macros, and users can also define their own. Table 18.7 lists
the most common built-in macros that are used in sendmail configuration.

Table 18.7	 m4 macros commonly used with sendmail

Macro Function

define Defines a macro named arg1 with value arg2
divert Manages output streams
dnl Discards characters up to and including the next newline
include Includes (interpolates) the file named arg1
undefine Discards a previous definition of macro named arg1

The sendmail configuration pieces
The sendmail distribution includes a cf subdirectory beneath which are all the
pieces necessary for m4 configuration. Table 18.4 on page 614 shows the location
of the cf directory if you did not install the sendmail source but relied on your
vendor. The README file found in the cf directory is sendmail’s configuration
documentation. The subdirectories, listed in Table 18.8, contain examples and snip-
pets you can include in your own configuration.

The cf/cf directory contains examples of .mc files. In fact, it contains so many ex-
amples that yours may get lost in the clutter. We recommend that you keep your
own .mc files separate from those in the distributed cf directory. Either create a
new directory named for your site (cf/sitename) or move the cf directory aside to
cf.examples and create a new cf directory. If you do this, copy the Makefile and
Build script over to your new directory so the instructions in the README file
still work. Alternatively, you can copy all your own configuration .mc files to a cen-
tral location rather than leaving them inside the sendmail distribution. The Build
script uses relative pathnames, so you’ll have to modify it if you want to build a .cf
file from an .mc file and are not in the sendmail distribution hierarchy.

The files in the cf/ostype directory configure sendmail for each specific operating
system. Many are predefined, but if you have moved things around on your system,

 	

Em
ai

l

 	

Table 18.8	 sendmail configuration subdirectories

Directory Contents

cf Sample .mc (master configuration) files
domain Sample m4 files for various domains at Berkeley
feature Fragments that implement various features
hack Special features of dubious value or implementation
m4 The basic config file and other core files
mailer m4 files that describe common mailers (delivery agents)
ostype OS-dependent file locations and quirks
sh Shell scripts used by m4

	 sendmail	 619

you might have to modify one or create a new one. Copy one that is close to reality
for your system and give it a new name.

The cf/feature directory is where you shop for any configuration pieces you might
need. There is a feature for just about anything that any site running sendmail has
found useful.

The other directories beneath cf are pretty much boilerplate and do not need to be
tweaked or even understood—just use them.

A configuration file built from a sample .mc file
Before we take off into the wilds of the various configuration macros, features, and
options you might use in a sendmail configuration, we shall put the cart before the
horse and devise a “no frills” configuration to illustrate the general process. Our
example is for a leaf node, myhost.example.com; the master configuration file is
called myhost.mc. Here’s the complete .mc file:

divert(-1)
basic .mc file for example.com
divert(0)
VERSIONID(`Id')
OSTYPE(`linux')
MAILER(`local')
MAILER(`smtp')

Except for the diversions and comments, each line invokes a prepackaged macro.
The first four lines are boilerplate; they insert comments in the compiled file to note
the version of sendmail, the directory the configuration was built in, etc. The OSTYPE
macro includes the ../ostype/linux.m4 file. The MAILER lines allow for local delivery
(to users with accounts on myhost.example.com) and for delivery to Internet sites.

To build the real configuration file, just run the Build command you copied over
to the new cf directory:

$./Build myhost.cf

http://myhost.example.com
http://example.com
http://myhost.example.com

620	 Chapter 18	 Electronic Mail	

Finally, install myhost.cf in the right spot—normally /etc/mail/sendmail.cf, but
some vendors move it. Favorite vendor hiding places are /etc and /usr/lib.

At a larger site, you might want to create a separate m4 file to hold site-wide defaults;
put it in the cf/domain directory. Individual hosts can then include the contents
of this file with the DOMAIN macro. Not every host needs a separate config file, but
each group of similar hosts (same architecture and same role: server, client, etc.)
will probably need its own configuration.

The order of the macros in the .mc file is not arbitrary. It should be

VERSIONID
OSTYPE
DOMAIN
FEATURE
local macro definitions
MAILER

Even with sendmail’s easy m4 configuration system, you still have to make several
configuration decisions for your site. As you read about the features described be-
low, think about how they might fit into your site’s organization. A small site will
probably have only a hub node and leaf nodes and thus will need only two versions
of the config file. A larger site might need separate hubs for incoming and outgoing
mail and, perhaps, a separate POP/IMAP server.

Whatever the complexity of your site and whatever face it shows to the outside world
(exposed, behind a firewall, or on a virtual private network, for example), it’s likely
that the cf directory contains some appropriate ready-made configuration snippets
just waiting to be customized and put to work.

Configuration primitives
sendmail configuration commands are case sensitive. By convention, the names of
predefined macros are all caps (e.g., OSTYPE), m4 commands are all lower case (e.g.,
define), and configurable option names usually start with lowercase conf and end
with an all-caps variable name (e.g., confFAST_SPLIT). Macros usually refer to an
m4 file called ../macroname/arg1.m4. For example, the reference OSTYPE(`linux')
causes the file ../ostype/linux.m4 to be included.

Tables and databases
Before we plunge into specific configuration primitives, we must first discuss tables
(sometimes called maps or databases), which sendmail can use to perform mail
routing or address rewriting. Most are used in conjunction with the FEATURE macro.

A table is a cache (usually a text file) of routing, aliasing, policy, or other informa-
tion that is converted to a database format with the makemap command and then
used as an information source for one or more of sendmail’s various lookup oper-
ations. Although the data usually starts as a text file, data for sendmail tables can

Em
ai

l

	 sendmail	 621

come from DNS, LDAP, or other sources. The use of a centralized IMAP server re-
lieves sendmail of the chore of chasing down users and obsoletes some of its tables.

sendmail defines three database map types:

•	 dbm – legacy; uses an extensible hashing algorithm (dbm/ndbm)
•	 hash – uses a standard hashing scheme (DB)
•	 btree – uses a B-tree data structure (DB)

For most table applications in sendmail, the hash database type—the default—is
the best. Use the makemap command to build the database file from a text file;
you specify the database type and the output file base name. The text version of the
database should appear on makemap’s standard input. For example:

$ sudo makemap hash /etc/mail/access < /etc/mail/access

At first glance this command looks like a mistake that would cause the input file to
be overwritten by an empty output file. However, makemap tacks on an appropriate
suffix, so the actual output file is /etc/mail/access.db and in fact no conflict occurs.
Each time the text file is changed, the database file must be rebuilt with makemap
(but sendmail need not be HUP’d).

Comments can appear in the text files from which maps are produced. They begin
with # and continue until the end of the line.

In most circumstances, the longest possible match is used for database keys. As
with any hashed data structure, the order of entries in the input text file is not sig-
nificant. Some FEATUREs expect a database file as a parameter; they default to hash
as the database type and /etc/mail/tablename.db as the filename for the database.

Generic macros and features
Table 18.9 on the next page lists common configuration primitives, whether they
are typically used (yes, no, maybe), and a brief description of what they do.

OSTYPE macro
An OSTYPE file packages a variety of vendor-specific information, such as the ex-
pected locations of mail-related files, paths to commands that sendmail needs, flags
to mailer programs, etc. See cf/README for a list of all the variables that can be
defined in an OSTYPE file.12

DOMAIN macro
The DOMAIN directive lets you specify site-wide generic information in one place
(cf/domain/filename.m4) and then include it in each host’s config file with

DOMAIN(`filename')

	 12.	 So where is the OSTYPE macro itself defined? In a file in the cf/m4 directory, which is magically pre-
pended to your config file when you run the Build script.

622	 Chapter 18	 Electronic Mail	

Table 18.9	 sendmail generic configuration primitives

Primitive Used? a Description

OSTYPE Yes Includes OS-specific paths and mailer flags
DOMAIN No Includes site-specific configuration details
MAILER Yes Enables mailers, typically smtp and local
FEATURE Maybe Enables a variety of sendmail features
 use_cw_file Yes (S) Lists hosts for which you accept mail
 redirect Maybe (S) Bounces mail nicely when users move
 always_add_domain Yes Fully qualifies hostnames if UA didn’t
 access_db Maybe (S) Sets database of hosts to relay mail for
 virtusertable Maybe (S) Turns on domain aliasing (virtual domains)
 ldap_routing Maybe (S) Routes incoming mail using LDAP
MASQUERADE_AS Yes Makes all mail seem to come from one place
EXPOSED_USER Yes Lists users who shouldn’t be masqueraded
MAIL_HUB Yes (S) Specifies mail server for incoming mail
SMART_HOST Yes (C) Specifies mail server for outgoing mail

a.	 S = servers, C = clients

MAILER macro
You must include a MAILER macro for every delivery agent you want to enable. You’ll
find a complete list of supported mailers in the directory cf/mailers, but typically you
need only local and smtp. MAILER lines are generally the last thing in the .mc file.

FEATURE macro
The FEATURE macro enables a whole host of common scenarios (56 at last count!)
by including m4 files from the feature directory. The syntax is

FEATURE(keyword, arg, arg, ...)

where keyword corresponds to a file keyword.m4 in the cf/feature directory and the
args are passed to it. There can be at most nine arguments to a feature.

use_cw_file feature
The sendmail internal class w (hence the name cw) contains the names of all local
hosts for which this host accepts and delivers mail. This feature specifies that mail
be accepted for the hosts listed, one per line, in /etc/mail/local-host-names. The
configuration line

FEATURE(`use_cw_file')

invokes the feature. A client machine does not really need this feature unless it has
nicknames, but your incoming mail hub machine does. The local-host-names file

Em
ai

l

	 sendmail	 623

should include any local hosts and virtual domains for which you accept email, in-
cluding sites whose backup MX records (see page 521) point to you.

Without this feature, sendmail delivers mail locally only if it is addressed to the
machine on which sendmail is running.

If you add a new host at your site, you must add it to the local-host-names file and
send a HUP signal to sendmail to make your changes take effect.

redirect feature
When people leave your organization, you usually either forward their mail or let
mail to them bounce back to the sender with an error. The redirect feature pro-
vides support for a more elegant way of bouncing mail.

If Joe Smith has graduated from oldsite.edu (login smithj) to newsite.com (login
joe), then enabling redirect with

FEATURE(`redirect')

and adding the line

smithj: joe@newsite.com.REDIRECT

to the aliases file at oldsite.edu causes mail to smithj to be returned to the sender
with an error message suggesting that the sender try the address joe@newsite.com
instead. The message itself is not automatically forwarded.

always_add_domain feature
The always_add_domain feature makes all email addresses fully qualified. It should
always be used.

access_db feature
The access_db feature controls relaying and other policy issues. Typically, the raw
data that drives this feature either comes from LDAP or is kept in a text file called
/etc/mail/access. In the latter case, the text file must be converted to some kind
of indexed format with the makemap command, as described on page 620. To
use the flat file, use FEATURE(`access_db') in the configuration file; for the LDAP
version, use FEATURE(`access_db', `LDAP').13

The key field in the access database is an IP network or a domain name with an
optional tag such as Connect:, To:, or From:. The value field specifies what to do
with the message.

The most common values are OK to accept the message, RELAY to allow it to be re-
layed, REJECT to reject it with a generic error indication, or ERROR:"error code and

	 13.	 This form uses the default LDAP schema defined in the file cf/sendmail.schema; if you want a differ-
ent schema file, use additional arguments in your FEATURE statement.

http://oldsite.edu
http://newsite.com
mailto:joe@newsite.com
http://oldsite.edu
mailto:joe@newsite.com

624	 Chapter 18	 Electronic Mail	

message" to reject it with a specific message. Other possible values allow for fin-
er-grained control. Here is a snippet from a sample /etc/mail/access file:

localhost		 RELAY
127.0.0.1		 RELAY
192.168.1.1		 RELAY
192.168.1.17	 RELAY
66.77.123.1		 OK
fax.com			 OK
61				 ERROR:"550 We don't accept mail from spammers"
67.106.63		 ERROR:"550 We don't accept mail from spammers"

virtusertable feature
The virtusertable feature supports domain aliasing for incoming mail through a
map stored in /etc/mail/virtusertable. This feature lets one machine host multiple
virtual domains and is used frequently at web-hosting sites. The key field of the
table contains either an email address (user@host.domain) or a domain specifica-
tion (@domain). The value field is a local or external email address. If the key is a
domain, the value can either pass the user field along as the variable %1 or route
the mail to a different user. Here are some examples:

@appliedtrust.com		 %1@atrust.com
unix@book.admin.com		 sa-book-authors@atrust.com
linux@book.admin.com	 sa-book-authors@atrust.com
webmaster@example.com	 billy.q.zakowski@colorado.edu
info@testdomain.net		 ausername@hotmail.com

All the host keys on the left side of the data mappings must be listed in the cw file,
/etc/mail/local-host-names, or be included in the VIRTUSER_DOMAIN list. If they
are not, sendmail will not know to accept the mail locally and will try to find the
destination host on the Internet. But DNS MX records will point sendmail back
to this same server and you will get a “local configuration error” message in the
resulting bounce message. Unfortunately, sendmail cannot tell that the error mes-
sage for this instance should in fact be “virtusertable key not in cw file.”

ldap_routing feature
LDAP, the Lightweight Directory Access Protocol, can be a source of data for aliases
or mail routing information as well as general tabular data as described earlier. The
cf/README file has a long section on LDAP with lots of examples.

To use LDAP in this way, you must have built sendmail to include LDAP support.
In your .mc file, add the lines

define(`confLDAP_DEFAULT_SPEC', `-h server -b searchbase')
FEATURE(`ldap_routing')
LDAPROUTE_DOMAIN(`my_domain')

See page 580 for
general informa-
tion about LDAP.

http://fax.com
mailto:@appliedtrust.com
mailto:1@atrust.com
mailto:unix@book.admin.com
mailto:sa-book-authors@atrust.com
mailto:linux@book.admin.com
mailto:sa-book-authors@atrust.com
mailto:webmaster@example.com
mailto:billy.q.zakowski@colorado.edu
mailto:info@testdomain.net
mailto:ausername@hotmail.com

Em
ai

l

	 sendmail	 625

Those lines tell sendmail that you want to use an LDAP database to route incoming
mail addressed to the specified domain. The LDAP_DEFAULT_SPEC option identifies
the LDAP server and the LDAP basename for searches. LDAP uses port 389 unless
you specify a different port by adding -p ldap_port to the define.

sendmail uses the values of two tags in the LDAP database:

•	 mailLocalAddress for the addressee on incoming mail
•	 mailRoutingAddress for the destination to which email should be sent

sendmail also supports the tag mailHost, which if present routes mail to the
MX-designated mail handler for the specified host. The recipient address remains
the value of the mailRoutingAddress tag.

LDAP database entries support a wild card entry, @domain, that reroutes mail
addressed to anyone at the specified domain (as was done in the virtusertable).

By default, mail addressed to user@host1.mydomain would first trigger a lookup
on user@host1.mydomain. If that failed, sendmail would try @host1.mydomain
but not user@mydomain. Including the line

LDAPROUTE_EQUIVALENT(`host1.mydomain')

would also try the keys user@mydomain and @mydomain. This feature enables a
single database to route mail at a complex site. You can also take the entries for the
LDAPROUTE_EQUIVALENT clauses from a file, which makes the feature quite usable.
The syntax for that form is

LDAPROUTE_EQUIVALENT_FILE(`filename')

Additional arguments to the ldap_routing feature let you specify more details about
the LDAP schema and control the handling of addressee names that have a +detail
part. As always, see the cf/README file for exact details.

Masquerading features
An email address is usually made up of a username, a host, and a domain, but many
sites do not want the names of their internal hosts exposed on the Internet. The
MASQUERADE_AS macro lets you specify a single identity for other machines to
hide behind. All mail appears to emanate from the designated machine or domain.
This is fine for regular users, but for debugging purposes, system users such as root
should be excluded from the masquerade.

For example, the sequence

MASQUERADE_AS(`atrust.com')
EXPOSED_USER(`root')
EXPOSED_USER(`Mailer-Daemon')

would stamp mail as coming from user@atrust.com unless it was sent by root or the
mail system; in these cases, the mail would carry the name of the originating host.

http://`atrust.com'
mailto:user@atrust.com

626	 Chapter 18	 Electronic Mail	

MASQUERADE_AS is actually just the tip of a vast masquerading iceberg that extends
downward through a dozen variations and exceptions. The allmasquerade and
masquerade_envelope features (in combination with MASQUERADE_AS) hide just
the right amount of local info. See the cf/README for details.

MAIL_HUB and SMART_HOST macros
Masquerading makes all mail appear to come from a single host or domain by re-
writing the headers and, optionally, the envelope. But most sites want all mail to
actually come from (or go to) a single machine so that they can control the flow
of viruses, spam, and company secrets. You can achieve this control with a com-
bination of MX records in DNS, the MAIL_HUB macro for incoming mail, and the
SMART_HOST macro for outgoing mail.

For example, in a structured email implementation, MX records would direct in-
coming email from the Internet to an MTA in the network’s demilitarized zone.
After verification that the received email was free of viruses and spam and was di-
rected to valid local users, the mail could be relayed, with the following define, to
the internal routing MTA for delivery:

define(`MAIL_HUB', `smtp:routingMTA.mydomain')

Likewise, client machines would relay their mail to the SMART_HOST designated in
the nullclient feature in their configuration. The SMART_HOST could then filter for
viruses and spam so that mail from your site did not pollute the Internet.

The syntax of SMART_HOST parallels that of MAIL_HUB, and the default delivery
agent is again relay. For example:

define(`SMART_HOST', `smtp:outgoingMTA.mydomain')

You can use the same machine as the server for both incoming and outgoing mail.
Both the SMART_HOST and the MAIL_HUB must allow relaying, the first from clients
inside your domain and the second from the MTA in the DMZ.

Client configuration
Most of your site’s machines should be configured as clients who just submit outgoing
mail generated by users and don’t receive mail at all. One of sendmail’s FEATUREs,
nullclient, is just right for this situation. It creates a config file that forwards all

See page 521 for more
information about
DNS MX records.

See the next section
for more about
nullclient.

Em
ai

l

	 sendmail	 627

mail to a central hub over SMTP. The entire config file, after the VERSIONID and
OSTYPE lines, would be simply

FEATURE(`nocanonify')
FEATURE(`nullclient', `mailserver')
EXPOSED_USER(`root')

where mailserver is the name of your central hub. The nocanonify feature tells sendmail
not to do DNS lookups or rewrite addresses with fully qualified domain names. All
that work will be done by the mailserver host. This feature is similar to SMART_HOST
and assumes that the client will MASQUERADE_AS mailserver. The EXPOSED_USER
clause exempts root from the masquerading and so facilitates debugging.

The mailserver machine must allow relaying from its null clients. That permission
is granted in the access_db, described on page 623. The null client must have an
associated MX record that points to mailserver and must also be included in the
mailserver’s cw file (usually /etc/mail/local-host-names). These settings allow the
mailserver to accept mail for the client.

sendmail should run as an MSA (without the -bd flag) if the user agents on the
client machine can be taught to use port 587 for submitting mail. If not, you can
run sendmail in daemon mode (-bd), but set the DAEMON_OPTIONS configuration
option to listen for connections only on the loopback interface.

m4 configuration options
You set config file options with the m4 define command. A complete list of options
that are accessible as m4 variables (along with their default values) is given in the
cf/README file.

The defaults are OK for a typical site that is not too paranoid about security and
not too concerned with performance. The defaults try to protect you from spam
by turning off relaying, by requiring addresses to be fully qualified, and by requir-
ing that senders’ domains resolve to an IP address. If your mail hub machine is
busy and services a lot of mailing lists, you might need to tweak some of the per-
formance values.

Table 18.10 on the next page lists some options that you might need to adjust (about
10% of over 175 configuration options). Their default values are shown in paren-
theses. To save space, the option names are shown without their conf prefix; for
example, the FAST_SPLIT option is actually named confFAST_SPLIT. We divided the
table into subsections that identify the kind of issue the variable addresses: resource
management, performance, security and spam abatement, and miscellaneous op-
tions. Some options fit in more than one category, but we have listed them only once.

628	 Chapter 18	 Electronic Mail	

Table 18.10	 Basic sendmail configuration options

Option name Description (default value)

Re
so

ur
ce

s MAX_DAEMON_CHILDREN Max number of child processes a (no limit)
MAX_MESSAGE_SIZE Max size in bytes of a single message (infinite)
MIN_FREE_BLOCKS Min filesystem space to accept mail (100)
TO_lots_of_stuff Timeouts for all kinds of things (various)

Pe
rfo

rm
an

ce

DELAY_LA Load avg. to slow deliveries (0 = no limit)
FAST_SPLIT Suppresses MX lookups as recipients are sorted

and split across queues (1 = true)
MCI_CACHE_SIZE # of open outgoing TCP connections cached (2)
MCI_CACHE_TIMEOUT Time to keep cached connections open (5m)
MIN_QUEUE_AGE Minimum time jobs must stay in queue (0)
QUEUE_LA Load average at which mail should be queued

instead of delivered immediately (8 * #CPUs)
REFUSE_LA Load avg. at which to refuse mail (12 * #CPUs)

Se
cu

rit
y

an
d

sp
am

AUTH_MECHANISMS SMTP auth mechanisms b

CONNECTION_RATE_THROTTLE Limits connection acceptance rate (no limit)
DONT_BLAME_SENDMAIL Overrides security and file checking (safe) c

MAX_MIME_HEADER_LENGTH Sets max size of MIME headers (no limit) d

MAX_RCPTS_PER_MESSAGE Slows spam delivery; defers extra recipients
and sends a temporary error msg (infinite)

PRIVACY_FLAGS Limits info given out by SMTP (authwarnings)

M
isc

DOUBLE_BOUNCE_ADDRESS Catches lots of spam; some sites use /dev/null,
which can hide serious problems (postmaster)

LDAP_DEFAULT_SPEC Map spec for LDAP database, including the
host/port the server is running on (undefined)

a.	 More specifically, the maximum number of child processes that can run at once. When the limit is
reached, sendmail refuses connections. This option can prevent (or create) denial of service attacks.

b.	The default value is EXTERNAL GSSAPI KERBEROS_V4 DIGEST-MD5 CRAM-MD5; don’t add PLAIN LOGIN,
because the password is transmitted as cleartext. That might be OK internally, but not on the Internet
unless the connection is also secured through the use of SSL.

c.	 Don’t change this setting casually!
d.	This option can prevent user agent buffer overflows. “256/128” is a good value to use—it means 256

bytes per header and 128 bytes per parameter to that header.

Spam-related features in sendmail
sendmail has a variety of features and configuration options that can help you
control spam and viruses:

•	 Rules that control third party (aka promiscuous, aka open) relaying; that
is, the use of your mail server by one off-site user to send mail to another

Em
ai

l

	 sendmail	 629

off-site user. Spammers often use relaying to mask the true source of their
mail and thereby avoid detection by ISPs. Relaying also lets spammers use
your cycles and save their own.

•	 The access database for filtering recipient addresses. This feature is rather
like a firewall for email.

•	 Blacklists that catalog open relays and known spam-friendly sites that
sendmail can check against.

•	 Throttles that can slow down mail acceptance when certain types of bad
behavior are detected.

•	 Header checking and input mail filtering by means of a generic mail fil-
tering interface called libmilter. It allows arbitrary scanning of message
headers and content and lets you reject messages that match a particular
profile. Milters are plentiful and powerful; see milter.org.

Relay control
sendmail accepts incoming mail, looks at the envelope addresses, decides where
the mail should go, and then passes the message along to an appropriate destination.
That destination can be local or it can be another transport agent farther along in
the delivery chain. When an incoming message has no local recipients, the trans-
port agent that handles it is said to be acting as a relay.

Only hosts that are tagged with RELAY in the access database (see page 623) or
that are listed in /etc/mail/relay-domains are allowed to submit mail for relaying.
Some types of relaying are useful and legitimate. How can you tell which messages
to relay and which to reject? Relaying is actually necessary in only three situations:

•	 When the transport agent acts as a gateway for hosts that are not reachable
in any other way; for example, hosts that are not always turned on (lap-
tops, Windows PCs) and virtual hosts. In this situation, all the recipients
for which you want to relay lie within the same domain.

•	 When the transport agent is the outgoing mail server for other, not-so-
smart hosts. In this case, all the senders’ hostnames or IP addresses are
local (or at least enumerable).

•	 When you have agreed to be a backup MX destination for another site.

Any other situation that appears to require relaying is probably just an indication of
bad design (with the possible exception of support for mobile users). You can obviate
the first use of relaying (above) by designating a centralized server to receive mail,
with POP or IMAP being used for client access. The second case should always be
allowed, but only for your own hosts. You can check IP addresses or hostnames. In
the third case, you can list the other site in your access database and allow relaying
just for that site’s IP address blocks.

http://milter.org

630	 Chapter 18	 Electronic Mail	

Although sendmail comes with relaying turned off by default, several features can
turn relaying back on, either fully or in a limited and controlled way. These features
are listed below for completeness, but our recommendation is that you be careful
about opening things up too much. The access_db feature is the safest way to al-
low limited relaying.

•	 FEATURE(`relay_entire_domain') – allows relaying for just your domain
•	 RELAY_DOMAIN(`domain, ...') – adds more domains to be relayed
•	 RELAY_DOMAIN_FILE(`filename') – same; takes domain list from a file
•	 FEATURE(`relay_hosts_only') – affects RELAY_DOMAIN, accessdb

You need to make an exception if you use the SMART_HOST or MAIL_HUB designa-
tions to route mail through a particular mail server machine. That server must be
set up to relay mail from local hosts. Configure it with

FEATURE(`relay_entire_domain')

If you consider turning on relaying in some form, consult the sendmail documen-
tation in cf/README to be sure you don’t inadvertently become a friend of spam-
mers. When you are done, have one of the relay-checking sites verify that you did
not inadvertently create an open relay—try spamhelp.org.

User or site blacklisting
If you have local users or hosts to which you want to block mail, use

FEATURE(`blacklist_recipients')

It supports the following types of entries in your access file:

To:nobody@				 ERROR:550 Mailbox disabled for this user
To:printer.mydomain		 ERROR:550 This host does not accept mail
To:user@host.mydomain	 ERROR:550 Mailbox disabled for this user

These lines block incoming mail to user nobody on any host, to host printer, and to
a particular user’s address on one machine. The use of the To: tag lets these users
send messages, just not receive them; some printers have that capability.

To include a DNS-style blacklist for incoming email, use the dnsbl feature:

FEATURE(`dnsbl', `zen.spamhaus.org')

This feature makes sendmail reject mail from any site whose IP address is in any
of the three blacklists of known spammers (SBL, XBL, and PBL) maintained at
spamhaus.org. Other lists catalog sites that run open relays and blocks of addresses
that are known to be havens for spammers. These blacklists are distributed through
a clever tweak of the DNS system; hence the name dnsbl.

You can pass a third argument to the dnsbl feature to specify the error message
you would like returned. If you omit this argument, sendmail returns a fixed error
message from the DNS database that contains the records.

You can include the dnsbl feature several times to check multiple lists of abusers.

http://spamhelp.org
http://`zen.spamhaus.org'
http://spamhaus.org

Em
ai

l

	 sendmail	 631

Throttles, rates, and connection limits
Table 18.11 lists several sendmail controls that can slow down mail processing
when clients’ behavior appears suspicious.

Table 18.11	 sendmail’s “slow down” configuration primitives

Primitive Description

BAD_RCPT_THROTTLE Slows down spammers collecting addresses
MAX_RCPTS_PER_MESSAGE Defers delivery if a message has too many recipients
ratecontrol feature Limits the rate of incoming connections
conncontrol feature Limits the number of simultaneous connections
greet_pause feature Delays HELO response, forces strict SMTP compliance

After the no-such-login count reaches the limit set in the BAD_RCPT_THROTTLE op-
tion, sendmail sleeps for one second after each rejected RCPT command, slowing a
spammer’s address harvesting to a crawl. To set that threshold to 3, use

define(`confBAD_RCPT_THROTTLE', `3')

Setting the MAX_RCPTS_PER_MESSAGE option causes the sender to queue extra
recipients for later. This is a cheap form of greylisting for messages that have a sus-
piciously large number of recipients.

The ratecontrol and conncontrol features allow per-host or per-net limits on the
rate at which incoming connections are accepted and the number of simultaneous
connections, respectively. Both use the /etc/mail/access file to specify the limits
and the domains to which they should apply, the first with the tag ClientRate: in
the key field and the second with tag ClientConn:. To enable rate controls, insert
lines like these in your .mc file:14

	 FEATURE(`ratecontrol', `nodelay',`terminate')
	 FEATURE(`conncontrol', `nodelay',`terminate')

Then, add to your /etc/mail/access file the list of hosts or nets to be controlled and
their restriction thresholds. For example, the lines

ClientRate:192.168.6.17		 2
ClientRate:170.65.3.4		 10

limit the hosts 192.168.6.17 and 170.65.3.4 to two new connections per minute and
ten new connections per minute, respectively. The lines

ClientConn:192.168.2.8		 2
ClientConn:175.14.4.1 		 7
ClientConn:					 10

	 14.	 FEATURE(`access_db') must be there too.

632	 Chapter 18	 Electronic Mail	

set limits of two simultaneous connections for 192.168.2.8, seven for 175.14.4.1,
and ten simultaneous connections for all other hosts.

Another nifty feature is greet_pause. When a remote transport agent connects to
your sendmail server, the SMTP protocol mandates that it wait for your server’s
welcome greeting before speaking. However, it’s common for spam mailers to blurt
out an EHLO/HELO command immediately. This behavior is partially explainable
as poor implementation of the SMTP protocol in spam-sending tools, but it may
also be a feature that aims to save time on the spammer’s behalf. Whatever the cause,
this behavior is suspicious and is known as “slamming.”

The greet_pause feature makes sendmail wait for a specified period of time at the
beginning of the connection before greeting its newfound friend. If the remote
MTA does not wait to be properly greeted and proceeds with an EHLO or HELO
command during the planned awkward moment, sendmail logs an error and re-
fuses subsequent commands from the remote MTA.

You can enable greeting pauses with this entry in the .mc file:

FEATURE(`greet_pause', `700')

This line causes a 700 millisecond delay at the beginning of every new connection.
You can set per-host or per-net delays with a GreetPause: prefix in the access data-
base, but most sites use a blanket value for this feature.

Security and sendmail
With the explosive growth of the Internet, programs such as sendmail that accept
arbitrary user-supplied input and deliver it to local users, files, or shells have fre-
quently provided an avenue of attack for hackers. sendmail, along with DNS and
even IP, is flirting with authentication and encryption as a built-in solution to some
of these fundamental security issues.

sendmail supports both SMTP authentication and encryption with TLS, Transport
Layer Security (formerly known as SSL, the Secure Sockets Layer). TLS brought
with it six new configuration options for certificate files and key files. New actions
for access database matches can require that authentication must have succeeded.

sendmail carefully inspects file permissions before it believes the contents of, say,
a .forward or an aliases file. Although this tightening of security is generally wel-
come, it’s sometimes necessary to relax the tough policies. To this end, sendmail
introduced the DontBlameSendmail option, so named in hopes that the name
might suggest to sysadmins that what they are doing is unsafe.

Em
ai

l

	 sendmail	 633

This option has many possible values—55 at last count. The default is safe, the
strictest possible. For a complete list of values, see doc/op/op.ps in the sendmail
distribution or the O’Reilly sendmail book. Or just leave the option set to safe.

Ownerships
Three user accounts are important in the sendmail universe: the DefaultUser, the
RunAsUser, and the TrustedUser.

By default, all of sendmail’s mailers run as the DefaultUser unless the mailer’s flags
specify otherwise. If a user mailnull, sendmail, or daemon exists in the passwd file,
DefaultUser will be that. Otherwise, it defaults to UID 1 and GID 1. We recom-
mend the use of the mailnull account and a mailnull group. Add it to /etc/passwd
with a star as the password, no valid shell, no home directory, and a default group
of mailnull. You’ll have to add the mailnull entry to the group file, too. The mailnull
account should not own any files. If sendmail is not running as root, the mailers
must be setuid.

If RunAsUser is set, sendmail ignores the value of DefaultUser and does everything
as RunAsUser. If you are running sendmail setgid, then the submission sendmail
just passes messages to the real sendmail through SMTP. The real sendmail does
not have its setuid bit set, but it runs as root from the startup files.

The RunAsUser is the UID that sendmail runs under after opening its socket con-
nection to port 25. Ports numbered less than 1,024 can be opened only by the su-
peruser; therefore, sendmail must initially run as root. However, after performing
this operation, sendmail can switch to a different UID. Such a switch reduces the
risk of damage or access if sendmail is tricked into doing something bad. Don’t use
the RunAsUser feature on machines that support user accounts or other services; it
is meant for use only on firewalls or bastion hosts.15

By default, sendmail does not switch identities and continues to run as root. If
you change the RunAsUser to something other than root, you must change several
other things as well. The RunAsUser must own the mail queue, be able to read all
maps and include files, be able to run programs, etc. Expect to spend a few hours
discovering all the file and directory ownerships that must be changed.

sendmail’s TrustedUser can own maps and alias files. The TrustedUser is allowed
to start the daemon or rebuild the aliases file. This facility exists mostly to support
GUI interfaces to sendmail that need to provide limited administrative control to
certain users. If you set TrustedUser, be sure to guard the account that it points to
because this account can easily be exploited to gain root access. The TrustedUser
is different from the TRUSTED_USERS class, which determines who can rewrite the
From line of messages.16

	 15.	 Bastion hosts are specially hardened hosts intended to withstand attack when placed in a DMZ or
outside a firewall.

	 16.	 The TRUSTED_USERS feature is typically used to support mailing list software.

634	 Chapter 18	 Electronic Mail	

Permissions
File and directory permissions are important to sendmail security. Use the settings
listed in Table 18.12 to be safe.

Table 18.12	 Owner and permissions for sendmail-related directories

Path Owner Mode What it contains

/var/spool/clientmqueue smmsp:smmsp 770 Queue for initial submissions
/var/spool/mqueue RunAsUser 700 Mail queue directory
/, /var, /var/spool root 755 Path to mqueue
/etc/mail/* TrustedUser 644 Maps, the config file, aliases
/etc/mail TrustedUser 755 Parent directory for maps
/etc root 755 Path to mail directory

sendmail no longer reads .forward files that have link counts greater than 1 if the
directory paths that lead to them have lax permissions. This rule bit Evi when one of
her .forward files, which she usually hard-linked to either .forward.to.boulder or

.forward.to.sandiego, silently failed to forward her mail from a small site at which
she did not receive much mail. It was months before she realized that “I never got
your mail” was her own fault and not a valid excuse.

You can turn off many of the restrictive file access policies mentioned above with
the DontBlameSendmail option. But don’t do that.

Safer mail to files and programs
We recommend that you use smrsh instead of /bin/sh as your program mailer and
that you use mail.local instead of /bin/mail as your local mailer. Both programs
are included in the sendmail distribution. To incorporate them into your config-
uration, add the lines

FEATURE(`smrsh', `path-to-smrsh')
FEATURE(`local_lmtp', `path-to-mail.local')

to your .mc file. If you omit the explicit paths, the commands are assumed to live
in /usr/libexec. You can use sendmail’s confEBINDIR option to change the default
location of the binaries to whatever you want. Table 18.13 helps you find where our
friendly vendors have stashed things.

smrsh is a restricted shell that executes only the programs contained in one direc-
tory (/usr/adm/sm.bin by default). smrsh ignores user-specified paths and tries to
find any requested commands in its own known-safe directory. smrsh also blocks
the use of certain shell metacharacters such as <, the input redirection symbol.
Symbolic links are allowed in sm.bin, so you need not make duplicate copies of the

 	

Em
ai

l

 	

Table 18.13	 Location of sendmail’s restricted delivery agents

OS smrsh mail.local sm.bin

Ubuntu /usr/lib/sm.bin /usr/lib/sm.bin /usr/adm
Debian /usr/lib/sm.bin /usr/lib/sm.bin /usr/adm
Red Hat /usr/sbin – /etc/smrsh
CentOS /usr/sbin – /etc/smrsh
FreeBSD /usr/libexec /usr/libexec /usr/adm

	 sendmail	 635

programs you allow. The vacation program is a good candidate for sm.bin. Don’t
put procmail there; it’s insecure.

Here are some example shell commands and their possible smrsh interpretations:

vacation eric				 # Executes /usr/adm/sm.bin/vacation eric
cat /etc/passwd				 # Rejected, cat not in sm.bin
vacation eric < /etc/passwd	 # Rejected, no < allowed

sendmail’s SafeFileEnvironment option controls where files can be written when
email is redirected to a file by aliases or a .forward file. It causes sendmail to exe-
cute a chroot system call, making the root of the filesystem no longer / but rather
/safe or whatever path you specified in the SafeFileEnvironment option. An alias
that directed mail to the /etc/passwd file, for example, would actually be written
to /safe/etc/passwd.

The SafeFileEnvironment option also protects device files, directories, and other
special files by allowing writes only to regular files. Besides increasing security, this
option ameliorates the effects of user mistakes. Some sites set the option to /home
to allow access to home directories while keeping system files off-limits.

Mailers can also be run in a chrooted directory.

Privacy options
sendmail privacy options also control

•	 What external folks can determine about your site through SMTP
•	 What you require of the host on the other end of an SMTP connection
•	 Whether your users can see or run the mail queue

Table 18.14 on the next page lists the possible values for the privacy options as of
this writing; see the file doc/op/op.ps in the distribution for current information.

We recommend conservatism; in your .mc file, use

define(`confPRIVACY_OPTIONS', ``goaway, authwarnings, restrictmailq,
restrictqrun'')

636	 Chapter 18	 Electronic Mail	

Table 18.14	 Values of the PrivacyOption variable

Value Meaning

authwarnings Adds warning header if an outgoing message seems forged
goaway Disables all SMTP status queries (EXPN, VRFY, etc.)
needexpnhelo Does not expand addresses (EXPN) without a HELO
needmailhelo Requires SMTP HELO (identifies remote host)
needvrfyhelo Does not verify addresses (VRFY) without a HELO
nobodyreturn Does not return the message body in a DSN
noetrn a Disallows asynchronous queue runs
noexpn Disallows the SMTP EXPN command
noreceipts Turns off delivery status notification for success return receipts
noverb b Disallows verbose mode for EXPN
novrfy Disallows the SMTP VRFY command
public Does no privacy/security checking
restrictexpand Restricts info displayed by the -bv and -v flags c

restrictmailq Allows only mqueue directory’s group to see the queue
restrictqrun Allows only mqueue directory’s owner to run the queue

a.	 ETRN is an ESMTP command for use by dial-up hosts. It requests that the queue be run just for
messages to that host.

b.	Verbose mode follows .forward files when an EXPN command is given and reports more informa-
tion on the whereabouts of a user’s mail. Use noverb or, better yet, noexpn, on any machine ex-
posed to the outside world.

c.	 Unless executed by root or the TrustedUser

sendmail’s default value for the privacy options is authwarnings; the above line
would reset that value. Notice the double sets of quotes; some versions of m4 re-
quire them to protect the commas in the list of privacy option values.

Running a chrooted sendmail (for the truly paranoid)
If you are worried about the access that sendmail has to your filesystem, you can
start it in a chrooted jail. Create a minimal filesystem in your jail, including things
like /dev/null, /etc essentials (passwd, group, resolv.conf, sendmail.cf, any map
files, mail/*), the shared libraries that sendmail needs, the sendmail binary, the
mail queue directory, and any log files. You will probably have to fiddle with the list
to get it just right. Use the chroot command to start a jailed sendmail. For example:

$ sudo chroot /jail /usr/sbin/sendmail -bd -q30m

Denial of service attacks
Denial of service attacks are difficult to prevent because no a priori method can de-
termine that a message is an attack rather than a valid piece of email. Attackers can
try various nasty things, including flooding the SMTP port with bogus connections,

Em
ai

l

	 sendmail	 637

filling disk partitions with giant messages, clogging outgoing connections, and mail
bombing. sendmail has some configuration parameters that can help slow down
or limit the impact of a denial of service attack, but these parameters can also in-
terfere with the delivery of legitimate mail.

The MaxDaemonChildren option limits the number of sendmail processes. It pre-
vents the system from being overwhelmed with sendmail work. However, it also
allows an attacker to easily shut down SMTP service.

The MaxMessageSize option can help prevent the mail queue directory from filling.
But if you set it too low, legitimate mail will bounce. You might mention your limit
to users so that they aren’t surprised when their mail bounces. We recommend a
fairly high limit (such as 50MB) anyway, since some legitimate mail is huge.

The ConnectionRateThrottle option, which limits the number of permitted connec-
tions per second, can slow things down a bit. Finally, setting MaxRcptsPerMessage,
which controls the maximum number of recipients allowed on a single message,
may also help.

sendmail has always been able to refuse connections (option REFUSE_LA) or queue
email (QUEUE_LA) according to the system load average. A variation, DELAY_LA, keeps
the mail flowing, but at a reduced rate.

In spite of all these protections for your mail system, someone mail bombing you
will still interfere with legitimate mail. Mail bombing can be quite nasty.

TLS: Transport Layer Security
TLS, a encryption/authentication system, is specified in RFC3207. It is implement-
ed in sendmail as an extension to SMTP called STARTTLS.

Strong authentication can replace a hostname or IP address as the authorization
token for relaying mail or for accepting a connection from a host in the first place.
An entry such as

TLS_Srv:secure.example.com	 ENCR:112
TLS_Clt:laptop.example.com	 PERM+VERIFY:112

in the access_db indicates that STARTTLS is in use and that email to the domain
secure.example.com must be encrypted with at least 112-bit encryption keys. Email
from a host in the laptop.example.com domain should be accepted only if the client
has authenticated itself.

Although STARTTLS provides strong encryption, note that its protection covers
only the journey to the “next hop” MTA. Once the message arrives at the next hop,
it might be forwarded to another MTA that does not use a secure transport method.
If you have control of all possible MTAs in the path, you can create a secure mail
transport network. If not, you will need to rely on a UA-based encryption pack-
age (such as PGP/GPG) or a centralized email encryption service (see page 608).

See page 1008 for
general informa-
tion about TLS.

http://TLS_Srv:secure.example.com
http://TLS_Clt:laptop.example.com
http://secure.example.com
http://laptop.example.com

638	 Chapter 18	 Electronic Mail	

Greg Shapiro and Claus Assmann of Sendmail, Inc., have stashed some (slightly
dated) extra documentation about security and sendmail on the web. It’s available
from sendmail.org/~gshapiro and sendmail.org/~ca. The index link in ~ca is es-
pecially useful.

sendmail testing and debugging
m4-based configurations are to some extent pretested. You probably won’t need to
do low-level debugging if you use them. But one thing the debugging flags cannot
test is your design.

While researching this chapter, we found errors in several of the configuration files
and designs that we examined. The errors ranged from invoking a feature without
the prerequisite macro (e.g., enabling masquerade_envelope without having turned
on masquerading with MASQUERADE_AS) to total conflict between the design of the
sendmail configuration and the firewall that controlled whether and under what
conditions mail was allowed in.

You cannot design a mail system in a vacuum. You must synchronize it with (or at
least not be in conflict with) your DNS MX records and your firewall policy.

Queue monitoring
You can use the mailq command (which is equivalent to sendmail -bp) to view the
status of queued messages. Messages are queued while they are being delivered or
when delivery has been attempted but has failed.

mailq prints a human-readable summary of the files in /var/spool/mqueue at any
given moment. The output is useful for determining why a message may have been
delayed. If it appears that a mail backlog is developing, you can monitor the status
of sendmail’s attempts to clear the jam.

There are two default queues: one for messages received on port 25 and another
for messages received on port 587 (the client submission queue). You can invoke
mailq -Ac to see the client queue.

Below, some typical output from mailq shows three messages waiting to be delivered.

$ sudo mailq
/var/spool/mqueue (3 requests)
-----Q-ID----- -Size- ---Q-Time--- -------Sender/Recipient------
k623gYYk008732 23217 Sat Jul 1 21:42 MAILER-DAEMON
 8BITMIME (Deferred: Connection refused by agribusinessonline.com.)
 <Nimtz@agribusinessonline.com>
k5ULkAHB032374 279 Fri Jun 30 15:46 <randy@atrust.com>
 (Deferred: Name server: k2wireless.com.: host name lookup fa)
 <relder@k2wireless.com>
k5UJDm72023576 2485 Fri Jun 30 13:13 MAILER-DAEMON
 (reply: read error from mx4.level3.com.)
 <lfinist@bbnplanet.com>

http://sendmail.org/
http://sendmail.org/
http://agribusinessonline.com
mailto:<Nimtz@agribusinessonline.com
mailto:<randy@atrust.com
http://k2wireless.com
mailto:<relder@k2wireless.com
http://mx4.level3.com
mailto:<lfinist@bbnplanet.com

Em
ai

l

	 sendmail	 639

If you think you understand the situation better than sendmail or you just want
sendmail to try to redeliver the queued messages immediately, you can force a
queue run with sendmail -q. If you use sendmail -q -v, sendmail shows the play-
by-play results of each delivery attempt, information that is often useful for debug-
ging. Left to its own devices, sendmail retries delivery every queue run interval
(typically every 30 minutes).

Logging
sendmail uses syslog to log error and status messages with the syslog facility “mail”
and levels “debug” through “crit”; messages are tagged with the string “sendmail.”
You can override the logging string “sendmail” with the -L command-line option;
this capability is handy if you are debugging one copy of sendmail while other
copies are doing regular email chores.

The confLOG_LEVEL option, specified on the command line or in the config file,
determines the severity level that sendmail uses as a threshold for logging. High
values of the log level imply low severity levels and cause more info to be logged.

Table 18.15 gives an approximate mapping between sendmail log levels and syslog
severity levels.

Table 18.15	 sendmail log levels (L) vs. syslog levels

L Syslog levels L Syslog levels

0 No logging 4 notice
1 alert or crit 5–11 info
2 crit ≥ 12 debug
3 err or warning

Recall that a message logged to syslog at a particular level is reported to that level
and all those above it. The /etc/syslog.conf or /etc/rsyslog.conf file determines
the eventual destination of each message. Table 18.16 shows their default locations. 

Table 18.16	 Default sendmail log locations

System Log file location

Debian /var/log/mail.log
Ubuntu /var/log/mail.log
Red Hat /var/log/maillog
CentOS /var/log/maillog
FreeBSD /var/log/maillog

See Chapter 10
for more informa-
tion about syslog.

640	 Chapter 18	 Electronic Mail	

Several programs can summarize sendmail log files, with the end products ranging
from simple counts and text tables (mreport) to fancy web pages (Yasma). You might
need to limit access to this data or at least inform your users that you are collecting it.

18.9	 Exim
The Exim mail transport and submission agent was written in 1995 by Philip Hazel
of the University of Cambridge and is distributed under the GNU General Public
License. The current release, Exim version 4.89, came out in spring 2017. Tons of
Exim documentation are available on-line, as are a couple of books by the author
of the software.

Googling for Exim questions often seems to lead to old, undated, and sometimes
inappropriate materials, so check the official documentation first. A 400+ page
specification and configuration document (doc/spec.txt) is included in the dis-
tribution. This document is also available from exim.org as a PDF file. It’s the de-
finitive reference work for Exim and is updated religiously with each new release.

There are two cultures with respect to Exim configuration: Debian’s and the rest
of the world’s. Debian runs its own set of mailing lists to support users; we do not
cover the Debian-specific configuration extensions here.

Exim is like sendmail in that it is implemented as a single process that performs
essentially all the ongoing chores associated with email. However, Exim does not
carry all sendmail’s historical baggage (support for ancient address formats, need-
ing to get mail to hosts not on the Internet, etc.). Many aspects of Exim’s behavior
are specified at compile time, the chief examples being Exim’s database and mes-
sage store formats.

The workhorses in the Exim system are called routers and transports. Both are in-
cluded in the general category of “drivers.” Routers decide how messages should
be delivered, and transports decide on the mechanics of making deliveries. Rout-
ers are an ordered list of things to try, whereas transports are an unordered set of
delivery methods.

Exim installation
You can download the latest distribution from exim.org or from your favorite
package repository. Refer to the top-level README file and the file src/EDITME,
in which you must set installation locations, user IDs, and other compile-time pa-
rameters. EDITME is over 1,000 lines long, but it’s mostly comments that lead you
through the compilation process; required changes are well labeled. After your edits,
save the file as ../Local/Makefile or ../Local/Makefile-osname (if you are building
configurations for several different operating systems from the same distribution
directory) before you run make.

http://exim.org
http://exim.org

	 Exim	 641

Em
ai

l

Here are a few of the important variables (our opinion) and suggested values (Exim
developers’ opinion) from the EDITME file. The first five are required, and the rest
are recommended.

BIN_DIRECTORY=/usr/exim/bin		 # Where the exim binary should live
SPOOL_DIRECTORY=/var/spool/exim	 # Mail spool directory
CONFIGURE_FILE=/usr/exim/configure	 # Exim’s configuration file
SYSTEM_ALIASES_FILE=/etc/aliases	 # Location of aliases file
EXIM_USER=ref:exim				 # User to run as after rootly chores

ROUTER_ACCEPT=yes				 # Router drivers to include
ROUTER_DNSLOOKUP=yes
ROUTER_IPLITERAL=yes
ROUTER_MANUALROUTE=yes
ROUTER_QUERYPROGRAM=yes
ROUTER_REDIRECT=yes

TRANSPORT_APPENDFILE=yes		 # Transport drivers to include
TRANSPORT_AUTOREPLY=yes
TRANSPORT_PIPE=yes
TRANSPORT_SMTP=yes

SUPPORT_MAILDIR=yes				 # Mailbox formats to understand
SUPPORT_MAILSTORE=yes
SUPPORT_MBX=yes

LOOKUP_DBM=yes					 # DB lookup methods to include
LOOKUP_LSEARCH=yes				 # Linear search lookup
LOOKUP_DNSDB=yes				 # Allow near-arbitrary DNS lookups
USE_DB=yes						 # Use Berkeley DB (from README)
DBMLIB=-ldb						 # (from README)
WITH_CONTENT_SCAN=yes			 # Include content scanning via ACLs

EXPERIMENTAL_SPF=yes			 # Include SPF support, needs libspf2
CFLAGS += -I/usr/local/include	 # From www.libspf2.org
LDFLAGS += -lspf2

LOG_FILE_PATH=/var/log/exim_%slog	 # Log files: file, syslog, or both
LOG_FILE_PATH=syslog
LOG_FILE_PATH=syslog:/var/log/exim_%slog
EXICYCLOG_MAX=10				 # Compress/cycle log files, keep 10

Routers and transports must be compiled into the code if you intend to use them.
In these days of large memories, you might as well leave them all in. Some default
paths are certainly nonstandard: for example, the binary in /usr/exim/bin and the
PID file in /var/spool/exim. You might want to tweak these values to match your
other installed software.

About ten database lookup methods are available, including MySQL, Oracle, and
LDAP. If you include LDAP, you must specify the LDAP_LIB_TYPE variable to tell
Exim which LDAP library you are using. You may also need to specify the path to
LDAP include files and libraries.

http://www.libspf2.org

642	 Chapter 18	 Electronic Mail	

The EDITME file does a good job of telling you about any dependencies your data-
base choices might entail. Any entries above that have “(from README)” in their
comment line were not listed in src/EDITME but rather in the README.

EDITME has many additional security options that you might want to include, such
as support for SMTP AUTH, TLS, PAM, and options for controlling file ownerships
and permissions. You can disable certain Exim options at compile time to limit the
damage a hacker might cause if the software is compromised.

It’s advisable to read the entire EDITME file before you complete the installation.
It gives you a good feel for what you can control at run time through the configu-
ration file. The top-level README file has lots of detail about OS-specific quirks
that you migh need to add to the EDITME file as well.

Once you have modified EDITME and installed it as Local/Makefile, run make
at the top of the distribution tree followed by sudo make install. The next step
is to test your shiny new exim binary and see if it delivers mail as expected. The
doc/spec.txt file contains good testing documentation.

Once you are satisfied that Exim is working properly, link /usr/sbin/sendmail to
exim so that Exim can emulate the traditional command-line interface to the mail
system used by many user agents. You must also arrange for exim to be started at
boot time.

Exim startup
On a mail hub machine, exim typically starts at boot time in daemon mode and
runs continuously, listening on port 25 and accepting messages through SMTP.
See Chapter 2, Booting and System Management Daemons, for startup details
for your operating system.

Like sendmail, Exim can wear several hats, and if started with specific flags or al-
ternative command names, it performs different functions. Exim’s mode flags are
similar to those understood by sendmail because exim works hard to maintain
compatibility when called by user agents and other tools. Table 18.17 lists a few
common flags.

Any errors in the config file that can be detected at parse time are caught by exim
-bV, but some errors can only be caught at run time. Misplaced braces are a com-
mon mistake.

The exim man page gives lots of detail on all the nooks and crannies of exim’s com-
mand-line flags and options, including extensive debugging information.

Exim utilities
The Exim distribution includes a bunch of utilities to help you monitor, debug, and
sanity-check your installation. Below is the current list along with a brief description
of each. See the documentation from the distribution for more detail.

 	

	 Exim	 643

Em
ai

l

Table 18.17	 Common exim command-line flags

Flag Meaning

-bd Runs in daemon mode and listens for connections on port 25
-bf or -bF Runs in user or system filter test mode

-bi Rebuilds hashed aliases (same as newaliases)
-bp Prints the mail queue (same as mailq)
-bt Enters address test mode
-bV Checks for syntax errors in the configuration file

-d+-category Runs in debug mode, flexible category-based configuration
-q Starts a queue runner (same as runq)

•	 exicyclog – rotates log files
•	 exigrep – searches the main log
•	 exilog – visualizes log files across multiple servers
•	 exim_checkaccess – checks address acceptance from a given IP address
•	 exim_dbmbuild – builds a DBM file
•	 exim_dumpdb – dumps a hints database
•	 exim_fixdb – patches a hints database
•	 exim_lock – locks a mailbox file
•	 exim_tidydb – cleans up a hints database
•	 eximstats – extracts statistics from the log
•	 exinext – extracts retry information
•	 exipick – selects messages according to various criteria
•	 exiqgrep – searches the queue
•	 exiqsumm – summarizes the queue
•	 exiwhat – lists what Exim processes are doing

Another utility that is part of the Exim suite is eximon, an X Windows application
that displays Exim’s state, the state of Exim’s queue, and the tail of the log file. As
with the main distribution, you build it by editing a well-commented EDITME file
in the exim_monitor directory and running make. However, in the case of eximon
the defaults are usually fine, so you should not have to do much configuration to
build the application. Some configuration and queue management can be done
from the eximon GUI as well.

Exim configuration language
The Exim configuration language (or more accurately, languages: one for filters, one
for regular expressions, etc.) feels a bit like the ancient (1970s) language Forth.17
When first reading an Exim configuration, you might find it hard to distinguish
between keywords and option names (which are fixed by Exim) and variable names
(which are defined by sysadmins through configuration statements).

	 17.	 For CS wizards, it’s Turing-complete; mere mortals can substitute “powerful and complicated.”

644	 Chapter 18	 Electronic Mail	

Although Exim is advertised as being easy to configure and is extensively docu-
mented, there can be quite a learning curve for new users. The section “How Exim
receives and delivers mail” in the specification document is essential reading for
newcomers. It gives a good feel for the underlying concepts of the system.

When assigned a value, the Exim language’s predefined options sometimes cause an
action. The values of about 120 predefined variables may also change in response
to an action. These variables can be included in conditional statements.

The language for evaluating if statements and the like may remind you of the re-
verse Polish notation used during the heyday of Hewlett-Packard calculators. Let’s
look at a simple example. In the line

acl_smtp_rcpt = ${if ={25}{$interface_port} \
	 {acl_check_rcpt} {acl_check_rcpt_submit} }

the acl_smtp_rcpt option, when set, causes an ACL to be implemented for each
recipient (SMTP RCPT command) in the SMTP exchange. The value assigned to
this option is either acl_check_rcpt or acl_check_rcpt_submit, depending on
whether or not the Exim variable $interface_port has value 25.

We do not detail the Exim configuration language in this chapter, but refer you
instead to the extensive documentation. In particular, pay close attention to the
string expansion section of the Exim specification.

Exim configuration file
Exim’s run-time behavior is controlled by a single configuration file, usually called
/usr/exim/configure. Its name is one of the required variables specified in the
EDITME file and compiled into the binary.

The supplied default configuration file, src/configure.default, is well commented
and is a good starting place for sites just getting set up with Exim. In fact, we rec-
ommend that you don’t stray too far from it until you thoroughly understand the
Exim paradigm and need to elaborate on the default configuration for a specific
purpose. Exim works hard to support common situations and has sensible defaults.

It’s also helpful to stick with the variable names used in the default config file. These
naming conventions are assumed by folks on the exim-users mailing list. Those
people are also a good resource to consult regarding your configuration questions.

exim prints a message to stderr and exits if you have a syntax error in your config-
uration file. It doesn’t catch all syntax errors immediately, however, because it does
not expand variables until it needs to.

The order of entries in the configuration file is not quite arbitrary: the global config-
uration options section must be first and must exist. All other sections are optional
and can appear in any order.

	 Exim	 645

Em
ai

l

Possible sections include

•	 Global configuration options (mandatory)
•	 acl – access control lists that filter addresses and messages
•	 authenticators – for SMTP AUTH or TLS authentication
•	 routers – ordered sequence to determine where a message should go
•	 transports – definitions of the drivers that do the actual delivery
•	 retry – policy settings for dealing with problem messages
•	 rewrite – global address rewriting rules
•	 local_scan – a hook for fancy flexibility

Each section except the first starts with a begin section-name statement—for ex-
ample, begin acl. There is no end section-name statement; the end is signaled by
the next section’s begin statement. Indentation to show subordination makes the
config file easier to read for humans, but it is not meaningful to Exim.

Some configuration statements name objects that will later be used to control the
flow of messages. Those names must begin with a letter and contain only letters,
numbers, and the underscore character. If the first non-whitespace character on
a line is #, the rest of the line is treated as a comment. Note that this means you
cannot put a comment on the same line as a statement; it will not be recognized as
a comment because the first character is not #.

Exim lets you include files anywhere in the configuration file. Two forms of in-
clude are used:

.include absolute-path

.include_if_exists absolute-path

The first form generates an error if the file does not exist. Although include files
keep your config file tidy, they are read several times during the life of a message,
so it might be best just to include their contents directly into your configuration.

Global options
Lots of stuff is specified in the global options section, including operating param-
eters (limits, sizes, timeouts, properties of the mail server on this host), list defini-
tions (local hosts, local hosts to relay for, remote domains to relay for), and macros
(hostname, contact, location, error messages, SMTP banner).

Options
Options are set with the basic syntax

option_name = value[s]

where the values can be Booleans, strings, integers, decimal numbers, or time in-
tervals. Multivalued options are allowed, in which case the various values are sep-
arated by colons.

646	 Chapter 18	 Electronic Mail	

Use of the colon as a value separator presents a problem when you express IPv6
addresses, which use colons as part of the address. You can escape the colons by
doubling them, but the easiest and most readable fix is to redefine the separator
character with the < character as you assign values to the option. For example, both
of the following two lines set the value of the localhost_interfaces option, which
contains the IPv4 and IPv6 localhost addresses:

local_interfaces = 127.0.0.1 : ::::1
local_interfaces = <; 127.0.0.1 ; ::1

The second form, in which the semicolon has been defined as the separator, is more
readable and less fragile.

There are a zillion options—more than 500 in the options index of the documenta-
tion. And we said sendmail was complicated! Most options have sensible defaults,
and all have descriptive names. It’s handy to have a copy of the doc/spec.txt file
from the distribution in your favorite text editor when you are researching a new
option. We don’t cover all the options below, just the ones that occur in our exam-
ple configuration bits.

Lists
Exim has four kinds of lists, introduced by the keywords hostlist, domainlist,
addresslist, and localpartslist. Here are two examples that use hostlist:

hostlist my_relay_list = 192.168.1.0/24 : myfriend.example.com
hostlist my_relay_list = /usr/local/exim/relay_hosts.txt

Members can be listed in-line or taken from a file. If in-line, they are separated
by colons. There can be up to 16 named lists of each type. In the in-line example
above, we included all machines on a local /24 network and a specific hostname.

The symbol @ can be a member of a list; it means the name of the local host and
helps you write a single generic configuration file that works for most nonhub ma-
chines at your site. The notation @[] is also useful and means all IP addresses on
which Exim is listening; that is, all the IP addresses of the local host.

Lists can include references to other lists and the ! character to indicate negation.
Lists that include references to variables (e.g., $variable_name) make processing
slower because Exim cannot cache the results of evaluating the list, which it oth-
erwise does by default.

To reference a list, just put + in front of its name to match members of the list or
!+ to match nonmembers; for example, +my_relay_list. Omit space between the
+ sign and the name of the list.

http://myfriend.example.com

	 Exim	 647

Em
ai

l

Macros
You can use macros to define parameters, error messages, etc. The parsing is prim-
itive, so you cannot define a macro whose name is a subset of another macro with-
out unpredictable results.

The syntax is

MACRO_NAME = rest of the line

For example, the first of the following lines defines a macro named ALIAS_QUERY
that looks up a user’s alias entry in a MySQL database. The second line shows the
use of the macro to perform an actual lookup, with the result being stored in the
variable called data.

ALIAS_QUERY = \
select mailbox from user where login = '${quote_mysql:$local_part}';

data = ${lookup mysql{ALIAS_QUERY}}

Macro names are not required to be all caps, but they must begin with a capital
letter. However, the all-caps convention aids clarity. The configuration file can in-
clude ifdefs that evaluate a macro and use it to determine whether or not to include
a portion of the config file. Every imaginable form of ifdef is supported; they all
begin with a dot.

Access control lists (ACLs)
Access control lists filter the addresses of incoming messages and either accept or
deny them. Exim divides incoming addresses into a local part that represents the
user and a domain part that is the recipient’s domain.

ACLs can be applied at any of the various stages of an SMTP conversation: HELO,
MAIL, RCPT, DATA, etc. Typically, an ACL enforces strict adherence to the SMTP
protocol at the HELO stage, checks the sender and the sender’s domain at the MAIL
stage, checks the recipients at the RCPT stage, and scans the message content at
the DATA stage.

A slew of options named acl_smtp_command specify which ACL should be applied
after each command in the SMTP protocol. For example, the acl_smtp_rcpt option
directs the ACL to run on each address that is a recipient of the message. Another
commonly used checkpoint is acl_smtp_data, which checks the ACL against the
message after it has been received, for example, to scan content.

You can define ACLs in the acl section of the config file, in a file that is referenced
by the acl_smtp_command option or in-line when the option is defined.

648	 Chapter 18	 Electronic Mail	

A sample ACL called my_acl_check_rcpt is defined below. We would invoke it by
assigning its name to the acl_smtp_rcpt option in the global options section of
the config file. (If this ACL denies an address at the level of the RCPT command,
the sending server should give up and not try the address again.)

This is a long ACL specification, so we break it up into digestible pieces that we can
decode individually.

The first portion:

begin acl
	 my_acl_check_rcpt:
		 accept	 hosts = :
				 control = dkim_disable_verify

The default name for this access control list is acl_check_rcpt; you probably should
not change its name as we did here. We used a nonstandard name simply to empha-
size that the name is something you specify, not a keyword that’s special to Exim.

The first accept line, containing just a colon, is an empty list. The empty list of re-
mote hosts matches cases in which a local MUA submitted a message on the MTA’s
standard input. If the address being tested meets this condition, the ACL accepts
the address and disables DKIM signature validation, which is turned on by default.
If the address does not match this address clause, control drops through to the next
clause in the ACL definition:

		 deny		 message = Restricted characters in address
				 domains = +local_domains
				 local_parts = ^[.] : ^.*[@%!/|]

		 deny		 message = Restricted characters in address
				 domains = !+local_domains
				 local_parts = ^[./|] : ^.*[@%!] : ^.*/\\.\\./

The first deny stanza is intended for messages coming into your local domains. It
rejects any address whose local part (the username) starts with a dot or contains
the special characters @, %, !, /, or |. The second deny applies to messages being
sent out by your users. It, too, disallows certain special characters and sequences in
the local parts of addresses, in case your users’ machines have been infected with
a virus or other malware. In the past, such addresses have been used by spammers
to confuse ACLs or have been associated with other security problems.

In general, if you are intending to use $local_parts (supposedly, the recipient’s
username) in a directory path (to store mail or look for a vacation file, for exam-
ple) be careful that your ACLs have filtered out any special characters that could
cause unwanted behavior. (The example looks for the sequence /../, which could
be problematic if the username were inserted into a path.)

		 accept	 local_parts = postmaster
				 domains = +local_domains

	 Exim	 649

Em
ai

l

This accept stanza guarantees that mail to postmaster always gets through if it’s
sent to a local domain, and that can help with debugging.

		 require	 verify = sender

The require line checks to see if a bounce message can be returned; however, it
checks only the sender’s domain.18 If the sender’s username has been forged, a
bounce message could still fail; that is, the bounce message itself could bounce.
You can add more extensive checking here by calling another program, but some
sites consider such callouts abusive and might add your mail server to a blacklist
or bad-reputation list.

		 accept	 hosts = +relay_from_hosts
				 control = submission
				 control = dkim_disable_verify

The above accept stanza checks for hosts that are allowed to relay through this
host, namely, local hosts that are submitting mail into the system. The control line
specifies that Exim should act as a mail submission agent and fix up any header
deficiencies as the message arrives from the user agent. The recipient’s address is
not checked because many user agents are confused by error returns. (This part of
the configuration is appropriate only for local machines that relay to a smart host,
not for any external domains you might be willing to relay for.) DKIM verification
is disabled because these messages are outbound from your users or relay friends.

		 accept	 authenticated = *
				 control = submission
				 control = dkim_disable_verify

The last accept stanza deals with local hosts that authenticate through SMTP AUTH.
Once again, these messages are treated as submissions from user agents.

		 require	 message = Relay not permitted
				 domains = +local_domains : +relay_to_domains

		 require	 verify = recipient

Here, we check the destination domain to which the message is headed and require
that it be either in our list of local_domains or in our list of domains to which
we allow relaying, relay_to_domains. (These domain lists are defined outside the
context of the ACL.) Any destinations not in one of those lists are refused with a
customized error message.

		 accept

Finally, given that all previous requirements have been met but that no more-specific
accept or deny rule has been triggered, we verify the recipient and accept the mes-
sage. Most Internet messages to local users fall into this category.

	 18.	 require means “deny if not matched.”

650	 Chapter 18	 Electronic Mail	

We haven’t included any blacklist scanning in the example above. To access a black-
list, use one of the examples in the default config file or something like this:

		 deny		 condition = ${if isip4{$sender_host_address}}
				 !authenticated = *
				 !hosts = +my_whitelist_ips
				 !dnslists = list.dnswl.org
				 domains = +local_domains
				 verify = recipient
				 message = You are on RBL $dnslist_domain: $dnslist_text
				 dnslists = zen.spamhaus.org
				 logwrite = Blacklisted sender [$sender_host_address] \
					 $dnslist_domain: $dnslist_text

Translated to English, the code specifies that if a message matches all of the fol-
lowing criteria, it is rejected with a custom error message and logged (also with a
custom message):

•	 It’s from an IPv4 address (some lists don’t handle IPv6 correctly).
•	 It’s not associated with an authenticated SMTP session.
•	 It’s from a sender not in the local whitelist.
•	 It’s from a sender not in the global (Internet) whitelist.
•	 It’s addressed to a valid local recipient.
•	 The sending host is on the zen.spamhaus.org blacklist.

The variables dnslist_text and dnslist_domain are set by the assignment to
dnslists, which triggers the blacklist lookup. This deny clause could be placed right
after your checks for unusual characters in addresses.

Here’s another example ACL that rejects mail if the remote side does not say HELO
properly:

	 acl_check_mail:
		 deny		 message = 503 Bad command - must send HELO/EHLO first
				 condition = ${if !def:sender_helo_name}
		 accept

Exim solves the early talker problem (a more specific case of “not saying HELO
properly”) with the smtp_enforce_sync option, which is turned on by default.

Content scanning at ACL time
Exim supports powerful content scanning at several points in a message’s travers-
al of the mail system: at ACL time (after the SMTP DATA command); at delivery
time through the transport_filter option; or with a local_scan function after all
ACL checks have been completed. You must compile support for content scanning
into Exim by setting the WITH_CONTENT_SCAN variable in the EDITME file; it is
commented out by default. This option endows ACLs with extra power and flex-
ibility and adds two new configuration options: spamd_address and av_scanner.

http://list.dnswl.org
http://zen.spamhaus.org
http://zen.spamhaus.org

	 Exim	 651

Em
ai

l

Scanning at ACL time allows a message to be rejected in-line with the MTA’s con-
versation with the sending host. The message is never accepted for delivery, so it
need not be bounced. This way of rejecting the message is nice because it avoids
backscatter spam caused by bounce messages to forged sender addresses.

Authenticators
Authenticators are drivers that interact with the SMTP AUTH command’s chal-
lenge-and-response sequence and identify an authentication mechanism acceptable
to both client and server. Exim supports the following mechanisms:

•	 AUTH_CRAM_MD5 (RFC2195)
•	 AUTH_PLAINTEXT, which includes both PLAIN and LOGIN
•	 AUTH_SPA, which supports Microsoft’s Secure Password Authentication

If Exim is receiving email, it is acting as an SMTP AUTH server. If it is sending
mail, it is a client. Options that appear in the definitions of authenticator instances
are tagged with a prefix of either server_ or client_ to allow for different config-
urations depending on the role Exim is playing.

Authenticators are used in access control lists, as in the following clause in the ACL
example on page 650:

		 deny		 !authenticated = *

Below is an example that shows both the client-side and server-side LOGIN mech-
anisms. This simple example uses a fixed username and password, which is OK for
small sites but probably inadvisable for larger installations.

begin authenticators

	 my_client_fixed_login:
		 driver = plaintext
		 public_name = LOGIN
		 client_send = : myusername : mypasswd

	 my_server_fixed_login:
		 driver = plaintext
		 public_name = LOGIN
		 server_advertise_condition = ${if def:tis_cipher}
		 server_prompts = User Name : Password
		 server_condition = ${if and {{eq{$auth1}{username}} \
			 {eq{$auth2}{mypasswd}}}}
		 server_set_id = $auth1

Authentication data can come from many sources: LDAP, PAM, /etc/passwd, etc.
The server_advertise_condition clause above prevents mail clients from sending
passwords in the clear by requiring TLS security (through STARTTLS or SSL) on
connection. If you want the same behavior when Exim acts as the client system,
use the client_condition option in the client clause, too, again with tis_cipher.

652	 Chapter 18	 Electronic Mail	

Refer to the Exim documentation for details of all possible authentication options
and for examples.

Routers
Routers work on recipient email addresses, either by rewriting them or by assigning
them to a transport and sending them on their way. A particular router can have
multiple instances, each with different options.

You specify a sequence of routers. A message starts with the first router and progresses
through the list until the message is either accepted or rejected. The accepting router
typically hands the message to a transport driver. Routers handle both incoming
and outgoing messages. They feel a bit like subroutines in a programming language.

A router can return any of the dispositions shown in Table 18.18 for a message.

Table 18.18	 Exim router statuses

Status Meaning

accept The router accepts the address and hands it to a transport driver.
pass The router can’t handle the address; go on to the next router.
decline The router chooses not to handle the address; next router, please!
fail The address is invalid; the router queues it for a bounce message.
defer The message is left in the queue to be dealt with later.
error There is an error in the router specification; the message is deferred.

If a message receives a pass or decline from all the routers in the sequence, it is
unroutable. Exim bounces or rejects such messages, depending on the context.

If a message meets the preconditions for a router and the router ends with a no_more
statement, then that message will not be presented to any additional routers, re-
gardless of its disposition by the current router. For example, if your remote SMTP
router has the precondition domains = !+local_domains and has no_more set,
then only messages to local users (that is, those that would fail the domains pre-
condition) will continue to the next router in the sequence.

Routers have many possible options; some common examples are preconditions, ac-
ceptance or failure conditions, error messages to return, and transport drivers to use.

The next few sections detail the routers called accept, dnslookup, manualroute, and
redirect. The example configuration snippets assume that Exim is running on a
local machine in the example.com domain. They’re all pretty straightforward; refer
to the documentation if you want to use some of the fancier routers.

http://example.com

	 Exim	 653

Em
ai

l

The accept router
The accept router labels an address as OK and passes the associated message to a
transport driver. Below are examples of accept router instances called localusers,
for delivering local mail, and save_to_file, for appending to an archive.

localusers:
	 driver = accept
	 domains = example.com
	 check_local_user
	 transport = my_local_delivery

save_to_file:
	 driver = accept
	 domains = dialup.example.com
	 transport = batchsmtp_appendfile

The localusers router instance checks that the domain part of the destination ad-
dress is example.com and that the local part of the address is the login name of a
local user. If both conditions are met, the router hands the message to the transport
driver instance called my_local_delivery, which is defined in the transports section.
The save_to_file instance is designed for dial-up users; it appends the message to
a file specified in the batchsmtp_appendfile transport definition.

The dnslookup router
The dnslookup router typically handles outgoing messages. It looks up the MX re-
cord of the recipient’s domain and hands the message to an SMTP transport driver
for delivery. Here is an instance called remoteusers:

remoteusers:
	 driver = dnslookup
	 domains = !+example.com
	 transport = my_remote_delivery

The dnslookup code looks up the MX records for the addressee. If no MX records
exist, it tries the A record. A common extension to this router instance prohibits
delivery to certain IP addresses; a prime example is the RFC1918 private address-
es that cannot be routed on the Internet. See the ignore_target_hosts option for
more information.

The manualroute router
The flexible manualroute driver can pretty much route email in whatever way you
want. The routing information can be a table of rules that match by recipient domain
(route_list) or a single rule that applies to all domains (route_data).

See page 392 for
more information
about RFC1918 pri-
vate address spaces.

http://example.com
http://dialup.example.com
http://example.com
http://!+example.com

654	 Chapter 18	 Electronic Mail	

Below are two examples of manualroute instances. The first example implements
the “smart host” concept, in which all outgoing nonlocal mail is sent to a central
(“smart”) host for processing. This instance is called smarthost and applies to all
recipients’ domains that are not (the ! character) in the local_domains list.

smarthost:
	 driver = manualroute
	 domains = !+local_domains
	 transport = remote_smtp
	 route_data = smarthost.example.com

The router instance below, firewall, speaks SMTP to send incoming messages to
hosts inside the firewall (perhaps after scanning them for spam and viruses). It
looks up the routing data for each recipient domain in a DBM database that con-
tains the names of local hosts.

firewall:
	 driver = manualroute
	 transport = remote-smtp
	 route_data = ${lookup{$domain} dbm {/internal/host/routes}}

The redirect router
The redirect driver does address rewriting, such as that called for in the system-wide
aliases file or in a user’s ~/.forward file. It usually does not assign the rewritten
address to a transport; that task is left to other routers in the chain.

The first instance shown below, system_aliases, looks up aliases with a linear
search (lsearch) of the /etc/aliases file. That’s fine for a small aliases file, but if
yours is huge, replace that linear search with a database lookup. The second instance,
user_forward, first verifies that mail is addressed to a local user, then checks that
user’s .forward file.

system_aliases:
	 driver = redirect
	 data = ${lookup{$local_part} lsearch {/etc/aliases}}

user_forward:
	 driver = redirect
	 check_local_user
	 file = $home/.forward
	 no_verify

The check_local_user option ensures that the recipient is a valid local user. The
no_verify says not to verify the validity of the address to which the forward file
redirects the message; just ship it.

http://smarthost.example.com

	 Exim	 655

Em
ai

l

Per-user filtering through .forward files
Exim not only allows forwarding through .forward files but also allows filtering.
It supports its own filtering system as well as the Sieve filtering that is being stan-
dardized by the IETF. If the first line of a user’s .forward file is

#Exim filter

or

#Sieve filter

then the subsequent filtering commands (there are about 15 of them) can deter-
mine where the message should be delivered. Filtering does not actually deliver
messages—it just meddles with the destination. For example:

#Exim filter
if 	 $header_subject: contains sysadmin
then
	 save $home/mail/sysadmin
endif

Lots of options are available to control what users can and cannot do in their
.forward files. The option names begin with forbid_ or allow_. They’re important
because they can prevent users from running shells, loading libraries into binaries,
or accessing the embedded Perl interpreter when they shouldn’t. Check for new
forbid_* options when you upgrade to be sure your users can’t get too fancy in
their .forward files.

Transports
Routers decide where messages should go, and transports actually take them there.
Local transports typically append to a file, pipe to a local program, or speak the
LMTP protocol to an IMAP server. Remote transports speak SMTP to their coun-
terparts across the Internet.

There are five Exim transports: appendfile, lmtp, smtp, autoreply, and pipe; we
detail appendfile and smtp. The autoreply transport is typically used to send va-
cation messages, and the pipe transport hands messages as input to a command
through a UNIX pipe. As with routers, you must define instances of transports, and
it’s OK to have multiple instances of the same type of transport. Order is significant
for routers, but not for transports.

The appendfile transport
The appendfile driver stores messages in mbox, mbx, Maildir, or mailstore format in
a specified file or directory. You must have included the appropriate mailbox formats
when you compiled Exim; they are commented out of the EDITME file by default.

656	 Chapter 18	 Electronic Mail	

The following example defines the my_local_delivery transport (an instance of
the appendfile transport) referred to in the localusers router instance definition
on page 653.

my_local_delivery:
	 driver = appendfile
	 file = /var/mail/$local_part
	 delivery_date_add
	 envelope_to_add
	 return_path_add
	 group = mail
	 mode = 0660

The various *_add lines add headers to the message. The group and mode clauses
ensure that the transport agent can write to the file.

The smtp transport
The smtp transport is the workhorse of any mail system. Here, we define two instanc-
es, one for the standard SMTP port (25) and one for the mail submission port (587).

my_remote_delivery:
	 driver = smtp

my_remote_delivery_port587:
	 driver = smtp
	 port = 587
	 headers_add = X-processed-by: MACRO_HEADER port 587

The second instance, my_remote_delivery_port587, specifies the port and also a
header to be added to the message that includes an indication of the outgoing port.
MACRO_HEADER would be defined elsewhere in the configuration file.

Retry configuration
The retry section of the configuration file must exist or Exim will never attempt re-
delivery of messages that could not be delivered on the first attempt. You can specify
three time intervals, each less frequent than the previous one. After the last interval
has expired, messages bounce back to the sender as undeliverable. retry statements
understand the suffixes m, h, d, and w to indicate minutes, hours, days, and weeks.
You can specify different intervals for different hosts or domains.

Here’s what a retry section looks like:

begin retry
	 *	 *	 F, 2h, 15m;	 F, 24h, 1h;	 F, 4d, 6h

This example means, “For any domain, an address that fails temporarily should be
retried every 15 minutes for 2 hours, then every hour for the next 24 hours, then
every 6 hours for 4 days, and finally, bounced as undeliverable.”

	 Exim	 657

Em
ai

l

Rewriting configuration
The rewriting section of the configuration file starts with begin rewrite. It’s used
to fix up addresses, not to reroute messages. For example, you could use it on your
outgoing addresses

•	 To make mail appear to be from your domain, not from individual hosts
•	 To map usernames to a standard format such as First.Last

Do not apply rewriting to addresses in incoming mail.

Local scan function
To further customize Exim, for example, to filter for the latest and greatest virus, you
could write a C function that does your scanning and install it in the local_scan
section of the config file. Refer to the Exim documentation for details and exam-
ples of how to do this.

Logging
Exim by default writes three different log files: a main log, a reject log, and a pan-
ic log. Each log entry includes the time the message was written. You specify the
location of the log files in the EDITME file (before building Exim) or in the run-
time config file in the value of the log_file_path option. By default, logs are kept
in the /var/spool/exim/log directory.

The log_file_path option accepts up to two colon-separated values. Each value
must be either the keyword syslog or an absolute path with a %s embedded where
the names main, reject, and panic can be substituted. For example,

log_file_path = syslog : /var/log/exim_%s

would log both to syslog (with facility “mail”) and to the separate files exim_main,
exim_reject, and exim_panic in the /var/log directory. Exim submits the main
log entries to syslog at priority info, the reject entries at priority notice, and the
panic entries at priority alert.

The main log contains one line for the arrival and delivery of each message. It can be
summarized by the Perl script eximstats, which is included in the Exim distribution.

The reject log records information about messages that have been rejected for pol-
icy reasons: malware, spam, etc. It includes the summary line for the message from
the main log and also the original headers of the message that was rejected. If you
change your policies, check the reject log to make sure that all is still well.

The panic log is for serious errors in the software; exim writes here just before
it gives up. The panic log should not exist in the absence of problems. Ask cron
to check it for you and if it exists, fix the problem that caused the panic and then
delete the file. exim will re-create it when the next panic-worthy situation arises.

658	 Chapter 18	 Electronic Mail	

When debugging, you can increase the amount and type of data logged. Invoke the
log_selector option. For example:

log_selector = +smtp_connection +smtp_incomplete_transaction +...

The logging categories that can be included or excluded by the log_selector mech-
anism are listed in the Exim specification, in the section called “Log files” toward the
end. About 35 categories are defined, including +all, which will really fill your disks!

exim also keeps a temporary log for each message it handles. It is named with the
message ID and lives in /var/spool/exim/msglog. If you are having trouble with a
particular destination, check there.

Debugging
Exim has powerful debugging aids. You can configure the amount of information
you want to see about each potential debugging topic. exim -d tells exim to go into
debugging mode, in which it stays in the foreground and does not detach from the
terminal. You can add specific debugging categories to -d with a + or - in front of
them to verbosify or eliminate a category. For example, -d+expand+acl requests
regular debugging output plus extra details regarding string expansions and ACL
interpretation. (These two categories are common problem spots.) You can tune
more than 30 categories of debugging information; see the man page for a list.

A common technique when debugging mail systems is to start the MTA on a non-
standard port and then talk to it through telnet. For example, to start exim in dae-
mon mode, listening on port 26, with debugging info turned on, run

$ sudo exim -d -oX 26 -bd

You can then telnet to port 26 and type SMTP commands in an attempt to repro-
duce the problem you are debugging.

Alternatively, you can have swaks do your SMTP talking for you. It’s a Perl script
that makes SMTP debugging faster and easier. swaks --help gets you some docu-
mentation, and jetmore.org/john/code/swaks supplies complete details.

If your log files show timeouts of around 30 seconds, that’s suggestive of a DNS issue.

18.10	 Postfix
Postfix is another popular alternative to sendmail. Wietse Venema started the Post-
fix project when he spent a sabbatical year at IBM’s T. J. Watson Research Center in
1996, and he is still actively developing it. Postfix’s design goals included not only
security (first and foremost!), but also an open source distribution policy, speedy
performance, robustness, and flexibility. All major Linux distributions include
Postfix, and since version 10.3, macOS has shipped Postfix instead of sendmail as
its default mail system.

http://jetmore.org/john/code/swaks

	 Postfix	 659

Em
ai

l

The most important things to know about Postfix are, first, that it works almost out
of the box (the simplest config files are only a line or two long), and second, that it
leverages regular expression maps to filter email effectively, especially in conjunction
with the PCRE (Perl-Compatible Regular Expression) library. Postfix is compatible
with sendmail in the sense that Postfix’s aliases and .forward files have the same
format and semantics as those of sendmail.

Postfix speaks ESMTP. Virtual domains and spam filtering are both supported. For
address rewriting, Postfix relies on table lookups from flat files, Berkeley DB, DBM,
LDAP, NetInfo, or SQL databases.

Postfix architecture
Postfix comprises several small, cooperating programs that send network messages,
receive messages, deliver email locally, etc. Communication among them is performed
through local domain sockets or FIFOs. This architecture is quite different from
that of sendmail and Exim, wherein a single large program does most of the work.

The master program starts and monitors all Postfix processes. Its configuration file,
master.cf, lists the subsidiary programs along with information about how they
should be started. The default values set in that file cover most needs; in general,
no tweaking is necessary. One common change is to comment out a program, for
example, smtpd, when a client should not listen on the SMTP port.

The most important server programs involved in the delivery of email are shown
in Exhibit B.

Exhibit B	 Postfix server programs

smtp

lmtp

local

virtual

pipe

qmgr

bounce

trivial-rewrite

cleanup

smtpd

pickup

Receiving mail
smtpd receives mail entering the system through SMTP. It also verifies that the
connecting clients are authorized to send the mail they are trying to deliver. When
email is sent locally through the /usr/lib/sendmail compatibility program, a file is

See page 209 for more
information about
regular expressions.

660	 Chapter 18	 Electronic Mail	

written to the /var/spool/postfix/maildrop directory. That directory is periodically
scanned by the pickup program, which processes any new files it finds.

All incoming email passes through cleanup, which adds missing headers and re-
writes addresses according to the canonical and virtual maps. Before inserting
mail into the incoming queue, cleanup passes it through trivial-rewrite, which
does minor fixing of the addresses, such as appending a mail domain to addresses
that are not fully qualified.

Managing mail-waiting queues
qmgr manages five queues that contain mail waiting to be delivered:

•	 incoming	 – mail that is arriving
•	 active	 – mail that is being delivered
•	 deferred	 – mail for which delivery has failed in the past
•	 hold	 – mail blocked in the queue by the administrator
•	 corrupt	 – mail that can’t be read or parsed

The queue manager generally follows a simple FIFO strategy to select the next mes-
sage to process, but it also supports a complex preemption algorithm that prefers
messages with few recipients over bulk mail.

To avoid overwhelming a receiving host, especially one that has been down, Postfix
uses a slow-start algorithm to control how fast it tries to deliver email. Deferred
messages are given a try-again time stamp that exponentially backs off so as not to
waste resources on undeliverable messages. A status cache of unreachable destina-
tions avoids unnecessary delivery attempts.

Sending mail
qmgr, aided by trivial-rewrite, decides where a message should be sent. The rout-
ing decision made by trivial-rewrite can be overridden through lookup tables
(transport_maps).

Delivery to remote hosts via the SMTP protocol is performed by the smtp program.
lmtp delivers mail with LMTP, the Local Mail Transfer Protocol defined in RFC2033.
LMTP is derived from SMTP, but the protocol has been modified so that the mail
server is not required to manage a mail queue. This mailer is particularly useful for
delivering email to mailbox servers such as the Cyrus IMAP suite.

local’s job is to deliver email locally. It resolves addresses in the aliases table and
follows instructions found in recipients’ .forward files. Messages are forwarded to
another address, passed to an external program for processing, or stored in users’
mail folders.

The virtual program delivers email to “virtual mailboxes”; that is, mailboxes that
are not related to a local UNIX account but that still represent valid email destina-
tions. Finally, pipe implements delivery through external programs.

	 Postfix	 661

Em
ai

l

Security
Postfix implements security at several levels. Most of the Postfix server programs can
run in a chrooted environment. They are separate programs with no parent/child
relationship. None of them are setuid. The mail drop directory is group-writable
by the postdrop group, to which the postdrop program is setgid.

Postfix commands and documentation
Several command-line utilities permit user interaction with the mail system:

•	 postalias – builds, modifies, and queries alias tables
•	 postcat – prints the contents of queue files
•	 postconf – displays and edits the main configuration file, main.cf
•	 postfix – starts and stops the mail system (must be run as root)
•	 postmap – builds, modifies, or queries lookup tables
•	 postsuper – manages mail queues
•	 sendmail, mailq, newaliases – are sendmail-compatible replacements

The Postfix distribution includes a set of man pages that describe all the programs
and their options. On-line documents at postfix.org explain how to configure and
manage various aspects of Postfix. These documents are also included in the Postfix
distribution in the README_FILES directory.

Postfix configuration
The main.cf file is Postfix’s principal configuration file. The master.cf file configures
the server programs. It also defines various lookup tables that are referenced from
main.cf and that provide different types of service mappings.

The postconf(5) man page describes every parameter you can set in the main.cf file.
There is also a postconf program, so if you just type man postconf, you’ll get the man
page for that instead of postconf(5). Use man -s 5 postconf to get the right version.

The Postfix configuration language looks a bit like a series of sh comments and
assignment statements. Variables can be referenced in the definition of other vari-
ables by being prefixed with a $. Variable definitions are stored just as they appear
in the config file; they are not expanded until they are used, and any substitutions
occur at that time.

You can create new variables by assigning values to them. Be careful to choose
names that do not conflict with existing configuration variables.

All Postfix configuration files, including the lookup tables, consider lines starting
with whitespace to be continuation lines. This convention results in readable con-
figuration files, but you must start new lines in column one.

http://postfix.org

662	 Chapter 18	 Electronic Mail	

What to put in main.cf
More than 500 parameters can be specified in the main.cf file. However, just a few
of them need to be set at an average site. The author of Postfix strongly recommends
that only parameters with nondefault values be included in your configuration. That
way, if the default value of a parameter changes in the future, your configuration
will automatically adopt the new value.

The sample main.cf file that comes with the distribution includes many commented-out
example parameters, along with some brief documentation. The original version
is best left alone as a reference. Start with an empty file for your own configuration
so that your settings do not become lost in a sea of comments.

Basic settings
The simplest possible Postfix configuration is an empty file. Surprisingly, this is a
perfectly reasonable setup. It results in a mail server that delivers email locally with-
in the same domain as the local hostname and that sends any messages directed to
nonlocal addresses directly to the appropriate remote servers.

Null client
Another simple configuration is a “null client”; that is, a system that doesn’t deliver
email locally but rather forwards outbound mail to a designated central server. To
implement this configuration, you define several parameters, starting with mydomain,
which defines the domain part of the hostname, and myorigin, which is the mail
domain appended to unqualified email addresses. If these two parameters are the
same, you can write something like this:

mydomain = cs.colorado.edu
myorigin = $mydomain

Another parameter you should set is mydestination, which specifies the mail do-
mains that are local. If the recipient address of a message has mydestination as its
mail domain, the message is delivered through the local program to the correspond-
ing user (assuming that no relevant alias or .forward file is found). If more than
one mail domain is included in mydestination, these domains are all considered
aliases for the same domain.

For a null client, you want no local delivery, so leave this parameter empty:

mydestination =

Finally, the relayhost parameter tells Postfix to send all nonlocal messages to a
specified host instead of sending them directly to their apparent destinations:

relayhost = [mail.cs.colorado.edu]

The square brackets tell Postfix to treat the specified string as a hostname (DNS A
record) instead of a mail domain name (DNS MX record).

http://cs.colorado.edu
http://mail.cs.colorado.edu

	 Postfix	 663

Em
ai

l

Since null clients should not receive mail from other systems, the last thing to do
in a null client configuration is to comment out the smtpd line in the master.cf file.
This change prevents Postfix from running smtpd at all. With just these few lines,
you’ve defined a fully functional null client!

For a “real” mail server, you’ll need a few more configuration options as well as
some mapping tables. We cover these in the next few sections.

Use of postconf
postconf is a handy tool that helps you configure Postfix. When run without ar-
guments, it prints all the parameters as they are currently configured. If you name
a specific parameter as an argument, postconf prints the value of that parameter.
The -d option makes postconf print the defaults instead of the currently config-
ured values. For example:

$ postconf mydestination
mydestination =
$ postconf -d mydestination
mydestination = $myhostname, localhost.$mydomain, localhost

Another useful option is -n, which tells postconf to print only the parameters that
differ from the default. If you ask for help on the Postfix mailing list, that’s the con-
figuration information you should put in your email.

Lookup tables
Many aspects of Postfix’s behavior are shaped through the use of lookup tables,
which can map keys to values or implement simple lists. For example, the default
setting for the alias_maps table is

alias_maps = dbm:/etc/mail/aliases

Data sources are specified with the notation type:path. Multiple values can be sep-
arated by commas, spaces, or both. Table 18.19 on the next page lists the available
data sources; postconf -m shows this information as well.

The dbm and sdbm types are only for compatibility with the traditional sendmail
alias table. Berkeley DB (hash) is a more modern implementation; it’s safer and
faster. If compatibility is not a problem, then go with

alias_database = hash:/etc/mail/aliases
alias_maps = hash:/etc/mail/aliases

The alias_database specifies the table that is rebuilt by newaliases and should
correspond to the table that you specify in alias_maps. The two parameters are
separate because alias_maps might include non-DB sources such as mysql that
never need to be rebuilt.

All DB-class tables (dbm, sdbm, hash, and btree) compile a text file to an efficiently
searchable binary format. The syntax for these text files is similar to that of the

664	 Chapter 18	 Electronic Mail	

Table 18.19	 Information sources for Postfix lookup tables

Type Description

dbm/sdbm Legacy dbm or gdbm database file
cidr Network addresses in CIDR form
hash/btree Berkeley DB hash table or B-tree file (replaces dbm)
ldap LDAP directory service
mysql MySQL database
pcre Perl-compatible regular expressions
pgsql PostgreSQL database
proxy Access through proxymap, e.g., to escape a chroot
regexp POSIX regular expressions
static Return of value specified as path regardless of the key
unix The /etc/passwd and /etc/group files a

a.	unix:passwd.byname is the passwd file, and unix:group.byname is the group file.

configuration files with respect to comments and continuation lines. Entries are
specified as simple key/value pairs separated by whitespace, except for alias tables,
which use a colon after the key to retain sendmail compatibility. For example, the
following lines are appropriate for an alias table:

postmaster:	 david, tobias
webmaster:	 evi

As another example, here’s an access table for relaying mail from any client with a
hostname ending in cs.colorado.edu.

.cs.colorado.edu		 OK

Text files are compiled to their binary formats with the postmap command for
normal tables and the postalias command for alias tables. The table specification
(including the type) must be given as the first argument. For example:

$ sudo postmap hash:/etc/postfix/access

postmap can also query values in a lookup table (no match = no output):

$ postmap -q blabla hash:/etc/postfix/access
$ postmap -q .cs.colorado.edu hash:/etc/postfix/access
OK

Local delivery
The local program delivers mail to local recipients. It also handles local aliasing.
For example, if mydestination is set to cs.colorado.edu and email arrives for the
recipient evi@cs.colorado.edu, local first consults the alias_maps tables and then
substitutes any matching entries recursively.

http://cs.colorado.edu
http://.cs.colorado.edu
http://postmap-q.cs.colorado.edu
http://postmap-q.cs.colorado.edu
http://postmap-q.cs.colorado.edu
http://cs.colorado.edu
mailto:evi@cs.colorado.edu

	 Postfix	 665

Em
ai

l

If no aliases match, local looks for a .forward file in user evi’s home directory and
follows the instructions in this file if it exists. (The syntax is the same as for the
right side of an alias map.) Finally, if no .forward file is found, the email is deliv-
ered to evi’s local mailbox.

By default, local writes to standard mbox-format files under /var/mail. You can
change that behavior with the parameters shown in Table 18.20.

Table 18.20	 Parameters for local mailbox delivery (set in main.cf)

Parameter Description

home_mailbox Delivers mail to ~user under the specified relative path
mail_spool_directory Delivers mail to a central directory that serves all users
mailbox_command Delivers mail with an external program, typically procmail
mailbox_transport Delivers mail through a service as defined in master.cf a

recipient_delimiter Allows extended usernames (see description below)

a.	 This option interfaces with mailbox servers such as the Cyrus imapd.

The mail_spool_directory and home_mailbox options normally generate mbox-for-
mat mailboxes, but they can also produce Maildir mailboxes. To request this be-
havior, add a slash to the end of the pathname.

If recipient_delimiter is +, mail addressed to evi+whatever@cs.colorado.edu is
accepted for delivery to the evi account. With this facility, users can create spe-
cial-purpose addresses and sort their mail by destination address. Postfix first at-
tempts lookups on the full address, and only if that fails does it strip the extended
components and fall back to the base address. Postfix also looks for a corresponding
forwarding file, .forward+whatever, for further aliasing.

Virtual domains
To host a mail domain on your Postfix mail server, you have three choices:

•	 List the domain in mydestination. Delivery is performed as described above:
aliases are expanded and mail is delivered to the corresponding accounts.

•	 List the domain in the virtual_alias_domains parameter. This option
gives the domain its own addressing namespace that is independent of
the system’s user accounts. All addresses within the domain must be re-
solvable (through mapping) to real addresses outside of it.

•	 List the domain in the virtual_mailbox_domains parameter. As with the
virtual_alias_domains option, the domain has its own namespace. All
mailboxes must live beneath a specified directory.

mailto:evi+whatever@cs.colorado.edu

666	 Chapter 18	 Electronic Mail	

List the domain in only one of these three places. Choose carefully, because many
configuration elements depend on that choice. We have already reviewed the han-
dling of the mydestination method. The other options are discussed below.

Virtual alias domains
If a domain is listed as a value of the virtual_alias_domains parameter, mail to
that domain is accepted by Postfix and must be forwarded to an actual recipient
either on the local machine or elsewhere.

The forwarding for addresses in the virtual domain must be defined in a lookup
table included in the virtual_alias_maps parameter. Entries in the table have the
address in the virtual domain on the left side and the actual destination address
on the right. An unqualified name on the right is interpreted as a local username.

Consider the following example from main.cf:

myorigin = cs.colorado.edu
mydestination = cs.colorado.edu
virtual_alias_domains = admin.com
virtual_alias_maps = hash:/etc/mail/admin.com/virtual

In /etc/mail/admin.com/virtual we could then have the lines

postmaster@admin.com	 evi, david@admin.com
david@admin.com			 david@schweikert.ch
evi@admin.com			 evi

Mail for evi@admin.com would be redirected to evi@cs.colorado.edu (myorigin
is appended) and would ultimately be delivered to the mailbox of user evi because
cs.colorado.edu is included in mydestination.

Definitions can be recursive: the right hand side can contain addresses that are fur-
ther defined on the left hand side. Note that the right hand side can only be a list
of addresses. To execute an external program or to use :include: files, redirect the
email to an alias, which can then be expanded according to your needs.

To keep everything in one file, set virtual_alias_domains to the same lookup
table as virtual_alias_maps and put a special entry in the table to mark it as a
virtual alias domain. In main.cf:

virtual_alias_domains = $virtual_alias_maps
virtual_alias_maps = hash:/etc/mail/admin.com/virtual

In /etc/mail/admin.com/virtual:

admin.com				 notused
postmaster@admin.com	 evi, david@admin.com
...

http://cs.colorado.edu
http://cs.colorado.edu
http://admin.com
http://hash:/etc/mail/admin.com/virtual
http:///etc/mail/admin.com/virtual
mailto:postmaster@admin.com
mailto:david@admin.com
mailto:david@admin.com
mailto:david@schweikert.ch
mailto:evi@admin.com
mailto:evi@admin.com
mailto:evi@cs.colorado.edu
http://cs.colorado.edu
http://hash:/etc/mail/admin.com/virtual
http:///etc/mail/admin.com/virtual:
http://admin.com
mailto:postmaster@admin.com
mailto:david@admin.com

	 Postfix	 667

Em
ai

l

The right hand side of the entry for the mail domain (admin.com) is never actually
used; admin.com’s existence in the table as an independent entry is enough to make
Postfix consider it a virtual alias domain.

Virtual mailbox domains
Domains listed under virtual_mailbox_domains are similar to local domains, but
the list of users and their corresponding mailboxes must be managed independently
of the system’s user accounts.

The parameter virtual_mailbox_maps points to a table that lists all valid users in
the domain. The map format is

user@domain		 /path/to/mailbox

If the path ends with a slash, the mailboxes are stored in Maildir format. The value
of virtual_mailbox_base is always prefixed to the specified paths.

You often want to alias some of the addresses in the virtual mailbox domain. A
virtual_alias_map will do that for you. Here is a complete example. In main.cf:

virtual_mailbox_domains = admin.com
virtual_mailbox_base = /var/mail/virtual
virtual_mailbox_maps = hash:/etc/mail/admin.com/vmailboxes
virtual_alias_maps = hash:/etc/mail/admin.com/valiases

/etc/mail/admin.com/vmailboxes might contain entries like these:

evi@admin.com			 nemeth/evi/

/etc/mail/admin.com/valiases might contain:

postmaster@admin.com	 evi@admin.com

You can use virtual alias maps even on addresses that are not within virtual alias
domains. Virtual alias maps let you redirect any address from any domain, inde-
pendently of the type of the domain (canonical, virtual alias, or virtual mailbox).
Since mailbox paths can only be put on the right hand side of the virtual mailbox
map, this mechanism is the only way to set up aliases in that domain.

Access control
Mail servers should relay mail for third parties only on behalf of trusted clients. If
a mail server forwards mail from unknown clients to other servers, it is a so-called
open relay, which is bad. See page 629 for more details.

Fortunately, Postfix doesn’t act as an open relay by default. In fact, its defaults are
quite restrictive; you are more likely to need to liberalize the permissions than to
tighten them. Access control for SMTP transactions is configured in Postfix through

“access restriction lists.” The parameters shown in Table 18.21 control what should
be checked during the different phases of an SMTP session.

http://admin.com
http://admin.com$$$�s
http://admin.com
http://hash:/etc/mail/admin.com/vmailboxes
http://hash:/etc/mail/admin.com/valiases
http:///etc/mail/admin.com/vmailboxes
mailto:evi@admin.com
http:///etc/mail/admin.com/valiases
mailto:postmaster@admin.com
mailto:evi@admin.com

668	 Chapter 18	 Electronic Mail	

Table 18.21	 Postfix parameters for SMTP access restriction

Parameter When applied

smtpd_client_restrictions On connection request
smtpd_data_restrictions On DATA command (mail body)
smtpd_etrn_restrictions On ETRN command a

smtpd_helo_restrictions On HELO/EHLO command (start of the session)
smtpd_recipient_restrictions On RCPT TO command (recipient specification)
smtpd_relay_restrictions On relay attempt to a third party domain
smtpd_sender_restrictions On MAIL FROM command (sender specification)

a.	 This is a special command used for resending messages in the queue.

The most important parameter is smtpd_recipient_restrictions. That’s because
access control is most easily performed when the recipient address is known and
can be identified as being local or not. All other parameters in Table 18.21 are empty
in the default configuration. The default value is

smtpd_recipient_restrictions = permit_mynetworks,
reject_unauth_destination

Each of the specified restrictions is tested in turn until a definitive decision about
what to do with the mail is reached. Table 18.22 shows the common restrictions.

Table 18.22	 Common Postfix access restrictions

Restriction Function

check_client_access Checks client host address through a lookup table
check_recipient_access Checks recipient mail address through a lookup table
permit_mynetworks Grants access to addresses listed in mynetworks
reject_unauth_destination Rejects mail for nonlocal recipients; no relaying

Everything can be tested in these restrictions, not just specific information like
the sender address in the smtpd_sender_restrictions. Therefore, for simplici-
ty, you might want to put all the restrictions under a single parameter. Make that
smtpd_recipient_restrictions because it is the only one that can test everything
(except the DATA part).

smtpd_recipient_restrictions and smtpd_relay_restrictions are where mail
relaying is tested. Keep the reject_unauth_destination restriction and carefully
choose the “permit” restrictions before it.

	 Postfix	 669

Em
ai

l

Access tables
Each restriction returns one of the actions shown in Table 18.23. Access tables are
used in restrictions such as check_client_access and check_recipient_access to
select an action according to the client host address or recipient address, respectively.

Table 18.23	 Actions for access tables

Action Meaning

4nn text Returns temporary error code 4nn and message text
5nn text Returns permanent error code 5nn and message text
DEFER_IF_PERMIT If restrictions result in PERMIT, changes it to a temp error
DEFER_IF_REJECT If restrictions result in REJECT, changes it to a temp error
DISCARD Accepts the message but silently discards it
DUNNO Pretends the key was not found; tests further restrictions
FILTER transport:dest Passes the mail through the filter transport:dest 
HOLD Blocks the mail in the queue
OK Accepts the mail
PREPEND header Adds a header to the message
REDIRECT addr Forwards the mail to a specified address
REJECT Rejects the mail
WARN message Enters the given warning message in the logs

For example, suppose you wanted to allow relaying for all machines within the
cs.colorado.edu domain and that you wanted to allow only trusted clients to post
to the internal mailing list newsletter@cs.colorado.edu. You could implement
these policies with the following lines in main.cf:

smtpd_recipient_restrictions =
	 permit_mynetworks
	 check_client_access hash:/etc/postfix/relaying_access
	 reject_unauth_destination
	 check_recipient_access hash:/etc/postfix/restricted_recipients

Note that commas are optional when the list of values for a parameter is specified.

In /etc/postfix/relaying_access:

.cs.colorado.edu				 OK

In /etc/postfix/restricted_recipients:

newsletter@cs.colorado.edu	 REJECT Internal list

The text after REJECT is an optional string that is sent to the client along with the
error code. It tells the sender why the mail was rejected.

http://cs.colorado.edu
mailto:newsletter@cs.colorado.edu
http://.cs.colorado.edu
mailto:newsletter@cs.colorado.edu

670	 Chapter 18	 Electronic Mail	

Authentication of clients and encryption
For users sending mail from home, it is usually easiest to route outgoing mail through
the home ISP’s mail server, regardless of the sender address that appears on that
mail. Most ISPs trust their direct clients and allow relaying. If this configuration isn’t
possible or if you are using a system such as Sender ID or SPF, ensure that mobile
users outside your network can be authorized to submit messages to your smtpd.

The solution to this problem is to have the SMTP AUTH mechanism authenticate
directly at the SMTP level. Postfix must be compiled with support for the SASL li-
brary to make this work. You can then configure the feature like this:

smtpd_sasl_auth_enable = yes
smtpd_recipient_restrictions =
	 permit_mynetworks
	 permit_sasl_authenticated
	 ...

You also need to support encrypted connections to avoid sending passwords in
clear text. Add lines like the following to main.cf:

smtpd_tls_security_level = may
smtpd_tls_auth_only = yes
smtpd_tls_loglevel = 1
smtpd_tls_received_header = yes
smtpd_tls_cert_file = /etc/certs/smtp.pem
smtpd_tls_key_file = $smtpd_tls_cert_file
smtpd_tls_protocols = !SSLv2

You need to put a properly signed certificate in /etc/certs/smtp.pem. It’s also a good
idea to turn on encryption on outgoing SMTP connections:

smtp_tls_security_level = may
smtp_tls_loglevel = 1

Debugging
When you have a problem with Postfix, first check the log files. The answers to your
questions are most likely there; it’s just a question of finding them. Every Postfix
program normally issues a log entry for every message it processes. For example,
the trail of an outbound message might look like this:

Aug 18 22:41:33 nova postfix/pickup: 0E4A93688: uid=506
from=<dws@ee.ethz.ch>

Aug 18 22:41:33 nova postfix/cleanup: 0E4A93688:
message-id= <20040818204132.GA11444@ee.ethz.ch>

Aug 18 22:41:33 nova postfix/qmgr: 0E4A93688:
from=<dws@ee.ethz.ch>, size=577,nrcpt=1 (queue active)

Aug 18 22:41:33 nova postfix/smtp: 0E4A93688:
to=<evi@ee.ethz.ch>,relay=tardis.ee.ethz.ch[129.132.2.217],
delay=0, status=sent (250 Ok: queued as 154D4D930B)

Aug 18 22:41:33 nova postfix/qmgr: 0E4A93688: removed

mailto:<dws@ee.ethz.ch
mailto:GA11444@ee.ethz.ch
mailto:<dws@ee.ethz.ch
mailto:<evi@ee.ethz.ch>,relay=tardis.ee.ethz.ch[129

	 Postfix	 671

Em
ai

l

As you can see, the interesting information is spread over many lines. Note that the
identifier 0E4A93688 is common to every line: Postfix assigns a queue ID as soon as
a message enters the mail system and never changes it. Therefore, when searching
the logs for the history of a message, first concentrate on determining the message’s
queue ID. Once you know that, it’s easy to grep the logs for all the relevant entries.

Postfix is good at logging helpful messages about problems that it notices. However,
it’s sometimes difficult to spot the important lines among the thousands of normal
status messages. This is a good place to consider using some of the tools discussed
in the section Management of logs at scale, which starts on page 321.

Looking at the queue
Another place to look for problems is the mail queue. As in the sendmail system,
a mailq command prints the contents of a queue. You can use it to see if and why
a message has become stuck.

Another helpful tool is the qshape script that’s shipped with recent versions of Postfix.
It shows summary statistics about the contents of a queue. The output looks like this:

$ sudo qshape deferred
		 T 5 10 20 40 80 160 320 640 1280 1280+
	 TOTAL	 78 0 0 0 7 3 3 2 12 2 49
	 expn.com	 34 0 0 0 0 0 0 0 9 0 25
	 chinabank.ph	 5 0 0 0 1 1 1 2 0 0 0
	prob-helper.biz	 3 0 0 0 0 0 0 0 0 0 3

qshape summarizes the given queue (here, the deferred queue), sorted by recipient
domain. The columns report the number of minutes the relevant messages have been
in the queue. For example, you can see that 25 messages bound for expn.com have
been in the queue longer than 1,280 minutes. All the destinations in this example are
suggestive of messages having been sent from vacation scripts in response to spam.

qshape can also summarize by sender domain with the -s flag.

Soft-bouncing
If soft_bounce is set to yes, Postfix sends temporary error messages whenever it
would normally send permanent error messages such as “user unknown” or “re-
laying denied.” This is a great testing feature; it lets you monitor the disposition of
messages after a configuration change without the risk of permanently losing legit-
imate email. Anything you reject will eventually come back for another try. Don’t
forget to turn off this feature when you are done testing or you will have to deal
with every rejected message over and over again.

http://expn.com
http://chinabank.ph
http://prob-helper.biz
http://expn.com

672	 Chapter 18	 Electronic Mail	

18.11	 Recommended reading
Rather than jumble together the references listed here, we’ve sorted them by MTA
and topic.

sendmail references
Costales, Bryan, Claus Assmann, George Jansen, and Gregory Neil Shap-
iro. sendmail, 4th Edition. Sebastopol, CA: O’Reilly Media, 2007.

This book is the definitive tome for sendmail configuration—1,300 pages’ worth.
It includes a sysadmin guide as well as a complete reference section. An electron-
ic edition is available, too. The author mix includes two key sendmail developers
(Claus and Greg) who enforce technical correctness and add insight to the mix.

Installation instructions and a good description of the configuration file are cov-
ered in the Sendmail Installation and Operation Guide, which can be found in the
doc/op subdirectory of the sendmail distribution. This document is quite complete,
and in conjunction with the README file in the cf directory, gives a good nuts-
and-bolts view of the sendmail system.

sendmail.org, sendmail.org/~ca, and sendmail.org/~gshapiro all contain documents,
HOWTOs, and tutorials related to sendmail.

Exim references
Hazel, Philip. The Exim SMTP Mail Server: Official Guide for Release 4, 2nd Edi-
tion. Cambridge, UK: User Interface Technologies, Ltd., 2007.

Hazel, Philip. Exim: The Mail Transfer Agent. Sebastopol, CA: O’Reilly Media, 2001.

The Exim specification is the defining document for Exim configuration. It is quite
complete and is updated with each new distribution. A text version is included in the
file doc/spec.txt in the distribution, and a PDF version is available from exim.org.
The web site also includes several how-to documents.

Postfix references
Dent, Kyle D. Postfix: The Definitive Guide. Sebastopol, CA: O’Reilly Media, 2003.

Hildebrandt, Ralf, and Patrick Koetter. The Book of Postfix: State of the Art
Message Transport. San Francisco, CA: No Starch Press, 2005.

This book is the best; it guides you through all the details of Postfix configuration,
even for complex environments. The authors are active in the Postfix community
and participate regularly on the postfix-users mailing list. The book is unfortunately
out of print, but used copies are readily available.

http://system.sendmail.org
http://system.sendmail.org
http://sendmail.org/
http://sendmail.org/
http://exim.org

	 Recommended reading	 673

Em
ai

l

RFCs
RFCs 5321 (updated by 7504) and 5322 (updated by 6854) are the current versions
of RFCs 821 and 822. They define the SMTP protocol and the formats of messages
and addresses for Internet email. RFCs 6531 and 6532 cover extensions for inter-
nationalized email addresses. There are currently almost 90 email-related RFCs,
too many to list here. See the general RFC search engine at rfc-editor.org for more.

http://rfc-editor.org

674

UNIX and Linux are the predominant platforms for serving web applications. Ac-
cording to data from w3techs.com, 67% of the top one million web sites are served
by either Linux or FreeBSD. Above the OS level, open source web server software
commands more than 80% of the market.

At scale, web applications do not run on a single system. Instead, a collection of soft-
ware components distributed through a meshwork of systems cooperate to answer
requests as quickly and as flexibly as possible. Each piece of this architecture must
be resilient to server failures, load spikes, network partitions, and targeted attacks.

Cloud infrastructure helps address these needs. Its ability to provision capacity quickly
in response to demand is an ideal match for the sudden and sometimes unexpected
tidal waves of users that materialize on the web. In addition, cloud providers’ add-
on services include a variety of convenient recipes that meet common requirements,
greatly simplifying the design, deployment, and operation of web systems.

19.1	 HTTP: the Hypertext Transfer Protocol
HTTP is the core network protocol for communication on the web. Lurking beneath
a deceptively simple facade of stateless requests and responses lie layers of refine-

19 Web Hosting

http://w3techs.com

	 HTTP: the Hypertext Transfer Protocol	 675

W
eb

 H
os

tin
g

ments that bring both flexibility and complexity. A well-rounded understanding
of HTTP is a core competency for all system administrators.

In its simplest form, HTTP is a client/server, one-request/one-response protocol.
Clients, also called user agents, submit requests for resources to an HTTP server.
Servers receive incoming requests and process them by retrieving files from local
disks, resubmitting them to other servers, querying databases, or performing any
number of other possible computations. A typical page view on the web entails
dozens or hundreds of such exchanges.

As with most Internet protocols, HTTP has adapted over time, albeit slowly. The
centrality of the protocol to the modern Internet makes updates a high-stakes
proposition. Official revisions are a slog of committee meetings, mailing list nego-
tiations, public review periods, and maneuvering by stakeholders with vested and
conflicting interests. During the long gaps between official revisions documented
in RFCs, unofficial protocol extensions are born from necessity, become ubiquitous,
and are eventually included as features in the next specification.

HTTP versions 1.0 and 1.1 are sent over the wire in plain text. Adventurous ad-
ministrators can interact with servers directly by running telnet or netcat. They
can also observe and collect HTTP exchanges by using protocol-agnostic packet
capture software such as tcpdump.

The web is in the process of adopting HTTP/2, a major protocol revision that pre-
serves compatibility with previous versions but introduces a variety of performance
improvements. In an effort to promote the universal use of HTTPS (secure, encrypt-
ed HTTP) for the next generation of the web, major browsers such as Firefox and
Chrome have elected to support HTTP/2 only over TLS-encrypted connections.

HTTP/2 moves from plain text to binary format in an effort to simplify parsing
and improve network efficiency. HTTP’s semantics remain the same, but because
the transmitted data is no longer directly legible to humans, generic tools such as
telnet are no longer useful. The handy h2i command-line utility, part of the Go
language networking repository at github.com/golang/net, helps restore some in-
teractivity and debuggability to HTTP/2 connections. Many HTTP-specific tools
such as curl also support HTTP/2 natively.

Uniform Resource Locators (URLs)
A URL is an identifier that specifies how and where to access a resource. URLs are
not HTTP-specific; they are used for other protocols as well. For example, mobile
operating systems use URLs to facilitate communication among apps.

You may sometimes see the acronyms URI (Uniform Resource Identifier) and URN
(Uniform Resource Name) used as well. The exact distinctions and taxonomic rela-
tionships among URLs, URIs, and URNs are vague and unimportant. Stick with “URL.”

The general pattern for URLs is scheme:address, where scheme identifies the protocol
or system being targeted and address is some string that’s meaningful within that

See page 1008 for
general informa-
tion about TLS.

http://github.com/golang/net

676	 Chapter 19	 Web Hosting	

scheme. For example, the URL mailto:ulsah@admin.com encapsulates an email
address. If it’s invoked as a link target on the web, most browsers will bring up a
preaddressed window for sending mail.

For the web, the relevant schemes are http and https. In the wild, you might also see
the schemes ws (WebSockets), wss (WebSockets over TLS), ftp, ldap, and many others.

The address portion of a web URL allows quite a bit of interior structure. Here’s
the overall pattern:

	 scheme://[username:password@]hostname[:port][/path][?query][#anchor]

All the elements are optional except scheme and hostname.

The use of a username and password in the URL enables “HTTP basic authenti-
cation,” which is supported by most user agents and servers. In general, it’s a bad
idea to embed passwords into URLs because URLs are apt to be logged, shared,
bookmarked, visible in ps output, etc. User agents can get their credentials from a
source other than the URL, and that is typically a better option. In a web browser,
just leave the credentials out and let the browser prompt you for them separately.

HTTP basic authentication is not self-securing, which means that the password is
accessible to anyone who listens in on the transaction. Therefore, basic authentica-
tion should really only be used over secure HTTPS connections.

The hostname can be a domain name or IP address as well as an actual hostname.
The port is the TCP port number to connect to. The http and https schemes default
to ports 80 and 443, respectively.

The query section can include multiple parameters separated by ampersands. Each
parameter is a key=value pair. For example, Adobe InDesign users may find the
following URL eerily familiar:

	 http://adobe.com/search/index.cfm?term=indesign+crash&loc=en_us

As with passwords, sensitive data should never appear as a URL query parameter
because URL paths are often logged as plain text. The alternative is to transmit pa-
rameters as part of the request body. (You can’t really control this in other people’s
web software, but you can make sure your own site behaves properly.)

The anchor component identifies a subtarget of a specific URL. For example, Wiki-
pedia uses named anchors extensively as section headings, allowing specific parts
of an entry to be linked to directly.

Structure of an HTTP transaction
HTTP requests and responses are similar in structure. After an initial line, both
include a sequence of headers, a blank line, and finally, the body of the message,
called the payload.

See page 701 for more
details about HTTP
basic authentication.

mailto:mailto:ulsah@admin.com
http://adobe.com/search/index.cfm?term=indesign+crash&loc=en_us

	 HTTP: the Hypertext Transfer Protocol	 677

W
eb

 H
os

tin
g

HTTP requests
The first line of a request specifies an action for the server to perform. It consists of
a request method (also known as the verb), a path on which to perform the action,
and the HTTP version to use. For example, a request to retrieve a top-level HTML
page might look like this:

GET /index.html HTTP/1.1

Table 19.1 shows the common HTTP request methods. Verbs marked as “safe”
should not change the server’s state. However, this is more a convention than a
mandate. It’s ultimately up to the software that handles the request to decide how
to interpret the verb.

Table 19.1	 HTTP request methods

Verb Safe? Purpose

GET Yes Retrieves the specified resource
HEAD Yes Like GET, but requests no payload; retrieves metadata only
DELETE No Deletes the specified resource
POST No Applies request data to the given resource
PUT No Similar to POST, but implies replacement of existing contents
OPTIONS Yes Shows what methods the server supports for the specified path

GET is by far the most commonly used HTTP verb, followed by POST.1 REST APIs,
discussed in Application programming interfaces (APIs) on page 692, are more likely
to employ the more exotic verbs such as PUT and DELETE.

HTTP responses
The initial line in a response, called the status line, indicates the disposition of the
request. It looks like this:

HTTP/1.1 200 OK

The important part is the three-digit numeric status code. The phrase that follows
it is a helpful English translation that software ignores.

The first digit in the code determines its class; that is, the general nature of the re-
sult. Table 19.2 on the next page shows the five defined classes. Within a class, ad-
ditional detail is provided by the remaining two digits. More than 60 status codes
are defined, but only a few of these are commonly seen in the wild.

	 1.	 The distinction between POST and PUT is subtle and largely of concern to web API developers. PUTs
should be idempotent, meaning that a PUT can be repeated without causing ill effects. For example,
a transaction that causes the server to send email should not be represented as a PUT. The rules for
HTTP caching also differ significantly between PUT and POST. See RFC2616 for more details.

678	 Chapter 19	 Web Hosting	

Table 19.2	 HTTP response classes

Code General indication Examples

1xx Request received; processing continues 101 Switching Protocols

2xx Success 200 OK
201 Created

3xx Further action needed 301 Moved Permanently
302 Found a

4xx Unsatisfiable request 403 Forbidden
404 Not Found

5xx Server or environment failure 503 Service Unavailable

a.	 Most often used (inappropriately, according to the spec) for temporary redirects

Headers and the message body
Headers specify metadata about a request or response, such as whether to allow
compression; what types of content are accepted, expected, or provided; and how
intermediate caches should handle the data. For requests, the only required head-
er is Host, which is used by web server software to determine which site is being
contacted.

Table 19.3 shows some common headers.

Table 19.3	 Commonly encountered HTTP headers

Name: example value  Dir a Content

Host: www.admin.com → Domain name and port being requested
Content-Type: application/json ←→ Data format wanted or contained
Authorization: Basic QWx...FtZ== → Credentials for HTTP basic authentication
Last-Modified: Wed, Sep 7 2016... ← Object’s last known modification date
Cookie: flavor=oatmeal → Cookie returned from a user agent
Content-Length: 423 ←→ Length of the body in bytes
Set-Cookie: flavor=oatmeal ← Cookie to be stored by the user agent
User-Agent: curl/7.37.1 → User agent submitting the request
Server: nginx/1.6.2 ← Server software responding to the request
Upgrade: HTTP/2.0 ←→ Request to change to another protocol
Expires: Sat, 15 Oct 2016 14:02:... ← Length of time the response can be cached
Cache-Control: max-age=7200 ←→ Like Expires, but allows more control

a.	 Direction: →  request-only, ←  response-only, or ←→  both

http://www.admin.com

	 HTTP: the Hypertext Transfer Protocol	 679

W
eb

 H
os

tin
g

Table 19.3 is by no means a definitive list. In fact, both sides of the transaction can
include any headers they wish. Both sides must ignore headers they don’t understand.2

Headers are separated from the message body by a blank line. For requests, the
body can include parameters (for POST or PUT requests) or the contents of a file
to upload. For responses, the message body is the payload of the resource being
requested (e.g., HTML, image data, or query results). The message body is not nec-
essarily human-readable, since it can contain images or other binary data. The body
can also be empty, as for GET requests or most error responses.

curl: HTTP from the command line
curl (cURL) is a handy command-line HTTP client that’s available for most plat-
forms.3 Here, we use curl to explore an HTTP exchange.

Below is an invocation of curl that requests the root of the web site admin.com on
TCP port 80, which is the default for unencrypted (non-HTTPS) requests. The re-
sponse payload (i.e., the admin.com homepage) and some informative messages
from curl itself have been hidden by the -o /dev/null and -s flags. We also include
the -v flag to request that curl display verbose output, which includes headers.

$ curl -s -v -o /dev/null http://admin.com
* Rebuilt URL to: http://admin.com/
* Hostname was NOT found in DNS cache
* Trying 54.84.253.153...
* Connected to admin.com (54.84.253.153) port 80 (#0)
> GET / HTTP/1.1
> User-Agent: curl/7.37.1
> Host: admin.com
> Accept: */*
>
< HTTP/1.1 200 OK
< Date: Mon, 27 Apr 2015 18:17:08 GMT
* Server Apache/2.4.7 (Ubuntu) is not blacklisted
< Server: Apache/2.4.7 (Ubuntu)
< Last-Modified: Sat, 02 Feb 2013 03:08:20 GMT
< ETag: "66d3-4d4b52c0c1100"
< Accept-Ranges: bytes
< Content-Length: 26323
< Vary: Accept-Encoding
< Content-Type: text/html
<
{ [2642 bytes data]
* Connection #0 to host admin.com left intact

	 2.	 By convention, custom and experimental headers were originally prefixed with “X-”. But some X-
headers (such as X-Forwarded-For) became de facto standards, and it was then infeasible to remove
the prefix because that would break compatibility. The use of X- is now deprecated by RFC6648.

	 3.	 Administrators will also encounter libcurl, a client library that developers can use to give their own
software curl-like superpowers.

http://admin.com

680	 Chapter 19	 Web Hosting	

Lines starting with > and < denote the request and response, respectively. In the
request, the client tells the server that the user agent is curl, that it’s looking for
host admin.com, and that it will accept any type of content as a response. The serv-
er identifies itself as Apache 2.4.7 and replies with contents of type HTML, along
with a variety of other metadata.

We can set headers explicitly with curl’s -H argument. This feature is especially
handy for making requests directly against IP addresses, bypassing DNS. For ex-
ample, we could check that the server for www.admin.com responds identically to
requests targeted at admin.com by setting the Host header, which informs the re-
mote server of the domain the user agent is attempting to contact:

$ curl -H "Host: www.admin.com" -s -v -o /dev/null 54.84.253.153
<same output as the previous example, but with a different Host header>

We use the -O argument to download a file. This example downloads a tarball of
the curl source code to the current directory:

$ curl -O http://curl.haxx.se/snapshots/curl-7.46.0-20151105.tar.gz

We’ve only scratched the surface of curl’s capabilities. It can handle other request
methods such as POST and DELETE, store and submit cookies, download files,
and assist with many different debugging scenarios.

Google’s Chrome browser offers a feature called “Copy as cURL” that creates a curl
command to simulate the browser’s own behavior, including headers, cookies, and
other details. You can easily retry requests with various adjustments and see the
results exactly as the browser would. (Right-click a resource name in the Network
tab of the developer tools panel to uncover this option.)

TCP connection reuse
TCP connections are expensive. In addition to the memory needed to maintain
them, the three-way handshake used to establish each new connection adds latency
equivalent to a full round trip before an HTTP request can even begin.4

The HTTP Archive, a project that tracks web statistics, estimates that the average
site incurs requests for 99 resources per page load. If each resource required a new
TCP connection, the performance of the web would be atrocious indeed. This was
in fact the case early in the life of the web.

The original HTTP/1.0 specification did not include any provisions for connection
reuse, but some adventurous developers added experimental support as an extension.
The Connection: Keep-Alive header was added informally to clients and servers,
then improved and made the default in HTTP/1.1. With keep-alive (also known
as persistent) connections, HTTP clients and servers send multiple requests over a

	 4.	 TCP Fast Open (TFO) is a proposal that aims to improve this situation by allowing the SYN and
SYN-ACK packets of TCP’s three-way handshake to also carry data. See RFC7413.

http://www.admin.com
http://www.admin.com"
http://curl.haxx.se/snapshots/curl-7.46.0-20151105.tar.gz

	 HTTP: the Hypertext Transfer Protocol	 681

W
eb

 H
os

tin
g

single connection, thus saving some of the cost and latency of initiating and tearing
down multiple connections.

TCP overhead turns out to be nontrivial even when HTTP/1.1 persistent connec-
tions are enabled. Most browsers open as many as six parallel connections to the
server to improve performance. Busy servers in turn must maintain many thou-
sands of TCP connections in various states, resulting in network congestion and
wasted resources.

HTTP/2 introduces multiplexing as a solution, allowing several transactions to be
interleaved on a single connection. HTTP/2 servers can therefore support more
clients per system, since each client imposes lower overhead.

HTTP over TLS
On its own, HTTP provides no network-level security. The URL, headers, and
payload are open to inspection and modification at any point between the client
and server. A malevolent infiltrator can intercept messages, alter their contents, or
redirect requests to servers of its choice.

Enter Transport Layer Security (TLS), which runs as a separate layer between TCP
and HTTP.5 TLS supplies only the security and encryption for the connection; it
does not involve itself at the HTTP layer.

The user agent verifies the server’s identity as part of the TLS connection process,
eliminating the possibility of spoofing by counterfeit servers. Once the connection
is established, its contents are protected against snooping and modification for the
duration of the exchange. Attackers can still see the host and port used at the TCP
layer, but they cannot access HTTP details such as the URL of a request or the
headers that accompany it.

See Transport Layer Security on page 1009 for more details on TLS cryptography.

Virtual hosts
In the early days of the web, a server typically hosted only a single web site. When
admin.com was requested, for example, clients performed a DNS lookup to find
the IP address associated with that name and then sent an HTTP request to port
80 at that address. The server at that address knew that it was dedicated to hosting
admin.com and served results accordingly.

As web use increased, administrators realized that they could achieve economies
of scale if a single server could host more than one site at once. But how do you
distinguish requests bound for admin.com from those bound for example.com if
both kinds of traffic end up at the same network port?

	 5.	 The precursor of TLS was known as SSL, the Secure Sockets Layer. All versions of SSL are obsolete
and formally deprecated, but the name SSL remains in wide colloquial use. Outside of cryptographic
contexts, assume that references to SSL really mean TLS.

http://admin.com
http://admin.com

682	 Chapter 19	 Web Hosting	

One possibility is to define virtual network interfaces, effectively permitting several
different IP addresses to be bound to a single physical connection. Most systems
allow this, and it works fine, but the scheme is fiddly and requires management at
several different layers.

A better solution, virtual hosts, was provided by HTTP 1.1 in RFC2616. This scheme
defines a Host HTTP header that user agents set explicitly to indicate what site
they’re attempting to contact. Servers examine the header and behave accordingly.
This convention conserves IP addresses and simplifies management, especially for
sites that have hundreds or thousands of web sites on a single server.

HTTP 1.1 requires user agents to provide a Host header, so virtual hosts are now
the standard way that web servers and administrators handle server consolidation.

The use of name-based virtual hosts in combination with TLS is a bit tricky under
the hood. TLS certificates are issued to specific hostnames, which are chosen when
the certificate is generated. A TLS connection must be established before the serv-
er can read the Host header from the HTTP request, but without that header, the
server does not know which virtual host it should be impersonating, and hence,
which certificate to select.

The solution is SNI, Server Name Indication, in which the client submits the host-
name that it’s requesting as part of the initial TLS connection message. Modern
servers and clients all handle SNI automatically.

19.2	 Web software basics
A rich library of open source software facilitates the construction of flexible, resil-
ient web applications. Table 19.4 lists a few general categories of services that speak
HTTP and perform specific functions within the web application stack.

Table 19.4	 Partial list of HTTP server types

Type Purpose Examples

Application server Runs web app code, interfaces to web servers Unicorn, Tomcat
Cache Speeds access to frequently requested content Varnish, Squid
Load balancer Relays requests to downstream systems Pound, HAProxy
Web app firewall a Inspects HTTP traffic for common attacks ModSecurity
Web server Serves static content, couples to other servers Apache, NGINX

a.	 Often abbreviated WAF

A web proxy is an intermediary that receives HTTP requests from clients, option-
ally performs some processing, and relays the requests to their ultimate destina-
tion. Proxies are normally transparent to clients. Load balancers, web application

	 Web software basics	 683

W
eb

 H
os

tin
g

firewalls, and cache servers are all specialized types of proxy servers. A web server
also acts as a sort of proxy if it relays requests to application servers.

Exhibit A illustrates the role that each service plays in an HTTP exchange. Requests
can be fulfilled higher in the stack if the requested resource can be satisfied, or re-
jected with a 4xx or 5xx code if a problem occurs. Requests that require a query to
the database traverse every layer.

Exhibit A	 Components of a web application stack

Web application �rewall

Application server

Caching layer

Web server

Load balancer

Searches for malicious requests

Forwards to a healthy cache server

Serves from cache if possible

Responds with static content if possible

Processes request and formulates a response

Inbound requests Outbound responses

To maximize availability, each layer should run on more than one node simulta-
neously. Ideally, redundancy should span geographical regions so that the overall
design is not dependent on any single physical data center. This goal is a lot easier
to achieve when you build on a cloud platform that offers well-defined geographic
regions as a fundamental building block (as most do).

Real-world architectures aren’t usually as straightforward as Exhibit A suggests. In
addition, most web software components perform functions in more than one area.
NGINX is best known as a web server, for example, but it’s also a highly capable
cache and load balancer. An NGINX web server with caching features enabled is
more efficient than a stack of separate servers running on individual virtual machines.

Web servers and HTTP proxy software
Most sites use web servers either to proxy HTTP connections to application servers or
to serve static content directly. A few of the features provided by web servers include

•	 Virtual hosts, allowing many sites to coexist peacefully within a single server
•	 Handling of TLS connections
•	 Configurable logging that tracks requests and responses
•	 HTTP basic authentication
•	 Routing to different downstream systems according to requested URLs
•	 Execution of dynamic content through application servers

684	 Chapter 19	 Web Hosting	

The leading open source web servers are the Apache HTTP Server, known collo-
quially as httpd, and NGINX, which is pronounced “engine X.”

Netcraft, an English Internet research and security company, publishes monthly
market share statistics for web servers. As of June 2017, Netcraft shows that around
46% of active web sites run Apache. NGINX accounts for 20% and has been steadi-
ly rising since 2008.

Apache httpd is the original project from the Apache Software Foundation, now
known for supporting a variety of excellent open source projects. httpd has been
under active development since 1995 and is widely regarded as the reference HTTP
server implementation.

NGINX is a versatile server designed for speed and efficiency. Like httpd, NGINX
supports service of static web content, load balancing, monitoring of downstream
servers, proxying, caching, and other related functions.

Some development systems, notably Node.js and the language Go, implement web
servers internally and can handle many HTTP workflows without the need for a
separate web server. These systems incorporate sophisticated connection manage-
ment features and are robust enough for production workloads.

The H2O server (h2o.examp1e.net; note the numeral one in “examp1e”) is a newer
web server project that takes full advantage of HTTP/2 features and achieves even
better performance than NGINX. Because it was first released in 2014, it can’t claim
the track record of Apache or NGINX. On the other hand, neither is it constrained
by historical implementation decisions as is httpd. It’s certainly worth a look for
new deployments.

It’s hard to make strong recommendations among these options because they’re all
quite good. That said, for mainstream production use, we suggest NGINX. It offers
exceptional performance and a relatively simple and modern configuration system.

Load balancers
You can’t run a highly available web site on a single server. Not only does this con-
figuration expose your users to every potential hiccup experienced by the server,
but it also gives you no way to update the software, operating system, or configu-
ration without downtime.

Single servers are also exquisitely vulnerable to load spikes and intentional attacks.
The more overloaded a server becomes, the more time it spends thrashing instead
of getting useful work done. Past a certain load threshold (one that you will have
to discover through bitter experience!), performance craters abruptly rather than
degrading gracefully.

To avoid these problems, you can use a load balancer, which is a type of proxy server
that distributes incoming requests among a set of downstream web servers. Load
balancers also monitor the status of those servers to ensure that they are providing
timely and correct responses.

http://h2o.examp1e.net

	 Web software basics	 685

W
eb

 H
os

tin
g

Exhibit B shows the placement of load balancers in an architecture diagram.

Exhibit B	 The role of a load balancer

DMZInternet

Clients

Load balancer

Web servers

Secure net

Load balancers solve many of the problems inherent in a single-system design:

•	 Load balancers do not process requests but merely route them to other
systems. As a result, they can handle many more concurrent requests than
does a typical web server.

•	 When a web server needs a software upgrade or has to be taken off-line
for any other reason, it can easily be removed from the rotation.

•	 If one of the servers experiences a problem, the health-check mechanism
on the load balancer detects the problem and removes the errant system
from the server pool until it becomes healthy again.

To avoid becoming single points of failure themselves, load balancers usually run
in pairs. Depending on the configuration, one balancer might act as a passive
backup while the other serves live traffic, or both balancers might serve requests
simultaneously.

The way that requests are distributed is usually configurable. Here are a few com-
mon algorithms:

•	 Round robin, in which requests are distributed among the active servers
in a fixed rotation order

•	 Load equalization, in which new requests go to the downstream server
that’s currently handling the smallest number of connections or requests

•	 Partitioning, in which the load balancer selects a server according to a
hash of the client’s IP address. This method ensures that requests from
the same client always reach the same web server.

686	 Chapter 19	 Web Hosting	

Load balancers normally operate at layer four of the OSI model, in which they
route requests based just on the IP address and port of the request. However, they
can also operate at layer seven by inspecting requests and routing them according
to their target URL, cookie values, or other HTTP headers. For example, requests
for example.com/linux might route to a separate set of servers than do requests for
example.com/bsd.

As an added bonus, load balancers can improve security. They usually reside in the
DMZ portion of a network and proxy requests to web servers behind an internal
firewall. If HTTPS is in use, they also perform TLS termination: the connection
from the client to the load balancer uses TLS, but the connection from the load
balancer to the web server can be vanilla HTTP. This arrangement offloads some
processing overhead from the web servers.

Load balancers can distribute other kinds of traffic in addition to (or instead of)
HTTP. A common use is to add a load balancer that distributes requests to data-
bases such as MySQL or Redis.

The most common open source load balancers for UNIX and Linux are NGINX,
already introduced as a web server, and HAProxy, a high-performance TCP and
HTTP proxy beloved by veteran administrators for its flexible configuration, stability,
and robust performance. Both are excellent and well documented, and both have
large user communities. (Apache httpd also has a load-balancing module, though
we haven’t seen it used as widely.)

Commercial load balancers such as those from F5 and Citrix are available both as
hardware devices to be installed in a data center and as software solutions. They typ-
ically offer a graphical configuration interface, more features than open source tools,
extra functions in addition to straightforward load balancing, and hefty price tags.

Amazon offers a dedicated load-balancing service, the Elastic Load Balancer (ELB),
for use with EC2 virtual machines. ELB is a completely managed service; no vir-
tual machine is required for the load balancer itself. ELB handles an extremely
large number of concurrent connections and can balance traffic among multiple
availability zones.

In ELB terminology, a “listener” accepts connections from clients and proxies
them to back-end EC2 instances that do the actual work. Listeners can proxy TCP,
HTTP, or HTTPS traffic. The load is distributed according to the “least connec-
tions” algorithm.

ELB is not the most fully featured load balancer, but it is our recommended solution
for AWS-hosted systems because it requires virtually no administrative attention.

Caches
Web caches were born from the observation that clients often repeatedly access the
same content within a short time. Caches live between clients and web servers and

See page 1028 for
more information
about network DMZs
(demilitarized zones).

http://example.com/linux
http://example.com/bsd

	 Web software basics	 687

W
eb

 H
os

tin
g

store the results of the most frequent requests, sometimes in memory. They can
then intervene to answer requests for which they know the correct response, reduc-
ing load on the authoritative web servers and improving response times for users.

In caching jargon, an origin is the original content provider, the source of truth
about the content. Caches get their content directly from the origin or from an-
other upstream cache.

Several factors determine caching behavior:

•	 The values of HTTP headers, including Cache-Control, ETag, and Expires
•	 Whether the request is served by HTTPS, for which caching is more nuanced6

•	 The response status code; some are not cacheable (see RFC2616)
•	 The contents of HTML <meta> tags7

Static blobs such as images, videos, CSS stylesheets, and JavaScript files are well
suited to caching because they rarely change. Dynamic content loaded from a data-
base or another system in real time is more difficult—but not necessarily impossi-
ble—to cache. For highly variable pages that should never be cached, developers
set the following HTTP header:

Cache-Control: no-cache, no-store

Exhibit C shows the placement of several potential cache layers in an HTTP request.

Exhibit C	 Caching players involved in handling an HTTP request

InternetLocal network

Browser
cache

Proxy
cache

Reverse proxy
cache

Origin
server

Server network

Browser caches
All modern web browsers save recently used resources (images, stylesheets, JavaS-
cript files, and some HTML pages) locally to speed up backtracking and return

	 6.	 Because HTTPS payloads are encrypted, responses cannot be cached unless the cache server termi-
nates the TLS connection, decrypting the payload. The connection from the cache server to the ori-
gin may then require a separately encrypted TLS connection (or not, depending on whether the con-
nection between the two is trusted).

	 7.	 These are not respected by all caches, so they tend to be less effective.

688	 Chapter 19	 Web Hosting	

visits. In theory, browser caches should follow exactly the same caching rules as
does any other HTTP cache.8

Proxy cache
You can install a proxy cache at the edge of an organization’s network to speed up
access for all users. When a user loads a web site, the requests are first received by
the proxy cache. If a requested resource is cached, that resource is immediately re-
turned to the user without the remote site being consulted.

You can configure a proxy cache in two ways: actively, by changing users’ browser
settings to point to the proxy; or passively, by having a network router send all web
traffic through the cache server. The latter configuration is known as an intercept-
ing proxy. There are also methods by which user agents can automatically discover
the relevant proxies.

Reverse proxy cache
Web site operators configure a “reverse proxy” cache to offload traffic from their
web and application servers. Incoming requests are first routed to the reverse proxy
cache, from which they may be served immediately if the requested resources are
available. The reverse proxy passes requests for uncached resources along to the
appropriate web server.

Server sites use reverse proxy caches primarily because they reduce load on the
origin servers. They may also have the beneficial side effect of speeding response
times for clients.

Cache problems
Web caches are tremendously important to the performance of the web, but they also
introduce complexity. A problem at any caching layer can introduce stale content
that is out of date with respect to the origin server. Cache problems can befuddle
both users and administrators and are sometimes difficult to debug.

Stale cache entries are best detected by a direct query at each hop along the path. If
you are the site operator, try using curl to request a problematic page directly from
the origin, then from the reverse proxy cache, and if applicable, from the proxy
cache and from any other caches in the request path.

	 8.	 This is why your browser’s Back button usually evinces a slight lag instead of zipping you instantly to
the previous page. Even though most of the resources needed to render the page are cached locally,
the page’s top-level HTML wrapper is typically dynamic and uncacheable, so a round trip to the serv-
er is still required. The browser could simply rerender the materials on hand from the previous visit—
and one or two used to do that—but this shortcut breaks the correctness of caching and leads to a va-
riety of subtle problems.

	 Web software basics	 689

W
eb

 H
os

tin
g

You can use curl -H "Cache-Control: no-cache" to politely request a cache refresh.9
Conformant caches will obey, but if you’re still seeing old data, don’t assume that
your reload request has been honored unless you can prove it on the server.

Cache software
Table 19.5 lists a few of the open source caching software implementations. Of these,
we find ourselves using NGINX most frequently. Its caching is easy to configure,
and NGINX is often already in use as a proxy or web server.

Table 19.5	 Open source caching software

Server Notes

Squid One of the first open source cache implementations
Normally used as a proxy cache
Includes important features like antivirus and TLS

Varnish Exceptional configuration language
Multithreaded
Modular and extensible

Apache mod_cache Good choice for sites already running httpd

NGINX Good choice for sites already running NGINX
Has a reputation for good performance

Apache Traffic Server Runs at extremely high-traffic sites
Supports HTTP/2
Donated to the Apache Foundation by Yahoo!

Content delivery networks
A content delivery network (CDN) is a globally distributed system that improves
web performance by moving content closer to users. Nodes in a CDN are dispersed
geographically to hundreds or thousands of locations. When clients request con-
tent from a site that uses a CDN, they are routed to the closest node (called an edge
server), thereby decreasing latency and reducing congestion for the origin.

Edge servers are similar to proxy caches. They store copies of content locally. If
they don’t have a local copy of a requested resource or if their version of the con-
tent has expired, they retrieve the resource from the origin, respond to the client,
and update their cache.

	 9.	 This is the same as invoking <Shift-Reload> in a web browser.

690	 Chapter 19	 Web Hosting	

CDNs use DNS to redirect clients to the geographically nearest host. Exhibit D
explains how it works.

Exhibit D	 The role of DNS in a content delivery network

User requests cdn.example.com/image.png.

Client sends DNS request for cdn.example.com.

CDN’s DNS server determines
the physical location of the

client from its IP address.

The DNS reply is the address of the
geographically closest edge server.

Client requests image.png
from the resolved IP address.

Edge server returns the
image from its cache.

Mobile device

CDN DNS server

CDN edge server

CDNs can now host dynamic content, but traditionally they have been best suited
to static content such as images, stylesheets, JavaScript libraries, HTML files, and
downloadable objects. Streaming services like Netflix and YouTube use CDNs to
serve large media files.

CDNs also offer value beyond performance improvements. Most CDNs provide
security services such as denial-of-service attack prevention and web application
firewalls. Some specialty CDNs offer other innovations that optimize page render-
ing and reduce the load on origin servers.

A substantial portion of content on the web today is served by CDNs. If you’re at
a large site, expect to pull out your pocketbook to pay for the privilege of fast per-
formance. If you run a smaller service, optimize your local caching layers before
turning to a CDN.

One of the oldest and most prestigious (read: expensive) CDNs is Akamai, headquar-
tered in Massachusetts. Akamai counts some of the world’s largest governments and
businesses among its customers. It has the largest global network as well as some
of the most advanced CDN features. Nobody was ever fired for choosing Akamai.

CloudFlare is another popular CDN. Unlike Akamai, CloudFlare has a history of
selling to smaller customers, although their target market has more recently shifted
to enterprise. Pricing is listed clearly on their web site, and they offer some of the
best security features available. CloudFlare was one of the first large-scale providers
to deploy HTTP/2 for all its customers.

Amazon’s CDN service is called CloudFront. It integrates with other AWS services
such as S3, EC2, and ELB, but can also work for sites hosted outside of Amazon’s
cloud. As with other AWS products, pricing is competitive and metered by usage.

http://cdn.example.com/image.png
http://cdn.example.com

	 Web software basics	 691

W
eb

 H
os

tin
g

Languages of the web
The web has evolved from being mostly static to a rich, interactive experience. The
web apps that enable this bounty are coded in a variety of programming languages,
each with associated tooling and unique quirks. Administrators need to manage
software libraries, install application servers, and configure web applications ac-
cording to the standards established for each language’s ecosystem.

All the languages mentioned in the following sections are in common use on the
web today. They all feature engaged communities of developers, extensive support
libraries, and well-documented best practices. Sites typically choose whichever
languages and frameworks their teams are most comfortable with.

Ruby
Ruby is well known in DevOps and system administration circles for its use in Chef
and Puppet. It’s also the language of Ruby on Rails, a widely used web framework.
Rails is a good choice for rapid development processes and is often used for pro-
totyping new ideas.

Rails has a reputation for mediocre performance and for fostering monolithic appli-
cations. Over time, many Rails applications tend to accumulate baggage that makes
them harder to modify; the end result is often a gradual performance sag over time.

Ruby features a large collection of libraries called gems that developers can use to
simplify their projects. Most are hosted at rubygems.org. They are curated by the
community, but many are of marginal quality. Managing a system’s installed versions
of Ruby and its various gem dependencies can be both tedious and troublesome.

Python
Python is a general-purpose language used not only in web development but also in
a wide swath of scientific disciplines. It’s easy to read and to learn. The most widely
deployed web framework for Python is Django, which has many of the same ben-
efits and drawbacks as Ruby on Rails.

Java
Java, now controlled by Oracle, is used most often in enterprise environments
with slower development workflows. Java offers fast performance at the expense of
complex, clunky tooling and many layers of abstraction. Java’s challenging license
requirements and obtuse conventions can frustrate neophytes.

Node.js
JavaScript is known first and foremost as a client-side scripting language that runs
within web browsers. As a language, it has been ridiculed as hastily designed, diffi-
cult to read, and frequently counterintuitive. Now, Node.js—an engine for executing
JavaScript on servers—brings JavaScript to the data center as well.

See the section
starting on page
223 for a short
summary of Ruby.

See the section
starting on page
215 for a short
summary of Python.

http://rubygems.org

692	 Chapter 19	 Web Hosting	

To be fair, Node.js boasts high concurrency and native real-time messaging capa-
bilities. As a newer language, it has so far avoided much of the cruft built up over
the years in other systems.

PHP
PHP is simple to get started with, and for that reason it tends to attract new and
inexperienced programmers. PHP applications are notorious for being difficult to
maintain. Past versions of PHP made it far too easy for developers to create large
security holes in their applications, but recent versions have made improvements
in this area. PHP is the language used by WordPress, Drupal, and several other
content management systems.

Go
Go is a lower-level language from Google. It has gained popularity in recent years
through its use in major open source projects such as Docker. It’s excellent for sys-
tems programming but is also well suited for web applications because of its powerful
native concurrency primitives. One benefit for administrators is that Go software
usually compiles to a stand-alone binary, making it simple to deploy.

Application programming interfaces (APIs)
Web APIs are application interfaces intended for use not by humans but by software
agents. An API defines a set of methods through which a remote system can make
use of an application’s data and services. APIs have become ubiquitous on the web
because they promote cooperation among many diverse clients.

APIs are nothing new. Operating systems define APIs to allow user-space applica-
tions to interact with the kernel. Nearly all software packages use defined interfaces
to facilitate modularity and separation of functions within the code base. However,
web APIs are a bit special because they are exposed to the world on the public web
with the intention of promoting use by outside developers.

Web API calls are normal HTTP requests. They’re only “APIs” because the client
and server have agreed, by convention, that certain URLs and verbs have specific
meanings and effects within the domain of their interaction.

Web APIs commonly use some kind of text-based serialization format to encode
data for exchange. These formats are relatively simple and can be parsed by appli-
cations written in any programming language. Many formats exist, but by far the
most common are JavaScript Object Notation (JSON)10 and Extensible Markup
Language (XML).

HTTP APIs are perhaps easiest to explain by example. The Spotify music service
exposes an API that represents its music library. A client of the API can request

	 10.	 Douglas Crockford, who named and promoted the JSON format, says it’s pronounced like the name
Jason. But somehow, “JAY-sawn” seems to have become more common in the technical community.

	 Web software basics	 693

W
eb

 H
os

tin
g

information about albums, artists, and tracks; execute searches; and perform oth-
er related actions. This API is used both by Spotify’s own client applications (its
browser, desktop, and mobile clients) and by third parties that want to incorporate
Spotify’s services.

Because web APIs consist of HTTP requests, you can interact with them with all
the normal HTTP tools, including web browsers and curl. For example, we can
obtain Spotify’s JSON record for The Beatles:11

$ curl https://api.spotify.com/v1/artists/3WrFJ7ztbogyGnTHbHJFl2 | jq '.'
{
 "external_urls": {
 "spotify": "https://open.spotify.com/artist/3WrFJ7ztbogyGnTHbHJFl2"
 },
 "followers": {
 "href": null,
 "total": 1566620
 },
 "genres": ["british invasion"],
 "href": "https://api.spotify.com/v1/artists/3WrFJ7ztbogyGnTHbHJFl2",
 "id": "3WrFJ7ztbogyGnTHbHJFl2",
 "images": [<removed for concision>],
 "name": "The Beatles",
 "popularity": 91,
 "type": "artist",
 "uri": "spotify:artist:3WrFJ7ztbogyGnTHbHJFl2"
}

Here, we’ve piped the JSON output through jq to clean up the formatting a bit.12
On a terminal, jq also colorizes the output.

Spotify’s API is also an example of a “RESTful” API, which is the predominant
approach today. REST (Representational State Transfer) is an architectural style
of API design introduced by Roy Fielding in his doctoral dissertation.13 The term
was originally quite specific but is now more loosely applied to web services that
1) explicitly use HTTP verbs to communicate intent, and 2) use a directory-like
path structure to locate resources. Most REST APIs use JSON as their underlying
representation for data.

REST contrasts starkly with SOAP (Simple Object Access Protocol), an earlier
system for implementing HTTP APIs that defines strict and elaborate multilevel
guidelines for interactions among systems. SOAP APIs use a complex XML-based
format that funnels all calls through a few specific URLs, resulting in large HTTP

	 11.	 How did we know that 3WrFJ7ztbogyGnTHbHJFl2 is the Spotify ID for The Beatles? Try searching
through the API: https://api.spotify.com/v1/search?type=artist&q=beatles.

	 12.	 jq does far more than just formatting and is highly recommended for parsing and filtering JSON
from the command line. Find it at stedolan.github.io/jq.

	 13.	 Fielding is also a primary author of the HTTP specification.

https://api.spotify.com/v1/search?type=artist&q=beatles
http://stedolan.github.io/jq

694	 Chapter 19	 Web Hosting	

payloads, poor performance, and endless difficulties in development, debugging,
and deployment.14

19.3	 Web hosting in the cloud
Cloud providers offer dozens of services for hosting web applications, and the land-
scape changes weekly. We can’t possibly cover everything, but a few points stand
out as being of particular interest to web administrators.

Small sites with few users and a tolerance for occasional outages can get away with
a single virtual cloud instance as a web server (or possibly two instances behind
a load balancer for improved reliability). But the cloud offers many opportunities
to improve these simple configurations without significant increases in cost and
complexity of administration.

Build versus buy
Administrators working on a cloud platform can build custom, self-managed web
applications out of “raw” virtual machines. Alternatively, they can farm out parts
of the design to off-the-shelf cloud services, thus reducing the labor involved in
designing, configuring, and maintaining everything by hand. For the sake of effi-
ciency, we prefer to rely on vendor services when possible.

Load balancers are a good example of this tradeoff. On AWS, for example, you can
either run an EC2 instance with open source load-balancing software or sign up
for an AWS-provided Elastic Load Balancer. The former offers greater customiza-
tion but requires you to manage the load balancer’s operating system, configure the
load-balancing software, tune performance, and promptly install security patches
as they are released in the future. In addition, the glue needed to gracefully handle
failures of the software or the instance will be somewhat more complex.

An ELB, on the other hand, can be created in a matter of seconds and requires no
further administrative action. AWS handles everything behind the scenes. Unless
the ELB lacks a specific feature that you need, it is clearly the expedient choice.

Ultimately, this is a decision between building a service or outsourcing it to the
vendor. For the sake of your own sanity, avoid the building option unless the func-
tion in question is a core competence for your business.

	 14.	 The development of the SOAP ecosystem is an interesting case study of the ways that technical ini-
tiatives can go awry. In particular, it illustrates the risks of attempting to design systems for a hazy
and uncertain future. SOAP put a lot of effort into remaining platform-, language-, data-, and
transport-neutral, and indeed it largely achieved these goals—even basic data types such as integers
were left open to definition. Unfortunately, the resulting system was complex and didn’t fit well with
real-world needs.

	 Web hosting in the cloud	 695

W
eb

 H
os

tin
g

Platform-as-a-Service
The PaaS concept simplifies web hosting for developers by eliminating infrastructure
as a concern. Developers package their code in a specific format and upload it to
the PaaS provider, which provisions appropriate systems and runs it automatically.
The provider issues a DNS endpoint connected to the client’s running application,
which the client can then customize by using a DNS CNAME record.

Although PaaS offerings greatly simplify infrastructure management, they sacrifice
flexibility and customization. Most offerings either do not allow administrative
access to a shell or they actively discourage it. Users of a PaaS must accept certain
design decisions made by the vendor. Users’ ability to implement some features
may be constrained.

Google App Engine pioneered the PaaS concept and remains one of the most prom-
inent products. App Engine supports Python, Java, PHP, and Go, and has many
supporting features such as cron-like scheduled job execution, programmatic ac-
cess to logs, real-time messaging, and access to various databases. It is considered
the Cadillac of PaaS offerings.

The competing product from AWS is called Elastic Beanstalk. In addition to all the
languages supported by App Engine, it supports Ruby, Node.js, Microsoft .NET,
and Docker containers. It integrates with Elastic Load Balancers and AWS’s Auto
Scaling feature, leveraging the power of the AWS ecosystem.

In practice, we’ve found Elastic Beanstalk to be a mixed bag. Customization is pos-
sible through an extension framework that is proprietary and tedious. Users are still
responsible for running the EC2 instances that host the application. So although
Elastic Beanstalk might be a fine fit for prototyping, we believe that the system is
not a good choice for production workloads consisting of many services.

Heroku is another respected vendor in this space. An application on Heroku is de-
ployed to a dyno, Heroku’s word for a lightweight Linux container. Users control
the dyno deployments. Heroku has a strong network of partnerships that offer data-
bases, load balancing, and other integrations. Heroku’s pricing is higher than some
other offerings in part because its own infrastructure runs on AWS under the hood.

Static content hosting
It seems like overkill to run an operating system just for the sake of hosting static
web sites. Fortunately, the cloud providers can host them for you. In AWS S3, you
create a bucket for your content, then configure a CNAME record from your domain
to an endpoint within the provider. In Google Firebase, you use a command-line
tool to copy your local content to Google, which provisions an SSL certificate and
hosts your files. In both cases you can serve your content from a CDN for better
performance.

See page 689 for
more information
about content de-
livery networks.

696	 Chapter 19	 Web Hosting	

Serverless web applications
AWS Lambda is an event-based computing service. Developers who use Lambda
write code that runs in response to an event such as the arrival of a message in a
queue, a new object in a bucket, or even an HTTP request. Lambda feeds the event
payload and metadata as inputs to a user-defined function, which performs process-
ing and returns a response. There are no instances or operating systems to manage.

To process HTTP requests, Lambda is used in conjunction with another AWS ser-
vice called API Gateway, a proxy that can scale to hundreds of thousands of simul-
taneous requests. API Gateway is interposed in front of an origin to add features
such as access control, rate limiting, and caching. HTTP requests are received by the
API Gateway, and when a request arrives, the gateway triggers a Lambda function.

In combination with static hosting on S3, Lambda and API Gateway can lead to a
fully serverless platform for running web applications, as illustrated in Exhibit E.

Exhibit E	 Serverless web hosting with AWS Lambda, API Gateway, and S3

api.example.com resolves to an
API gateway for requests that
require real-time processing.

example.com resolves
to the CloudFront CDN.

Static content is
hosted in an S3 bucket.

HTTP requests trigger
Lambda functions.

Lambda processes requests,
possibly by querying a database.

CloudFront
edge nodes

Users

API Gateway Lambda RDS

This technology is still in its youth, but it’s already altering the mechanics of hosting
web applications. We expect enhancements, frameworks, competing services, and
best practices to mature rapidly in the coming years.

19.4	 Apache httpd
The httpd web server is ubiquitous among the many flavors of UNIX and Linux. It
is portable across many architectures, and prebuilt packages exist for all major sys-
tems. Unfortunately, OS vendors have varied and highly opinionated approaches
to httpd configuration.

A modular architecture has been fundamental to Apache’s adoption. Dynamic mod-
ules can be turned on through configuration, offering alternative authentication
options, improved security, support for running code written in most languages,
URL-rewriting superpowers, and many other features.

http://api.example.com
http://processing.example.com
http://processing.example.com

W
eb

 H
os

tin
g

	 Apache httpd	 697

For largely historical reasons, Apache has a pluggable connection handling system
called multi-processing modules (MPMs) that determines how HTTP connections
are managed at the network I/O layer. The event MPM is the modern choice and
is recommended over the worker and prefork alternatives.15

To bind to privileged ports (those below 1024, such as HTTP port 80 and HTTPS
port 443), the initial httpd process must run as root. That process then forks addi-
tional workers under a local account with lower privileges to handle actual requests.
Sites that do not need to listen on port 80 or 443 can be run entirely without root
privileges.

httpd is configured through directives (Apache-speak for configuration options)
in plain text files that use a distinctive Apache-style syntax. Though hundreds of
directives exist, administrators usually need to tweak only a few. The directives and
their values are documented directly in the default files that ship with the OS as
well as on Apache’s web site.

httpd in use
System V init, BSD init, and systemd can all manage httpd. Whichever option
is standard for your system is the one you should default to. For debugging and
configuration, however, you can interact with the daemon independently of the
startup scripts.

Administrators can either run httpd directly or use apachectl.16 Invoking httpd
offers direct control over the server daemon, but remembering (and typing!) all
the options is a challenge. apachectl is a shell script wrapper around httpd. Each
operating system vendor customizes apachectl to conform to the conventions of
its init process. It can start, stop, reload, and show the status of Apache.

For example, here’s how to start the server with the default configuration:

apachectl start
Performing sanity check on apache24 configuration:
Syntax OK
Starting apache24.
apachectl status
apache24 is running as pid 1337.

In this output from a FreeBSD system, apachectl first performs a lint-like config-
uration check by running httpd -t, then starts the daemon.17

	 15.	 Some legacy software that is not considered thread-safe, such as mod_php, should use the prefork
MPM. It uses processes rather than threads for each connection.

	 16.	 httpd is both the name given to the daemon’s binary and to the project. Ubuntu has taken the liberty
of renaming httpd to apache2, which matches the name of the apt package but otherwise does little
more than confuse everyone.

	 17.	 lint is a UNIX program that evaluates C code for potential bugs. The term is now applied more
broadly to any tool that inspects software and configuration files for errors, bugs, or other problems.

698	 Chapter 19	 Web Hosting	

apachectl graceful waits for any currently open connections to conclude and then
restarts the server. This feature is handy for updating without interrupting active
connections. It’s available through the system start and stop scripts as well.

Use apachectl’s -f flag to start Apache with a custom configuration, e.g.:

apachectl -f /etc/httpd/conf/custom-config.conf -k start

Some vendors deprecate this use of apachectl in favor of running httpd directly.

Refer to Chapter 2, Booting and System Management Daemons, to learn how to
configure httpd to start automatically at boot time.

httpd configuration logistics
Although an entire httpd configuration can be contained in a single file, OS main-
tainers typically use the Include directive to split the default configuration into
multiple files and directories. This architecture simplifies site management and is
better suited to automation. Predictably, the specifics of the configuration hierar-
chy differ by system. Table 19.6 lists the Apache configuration defaults for each of
our example platforms.

Table 19.6	 Apache configuration details by platform

RHEL/CentOS Debian/Ubuntu FreeBSD

Package name httpd apache2 apache24
Config root /etc/httpd /etc/apache2 /usr/local/etc/apache24
Primary config file conf/httpd.conf apache2.conf httpd.conf
Module config conf.modules.d/ mods-available/

mods-enabled/
modules.d/

Virtual host config conf.d/ sites-available/
sites-enabled/

Includes/

Log location /var/log/httpd /var/log/apache2 /var/log/httpd-*.log
User apache www-data www

When httpd starts, it consults a primary configuration file, usually httpd.conf, and
incorporates any additional files as referenced by Include directives. The default
httpd.conf is heavily commented and serves as a quick reference. Configuration
options in this file can be grouped into three categories:

•	 Global settings such as the path to httpd’s configuration root, the user
and group as which to run, the modules to activate, and the network in-
terfaces and ports to listen on

•	 VirtualHost sections that define how to provide service for a given domain
(usually delegated to subdirectories and Included in the main configuration)

W
eb

 H
os

tin
g

	 Apache httpd	 699

•	 Instructions for answering requests that don’t match any VirtualHost
definition

Many admins will be satisfied with the global settings and need only manage in-
dividual VirtualHosts.

Modules exist independently of the httpd core and often have their own config-
uration options. Most OS vendors choose to separate out module configuration
into subdirectories.

Debian and Ubuntu approach Apache configuration idiosyncratically. A structure
of subdirectories, configuration files, and symlinks creates a more flexible system
for managing the server, at least in theory.

Exhibit F attempts to clarify this puzzle. The master apache2.conf file includes all
files from the *-enabled subdirectories in /etc/apache2. These files are in fact sym-
bolic links to files in the *-available subdirectories. A pair of configuration com-
mands that create and remove symlinks is provided for each set of subdirectories.

Exhibit F	 Subdirectories of /etc/apache2 on Debian-based systems

Symlinks managed with
a2enmod / a2dismod

mods-enabled/

Apache modules and their con�gurations. The .load �les invoke
LoadModule, and the .conf �les con�gure the corresponding modules.

mods-available/

Symlinks managed with
a2enconf / a2disconf

conf-enabled/

Global, optional con�guration snippets that are not included in the
main Apache con�guration �le

conf-available/

Symlinks managed with
a2ensite / a2dissite

sites-enabled/

Virtual host de�nitions. This is where administrators should put
site-speci�c con�guration information.

sites-available/

In our experience, the Debian system is unnecessary and overly complex. A sim-
ple site-configuration subdirectory usually provides sufficient structure. If you’re
running Debian or Ubuntu, though, it makes sense to stick with their defaults.

Virtual host configuration
The lion’s share of httpd configuration lies in virtual host definitions. It’s generally
a good idea to create a file for each site.

700	 Chapter 19	 Web Hosting	

When an HTTP request arrives, httpd identifies which virtual host to select by con-
sulting the HTTP Host header and network port. It then matches the path portion
of the requested URL to a Files, Directory, or Location directive to determine how
to serve the requested content. This mapping process is known as request routing.

The following sample shows the HTTP and HTTPS configuration for admin.com.

<VirtualHost *:80>
	 ServerName	 admin.com
	 ServerAlias	 www.admin.com
	 ServerAlias	 ulsah.admin.com
	 Redirect /	 https://admin.com/
</VirtualHost>

<VirtualHost *:443>
	 ServerName			 admin.com
	 ServerAlias			 www.admin.com
	 ServerAlias			 ulsah.admin.com
	 DocumentRoot			 /var/www/admin.com/
	 CustomLog			 /var/log/apache2/admin_com_access combined
	 ErrorLog				 /var/log/apache2/admin_com_error
	 SSLEngine			 on
	 SSLCertificateFile	 "/etc/ssl/certs/admin.com.crt"
	 SSLCertificateKeyFile	"/etc/ssl/private/admin.com.key"
	 <Directory "/var/www/admin.com">
		 Require all granted
	 </Directory>
	 <Directory "/var/www/admin.com/photos">
		 Options +Indexes
	 </Directory>
	 <IfModule mod_rewrite.c>
		 RewriteEngine on
		 RewriteRule ^/(usah|lsah)$ /ulsah
	 </IfModule>
	 ExtendedStatus On
	 <Location /server-status>
		 SetHandler server-status
		 Require ip 10.0.10.10/32
	 </Location>
</VirtualHost>

Much of this is self explanatory, but a few details are worth noting:

•	 The first VirtualHost answers on port 80 and redirects all HTTP requests
for admin.com, www.admin.com, and ulsah.admin.com to use HTTPS.

•	 Requests for admin.com/photos receive an index of all files in that directory.

•	 Requests for /usah or /lsah are rewritten to /ulsah.

W
eb

 H
os

tin
g

	 Apache httpd	 701

Server status, accessible in this configuration at www.admin.com/server-status, is
a module that shows useful runtime performance information, including statistics
about the daemon’s CPU and memory usage, request status, the average number
of requests per second, and more. Monitoring systems can use this feature to col-
lect data about the web server for alerting, reporting, and visualization of HTTP
traffic. Here, access to server status is restricted to a single IP address, 10.0.10.10.

HTTP basic authentication
In the HTTP basic authentication scheme, clients pass a base-64-encoded user-
name and password in the Authorization HTTP header. If a user includes a name
and password in a URL (e.g., https://user:pass@www.admin.com/server-status),
the browser performs the encoding and transfers the value to the Authorization
header automatically.

The username and password are not encrypted, so basic authentication does not
provide any confidentiality. Thus, it is safe to use only in combination with HTTPS.

Basic authentication in Apache is configured in Location or Directory blocks. For
example, the following snippet requires authentication to access /server-status (a
best practice) and limits access to a subnet:

	 <Location /server-status>
		 SetHandler server-status
		 Require ip 10.0.10.0/24
		 AuthType Basic
		 AuthName "Restricted"
		 AuthUserFile /var/www/.htpasswd
		 Require valid-user
	 </Location>

Note that the account information is stored externally to the configuration file. Use
htpasswd to create the account entries:

htpasswd -c /var/www/.htpasswd ben
New password: <password>
Re-type new password: <password>
Adding password for user ben
cat /var/www/.htpasswd
ben:$apr1$mPh0x0Cj$hfqMavkdHfVRVscE678Sp0
# chown www-data /var/www/.htpasswd		 # Set ownership
# chmod 600 /var/www/.htpasswd 		 # Restrictive permissions

Password files are conventionally hidden files called .htpasswd, but they can be
named anything. Even though the passwords are encrypted, set the permissions on

.htpasswd files to be readable only by the web-server user. This precaution limits
attackers’ ability to see usernames and to run passwords through cracking software.

http://www.admin.com/server-status
https://user:pass@www.admin.com/server-status

702	 Chapter 19	 Web Hosting	

Configuring TLS
SSL might have changed its name to TLS, but in the interest of backward compati-
bility, Apache retains the SSL name for its configuration options (as do many other
software packages). Just a few lines are needed to set up TLS:

 SSLEngine				 on
	 SSLProtocol				 all -SSLv2 -SSLv3
	 SSLCertificateFile		 "/etc/ssl/certs/admin.com.crt"
	 SSLCertificateKeyFile		 "/etc/ssl/private/admin.com.key"

Here, the TLS certificate and key are located in Linux’s central system location,
/etc/ssl. The public certificates can be readable by anyone, but the key should be
accessible only to the Apache master-process user, typically root. We prefer to set
permissions to 444 for the certificate and 400 for the key.

All versions of the actual SSL protocol (precursor to TLS) are known to be insecure
and should be disabled with the SSLProtocol directive, shown above.

A few ciphers have known weaknesses. You can configure the web server’s supported
ciphers with the SSLCipherSuite directive. The best practices for precisely which
settings to use are constantly in flux. The Mozilla Server Side TLS guide is the best
resource that we are aware of for staying current on best practices for TLS. It also
has a handy configuration syntax reference for Apache, NGINX, and HAProxy.

Running web applications within Apache
httpd can be extended to run programs written in Python, Ruby, Perl, PHP, and
other languages from within the module system. Modules run inside Apache pro-
cesses and have access to the full HTTP request/response life cycle.

Modules provide additional configuration directives that let administrators control
the runtime characteristics of applications. Table 19.7 lists some common appli-
cation server modules.

Table 19.7	 Application server modules for httpd

Module Lang

mod_php PHP Deprecated; use only with the prefork MPM
mod_wsgi Python The Web Server Gateway Interface, a Python standard
mod_passenger Multiple Flexible, commercially supported application server for

multiple languages, including Ruby, Python, and Node.js
mod_proxy_fcgi Any A standard server interface usable from any language
mod_perl Perl A Perl interpreter that lives within httpd

See page 714 for
a complete cita-
tion for the Server
Side TLS guide.

http://"/etc/ssl/certs/admin.com.crt"
http://"/etc/ssl/private/admin.com.key"

W
eb

 H
os

tin
g

	 Apache httpd	 703

The following example (to configure a Python Django application for api.admin.com)
uses mod_wsgi:

LoadModule wsgi_module mod_wsgi.so

<VirtualHost *:443>
	 ServerName api.admin.com

	 CustomLog /var/log/apache2/api_admin_com_access combined
	 ErrorLog /var/log/apache2/api_admin_com_error

	 SSLEngine on
	 SSLCertificateFile "/etc/ssl/certs/api_admin.com.crt"
	 SSLCertificateKeyFile "/etc/ssl/private/api_admin.com.key"

	 WSGIDaemonProcess admin_api user=user1 group=group1 threads=5
	 WSGIScriptAlias / /var/www/api.admin.com/admin_api.wsgi

	 <Directory /var/www/api.admin.com>
		 WSGIProcessGroup admin_api
		 WSGIApplicationGroup %{GLOBAL}
		 Require all granted
	 </Directory>
</VirtualHost>

Once mod_wsgi.so has been loaded by Apache, several WSGI configuration di-
rectives become available. The WSGIScriptAlias file in the configuration above,
admin_api.wsgi, contains Python code that is needed by the WSGI module.

Logging
httpd offers best-in-class logging capabilities, with fine-grained control over the
data that is logged and the ability to separate log data by virtual host. Administrators
use these logs to debug configuration problems, detect potential security threats,
and analyze usage information.

A sample log message from admin.com.access.log looks like this:

127.0.0.1 - - [19/Jun/2015:15:21:06 +0000] "GET /search HTTP/1.1" 200
20892 "-" "curl/7.38.0"

The message shows:

•	 The source of the request; in this case, 127.0.0.1, the local host
•	 A time stamp
•	 The path of the requested resource (/search) and the HTTP method (GET)
•	 The response status code (200)
•	 The size of the response
•	 The user agent (the curl command-line tool)

The documentation for mod_log_config has all the details on how to customize
the log format.

http://api.admin.com
http://www/api.admin.com/admin_api.wsgi
http://www/api.admin.com
http://admin.com.access.log

704	 Chapter 19	 Web Hosting	

A busy web site generates a large number of request logs that can quickly fill up the
disk. Administrators are responsible for ensuring that this never happens. Keep
web server logs on a dedicated partition to prevent a large log file from affecting
the rest of the system.

On most Linux distributions, the default package installation of Apache includes
an appropriate logrotate configuration. FreeBSD comes with no such default, and
administrators should instead add an entry in /etc/newsyslog.conf for Apache’s logs.

The log directory and the files within should be writable only by the user of the
master httpd process, which is normally root. If nonroot users have write access,
they can create a symlink to another file, causing it to be overwritten with bogus
data. The system defaults are set safely, so avoid customizing the owner and group.

19.5	 NGINX
A busy web server must respond to many thousands of concurrent requests. Most of
the time needed to handle each request is spent waiting for data to arrive from the
network or disk. The time spent actively processing the request is short by comparison.

To handle this workload efficiently, NGINX uses an event-based system in which
just a few worker processes handle many requests simultaneously. When a request
or response (an event) is ready for servicing, a worker process quickly completes
processing before returning to handle the next event. Above all, NGINX aims to
avoid blocking on network or disk I/O.

The event MPM included in newer releases of Apache uses a similar architecture,
but for high-volume and performance-sensitive sites, NGINX remains the soft-
ware of choice.

Administrators running NGINX will notice at least two processes: a master and a
worker. The master performs housekeeping duties such as opening sockets, reading
the configuration, and keeping the other NGINX processes running. Workers do
most of the heavy lifting by handling and processing requests. Some configurations
use additional processes dedicated to caching. As in Apache, the master process
runs as root so that it can open sockets for any ports below 1024. The other pro-
cesses run as a less privileged user.

The number of worker processes is configurable. A good rule of thumb is to run as
many worker processes as the system has CPU cores. Debian and Ubuntu config-
ure NGINX this way by default if it’s installed from a package. FreeBSD and RHEL
default to a single worker process.

Installing and running NGINX
Although NGINX continues to grow in popularity and is a staple among some of the
world’s busiest web sites, OS distributions still lag on NGINX support. The versions
available in the official repositories for Debian and RHEL are usually out of date,

See page 319 for
more information
about logrotate.

	 NGINX	 705

W
eb

 H
os

tin
g

though FreeBSD is typically more current. NGINX is open source, so it can be built
and installed manually. The project’s web page, nginx.org, offers packages for apt
and yum than are generally more current than those supplied by the distributions.

The system’s normal service management is appropriate for day-to-day wrangling
of nginx. You can also run the nginx daemon during development and debugging.
Use the -c argument to specify a custom configuration file. The -t option performs
a check of the configuration file syntax.

nginx uses signals to trigger various maintenance actions; Table 19.8 lists these.
Make sure you target the master nginx process (usually the one with the lowest PID).

Table 19.8	 Signals understood by the nginx daemon

Signal Function

TERM or INT Shuts down immediately
QUIT Completes and closes all current connections, then shuts down
USR1 Reopens log files (used to facilitate log rotations)
HUP Reloads the configuration a

USR2 Gracefully replaces the server binary without interrupting service b

a.	 This option tests the syntax of the new configuration, and if the syntax is valid, starts new workers
with the new configuration. It then gracefully shuts down the old workers.

b.	See the nginx command-line documentation for details on how this works.

Configuring NGINX
The NGINX configuration style is generally C-like; it uses curly braces to distinguish
blocks of configuration lines and semicolons to separate lines. The main configura-
tion file is called nginx.conf by default. Table 19.9 summarizes the most important
system-specific aspects of NGINX configuration.

Table 19.9	 NGINX configuration details by platform

RHEL/CentOS Debian/Ubuntu FreeBSD

Package name nginx a nginx nginx
Daemon path /sbin/nginx /usr/sbin/nginx /usr/local/sbin/nginx
Configuration root /etc/nginx /etc/nginx /usr/local/etc/nginx
Virtual host config b conf.d/ sites-available/

sites-enabled/
No prescribed location

Default user nginx www-data nobody

a.	 You must enable the EPEL software repository; see fedoraproject.org/wiki/EPEL.
b.	 Relative to the configuration root directory

See page 94 for
more information
about signals.

http://nginx.org
http://fedoraproject.org/wiki/EPEL.b
http://fedoraproject.org/wiki/EPEL.b

706	 Chapter 19	 Web Hosting	

Within the nginx.conf file, blocks of configuration directives surrounded by curly
braces are called contexts. A context contains directives specific to that block of
configuration. For example, here’s a minimal (but complete) NGINX configuration
that shows three contexts:

events { }

http {
	 server {
		 server_name www.admin.com;
		 root /var/www/admin.com;
	 }
}

The outermost context (called main) is implicit and configures the core functional-
ity. The events and http contexts live within main. events is a required context that
configures connection handling. Since it’s blank in this example, default values are
implied. Fortunately, the defaults are sensible:

•	 Run one worker process (use the unprivileged user account).
•	 Listen on port 80 if started as root or port 8000 otherwise.
•	 Write logs to /var/log/nginx (chosen at compile time).

The http context contains all directives relating to web and HTTP proxy services.
server contexts, which define virtual hosts, are nested within http. Multiple server
contexts within http would configure multiple virtual hosts.

Aliases can be included in server_name to match the Host header against a group
of subdomains:

http {
	 server {
		 server_name admin.com www.admin.com;
		 root /var/www/admin.com;
	 }
	 server {
		 server_name example.com www.example.com;
		 root /var/www/example.com;
	 }
}

The value for server_name can also be a regular expression, and the match can even
be captured and named as a variable for use later in configuration. By using this
feature, you can refactor the previous configuration to

http {
	 server {
		 server_name ~^(www\.)?(?<domain>(example|admin).com)$;
		 root /var/www/$domain;
	 }
}

See page 209 for
an overview of reg-
ular expressions.

http://www\.)?(?<domain>(example|admin.com$

	 NGINX	 707

W
eb

 H
os

tin
g

The regular expression, which starts with a tilde, matches either example.com or
admin.com, optionally preceded by www. The value of the matched domain is stored
in the $domain variable, which is then used to determine which server root to select.18

Name-based virtual hosts can be distinguished from IP-based hosts by using the
listen and server_name directives together.

	 server {
		 listen 10.0.10.10:80
		 server_name admin.com www.admin.com;
		 root /var/www/admin.com/site1;
	 }
	 server {
		 listen 10.0.10.11:80
		 server_name admin.com www.admin.com;
		 root /var/www/admin.com/site2;
	 }

This configuration shows two versions of admin.com being served from different
web roots. The IP address of the interface on which the request was received de-
termines which version of the site the client sees.

The root is the base directory where HTML, images, stylesheets, scripts, and other
files for the virtual host are stored. By default, NGINX just serves files out of the
root, but you can use the location directive to do more sophisticated request rout-
ing. If a given path isn’t matched by a location directive, NGINX automatically
falls back to the root.

The following example uses location in combination with the proxy_pass directive.
It instructs NGINX to serve most requests from the web root but forward requests
for http://www.admin.com/nginx to nginx.org.

	 server {
		 server_name admin.com www.admin.com;
		 root /var/www/admin.com;
		 location /nginx/ {
			 proxy_pass http://nginx.org/;
		 }
	 }

proxy_pass instructs NGINX to act as a proxy and replay requests from clients to
another downstream server. We revisit the proxy_pass directive when we describe
how to use NGINX as a load balancer on page 708.

location can use regular expressions to perform powerful path-based routing to
different sources based on the requested content. The official NGINX documentation

	 18.	 Be aware that use of this syntax commits NGINX to performing a regular expression match on every
HTTP request. We use it here to demonstrate NGINX’s flexibility, but in practice you would probably
want to just list all possible hostnames in plain text. It’s perfectly reasonable to use regular expres-
sions in nginx.conf, but make sure they’re delivering actual value, and try to keep them low in the
configuration hierarchy so that they activate only in specific situations.

http://www.admin.com/nginxtonginx.org

708	 Chapter 19	 Web Hosting	

analyzes how NGINX evaluates the server_name, listen, and location directives
to route requests.

A common pattern among distributions is to set sensible defaults for many direc-
tives in the global http context, then use the include directive to add site-specific
virtual hosts to the final configuration. For example, the default nginx.conf file for
Ubuntu includes the line

include /etc/nginx/conf.d/*.conf;

This architecture helps eliminate redundancy since all children inherit the glob-
al settings. Administrators in straightforward environments may not need to do
anything more than write virtual host configurations expressed as server contexts.

Configuring TLS for NGINX
Although NGINX didn’t borrow much from Apache’s configuration style, its TLS
configuration is one area in which it’s strikingly similar. As in Apache, the config-
uration keywords all refer to SSL, TLS’s earlier name.

Enable TLS and point to the certificate and private key file like so:

	 server {
		 listen 443;
		 ssl on;
		 ssl_certificate /etc/ssl/certs/admin.com.crt;
		 ssl_certificate_key /etc/ssl/private/admin.com.crt;
		 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
		 ssl_ciphers ECDHE-RSA-AES128-GCM-SHA256:ECDHE... # truncated
		 ssl_prefer_server_ciphers on;

		 server_name admin.com www.admin.com;
		 root /var/www/admin.com/site1;
	 }

Only the actual TLS protocols (not the older SSL versions) should be enabled; all
SSL protocols have been deprecated. Permissions on the certificate and key should
follow the recommendations outlined in the Apache TLS section on page 702.

Use the ssl_ciphers directive to require cryptographically strong cipher suites and
to disable weaker ciphers. The ssl_prefer_server_ciphers option in conjunction
with ssl_ciphers instructs NGINX to choose from the server’s list rather than from
the client’s; otherwise, the client could suggest any cipher it pleased. (The previous
example does not show a full list of ciphers because the appropriate list is quite long;
refer to the Mozilla Server Side TLS guide cited on page 714 for recommended
values. If you prefer a shorter cipher list, try the one at cipherli.st.)

Load balancing with NGINX
In addition to being a web and cache server, NGINX is also a capable load balancer.
Its configuration style is flexible but somewhat nonobvious.

	 NGINX	 709

W
eb

 H
os

tin
g

Use the upstream module to create named groups of servers. For example, the fol-
lowing clause defines admin-servers as a collection of two servers:

upstream admin-servers {
	 server web1.admin.com:8080 max_fails=2;
	 server web2.admin.com:8080 max_fails=2;
}

upstream groups can be referenced from virtual host definitions. In particular, they
can be used as proxying destinations, just like hostnames:

http {
	 server {
		 server_name admin.com www.admin.com;
		 location / {
			 proxy_pass http://admin-servers;
			 health_check interval=30 fails=3 passes=1 uri=/health_check
				 match=admin-health # line not split in original file
		 }
	 }
	 match admin-health {
		 status 200;
		 header Content-Type = text/html;
		 body ~ "Red Leader, Standing By";
	 }
}

Here, traffic for admin.com and www.admin.com is farmed out to the web1 and
web2 servers in round robin order (the default).

This configuration also sets up health checks for the back-end servers. Checks are
performed every 30 seconds (interval=30) against each server at the /health_check
endpoint (uri=/health_check). NGINX will mark the server down if the health
check fails on three consecutive attempts (fails=3), but will add the server back
to the rotation if it succeeds just once (passes=1).

The match keyword is peculiar to NGINX. It dictates the conditions under which
the health check is considered successful. In this case, NGINX must receive a 200
response code, the Content-Type header must be set to text/html, and the body of
the response must contain the phrase “Red Leader, Standing By.”

We’ve added an additional condition within the upstream context that sets the
maximum number of connection attempt failures to two. That is, if NGINX can-
not connect to the server at all within two attempts, it gives up and removes that
server from the pool. This is an additive connectivity check that complements the
more structured checks from the health_check clause.

http://www.admin.com

710	 Chapter 19	 Web Hosting	

19.6	 HAProxy
HAProxy is the most widely used open source load-balancing software. It proxies
HTTP and TCP, supports sticky sessions to pin a given client to a specific web serv-
er, and offers advanced health-checking capabilities. Recent versions also support
TLS, IPv6, and HTTP compression. Support for HTTP/2 is a work in progress and
is expected to mature quickly beginning with HAProxy version 1.7.

HAProxy’s configuration is usually contained in a single file, haproxy.cfg. It’s so
simple that OS vendors generally don’t overcomplicate things and instead embrace
the default directory structure recommended by the project.

On Debian and RHEL systems, the configuration is in /etc/haproxy/haproxy.cfg.
FreeBSD doesn’t provide a default, as there really is no sensible one for load balanc-
ing; it’s entirely dependent on your setup. You can find an example configuration
on FreeBSD in /usr/local/share/examples/haproxy after the HAProxy package
has been installed.

The following simple example configuration sets HAProxy to listen on port 80 and
distribute requests in a round robin fashion between two web servers, web1 and
web2, on port 8080.

global
	 daemon
	 maxconn 5000
defaults
	 mode http
	 timeout connect	 5000 	 # Milliseconds
	 timeout client	 10000
	 timeout server	 10000
frontend http-in
	 bind *:80
	 default_backend	 webservers
backend webservers
	 balance			 roundrobin
	 server	 web1 10.0.0.10:8080
	 server	 web2	 10.0.0.11:8080

This example introduces HAProxy’s frontend and backend keywords, illustrated in
Exhibit G.

frontend dictates how HAProxy will receive requests from clients: which addresses
and ports to use, what types of traffic to serve, and other client-facing consider-
ations. backend configures the set of servers that actually process requests. Mul-
tiple frontend/backend pairs can exist in a single configuration, allowing a single
HAProxy to service multiple sites.

The timeout settings allow fine-grained control over how long a system should wait
when trying to open a new connection to a server and how long to keep connections

 	

	 HAProxy	 711

W
eb

 H
os

tin
g

	

	
	

	
	 	 	
	 	
	 	

	
	 	

	 			
	 	
	 	 	

Exhibit G	 HAProxy frontend and backend specifications

Clients HAProxy
Web servers

requests proxied to web
servers on port 8080

backend

port 80
frontend

open once they have been established. Fine-tuning these values is important on
busy web servers. On local networks, the timeout connect value can be quite low
(500ms or less) because new connections should be established quickly.

Health checks
Although the previous configuration provides basic functionality, it doesn’t check
the status of downstream web servers. If web1 or web2 goes off-line, half of incom-
ing requests would begin to fail.

HAProxy’s status-check feature performs regular HTTP requests to determine the
health of each server. As long as servers respond with an HTTP 200 response code,
they remain in service and continue to receive requests from the load balancer.

If a server fails a status check (by returning anything other than status 200), then
HAProxy removes the errant server from the pool. However, HAProxy continues to
perform health checks on the server. If it starts to respond successfully once again,
HAProxy will return it to the pool.

The specifics of the health check, such as what request method to use, the inter-
val between checks, and the path to request, can all be adjusted. In this example,
HAProxy performs a GET request for / on each server every 30 seconds:

backend webservers
	 balance roundrobin
	 option httpchk GET /
	 server web1 10.0.0.10:8080 check inter 30000
	 server web2 10.0.0.11:8080 check inter 30000

It’s reassuring to know that you can contact a machine’s web server, but that’s hardly
the last word on server health. Well-constructed web applications commonly ex-
pose a health-check endpoint that performs a thorough probe of the application
to determine its true health. These checks may include verification of database or
cache connectivity as well as performance monitoring. Use these more sophisti-
cated checks if they are available.

712	 Chapter 19	 Web Hosting	

Server statistics
HAProxy offers a convenient web interface that displays server stats, much like
mod_status in Apache. HAProxy’s version shows the state of each server in the
pool and lets you manually enable and disable servers as needed.

The syntax is straightforward:

listen stats :8000
	 mode http
	 stats enable
	 stats hide-version
	 stats realm HAProxy\ Statistics
	 stats uri /
	 stats auth myuser:mypass
 stats admin if TRUE

Server stats can be configured either within a specific listener or within a backend
or frontend block, to limit the feature to that configuration alone.

Sticky sessions
HTTP is a stateless protocol, so each transaction is an independent session. From
the perspective of the protocol, requests from the same client are unrelated.

At the same time, most web applications need state to track user behavior over time.
The classic example of state is a shopping cart. Users browse a store, add items to the
cart, and when ready to check out, submit their payment information. The web ap-
plication needs some way to track the contents of the cart across multiple page views.

Most web applications use cookies to track state. The web application generates a
session for a user and puts the session ID in a cookie that is sent back to the user in
the response header. Each time a client submits a request to the server, the cookie
is sent with the request. The server uses the cookie to recover the client’s context.

Ideally, web applications should store their state information in a persistent and
shared medium such as a database. However, some poorly behaved web applications
keep their session data locally, in the server’s memory or on its local disk. When
placed behind a load balancer, these applications break because a single client’s re-
quests might be routed to multiple servers, depending on the vagaries of the load
balancer’s scheduling algorithm.

To address this issue, HAProxy can insert a cookie of its own into responses, a
feature known as sticky sessions. Any future requests from the same client will
include the cookie. HAProxy can use the value of the cookie to route the request
back to the same server.

A version of the previous configuration modified to support sticky sessions looks
like the following. Note the addition of the cookie directive.

	 HAProxy	 713

W
eb

 H
os

tin
g

backend webservers
	 balance roundrobin
	 option httpchk GET /
	 cookie SERVERNAME insert httponly secure
	 server web1 10.0.0.10:8080 cookie web1 check inter 30000
	 server web2 10.0.0.11:8080 cookie web2 check inter 30000

In this configuration, HAProxy maintains a SERVERNAME cookie to track the serv-
er that a client is dealing with. The secure keyword specifies that the cookie should
only be sent over TLS connections, and httponly informs browsers to use the cook-
ie only over HTTP. Refer to RFC6265 for further information on these attributes.

TLS termination
HAProxy versions 1.5 and later include TLS support. A common configuration is to
terminate TLS connections at the HAProxy server and communicate with back-end
servers over plain HTTP. This approach offloads the cryptographic overhead from
the back-end servers and reduces the number of systems that need a private key.

For particularly security-conscious sites, it’s also possible to use HTTPS from
HAProxy to the back-end servers. You can use the same TLS certificate or a differ-
ent one; either way, you will still need to terminate and reinitiate TLS at the proxy.

Since HAProxy terminates the TLS connection from clients, you’ll need to add the
pertinent configuration to the frontend configuration block.

frontend https-in
	 bind *:443 ssl crt /etc/ssl/private/admin.com.pem
	 default_backend webservers

Apache and NGINX require the private key and certificate to be in separate files in
PEM format, but HAProxy expects both components to be present in the same file.
You can simply concatenate the separate files to create a composite file:

cat /etc/ssl/{private/admin.com.key,certs/admin.com.crt} >
/etc/ssl/private/admin.com.pem

chmod 400 /etc/ssl/private/admin.com.pem
ls -l /etc/ssl/private/admin.com.pem
-r-------- 1 root root 3660 Jun 18 17:46 /etc/ssl/private/admin.com.pem

Since the private key is part of the composite file, ensure that the file is owned by
root and is not readable by any other user. (If you do not run HAProxy as root be-
cause you are not accessing any privileged ports, make sure the ownership of the
key file matches the identity under which HAProxy runs.)

All usual best practices for TLS apply to HAProxy: disable SSL-era protocols and
explicitly configure the acceptable cipher suites.

http://crt/etc/ssl/private/admin.com.pem
http://crt/etc/ssl/private/admin.com.pem
http://{private/admin.com.key,certs/admin.com.crt}
http://>/etc/ssl/private/admin.com.pem
http://>/etc/ssl/private/admin.com.pem
http://400/etc/ssl/private/admin.com.pem
http://400/etc/ssl/private/admin.com.pem
http://ls-l/etc/ssl/private/admin.com.pem
http://ls-l/etc/ssl/private/admin.com.pem
http://ls-l/etc/ssl/private/admin.com.pem
http://17:46/etc/ssl/private/admin.com.pem
http://17:46/etc/ssl/private/admin.com.pem

714	 Chapter 19	 Web Hosting	

19.7	 Recommended reading
Adrian, David, et al. Weak Diffie-Hellman and the Logjam Attack. weakdh.org.
This page describes the Logjam attack on the Diffie-Hellman key exchange protocol
and suggests ways to secure systems properly.

CloudFlare, Inc. blog.cloudflare.com. This is the corporate blog of content de-
livery network CloudFlare. Some posts are just marketing information, but many
include insights on the latest web trends and technologies.

Google, Inc. Web Fundamentals. developers.google.com/web/fundamentals. This
is a useful guide to various best practices for web development, including sections
on site design, user interfaces, security, performance, and other topics of interest
to both developers and administrators. The caching discussion is particularly good.

Grigorik, Ilya. High Performance Browser Networking. O’Reilly Media. 2013. An
exceptional guide to the protocols, strengths, limitations, and performance aspects
of the web. Useful for developers and system administrators alike.

IANA. Index of HTTP Status Codes. www.iana.org/assignments/http-status-codes.

International Engineering Task Force. Hypertext Transfer Protocol Version 2.
http2.github.io/http2-spec. The working draft of the HTTP2 specification.

Mozilla. Security/Server Side TLS. wiki.mozilla.org/Security/Server_Side_TLS.
An excellent resource that documents best practices for TLS configuration across
many platforms.

Stenberg, Daniel. daniel.haxx.se/blog. This is the blog of Daniel Stenberg, the
author of curl and a prolific HTTP expert.

van Elst, Remy. Strong Ciphers for Apache, nginx, and Lighthttpd. cipherli.st. Cor-
rect and secure cipher configuration for Apache httpd, NGINX, and the lighttpd
web servers, as well as a TLS configuration tester.

http://weakdh.org
http://blog.cloudflare.com
http://developers.google.com/web/fundamentals
http://www.iana.org/assignments/http-status-codes
http://http2.github.io/http2-spec.The

SECTION THREE
STORAGE

This page intentionally left blank

St
or

ag
e

			 717

Data storage systems are looking more and more like a giant set of Lego blocks that
you can assemble in an infinite variety of configurations. You can build anything
from a lightning-fast storage space for a mission-critical database to a vast, archival
vault that stores three copies of all data and can be rewound to any point in the past.

Mechanical hard drives remain a popular storage medium when capacity is the
most important consideration, but solid state drives (SSDs) are preferred for per-
formance-sensitive applications. Caching systems, both software and hardware,
help combine the best features these storage types.

On cloud servers, you usually have a choice of storage hardware, but you’ll pay more
for SSD-backed virtual disks. You can also choose from a variety of purpose-spe-
cific storage types, such as object stores, infinitely expandable network drives, and
relational databases-as-a-service.

Running on top of this real and virtual hardware are a variety of software compo-
nents that mediate between the raw storage devices and the filesystem hierarchy
seen by users. These components include device drivers, partitioning conventions,
RAID implementations, logical volume managers, systems for virtualizing disks
over a network, and the filesystem implementations themselves.

20 Storage

718	 Chapter 20	 Storage	

In this chapter, we discuss the administrative tasks and decisions that occur at
each of these layers. We begin with “fast path” instructions for adding a basic disk
to Linux or FreeBSD. We then review storage-related hardware technologies and
look at the general architecture of storage software. We then work our way up the
storage stack from low-level formatting to the filesystem level. Along the way, we
cover disk partitioning, RAID systems, and logical volume managers.

Above the level of individual machines lie a variety of schemes for sharing data on a
network. Chapters 21 and 22 describe two common file sharing systems: NFS
for native sharing among UNIX and Linux systems, and SMB for interoperability
with Windows and macOS systems.

20.1	 I just want to add a disk!
Before we launch into many pages of storage architecture and theory, we first ad-
dress the most common scenario: you want to install a hard disk and make it ac-
cessible through the filesystem. Nothing fancy: no RAID, all the drive’s space in a
single volume, and the default filesystem type.

Step one is to attach the drive. If the machine in question is a cloud server, you gen-
erally provision a virtual drive of the desired size within the provider’s administra-
tive GUI (or through their API) and then attach it to an existing virtual server as
a separate step. It’s normally unnecessary to reboot the server because cloud (and
virtual) kernels recognize such hardware changes on the fly.

In the case of physical hardware, drives that communicate through a USB port can
simply be powered on and plugged in. SATA and SAS drives need to be mounted
in a bay, enclosure, or cradle. Although some hardware and drivers are designed to
permit hot-addition of SATA drives, that feature requires hardware support and is
uncommon in mass-market hardware. Reboot the system to make sure the OS is
in a configuration that’s reasonably reproducible at boot time.

If you’re running a desktop machine with a window system and all the stars align,
the system might offer to format a new disk for you when you plug it in. That’s par-
ticularly likely if you’re plugging in an external USB disk or thumb drive. The aut-
oformat option usually works fine; use it if it’s offered. However, check the mount
details afterwards (by running the mount command in a terminal window) to make
sure the drive hasn’t been mounted with restrictions you don’t want (e.g., with ex-
ecution or normal ownerships disabled).

If you set up the disk by hand, it’s critically important to identify and format the right
disk device. A newly added drive is not necessarily represented by the highest-numbered
device file, and on some systems, the addition of a new drive can change the device
names of existing drives (after a reboot, usually). Double-check the identity of the new
drive by reviewing its manufacturer, size, and model number before you do anything
that’s potentially destructive! Use the commands mentioned in the next two sections.

	 I just want to add a disk!	 719

St
or

ag
e

Linux recipe
First, run lsblk to list the system’s disks and identify the new drive. If that output
doesn’t give you enough information to conclusively identify the new drive, you
can list model and serial numbers with lsblk -o +MODEL,SERIAL.

Once you know which device file refers to the new disk (assume it’s /dev/sdb), install
a partition table on the disk. Several commands and utilities can do this, including
parted, gparted, fdisk, cfdisk, and sfdisk; it doesn’t matter which one you use, as
long as it understands GPT-style partition tables. gparted is probably the easiest
option on a system with a graphical user interface. Below, we show the fdisk reci-
pe, which works on all Linux systems. (Some systems still ship a version of parted
that doesn’t understand GPT.)

$ sudo fdisk /dev/sdb
Welcome to fdisk (util-linux 2.23.2).

Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Command (m for help): g
Building a new GPT disklabel (GUID:

AB780438-DA90-42AD-8538-EEC9626228C7)

Command (m for help): n
Partition number (1-128, default 1): <Return>
First sector (2048-1048575966, default 2048): <Return>
Last sector, +sectors or +size{K,M,G,T,P} (2048-1048575966, default

1048575966): <Return>
Created partition 1

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

The g subcommand creates a GPT partition table. The n subcommand creates a
new partition; pressing <Return> in response to all fdisk’s questions allocates all
free space to the new partition (partition 1). Finally, the w subcommand writes the
new partition table to the disk.

The device file for the newly created partition is the same as the device file for the disk
as a whole with a 1 appended to it. In the example above, the partition is /dev/sdb1.

You can now create a filesystem on /dev/sdb1 with the mkfs command. The -L op-
tion gives the filesystem a shorthand label (here, “spare”). The label stays the same
even if the disk that contains the filesystem is assigned a different device name
during a subsequent boot.

See page 746 for an
explanation of GPT
partition tables.

720	 Chapter 20	 Storage	

$ sudo mkfs -t ext4 -L spare /dev/sdb1
mke2fs 1.42.9 (28-Dec-2013)
Discarding device blocks: done
Filesystem label=spare
OS type: Linux
Block size=4096 (log=2)
...

Next, create a mount point and mount the new filesystem:

$ sudo mkdir /spare
$ sudo mount LABEL=spare /spare

You could equivalently specify /dev/sdb1 instead of LABEL=spare as a way of iden-
tifying the partition, but that name won’t necessarily work in the future.

To have the filesystem automatically mounted at boot time, edit the /etc/fstab file
and duplicate one of the existing entries. Change the device name and mount point
to match those shown in the mount command above. For example,

LABEL=spare /spare ext4 errors=remount-ro 0 0

You can also use a UUID to identify the filesystem; see page 770.

See page 734 for more details on Linux device files for disks. See page 746 for
partitioning information. See page 763 for information about the ext4 filesystem.

FreeBSD recipe
Run geom disk list to list the disk devices that the kernel is aware of. Unfortunately,
FreeBSD doesn’t divulge much information beyond device names and sizes. You
can resolve any ambiguity as to which disk is which by running geom part list to
see which devices have existing partitions. An unformatted disk should have no
partitions.

Once you know the disk name, you can install a partition table and create a filesys-
tem. In this example, we assume that the disk name is ada1 and that you want to
mount the new filesystem as /spare.

$ sudo gpart create -s GPT ada1	 # Create GPT partition table
ada1 created

$ sudo gpart add -l spare -t freebsd-ufs -a 1M ada1	 # Create partition
ada1p1 added

$ sudo newfs -L spare /dev/ada1p1	 # Create filesystem
/dev/ada1p1: 5120.0MB (10485680 sectors) block size 32768, fragment

size 4096
	 using 9 cylinder groups of 626.09MB, 20035 blks, 80256 inodes.
super-block backups (for fsck_ffs -b #) at:
 192, 1282432, 2564672, 3846912, 5129152, 6411392, 7693632,

8975872, 10258112
...

	 Storage hardware	 721

St
or

ag
e

The -l option to gpart add applies a text label to the new partition. The label makes
the partition accessible through the path /dev/gpt/spare regardless of what device
name the kernel assigns to the underlying disk device. The -L option to newfs ap-
plies a similar (but distinct) label to the new filesystem to make the partition ac-
cessible as /dev/ufs/spare.

Mount the filesystems with the following commands:

$ sudo mkdir /spare
$ sudo mount /dev/ufs/spare /spare

To have the filesystem automatically mounted at boot time, add it to the /etc/fstab
file (see page 768).

20.2	 Storage hardware
Even in today’s post-Internet world, computer data can be stored in only a few
basic ways: hard disks, flash memory, magnetic tapes, and optical media. The last
two technologies have significant limitations that disqualify them from use as a
system’s primary filesystem. However, they’re still sometimes used for backups
and for “near line” storage—cases in which instant access and rewritability are not
of primary concern.

After 40 years of traditional magnetic disk technology, performance-minded sys-
tem builders finally received a practical alternative in the form of solid state disks
(SSDs). These flash-memory-based devices offer a different set of tradeoffs from
those of a standard disk, and they will be influencing the architectures of databases,
filesystems, and operating systems for years to come.

At the same time, traditional hard disks are continuing their exponential increases
in capacity. Thirty years ago, at the dawn of the 5.25" form factor that remains in
use today, a 60MB hard disk cost $1,000. Today, a garden-variety 4TB drive runs
$125 or so. That’s more than 500,000 times more storage for the money, or dou-
ble the TB/$ every 1.6 years. During that same period, the sequential throughput
of mass-market drives has increased from 500 kB/s to 200 MB/s, a comparatively
paltry factor of 400. And random-access seek times have hardly budged. The more
things change, the more they stay the same.

Disk sizes are specified in gigabytes that are billions of bytes, as opposed to mem-
ory, which is specified in “gigabytes” (gibibytes, really) of 230 (1,073,741,824) bytes.
The difference is about 7%. Be sure to check your units when estimating and com-
paring capacities.

Hard disks and SSDs are enough alike that they can act as drop-in replacements
for each other, at least at the hardware level. They use the same hardware interfaces
and interface protocols. And yet they have very different strengths, as Table 20.1
on the next page summarizes.

See page 13 for more
information on IEC
units (gibibytes, etc.).

722	 Chapter 20	 Storage	

Table 20.1	 Comparison of HDD and SSD technology a

Characteristic HDD SSD

Typical size < 16TB < 2TB
Random access time 8ms 0.25ms
Sequential read 200 MB/s 450 MB/s
Random read 2 MB/s 450 MB/s
IOPS b 150 ops/s 100,000 ops/s
Cost $0.03/GB $0.26/GB
Reliability Poor Poor c

Limited writes No In theory

a.	 Performance and cost values are as of mid 2017
b.	 I/O operations per second
c.	 Fewer whole-device failures than HDD, but more data loss

In the next sections, we take a closer look at each of these technologies along with
a more recent category of storage devices: hybrid drives.

Hard disks
A typical hard drive contains several rotating platters coated with magnetic film.
They are read and written by tiny skating heads mounted on a metal arm that swings
back and forth to position them. The heads float close to the surface of the platters
but don’t actually touch them.

Reading from a platter is quick; it’s the mechanical maneuvering needed to address
a particular sector that drives down random-access throughput. Delays come from
two main sources.

First, the head armature must swing into position over the appropriate track. This
part is called seek delay. Second, the system must wait for the right sector to pass
underneath the head as the platter rotates. That part is rotational latency. Disks
can stream data at hundreds of MB/s if reads are optimally sequenced, but random
reads are unlikely to achieve more than a few MB/s.

A set of tracks on different platters that are all the same distance from the spindle
is called a cylinder. The cylinder’s data can be read without any additional move-
ment of the arm. Although heads move amazingly fast, they still move much more
slowly than the disks spin around. Therefore, any disk access that does not require
the heads to seek to a new position will be faster.

Spindle speeds vary. 7,200 RPM remains the mass-market standard for enterprise
and performance-oriented drives. A few 10,000 RPM and 15,000 RPM drives re-
main available at the high end, but the advent of inexpensive SSDs now limits these
drives to a small and shrinking niche market. Higher rotational speeds decrease
latency and increase the bandwidth of data transfers, but the drives tend to run hot.

	 Storage hardware	 723

St
or

ag
e

Hard disk reliability
Hard disks fail frequently. A 2007 Google Labs study of 100,000 drives surprised the
tech world with the news that hard disks more than two years old had an average
annual failure rate (AFR) of more than 6%, much higher than the failure rates man-
ufacturers predicted from extrapolating their short-term testing. The overall pattern
was a few months of infant mortality, a two-year honeymoon of annual failure rates
of a few percent, and then a jump up to the 6%–8% AFR range. Overall, hard disks
in the Google study had less than a 75% chance of surviving a five-year tour of duty.

Interestingly, Google found no correlation between failure rate and two environ-
mental factors that were formerly thought to be important: operating temperature
and drive activity. The complete paper can be found at goo.gl/Y7Senk.

More recently, Backblaze, a cloud storage provider, has posted regular updates about
its experience with various hard disk models at backblaze.com/blog. This data is 10
years more recent than the original Google study but suggests the same basic pat-
tern: high infant mortality followed by a two- or three-year honeymoon and then
a precipitous rise in annual failure rate. The absolute numbers are pretty close, too.

Failure modes and metrics
Hard disk failures typically stem from either platter surface defects (bad blocks) or
mechanical failures. Drives attempt to transparently correct errors in the former
category and remap the recovered data to a different portion of the disk. When
block errors become visible at the operating system level (i.e., in the logs), that
means data has already been lost. It’s a bad prognostic sign; pull the drive from
service and replace it.

A disk’s firmware and hardware interface usually remain operable after a failure, and
it can be entertaining to attempt to query the disk for details about what’s going on
(see page 738). However, disks are so cheap that it’s rarely worth your time to do
this except perhaps as a learning exercise.

Drive reliability is often quoted by manufacturers in terms of mean time between
failures (MTBF), denominated in hours. A typical value for an enterprise drive is
around 1.2 million hours. However, MTBF is a statistical measure and should not
be read to imply that an individual drive will run for 140 years before failing.

MTBF is defined as the inverse of AFR in the drive’s steady-state period—that is,
after break-in but before wear-out. A manufacturer’s MTBF of 1.2 million hours
corresponds to an AFR of 0.7% per year. This value is almost, but not quite, con-
cordant with the AFR range observed by Google and Backblaze (1%–2%) during
the honeymoon years of their sample drives’ lives.

Manufacturers’ MTBF values are probably accurate, but they are cherry-picked
from the most reliable phase of each drive’s life. MTBF values should therefore be
regarded as an upper bound on reliability; they do not predict your actual expected

http://goo.gl/Y7Senk
http://backblaze.com/blog

724	 Chapter 20	 Storage	

failure rate over the long term.1 Based on the limited data quoted above, you might
consider dividing manufacturers’ MTBFs by a factor of 7.5 or so to arrive at a more
realistic estimate of five-year failure rates.

Drive types
Only two manufacturers of hard drives remain: Seagate and Western Digital. You
may see a few other brands for sale, but they’re all ultimately made by these same
two companies, both of which have been on decade-long acquisition binges.

Brands segment their hard disk offerings into a few general categories:

•	 Value drives: These products offer lots of storage at the lowest possible
price point. Performance isn’t a priority, but it’s usually decent. Today’s
low-end drives are often faster than the high-performance drives of five
or ten years ago.

•	 Mass-market performance drives: These step-up products targeted at
end users (often gamers) have higher spindle speeds and larger caches
than those of their value equivalents. They perform notably better than
value drives on most benchmarks. As with value drives, firmware tuning
emphasizes single-user access patterns such as large sequential reads and
writes. The drives often run hot.

•	 NAS drives: NAS stands for “network-attached storage,” but these drives
are intended for use in all sorts of servers, RAID systems, and arrays—
anywhere that multiple drives are housed and accessed together. They’re
designed to be constantly on and working, and to balance performance,
reliability, and low heat-emission.

	 Benchmarks that replicate stand-alone access patterns may not reveal
much performance difference from value drives, but NAS drives typically
handle multiple streams of independent operations more intelligently be-
cause of firmware tuning. NAS drives often have a longer warranty than
value drives; their pricing is somewhere between that for value and per-
formance drives.

•	 Enterprise drives: “Enterprise” can mean a lot of things in the context of
hard disks, but most commonly it means “expensive.” Here’s where you’ll
find drives with non-SATA interfaces and uncommon features such as
10,000+ RPM spindle speeds. These are generally premium drives with
long (often, five-year) warranties.

The differences among these drive categories are about half real and half marketing.
All classes of drives work fine in all applications, but performance and reliability
may vary. NAS drives are probably the best all-around choice for drives to keep on
hand to fill a variety of potential needs.

	 1.	 Our technical reviewer Jon Corbet refers to these as “reliability guaranteed not to exceed” values.

	 Storage hardware	 725

St
or

ag
e

Hard disks are commodity products, and one brand’s model of a given size, class,
and spindle speed is much like another’s. These days, you need a dedicated qual-
ification laboratory to make fine distinctions among competing drives, at least in
terms of performance.

Reliability is another matter. The Google and Backblaze data demonstrate signifi-
cant differences among models. The least reliable are an order of magnitude more
likely to fail than the best. Unfortunately, there’s really no way to identify the tur-
keys until they’ve been sold for a year or two and have established a reputation in
the real world.2

No matter; even the best drives are relatively failure prone. There’s no escaping the
need for backups and redundant storage when important data is at stake. Design
your infrastructure with the assumption that drives will fail, then figure out how
much an incrementally more reliable drive is worth within this context.

Warranties and retirement
Because hard drives are more likely to require warranty service than are other types
of hardware, warranty length is an important purchasing consideration. The indus-
try standard has shrunk to a paltry two years, suspiciously close to the length of the
average hard drive’s honeymoon period. The three-year warranty offered on many
NAS drives is a significant advantage.

Hard disk exchanges under warranty are straightforward if you can demonstrate
that drives fail a diagnostic test supplied by the manufacturer. Test programs typ-
ically run only under Windows and are intolerant of virtualization environments
and of intervening connection hardware such as USB cradles. If your operations
entail frequent drive exchanges, you may find it worthwhile to maintain a dedicat-
ed Windows machine as a drive testing station.

It usually pays to be aggressive in taking drives out of service, even if you can’t quite
document that they are broken enough to be eligible for exchange under warranty.
Even seemingly insignificant signs (e.g., funny noises or block errors within tem-
porary files) are likely indications that a drive is nearing the end of its life.

Solid state disks
SSDs spread reads and writes across banks of flash memory cells, which are individ-
ually rather slow in comparison to modern hard disks. But because of parallelism,
the SSD as a whole meets or exceeds the bandwidth of a traditional disk. The great
strength of SSDs is that they continue to perform well when data is read or written
at random, an access pattern that’s predominant in real-world use.

	 2.	 That said, Hitachi (HGST, now part of Western Digital) deserves recognition as a particularly
high-reliability brand. Over the last decade, its drives have consistently led the reliability charts. How-
ever, HGST-branded drives command a significant price premium over their competitors’ offerings.

726	 Chapter 20	 Storage	

Storage device manufacturers like to quote sequential transfer rates for their prod-
ucts because the numbers are impressively high. But for traditional hard disks, these
sequential numbers have almost no relationship to the throughput observed with
random reads and writes.3

SSDs’ performance comes at a cost, however. Not only are they more expensive per
gigabyte of storage than are hard disks, but they also introduce several new wrinkles
and uncertainties into the storage equation. Anand Shimpi’s March 2009 article on
SSD technology is a superb introduction to the promise and perils of the SSD. It
can be found at tinyurl.com/dexnbt.

Rewritability limits
Each page of flash memory in an SSD (typically 4KiB on current products) can be
rewritten only a limited number of times (usually about 100,000, depending on the
underlying technology). To limit the wear on any given page, the SSD firmware
maintains a mapping table and distributes writes across all the drive’s pages. This
remapping is invisible to the operating system, which sees the drive as a linear se-
ries of blocks. Think of it as virtual memory for storage.

The theoretical limits on the rewritability of flash memory are probably less an is-
sue than they might initially seem. Just as a matter of arithmetic, you would have
to stream 100 MB/s of data to a 500GB SSD for more than 15 continuous years to
start running up against the rewrite limit. The more general question of long-term
SSD reliability is as yet unanswered, however. We have a pretty good idea of how
SSDs manufactured five years ago held up over time, but today’s products will no
doubt behave differently.

Flash memory and controller types
SSDs are constructed from several types of flash memory. The main difference
among the types has to do with how many bits of information are stored in each
individual flash memory location. Single-level cells (SLC memories) store a sin-
gle bit; they’re the fastest but most expensive option. Also common in the mix are
multilevel cells (MLC) and triple-level cells (TLC).

SSD reviews lovingly describe these implementation details as a matter of course,
but it’s not clear why buyers should care. Some SSDs are faster than others, but
no particular hardware-related insight is needed to appreciate this fact. Standard
benchmarks capture the performance differences quite well.

In theory, SLC flash memory has a reliability advantage over other types. In practice,
reliability seems to have more to do with how well a drive’s firmware manages the
memory and with how much memory the manufacturer has set aside for replacing
cells that develop problems.

	 3.	 It pays to know your workloads. For access patterns that are in fact heavily sequential, hard disks can
still be competitive with SSDs, especially when hardware costs are taken into consideration.

http://tinyurl.com/dexnbt

	 Storage hardware	 727

St
or

ag
e

The controllers that coordinate SSD components are still evolving. Some are bet-
ter than others, but these days all mainstream offerings tend to be respectable. If
you want to invest time in scrutinizing SSD hardware, it’s usually more efficient to
research the reputations of the flash memory controllers used to implement SSDs
than to investigate the individual brands and models of SSD. SSD manufacturers
are usually pretty open about the controllers they’re using. If they won’t tell you,
reviewers certainly will.

Page clusters and pre-erasing
A further complication is that flash memory pages must be erased before they can be
rewritten. SSDs handle this detail for you. However, erasing is a separate operation
that is slower than writing. It’s also impossible to erase individual pages—clusters of
adjacent pages (typically 128 pages or 512KiB) must be erased together. The write
performance of an SSD can drop substantially when the pool of pre-erased pages
is exhausted and the drive must recover pages on-the-fly to service ongoing writes.

Rebuilding a buffer of erased pages is harder than it might seem because filesys-
tems designed for traditional hard disks do not actually erase data blocks they are
no longer using. A storage device doesn’t know that the filesystem now considers
a given block to be free; it knows only that long ago someone gave it data to store
there. For an SSD to maintain its cache of pre-erased pages (and thus, its write per-
formance), the filesystem must be capable of informing the SSD that certain pages
are no longer needed. Support for this operation, known as TRIM, has finally be-
come widespread among filesystems. On our example systems, the only filesystem
that does not yet support TRIM is ZFS on Linux.

SSD reliability
A 2016 paper by Bianca Schroeder et al. (goo.gl/lzuX6c) summarized a vast set of
SSD-related data from Google’s data centers. The main conclusions:

•	 Memory technology has no relationship to reliability. Reliability varies
widely among models, but as with hard disks, it can be assessed only
retrospectively.

•	 Most read errors occur at the bit level and are corrected through redun-
dant storage coding. These “raw” (but correctable) read errors are common
and expected. They occur on most SSD drives on most days of operation.

•	 The most common failure mode is to discover more bad bits in a block
than can be fixed by the coding system. These errors are detectable but
uncorrectable; they necessarily entail data loss.

•	 Even among the most reliable SSD models, 20% of drives experienced at
least one uncorrectable read error. Among the least reliable models, 63%.

http://goo.gl/lzuX6c

728	 Chapter 20	 Storage	

•	 Although both drive age and workload correlate with uncorrectable
error rates, the correspondence is weak. In particular, the study found
no evidence for the notion that older SSDs are ticking time bombs that
asymptotically approach certain failure.

•	 Because uncorrectable errors are only marginally correlated to workload,
the standard reliability figure quoted by manufacturers—the uncorrect-
able bit error rate, or UBER—is meaningless. Workload has little effect
on the number of errors observed, so reliability should not be character-
ized as a rate.

The most notable of these findings is that unreadable blocks are common and that
they typically occur in isolation. The usual scenario is for an SSD to report a block
error but then continue to function normally.

Of course, unreliable storage devices are nothing new; backups and redundancy
remain essential no matter what hardware you’re using. However, SSD failures are
sneakier than those you might be accustomed to from dealing with hard disks.
Unlike a hard disk, an SSD will rarely demand your attention by failing in some
obvious and unambiguous way. SSDs need structured and systematic monitoring.

Errors develop over time regardless of a drive’s duty cycle, so SSDs are probably
not a good choice for archival storage. And conversely, an isolated bad block is
not an indication that an SSD has gone bad or is nearing the end of its useful life.
In the absence of a larger pattern of failures, it’s fine to reformat such a drive and
return it to service.

Hybrid drives
After spending many years in the vaporware category, SSHDs—hard disks with
built-in flash memory caches—have become increasingly available. Current prod-
ucts are pitched at consumers.

The initialism SSHD stands for “solid state hybrid drive” and is something of a tri-
umph of marketing, designed as it is to encourage confusion with SSDs. SSHDs are
just traditional hard disks with some extras on the logic board; in reality, they’re
about as “solid state” as the average dishwasher.

Benchmarks of current SSHD products have generally been unimpressive, even
when the benchmarks attempt to emulate real-world access patterns. In large part,
that’s because the current products often include only a token amount of flash
memory cache.

Despite current SSHDs’ lackluster performance, the basic idea of multilevel cach-
ing is sound and has been well exploited in systems such as ZFS and Apple’s Fusion
Drive. As the price of flash memory continues to fall, we anticipate that platter-based
drives will continue to include more and more cache. Those products may or may
not be sold explicitly as SSHDs.

See Chapter 28 for
more information
about setting up a
comprehensive sur-
veillance program.

	 Storage hardware	 729

St
or

ag
e

Advanced Format and 4KiB blocks
For decades, the standard size of a disk block was fixed at 512 bytes. That’s too small
to be practical from the perspective of most filesystems, so the filesystems them-
selves have long aggregated 512-byte sectors into page clusters of 1KiB to 8KiB that
are read and written together.

Since no software that communicates with storage hardware actually has an inter-
est in reading and writing data at 512-byte granularity, it’s inefficient and wasteful
for the hardware to maintain such tiny sectors. Over the last decade, the storage
industry has migrated to a new standard block size of 4KiB, known as Advanced
Format. All modern storage devices use 4KiB sectors internally, although most of
them continue to emulate 512-byte blocks from the perspective of clients.

There are currently three different “worlds” that a storage device can live in:

•	 512n (or 512-native) devices are the old ones that actually have 512-byte
sectors. These devices are no longer manufactured, but of course there are
still plenty of them out there in the real world. These drives know nothing
about Advanced Format.

•	 4Kn (or 4K-native) devices are Advanced Format devices that have 4KiB
sectors (or pages, in the case of SSDs) and that report their block size
as 4KiB to the host computer. All interfacing hardware and all software
that deals directly with the device must be aware of, and prepared to deal
with, 4KiB blocks.

	 4Kn is the wave of the future, but because it demands both hardware and
software support, its adoption will be gradual. Enterprise drives with 4Kn
interfaces started becoming available in 2014, but at this point you’re in
no danger of encountering a 4Kn drive unless you explicitly order one.

•	 512e (or 512-emulated) devices use 4KiB blocks internally, but they re-
port their sector size as 512 bytes to the host computer. Firmware in the
device aggregates 512-byte block operations into operations on the actual
4KiB storage blocks.

The transition from 512n to 512e was completed in 2011. These two systems look
essentially identical from the perspective of the host computer, so 512e devices
work fine with old computers and old operating systems.

The one thing to know about 512e is that it’s sensitive to misalignment between
filesystem page clusters and hardware disk blocks. Because the disk can only read
or write 4KiB pages (despite its emulation of traditional 512-byte blocks), filesystem
cluster boundaries and hard disk block boundaries should coincide. You wouldn’t
want a 4KiB logical cluster to correspond to half of one 4KiB disk block and half
of another—with that layout, the disk might have to read or write twice as many
physical pages as it should to service a given number of logical clusters.

730	 Chapter 20	 Storage	

Since filesystems usually count off their clusters starting at the beginning of whatev-
er storage is allocated to them, you can finesse the alignment issue by aligning disk
partitions to a power-of-2 boundary that is large in comparison with the likely size
of disk and filesystem pages (e.g., 64KiB). Partitioning tools on modern versions of
Windows, Linux, and BSD automatically enforce such alignment. However, 512e
disks that were mispartitioned on legacy systems can’t be transparently corrected;
you’ll need to run an alignment utility to adjust the partition boundaries and phys-
ically move the data. Or, you can simply erase the device entirely and start over.

20.3	 Storage hardware interfaces
These days, only a few interface standards are in common use. If a system supports
several different interfaces, use the one that best meets your requirements for speed,
redundancy, mobility, and price.

The SATA interface
Serial ATA, SATA, is the predominant hardware interface for storage. In addition
to supporting high transfer rates (currently 6 Gb/s), SATA has native support for
hot-swapping and (optional) command queueing, two features that finally make
ATA a viable alternative to SAS in server environments.

SATA cables slide easily onto their mating connectors, but they can just as easily
slide off. Cables with locking catches are available, but they’re a mixed blessing. On
motherboards with six or eight SATA connectors packed together, it can be hard to
disengage the locking connectors without a pair of needle-nosed pliers.

SATA also introduces an external cabling standard called eSATA. The cables are
electrically identical to standard SATA, but the connectors are slightly different.
You can add an eSATA port to a system that has only internal SATA connectors by
installing an inexpensive converter bracket.

Be leery of external multidrive enclosures that have only a single eSATA port—
some of these are smart (RAID) enclosures that require a proprietary driver, and
the drivers rarely support UNIX or Linux. Others are dumb enclosures that have a
SATA port multiplier built in. These are potentially usable on UNIX systems, but
since not all SATA host adapters support port expanders, pay close attention to the
compatibility information. Enclosures with multiple eSATA ports—one per drive
bay—are always safe.

The PCI Express interface
The PCI Express (Peripheral Component Interconnect Express, abbreviated PCIe)
backplane bus has been used on PC motherboards for more than a decade. It’s
now the predominant standard for connecting all kinds of add-on circuit boards,
even video cards.

	 Storage hardware interfaces	 731

St
or

ag
e

As the SSD market developed, it became clear that even at 6 Gb/s, the speed of SATA
interfaces would soon become inadequate to handle the fastest storage devices. Rather
than assuming the traditional shape of a 2.5" laptop hard disk, high-end SSDs began
to take the form of circuit boards that plugged directly into the system’s PCIe bus.

PCIe was attractive because of its flexible architecture and fast signaling rate. The
version that is now mainstream, PCIe 3.0, has a signaling rate of 8 gigatransfers
per second (GT/s). The actual throughput depends on how many signaling chan-
nels a device has; there can be as few as 1 or as many as 16. The widest devices can
achieve more than 15 GB/s of throughput.4 The soon-to-debut PCIe 4.0 standard
doubles the basic signaling rate to 16 GT/s.

When comparing PCIe to SATA, keep in mind that SATA’s speed of 6 Gb/s is quot-
ed in gigabits per second. Full-width PCIe is actually more than 20 times faster
than SATA.

The SATA standard is feeling the pressure. Unfortunately, the SATA ecosystem is
constrained by past design choices and by the need to support existing cabling and
connectors. It’s unlikely that the speed of SATA interfaces can be meaningfully im-
proved over the next few years.

Instead, recent work has focused on attempting to unify SATA and PCIe at the level
of interconnections. The M.2 standard for plug-in cards routes SATA, PCIe (with
up to four data lanes), and USB 3.0 connectivity over a standard connector. One
or two of these slots are now standard on laptop computers, and they can also be
found on desktop systems.

M.2 cards are about an inch wide and can be up to about four inches long. They are
thin, with only a few millimeters allowed on both sides for components.

U.2 is more recent tweak to the M.2 approach; it’s just starting to become available.
Instead of USB, U.2 feature SAS connectivity in addition to SATA and PCIe.

The SAS interface
SAS stands for Serial Attached SCSI, the SCSI portion of which denotes the Small
Computer System Interface, a generic data pipe that once connected many different
types of peripherals. These days, USB has captured the market for peripheral con-
nections and SCSI is found only in the form of SAS, an enterprise-level interface
used to connect large numbers of storage devices.

Now that SAS and SCSI are largely synonymous, the vast history of different SCSI
technologies dating back to 1986 serves mostly to create confusion. Operating sys-
tems further muddy the waters by filtering all disk access through a “SCSI subsys-
tem” regardless of whether an actual SCSI device is involved or not. Our advice is
to ignore all this history and consider SAS as its own system.

	 4.	 It’s not quite 16 GB/s because some of the bandwidth is consumed by signaling overhead. However,
the amount of overhead is so small (about 1.5%) that it can safely be ignored.

732	 Chapter 20	 Storage	

Like SATA, SAS is a point-to-point system: you plug a drive into a SAS port through
a cable or direct-mount backplane. However, SAS allows “expanders” to connect
multiple devices to a single host port. They’re analogous to SATA port multipliers,
but whereas support for port multipliers is hit or miss, SAS expanders are always
supported.

SAS currently operates at 12 Gb/s, twice the speed of SATA.

In past editions of this book, SCSI was the obvious interface choice for server appli-
cations. It offered the highest available bandwidth, out-of-order command execution
(aka tagged command queueing), lower CPU utilization, easier handling of large
numbers of storage devices, and access to the market’s most advanced hard drives.

The advent of SATA has removed or minimized most of these advantages, so SAS
simply does not deliver the clear advantages that SCSI used to. SATA drives com-
pete with (and in some cases, outperform) equivalent SAS disks in nearly every
category. At the same time, both SATA devices and the interfaces and cabling used
to connect them are cheaper and far more widely available.

SAS still holds a few trump cards:

•	 Manufacturers continue to use the SATA/SAS divide to stratify the stor-
age market. To help justify premium pricing, the fastest and most reliable
drives are still available only with SAS interfaces.

•	 SATA is limited to a queue depth of 32 pending operations. SAS can han-
dle thousands.

•	 SAS can handle many storage devices (hundreds or thousands) on a sin-
gle host interface. But keep in mind that all those devices share a single
pipe to the host; you are still limited to 12 Gb/s of aggregate bandwidth.

The SAS vs. SATA debate may ultimately be moot because the SAS standard in-
cludes support for SATA drives. SAS and SATA connectors are similar enough that
a single SAS backplane can accommodate drives of either type. At the logical layer,
SATA commands are simply tunneled over the SAS bus.

This convergence is an amazing technical feat, but the economic argument for it is
less clear. The expense of a SAS installation is mostly in the host adapter, backplane,
and infrastructure; the SAS drives themselves aren’t outrageously priced. Once
you’ve invested in a SAS setup, you might as well stick with SAS from end to end.
(On the other hand, perhaps the modest price premiums for SAS drives are a result
of the fact that SATA drives can easily be substituted for them.)

USB
The Universal Serial Bus (USB) is a popular option for connecting external hard
disks. Current speeds are 4 Gb/s for USB 3.0 and up to 10 GB/s for USB 3.1.5 Both

	 5.	 The speed of USB 3.0 is often cited as 5 Gb/s, but because of mandatory encoding overhead, the actu-
al transfer rate is more like 4 Gb/s.

	 Attachment and low-level management of drives	 733

St
or

ag
e

systems are fast enough to accommodate all but the fastest SSDs streaming data at
full speed. Watch out for USB 2.0, however; it tops out at 480 Mb/s, which is too
slow to keep up with even a mechanical hard drive.

Storage devices themselves never come with native USB interfaces. External drives
sold with these interfaces are invariably SATA drives with a protocol converter built
into the enclosure. You can also buy these enclosures separately and install your
choice of hard disks.

USB adapters are also available in the form of cradles and cable dongles. Cradles
are particularly helpful when disks must be swapped out frequently: just yank out
the old disk and pop in a new one.

USB thumb drives are perfectly legitimate storage devices. They present a block
interface similar to that of any other disk, although throughput is typically medi-
ocre. The underlying technology is similar to that of an SSD, but without some of
the flourishes that give SSDs their superior speed and robustness.

20.4	 Attachment and low-level management of drives
The way a disk is attached to the system depends on the interface. The rest is all
mounting brackets and cabling. Fortunately, modern connection schemes are all
pretty much idiot-proof.

SAS is a hot-pluggable interface, so it’s fine to plug in new drives without powering
off the system or restarting it. The kernel should automatically recognize new devic-
es and create device files for them. SATA interfaces can also theoretically support
hot-plugging. However, the SATA specification does not require support for this
feature, and most mass-market hardware does not implement it.

It’s fine to attempt hot-plugging a SATA drive to find out if hot-plugging works on
a particular system. You won’t hurt anything. The worst that can happen is that the
system ignores the drive.6

Installation verification at the hardware level
After you install a new disk, check to make sure that the system acknowledges its
existence at the lowest possible level. On a physical PC this is easy: the BIOS shows
you a list of SATA and USB disks connected to the system. SAS disks may be in-
cluded here as well if the motherboard supports them directly. If the system has a
separate SAS interface card, you might need to invoke the BIOS setup for that card
to see the disk inventory.

	 6.	 Hot-plugging might seem like a neat trick that creates all sorts of options, such as the ability to swap
out a bad drive with little or no software-side wrangling. However, it’s tricky to get the higher layers
of the storage stack tuned to achieve these feats safely and reliably. We don’t describe the management
of hot-plugging in this book.

See page 331 for
more information
about dynamic han-
dling of devices.

734	 Chapter 20	 Storage	

On cloud servers and systems that support hot-pluggable drives, you might have
to do some sleuthing. Check the diagnostic output from the kernel as it probes for
devices. For example, one of our test systems showed the following messages for
an older SCSI disk attached to a BusLogic SCSI host adapter.

scsi0 : BusLogic BT-948
scsi : 1 host.
 Vendor: SEAGATE Model: ST446452W Rev: 0001
 Type: Direct-Access ANSI SCSI revision: 02
Detected scsi disk sda at scsi0, channel 0, id 3, lun 0
scsi0: Target 3: Queue Depth 28, Asynchronous
SCSI device sda: hdwr sector=512 bytes. Sectors=91923356 [44884 MB]

[44.9 GB]

You may be able to review this information after the system has finished booting:
look in your system log files. See the material starting on page 318 for more in-
formation about the handling of boot-time messages from the kernel.

Several commands can print out a list of the disks that the system is aware of. On
Linux systems, the best option is usually lsblk, which is standard on all distribu-
tions. For more information, ask for model and serial numbers:

	 lsblk -o +MODEL,SERIAL

On FreeBSD, use geom disk list.

Disk device files
A newly added disk is represented by device files in /dev. See page 130 for general
information about device files.

All our example systems automatically create these files for you, but you still need to
know where to look for the device files and how to identify the ones that correspond
to your new device. Formatting the wrong device file is a rapid route to disaster.

Table 20.2 summarizes the device naming conventions for disks on our example sys-
tems. Instead of showing the abstract pattern according to which devices are named,
Table 20.2 simply shows a typical example for the name of the system’s first disk.

Table 20.2	 Device naming standards for disks

System Whole disk Partition

Linux /dev/sda /dev/sda1
FreeBSD /dev/ada0 /dev/ada0p1

Device names for whole disks comprise a basename that depends on the device
driver and a sequence number or letter that differentiates disks from each other. For

	 Attachment and low-level management of drives	 735

St
or

ag
e

example, /dev/sda on Linux is the first drive managed by the sd driver. The next
drive would be /dev/sdb, and so on. FreeBSD has different driver names and uses
numbers instead of letters, but the pattern is the same.

Don’t ascribe too much significance to the driver names that show up in disk device
files. Modern kernels funnel both SATA and SAS management through a generic
SCSI layer, so don’t be surprised to see SATA disks masquerading as SCSI devices.
Driver names also vary on cloud and virtualized systems; a virtual SATA disk may
or may not have the same driver name as an actual SATA disk.

Device files for partitions add an additional decoration to the device file to indi-
cate the partition number. Partition numbering normally starts at 1 rather than 0.

Ephemeral device names
Disk names are assigned in sequence as the kernel enumerates the various inter-
faces and devices on the system. Adding a disk can cause existing disks to change
their names. In fact, even rebooting the system can sometimes cause name changes.

These facts suggest a couple of good rules for system administrators to follow:

•	 Never make changes to disks, partitions, or filesystems without verifying
the identity of the disk you’re working on, even on a stable system.

•	 Never mention a disk device in any sort of configuration file, lest it change
out from under you at some point in the future.

The latter issue is most notable when you are setting up the /etc/fstab file, which
lists filesystems for the system to mount at boot time. It was once common to iden-
tify disk partitions by their device files in /etc/fstab, but this is no longer safe. See
page 769 for some alternative approaches.

Linux has a couple of general ways around the “ephemeral names” issue. Subdi-
rectories under /dev/disk list disks by various stable characteristics such as their
manufacturer ID or connection information. These device names (which are really
just links back to the top-level files in /dev) are stable, but they’re long and awkward.

At the level of filesystems and disk arrays, Linux uses both unique ID strings and
text labels to persistently identify objects. In many cases, the existence of these long
IDs is cleverly concealed so that you don’t have to deal with them directly.

parted -l lists the sizes, partition tables, model numbers, and manufacturers of
every disk on the system.

Formatting and bad block management
People sometimes use the word “formatting” to mean “writing a partition table on
a disk and setting up filesystems in the partitions.” But in this section, we use the
word “formatting” to mean the more fundamental operation of setting up a disk’s
media at the hardware level. We’d prefer to call the former operation “initializing,”

736	 Chapter 20	 Storage	

but in the real world the terms are used more or less interchangeably, so you have
to decode the meaning through context.

The formatting process writes address information and timing marks on the platters
to delineate each sector. It also identifies bad blocks, imperfections in the media
that result in areas that cannot be reliably read or written. All modern disks have
bad block management built in, so neither you nor the driver need worry about
managing defects. The drive firmware substitutes known-good blocks from an area
of backup storage on the disk that is reserved for this purpose.

All hard disks come preformatted, and the factory formatting is at least as good as
any formatting you can do in the field. It is best to avoid doing a low-level format
if it’s not required. Don’t reformat new drives as a matter of course.

If you encounter read or write errors on a disk, first check for cabling, termination,
and address problems, all of which can cause symptoms similar to those of a bad
block. If after this procedure you are still convinced that the disk has defects, you
might be better off replacing it with a new one rather than waiting long hours for
a format to complete and hoping the problem doesn’t come back.

Bad blocks that manifest themselves after a disk has been formatted may or may not
be automatically handled. If the drive is sure that the affected data can be reliably
reconstructed, the newly discovered defect might be mapped out on the fly and
the data rewritten to a new location. For more serious or less clearly recoverable
errors, the drive aborts the read or write operation and reports the error back to
the host operating system.

SATA disks are usually not designed to be formatted outside the factory. However,
you might be able to obtain formatting software from the manufacturer, usually for
Windows. Make sure the software matches the drive you plan to format and follow
the manufacturer’s directions carefully.7

SAS disks format themselves in response to a standard command that you send from
the host computer. The procedure for sending this command varies from system to
system. On PCs, you can often send the command from the SAS controller’s BIOS.
To issue the format command from within the operating system, use the sg_format
command on Linux and the camcontrol command on FreeBSD.

Various utilities let you verify the integrity of a disk by writing random patterns to
it and then reading them back. Thorough tests take a long time (hours) and un-
fortunately seem to be of little prognostic value. Unless you suspect that a disk is
bad and are unable to simply replace it (or you bill by the hour), you can skip these
tests. Barring that, let the tests run overnight. Don’t be concerned about “wearing
out” a disk with overuse or aggressive testing. Enterprise-class disks are designed
for constant activity.

	 7.	 On the other hand, at $100 for a 4TB drive, why bother?

	 Attachment and low-level management of drives	 737

St
or

ag
e

ATA secure erase
Since 2000, PATA and SATA disks have implemented a “secure erase” command
that overwrites the data on the disk according to a method the manufacturer has
determined to be secure against recovery efforts. Secure erase is NIST-certified for
most needs. Under the U.S. Department of Defense categorization, it’s approved
for use at security levels less than “secret.”

Why is this feature even needed? First, filesystems generally do no erasing of their
own, so an rm -rf * of a disk’s data leaves everything intact and recoverable with
software tools.8 It’s critically important to remember this fact when disposing of
disks, whether their destination is eBay or the trash.

Second, even a manual rewrite of every sector on a traditional hard disk can leave
magnetic traces that are recoverable by a determined attacker with access to a lab-
oratory. Secure erase performs as many overwrites as are needed to eliminate these
shadow signals. Magnetic remnants won’t be a serious concern for most sites, but
it’s always nice to know that you’re not exporting your organization’s confidential
data to the world at large. Some sites may have regulatory or business requirements
that dictate how data is to be erased.

Finally, secure erase has the effect of resetting SSDs to their fully erased state. This
reset can improve performance in cases in which the ATA TRIM command (the
command to erase a block) cannot be issued, either because the filesystem used on
the SSD does not know to issue it or because the SSD is connected through a host
adapter or RAID interface that does not propagate TRIM.

The ATA secure erase command is password-protected at the drive level to reduce
the risk of inadvertent activation. Therefore, you must set the password on a drive
before invoking the command. Don’t bother to record the password, however; you
can reset it at will. There is no danger of locking the drive.

Under Linux, you can use the hdparm command to activate secure erase:

$ sudo hdparm --user-master u --security-set-pass password /dev/disk
$ sudo hdparm --user-master u --security-erase password /dev/disk

The analogous FreeBSD command is camcontrol:

$ sudo camcontrol security disk -U user -s password -e password

The SAS world has no analog to ATA’s secure erase command, but the SCSI “format
unit” command described under Formatting and bad block management starting
on page 735 is a reasonable alternative.

Many systems have a shred utility that attempts to securely erase the contents of
individual files. Unfortunately, it relies on the assumption that a file’s blocks can
be overwritten in place. This assumption is invalid in so many circumstances (any

	 8.	 Now that most filesystems support the TRIM command to inform SSDs of blocks that are no longer
needed by the system, this statement is not quite as true as it used to be. However, TRIM is advisory;
an SSD is not required to erase anything in response.

738	 Chapter 20	 Storage	

filesystem on any SSD, any logical volume that has snapshots, anything on ZFS or
Btrfs) that shred’s general utility is questionable.

For sanitizing an entire PC system at once, another option is Darik’s Boot and Nuke
(dban.org). This tool runs from its own boot disk, so it’s not a tool you’ll use every
day. It is quite handy for decommissioning old hardware, however.

hdparm and camcontrol: set disk and interface parameters
The hdparm (Linux) and camcontrol (FreeBSD) commands can do more than
just send secure erase commands. They give you a general way to interact with the
firmware of SATA and SAS hard disks.

As tools that operate close to the hardware layer, these commands work properly
only on nonvirtualized systems. On a traditional physical server, they are actually
the best way to get information about the system’s disk devices (hdparm -I and
camcontrol devlist); we don’t mention them elsewhere (e.g., in the “adding a disk”
recipes at the start of this chapter) only because they don’t work on virtual systems.

hdparm comes from the prehistoric world of IDE and has gradually grown to in-
clude coverage of SATA and SCSI features. camcontrol started as a SCSI wrangling
tool and has been extended to cover some SATA features. The syntaxes are different,
but the tools cover approximately the same territory these days.

Among other things, these tools can set drive power options, enable or disable
noise reduction options, set the read-only flag, and print detailed drive information.

Hard disk monitoring with SMART
Hard disks are fault-tolerant systems that use error-correction coding and intelligent
firmware to hide their imperfections from the host operating system. In some cas-
es, an uncorrectable error that the drive is forced to report to the OS is merely the
latest event in a long crescendo of correctable but inauspicious problems. It would
be nice to know about those omens before the crisis occurs.

SATA devices implement a detailed form of status reporting that is sometimes pre-
dictive of drive failures. This standard, called SMART, for “self-monitoring, anal-
ysis, and reporting technology,” exposes more than 50 operational parameters for
investigation by the host computer.

The Google disk drive study mentioned on page 723 has been widely summarized
in media reports as concluding that SMART data is not predictive of drive failure.
That summary is not accurate. In fact, Google found that four SMART parameters
were highly predictive of failure but that failure was not consistently preceded by
changes in SMART values. Of failed drives in the study, 56% showed no change in
the four most predictive parameters. On the other hand, predicting nearly half of
failures sounds pretty good to us!

http://dban.org

	 The software side of storage: peeling the onion	 739

St
or

ag
e

Those four sensitive SMART parameters are

•	 Scan error count
•	 Reallocation count
•	 Off-line reallocation count
•	 Number of sectors on probation

Those values should all be zero. According to the Google Labs study, a nonzero
value in these fields raises the likelihood of failure within 60 days by a factor of 39,
14, 21, or 16, respectively.

To take advantage of SMART data, you need software that queries your drives to
obtain it and then judges whether the current readings are sufficiently ominous
to warrant administrator notification. Unfortunately, reporting standards vary by
drive manufacturer, so decoding isn’t necessarily straightforward. Most SMART
monitors collect baseline data and then look for sudden changes in the “bad” di-
rection rather than interpreting absolute values. (According to the Google study,
taking account of these “soft” SMART indicators in addition to the Big Four pre-
dicts 64% of all failures.)

The standard software for SMART wrangling is the smartmontools package from
smartmontools.org. It’s installed by default on Red Hat, CentOS, and FreeBSD sys-
tems and is usually in the default package repository on other systems.

The smartmontools package consists of a smartd daemon that monitors drives
continuously and a smartctl command you can use for interactive queries or for
scripting. The daemon has a single configuration file, normally /etc/smartd.conf,
which is extensively commented and includes plenty of examples.

SCSI has its own system for out-of-band status reporting, but unfortunately the
standard is much less granular in this respect than is SMART. The smartmontools
attempt to include SCSI devices in their schema, but the predictive value of the
SCSI data is less clear.

20.5	 The software side of storage: peeling the onion
If you’re accustomed to plugging in a disk and having your Windows system ask
if you want to format it, you may be a bit taken aback by the apparent complexity
of storage management on UNIX and Linux systems. Why is it all so complicated?

To begin with, much of the complexity is optional. On UNIX and Linux systems
with a window manager, you can log in to your system’s desktop, connect that same
USB drive, and have much the same experience as on Windows. You’ll get a simple
setup for personal data storage. If that’s all you need, you’re good to go.

As usual in this book, we’re primarily interested in enterprise-class storage systems:
filesystems that are accessed by many users or processes (both local and remote)
and that are reliable, high-performance, easy to back up, and easy to adapt to future

http://smartmontools.org

740	 Chapter 20	 Storage	

needs. These systems require a bit more thought, and UNIX and Linux give you
plenty to think about.

Elements of a storage system
Exhibit A shows a typical set of software components that can mediate between
a raw storage device and its end users. The architecture shown in Exhibit A is for
Linux, but other systems include similar features, although not necessarily in the
same packages.

Exhibit A	 Storage management layers

Filesystems, swap areas, database storage

Logical volumes

Partitions RAID arrays Volume groups

Storage devices

The arrows in Exhibit A mean “can be built on.” For example, a Linux filesystem
can be built on top of a partition, a RAID array, or a logical volume. It’s up to the
administrator to construct a stack of modules that connect each storage device to
its final application.

Sharp-eyed readers will note that the graph has a cycle, but real-world configu-
rations should not loop. Linux allows RAID and logical volumes to be stacked in
either order, but neither component should be used more than once (though it is
technically possible to do this).

Here’s what the pieces in Exhibit A represent:

•	 A storage device is anything that looks like a disk. It can be a hard disk,
a flash drive, an SSD, an external RAID array implemented in hardware,
or even a network service that gives block-level access to a remote device.
The exact hardware doesn’t matter, as long as the device allows random
access, handles block I/O, and is represented by a device file.

•	 A partition is a fixed-size subsection of a storage device. Each partition
has its own device file and acts much like an independent storage device.
For efficiency, the same driver that handles the underlying device usual-
ly implements partitioning. Partitioning schemes consume a few blocks
at the start of the device to record the ranges of blocks in each partition.

	 The software side of storage: peeling the onion	 741

St
or

ag
e

•	 Volume groups and logical volumes are associated with logical volume
managers (LVMs). These systems aggregate physical devices to form pools
of storage called volume groups. An administrator can then subdivide this
pool into logical volumes in much the same way that disks can be divided
into partitions. For example, a 6TB disk and a 2TB disk could be aggre-
gated into an 8TB volume group and then split into two 4TB logical vol-
umes. At least one volume would include data blocks from both hard disks.

	 Since the LVM adds a layer of indirection between logical and physical
blocks, it can freeze the logical state of a volume simply by making a copy
of the mapping table. Therefore, logical volume managers often have some
kind of a “snapshot” feature. Writes to the volume are then directed to
new blocks, and the LVM keeps both the old and new mapping tables.
Of course, the LVM has to store both the original image and all modified
blocks, so it can eventually run out of space if a snapshot is never deleted.

•	 A RAID array (a redundant array of inexpensive/independent disks)
combines multiple storage devices into one virtualized device. Depending
on how you set up the array, this configuration can increase performance
(by reading or writing disks in parallel), increase reliability (by duplicat-
ing or parity-checking data across multiple disks), or both. RAID can be
implemented by the operating system or by various types of hardware.

	 As the name suggests, RAID is typically conceived of as an aggregation
of bare drives, but modern implementations let you use as a component
of a RAID array anything that acts like a disk.

•	 A filesystem mediates between the raw bag of blocks presented by a parti-
tion, RAID array, or logical volume and the standard filesystem interface
expected by programs: paths such as /var/spool/mail, UNIX file types,
UNIX permissions, etc. The filesystem determines where and how the
contents of files are stored, how the filesystem namespace is represented
and searched on disk, and how the system is made resistant to (or recov-
erable from) corruption.

	 Most storage space ends up as part of a filesystem, but on some systems
(not current versions of Linux), swap space and database storage can po-
tentially be slightly more efficient without “help” from a filesystem. The
kernel or database imposes its own structure on the storage, rendering
the filesystem unnecessary.

If it seems to you that this taxonomy has a few too many little components that sim-
ply implement one block storage device in terms of another, you’re in good company.
The trend over the last few years has been toward consolidating these components
to increase efficiency and remove duplication. Although logical volume managers
did not originally function as RAID controllers, most have absorbed some RAID-
like features (notably, striping and mirroring).

742	 Chapter 20	 Storage	

On the cutting edge today are systems that combine a filesystem, a RAID control-
ler, and an LVM system all in one tightly integrated package. ZFS was the earliest
example, but the Btrfs filesystem for Linux has similar design goals. We have lots
more to say about ZFS and Btrfs starting on page 772. (Spoiler alert: if you can
use one of these systems, you probably should.)

The Linux device mapper
For simplicity, we omitted a central component of the Linux storage stack from
Exhibit A on page 740: the device mapper. This is a protean little beastie that has
fingers inserted in multiple contexts, prime examples being the implementation of
LVM2, the implementation of filesystem layers for containerization (see Chapter
25), and the implementation of whole-disk encryption (search the web for LUKS).

The device mapper abstracts the idea of one block device being built on a collection
of other block devices. Given a mapping table of devices, it implements the ongoing
translation among them and routes each block to its appropriate home.

For the most part, the device mapper is part of the implementation of Linux storage
and not something you’ll deal with directly. However, you’ll see its traces whenever
you access devices under /dev/mapper. You can also set up your own mapping ta-
bles with the dmsetup command, although cases in which you might need to do
that are relatively rare.

In the next sections, we look in more detail at the layers involved in storage config-
uration: partitioning, RAID, logical volume management, and filesystems.

20.6	 Disk partitioning
Partitioning and logical volume management are both ways of dividing up a disk
(or pool of disks, in the case of LVM) into separate chunks of known size. Linux
and FreeBSD support both of these methods.

Traditionally, partitioning was the lowest possible level of disk management, and
only disks could be partitioned. You could put individual disk partitions under
the control of a RAID controller or logical volume manager, for example, but you
couldn’t then partition the resulting logical volumes or RAID volumes.

The rule that only disks can be partitioned is increasingly being waived in favor of
a more general model in which disks, partitions, LVM pools, and RAID arrays can
be derived from one another in any order or combination. From the standpoint
of software architecture, this is beautiful and elegant. But from the standpoint of
practicality, it has the unfortunate side effect of implying that there’s some valid
reason to partition entities other than disks.

In fact, partitioning is less desirable than logical volume management in most
respects. It’s coarse and brittle and lacks features such as snapshot management.
Partitioning decisions are difficult to revise later. The only notable advantages of

	 Disk partitioning	 743

St
or

ag
e

partitioning over logical volume management are its simplicity and the fact that
Windows and PC BIOSs understand and expect it. A few versions of UNIX that run
on proprietary hardware have done away with partitioning altogether, and nobody
on those systems seems to miss it.

Both partitions and logical volumes make backups easier, prevent users from poach-
ing each other’s disk space, and confine potential damage from runaway programs.
All systems have a root “partition” that includes / and most of the local host’s con-
figuration data. In theory, everything needed to bring the system up to single-user
mode is part of the root partition. Various subdirectories (most commonly /var,
/usr, /tmp, /share, and /home) can be broken out into their own partitions or vol-
umes. Most systems also have at least one swap area.

Opinions differ on the best way to divide up disks, as do the defaults used by var-
ious systems. Most setups are relatively simple. Exhibit B illustrates a traditional
partitions-and-filesystems schema as it might be found on a couple of data disks
on a Linux system. (The boot disk is not shown.)

Exhibit B	 Traditional data disk partitioning scheme (Linux device names)

Physical
layer

Partition
layer

Filesystem
layer

/dev/sda1

/home

/dev/sda2

/opt

/dev/sda

la
be

l

/dev/sdb1

/spare

Hard disk 2

/dev/sdb

la
be

l

Hard disk 1

Here are some general points to guide you:

•	 In the distant past, it was sometimes useful to have a backup root device
that you could boot to if something went wrong with the normal root
partition. These days, a bootable USB thumb drive or an OS installation
DVD is a better recovery option for most systems. Backup root partitions
are more trouble than they’re worth.

•	 Putting /tmp on a separate filesystem limits temporary files to a finite size
and saves you from having to back them up. Some systems use a mem-
ory-based filesystem to hold /tmp for performance reasons. The memo-
ry-based filesystems are still backed by swap space, so they work well in
a broad range of situations.

•	 Since log files are kept in /var/log, it’s a good idea for either /var or /var/log
to be a separate disk partition. Leaving /var as part of a small root partition
makes it easy to fill the root and bring the machine to a halt.

744	 Chapter 20	 Storage	

•	 It’s useful to put users’ home directories on a separate partition or volume.
Even if the root partition is corrupted or destroyed, user data has a good
chance of remaining intact. Conversely, the system can continue to oper-
ate even after a user’s misguided shell script fills up /home.

•	 Splitting swap space among several physical disks can potentially increase
performance, although with today’s cheap RAM it’s usually better not to
swap at all. This technique works for filesystems, too; put the busy ones
on different disks. See page 1073 for notes on this subject.

•	 As you add memory to your machine, also add swap space. See page 1081
for more information about virtual memory.

•	 Try to cluster quickly changing information on a few partitions that are
backed up frequently.

•	 The Center for Internet Security publishes configuration guidelines for a
variety of operating systems at www.cisecurity.org/cis-benchmarks. They
are “benchmarks” in the sense of being best practices. The documents
include helpful recommendations for partitioning and filesystem layout.

Traditional partitioning
Systems that support partitions implement them by writing a “label” at the begin-
ning of the disk to define the range of blocks included in each partition. The exact
details vary; the label must often coexist with other startup information (such as a
boot block), and it often contains extra information such as a name or unique ID
that identifies the disk as a whole.

The device driver responsible for representing the disk reads the label and uses the
partition table to calculate the physical location of each partition. Typically, one
device file represents each partition and an additional device file represents the
disk as a whole.

Despite the universal availability of logical volume managers, some situations still
require or benefit from traditional partitioning.

•	 Only two partitioning schemes are used these days: MBR and GPT. We
discuss the details of both schemes in the next sections.

•	 On PC hardware, the boot disk must have a partition table. Systems manu-
factured before 2012 usually require MBR, and some new systems require
GPT. Most new systems support both.

•	 Installing an MBR or GPT partition table makes a disk comprehensible to
Windows, even if the contents of the individual partitions are not. Though
you may have no particular plans to interoperate with Windows, consid-
er the ubiquity of Windows, the prevalence of virtual machines, and the
portability of hard disks.

http://www.cisecurity.org/cis-benchmarks

	 Disk partitioning	 745

St
or

ag
e

•	 Partitions have a defined location on the disk, so they guarantee locality
of reference. Logical volumes do not (at least, not by default). In most cas-
es, this fact isn’t terribly important. However, short seeks are faster than
long seeks on mechanical hard disks, and the throughput of a disk’s outer
cylinders (those containing the lowest-numbered blocks) can exceed the
throughput of its inner cylinders by 30% or more.

•	 RAID systems (see page 753) use disks or partitions of matched size. A
given RAID implementation might accept entities of different sizes, but it
will probably use only the block ranges that all devices have in common.
Rather than letting extra space go to waste, you can isolate it in a separate
partition. If you do this, however, use the spare partition for data that is
infrequently accessed; otherwise, traffic on the partition will degrade the
performance of the RAID array.

MBR partitioning
MBR (Master Boot Record) partitioning is an old Microsoft standard that dates
back to the 1980s. It’s a cramped and ill-conceived format that can’t support disks
larger than 2TB. Who knew disks could ever get that big?

MBR offers no advantages over GPT except that it’s the only format from which
old PC hardware can boot Windows. Unless you’re forced by circumstances to use
MBR partitions, you typically don’t want them. Unfortunately, MBR is still a com-
mon default setup for many distributions’ installers.

The MBR label occupies a single 512-byte disk block, most of which is consumed by
boot code. Only enough space remains to define four partitions. These are termed

“primary” partitions because they are defined directly in the MBR.

You can, in theory, define one of the primary partitions to be an “extended” parti-
tion, which means that it contains its own subsidiary partition table. Unfortunately,
extended partitions have been known to cause a variety of subtle problems. It’s best
to avoid them in these twilight years of MBR.

The Windows partitioning system lets one partition be marked “active.” Boot loaders
look for the active partition and try to load the operating system from it.

Each partition also has a one-byte type attribute that is supposed to signal the par-
tition’s contents. Generally, the codes represent either filesystem types or operating
systems. These codes are not centrally assigned, but some common conventions
have evolved. They are summarized by Andries E. Brouwer at goo.gl/ATi3.

The MS-DOS command that partitioned hard disks was called fdisk. Most oper-
ating systems that support MBR-style partitions have adopted this name for their
own partitioning commands, but there are many variations among fdisks. Windows
itself has moved on: the command-line tool in recent versions is called diskpart.
Windows also has a partitioning GUI that’s available through the Disk Manage-
ment plug-in of mmc.

http://goo.gl/ATi3

746	 Chapter 20	 Storage	

It does not matter whether you partition a disk with Windows or some other op-
erating system. The end result is the same.

GPT: GUID partition tables
Intel’s extensible firmware interface (EFI) project replaced the rickety conventions
of PC BIOSs with a more modern and functional architecture.9 EFI firmware is now
standard for new PC hardware, and EFI’s partitioning scheme has gained universal
support among operating systems.

The EFI partitioning scheme, known as a “GUID partition table” or GPT, removes
the obvious weaknesses of MBR. It defines only one kind of partition (no more

“logical partitions in the extended partition”), and you can create arbitrarily many
of them. Each partition has a type specified by a 16-byte ID code (a globally unique
ID, or GUID) that requires no central arbitration.

Significantly, GPT retains primitive compatibility with MBR-based systems by drag-
ging along an MBR as the first block of the partition table. This “fakie” MBR makes
the disk look like it’s occupied by one large MBR partition (at least, up to the 2TB
limit of MBR). It isn’t useful per se, but the hope is that the decoy MBR will at least
prevent naïve systems from attempting to reformat the disk.

Versions of Windows from the Vista era forward support GPT disks for data, but
only systems with EFI firmware can boot Windows from them. Linux and its GRUB
boot loader have fared better: GPT disks are supported by the OS and bootable on
any system. Intel-based macOS systems use both EFI and GPT partitioning.

Although GPT has already been well accepted by operating system kernels, many
disk management utilities are unmaintained and lack support for it. Make sure that
any utility you run on a GPT disk actually supports GPT.

Linux partitioning
Linux systems give you several options for partitioning, which makes for treacher-
ous terrain, given that some of the offerings are not GPT-aware. Default to parted,
a command-line tool that understands several label formats (including Solaris’s
native one) and can move and resize partitions in addition to simply creating and
deleting them. A GUI version, gparted, runs under GNOME.

In general, we recommend gparted over parted. Both are simple, but with gparted
you can specify the size of the partitions you want instead of specifying the starting
and ending block ranges. For partitioning the boot disk, most distributions’ graphi-
cal installers are the best option since they typically suggest a partitioning plan that
works well with that particular distribution’s layout.

	 9.	 EFI has more recently become UEFI, a “unified” EFI effort supported by multiple vendors. However,
EFI remains the more common term in general use. UEFI and EFI are essentially interchangeable.

	 Logical volume management	 747

St
or

ag
e

FreeBSD partitioning
Like Linux, FreeBSD has several partitioning tools. Ignore all except gpart. The
others exist only to lure you into making some kind of terrible mistake.

The mysterious “geoms” you’ll see referred to in the gpart man page (and in other
storage-related contexts on FreeBSD) are FreeBSD’s abstraction of storage devices.
Not all geoms are disk drives, but all disk drives are geoms, so you can use a generic
disk name such as ada0 wherever a geom is called for.

The FreeBSD “adding a disk” recipe on page 720 uses gpart to configure the par-
tition table on a new disk.

20.7	 Logical volume management
Imagine a world in which you don’t know exactly how large a partition needs to be.
Six months after creating the partition, you discover that it is much too large, but
that a neighboring partition doesn’t have enough space. Sound familiar? A logical
volume manager lets you reallocate space dynamically from the greedy partition
to the needy partition.

Logical volume management is essentially a supercharged and abstracted version
of disk partitioning. It groups individual storage devices into “volume groups.” The
blocks in a volume group can then be allocated to “logical volumes,” which are rep-
resented by block device files and act like disk partitions.

However, logical volumes are more flexible and powerful than disk partitions. Here
are some of the magical operations a volume manager lets you carry out:

•	 Move logical volumes among different physical devices
•	 Grow and shrink logical volumes on the fly
•	 Take copy-on-write “snapshots” of logical volumes
•	 Replace on-line drives without interrupting service
•	 Incorporate mirroring or striping in your logical volumes

The components of a logical volume can be put together in various ways. Concat-
enation keeps each device’s physical blocks together and lines the devices up one
after another. Striping interleaves the components so that adjacent virtual blocks
are actually spread over multiple physical disks. By reducing single-disk bottlenecks,
striping can often result in higher bandwidth and lower latency.

If you’ve had some prior exposure to RAID (see the section starting on page 753),
you might find striping reminiscent of RAID 0. LVM implementations of striping
tend to be more flexible than RAID, though. For example, they may automatically
optimize striping or allow devices of different sizes to be striped, even if striping
won’t actually happen 100% of the time. The line between LVM and RAID has be-
come blurry indeed, and even parity schemes like RAID 5 and RAID 6 are making
regular appearances in volume managers.

748	 Chapter 20	 Storage	

Linux logical volume management
Linux’s volume manager, called LVM2, is essentially a clone of HP-UX’s volume
manager, which is itself based on software by Veritas. The commands for the two
systems are essentially identical. Table 20.3 summarizes the LVM command set.

Table 20.3	 LVM commands in Linux

Entity Operation Command

Physical volume Create pvcreate
Inspect pvdisplay
Modify pvchange
Check pvck

Volume group Create vgcreate
Modify vgchange
Extend vgextend
Inspect vgdisplay
Check vgck
Enable vgscan

Logical volume Create lvcreate
Modify lvchange
Resize lvresize
Inspect lvdisplay

The top-level architecture of LVM is that individual disks and partitions (physical
volumes) are gathered into storage pools called volume groups. Volume groups are
then subdivided into logical volumes, which are the block devices that hold filesystems.

A physical volume needs to have an LVM label applied with pvcreate. Applying
such a label is the first step to accessing the device through the LVM. In addition
to bookkeeping information, the label includes a unique ID to identify the device.

“Physical volume” is a somewhat misleading term because physical volumes need
not have a direct correspondence to physical devices. They can be disks, but they
can also be disk partitions or RAID arrays. LVM doesn’t care.

You can control LVM with either a large group of simple commands (the ones list-
ed in Table 20.3) or with the single lvm command and its various subcommands.
These options are essentially identical; in fact, the individual commands are just
links to lvm, which looks to see how it’s been called to know how to behave. man
lvm is a good introduction to the system and its tools.

	 Logical volume management	 749

St
or

ag
e

A Linux LVM configuration proceeds in a few distinct phases:

•	 Creating (defining, really) and initializing physical volumes
•	 Adding the physical volumes to a volume group
•	 Creating logical volumes on the volume group

LVM commands start with letters that make it clear at which level of abstraction
they operate: pv commands manipulate physical volumes, vg commands manipulate
volume groups, and lv commands manipulate logical volumes. A few commands
with the prefix lvm (e.g., lvmchange) operate on the system as a whole.

In the following example, we set up a 1TB hard disk (/dev/sdb) for use with LVM
and create a logical volume. We assume that the disk has been partitioned as de-
scribed on page 719, with all space being assigned to a single partition, /dev/sdb1.
We could omit the partitioning step entirely and just use the raw disk as our phys-
ical device, but there is no performance benefit to doing so. Partitioning makes
the disk comprehensible to the broadest variety of software and operating systems.

The first step is to label the sdb1 partition as an LVM physical volume:

$ sudo pvcreate /dev/sdb1
Physical volume "/dev/sdb1" successfully created

Our physical device is now ready to be added to a volume group:

$ sudo vgcreate DEMO /dev/sdb1
Volume group "DEMO" successfully created

Although we’re using only a single physical device in this example, we could of
course add additional devices. To step back and examine our handiwork, we use
the vgdisplay command:

$ sudo vgdisplay DEMO
--- Volume group ---
VG Name DEMO
System ID
Format lvm2
Metadata Areas 1
Metadata Sequence No 1
VG Access read/write
VG Status resizable
Open LV 0
Max PV 0
Cur PV 1
Act PV 1
VG Size 1000.00 GiB
PE Size 4.00 MiB
Total PE 255999
Alloc PE / Size 0 / 0
Free PE / Size 255999 / 1000.00 GiB
VG UUID n26rxj-X5HN-x4nv-rdnM-7AWe-OQ21-EdDwEO

750	 Chapter 20	 Storage	

A PE is a physical extent, the allocation unit according to which the volume group
is subdivided.

The final steps are to create the logical volume within DEMO and then to create a
filesystem within that volume. We make the logical volume 100GB in size:

$ sudo lvcreate -L 100G -n web1 DEMO
Logical volume "web1" created

Most of LVM’s interesting options live at the logical volume level. That’s where
striping, mirroring, and contiguous allocation would be requested if we were us-
ing those features.

We can now access the volume through the device /dev/DEMO/web1. We discuss
filesystems in general starting on page 762, but here is a quick overview of cre-
ating an ext4 filesystem so that we can demonstrate a few additional LVM tricks.

$ sudo mkfs /dev/DEMO/web1
...
$ sudo mkdir /mnt/web1
$ sudo mount /dev/DEMO/web1 /mnt/web1

Volume snapshots
You can create copy-on-write duplicates of any LVM logical volume, whether or
not it contains a filesystem. This feature is handy for creating a quiescent image of
a filesystem to be backed up elsewhere, but unlike ZFS and Btrfs snapshots, LVM2
snapshots are unfortunately not very useful as a general method of version control.

The problem is that logical volumes are of fixed size. When you create one, storage
space is allocated for it up front from the volume group. A copy-on-write duplicate
initially consumes no space, but as blocks are modified, the volume manager must
find space in which to store both the old and new versions. This space for modified
blocks must be set aside when you create the snapshot, and like any LVM volume,
the allocated storage is of fixed size.

Note that it does not matter whether you modify the original volume or the snap-
shot (which by default is writable). Either way, the cost of duplicating the blocks is
charged to the snapshot. Snapshots’ allocations can be pared away by activity on
the source volume even when the snapshots themselves are idle.

If you do not allocate as much space for a snapshot as is consumed by the volume
of which it is an image, you can potentially run out of space in the snapshot. That’s
more catastrophic than it sounds because the volume manager then has no way to
maintain a coherent image of the snapshot; additional storage space is required just
to keep the snapshot the same. The result of running out of space is that LVM stops
maintaining the snapshot, and the snapshot becomes corrupted.

So, as a matter of practice, LVM snapshots should be either short-lived or as large
as their source volumes. So much for “lots of cheap virtual copies.”

	 Logical volume management	 751

St
or

ag
e

To create /dev/DEMO/web1-snap as a snapshot of /dev/DEMO/web1, we would
use the following command:

$ sudo lvcreate -L 100G -s -n web1-snap DEMO/web1
Logical volume "web1-snap" created.

Note that the snapshot has its own name and that the source of the snapshot must
be specified as volume_group/volume.

In theory, /mnt/web1 should really be unmounted first to ensure the consistency of
the filesystem. In practice, ext4 protects us against filesystem corruption, although
we might lose a few of the most recent data block updates. This is a perfectly rea-
sonable compromise for a snapshot used as a backup source.

To check on the status of your snapshots, run lvdisplay. If lvdisplay tells you that
a snapshot is “inactive,” that means it has run out of space and should be deleted.
There’s little you can do with a snapshot once it reaches this point.

Filesystem resizing
Filesystem overflows are more common than disk crashes, and one advantage of
logical volumes is that they’re much easier to juggle and resize than are hard parti-
tions. We have experienced everything from servers used for personal video storage
to departments full of email pack rats.

The logical volume manager doesn’t know anything about the contents of its vol-
umes, so you must do your resizing at both the volume and filesystem levels. The
order depends on the specific operation. Reductions must be filesystem-first, and
enlargements must be volume-first. Don’t memorize these rules: just think about
what’s actually happening and use common sense.

Suppose that in our example, /mnt/web1 has grown more than we predicted and
needs another 100GB of space. We first check the volume group to be sure addi-
tional space is available.

$ sudo vgdisplay DEMO
--- Volume group ---
VG Name DEMO
System ID
Format lvm2
Metadata Areas 1
Metadata Sequence No 4
VG Access read/write
VG Status resizable
Open LV 1
Max PV 0
Cur PV 1
Act PV 1
VG Size 1000.00 GiB
PE Size 4.00 MiB

752	 Chapter 20	 Storage	

Total PE 255999
Alloc PE / Size 51200 / 200.00 GiB
Free PE / Size 204799 / 800.00 GiB
VG UUID n26rxj-X5HN-x4nv-rdnM-7AWe-OQ21-EdDwEO

Note that 200GB of space has been consumed, 100GB for the original filesystem
and 100GB for the snapshot. However, plenty of space is still available. We unmount
the filesystem and use lvresize to add space to the logical volume.

$ sudo umount /mnt/web1
$ sudo lvchange -an DEMO/web1
$ sudo lvresize -L +100G DEMO/web1
Size of logical volume DEMO/web1 changed from 100.00 GiB (25600

extents) to 200.00 GiB (51200 extents).
Logical volume DEMO/web1 successfully resized.
$ sudo lvchange -ay DEMO/web1

The lvchange commands are needed to deactivate the volume for resizing and to
reactivate it afterwards. This part is needed only because an existing snapshot of
web1 remains from our previous example. After the resize operation, the snapshot
will “see” the additional 100GB of allocated space, but since the filesystem it con-
tains is only 100GB in size, the snapshot will still be usable.

We can now resize the filesystem with resize2fs. (The 2 comes from the original
ext2 filesystem, but the command supports all versions of ext.) Since resize2fs can
determine the size of the new filesystem from the volume, we don’t need to spec-
ify the new size explicitly. We would have to do so when shrinking the filesystem:

$ sudo resize2fs /dev/DEMO/web1
resize2fs 1.43.3 (04-Sep-2016)
Resizing the filesystem on /dev/DEMO/web1 to 52428800 (4k) blocks.
The filesystem on /dev/DEMO/web1 is now 52428800 (4k) blocks long.

That’s it! Examining the output of df again shows the changes:

$ sudo mount /dev/DEMO/web1 /mnt/web1
$ df -h /mnt/web1
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/DEMO-web1 197G 60M 187G 1% /mnt/web1

Commands for resizing other filesystems work similarly. For XFS filesystems (the
default on Red Hat and CentOS systems), use xfs_growfs; for UFS filesystems (the
default on FreeBSD), use growfs. XFS filesystems must be mounted to be expand-
ed. As the names of these commands suggest, XFS and UFS filesystems can be ex-
panded but not made smaller. If you need to remove space, you’ll need to copy the
filesystem’s contents to a new, smaller filesystem.

It’s worth noting that “disks” you allocate and attach to virtual machines in the cloud
are essentially logical volumes, although the volume manager itself lives elsewhere
in the cloud. These volumes are usually resizable through the cloud provider’s man-
agement console or command-line utility.

	 RAID: redundant arrays of inexpensive disks	 753

St
or

ag
e

The procedure for resizing cloud filesystems is much the same as the one outlined
above, but keep in mind that because these virtual devices impersonate disk drives,
they probably have partition tables. You’ll need to resize on three separate layers: at
the cloud provider level, at the partition level, and at the filesystem level.

FreeBSD logical volume management
FreeBSD has a full-fledged logical volume manager of its own. Previous versions were
known by the name Vinum, but now that the system has been rewritten to conform
to FreeBSD’s generalized geom architecture for storage devices, the name has been
changed to GVinum. Like LVM2, GVinum implements a variety of RAID types.

FreeBSD has recently put a lot of effort into ZFS support, and although GVinum has
not been officially deprecated, developers’ public comments suggest that ZFS is the
recommended approach for logical volume management and RAID going forward.
Accordingly, we do not discuss GVinum here. ZFS is covered starting on page 773.

20.8	 RAID: redundant arrays of inexpensive disks
Even with backups, the consequences of a disk failure on a server can be disas-
trous. RAID, “redundant arrays of inexpensive disks,” is a system that distributes
or replicates data across multiple disks.10 RAID not only helps avoid data loss but
also minimizes the downtime associated with hardware failures (often to zero) and
potentially increases performance.

RAID can be implemented by dedicated hardware that presents a group of hard
disks to the operating system as a single composite drive. It can also be implement-
ed simply by the operating system’s reading or writing multiple disks according to
the rules of RAID.

Software vs. hardware RAID
Because the disks themselves are always the most significant bottleneck in a RAID
implementation, there is no reason to assume that a hardware-based implementa-
tion of RAID will necessarily be faster than a software- or OS-based implementa-
tion. Hardware RAID has been predominant in the past for two main reasons: lack
of software alternatives (no direct OS support for RAID) and hardware’s ability to
buffer writes in some form of nonvolatile memory.

The latter feature does improve performance because it makes writes appear to
complete instantaneously. It also protects against a potential corruption issue called
the “RAID 5 write hole,” which we describe in more detail starting on page 757.
But beware: many of the common “RAID cards” sold for PCs have no nonvolatile
memory at all; they are just glorified SATA interfaces with some RAID software
on-board. RAID implementations on PC motherboards fall into this category as

	 10.	 RAID is sometimes glossed as “redundant arrays of independent disks,” too. Both versions are histori-
cally accurate.

754	 Chapter 20	 Storage	

well. You’re better off using the RAID features in Linux or FreeBSD on these sys-
tems. (Or better yet, use ZFS or Btrfs.)

We have experienced a disk controller failure on an important production server.
Although the data was replicated across several physical drives, a faulty hardware
RAID controller destroyed the data on all disks. A lengthy and ugly restore process
ensued. The rebuilt server now relies on the kernel’s software to manage its RAID
environment, removing the possibility of another RAID controller failure.

RAID levels
RAID can do two basic things. First, it can improve performance by “striping” data
across multiple drives, thus allowing several drives to work simultaneously to supply
or absorb a single data stream. Second, it can replicate data across multiple drives,
decreasing the risk associated with a single failed disk.

Replication assumes two basic forms: mirroring, in which data blocks are repro-
duced bit-for-bit on several different drives, and parity schemes, in which one or
more drives contain an error-correcting checksum of the blocks on the remaining
data drives. Mirroring is faster but consumes more disk space. Parity schemes are
more disk-space-efficient but have lower performance.

RAID is traditionally described in terms of “levels” that specify the exact details
of the parallelism and redundancy implemented by an array. The term is perhaps
misleading because “higher” levels are not necessarily “better.” The levels are simply
different configurations; use whichever versions suit your needs.

In the following illustrations, numbers identify stripes and the letters a, b, and c
identify data blocks within a stripe. Blocks marked p and q are parity blocks.

•	“Linear mode,” also known as JBOD (for “just a bunch of disks”) is not
even a real RAID level. And yet, every RAID controller seems to imple-
ment it. JBOD concatenates the block addresses of multiple drives to cre-
ate a single, larger virtual drive. It has no data redundancy or performance
benefit. These days, JBOD functionality is best achieved through a logical
volume manager rather than a RAID system.

•	 RAID level 0 increases performance. It
combines two or more drives of equal size,
but instead of stacking them end-to-end,
it stripes data alternately among the disks
in the pool. Sequential reads and writes
are therefore spread among several disks,
decreasing write and access times.

	 Note that RAID 0 has reliability characteristics that are significantly infe-
rior to separate disks. A two-drive array has roughly double the annual
failure rate of a single drive, and so on.

2a
3a
4a

1a
2b
3b
4b

1b

RAID 0

	 RAID: redundant arrays of inexpensive disks	 755

St
or

ag
e

•	 RAID level 1 is colloquially known as
mirroring. Writes are duplicated to two
or more drives simultaneously. This ar-
rangement makes writes slightly slower
than they would be on a single drive. How-
ever, it offers read speeds comparable to
RAID 0 because reads can be farmed out
among the several duplicate disk drives.

•	 RAID levels 1+0 and 0+1 are stripes of mirrors or mirrors of stripes. Log-
ically, they are concatenations of RAID 0 and RAID 1, but many control-
lers and software implementations support them directly. The goal of both
modes is to simultaneously obtain the performance of RAID 0 and the
redundancy of RAID 1. These configurations need at least four devices.

•	 RAID level 5 stripes both data and parity information, adding redundancy
while simultaneously improving read performance. In addition, RAID 5
is more efficient in its use of disk space than is RAID 1. If an array has N
drives (at least three are required), N–1 of them can store data. The
space-efficiency of RAID 5 is therefore at least 67%, whereas that of mir-
roring cannot be higher than 50%.

2a
3a
4a

1a
2a
3a
4a

1a

RAID 1

2b
3b
4b

1b
2b
3b
4b

1b

RAID 1
RAID 0

2a
3a
4a

1a
2b
3b
4b

1b

RAID 0

2a
3a
4a

1a
2b
3b
4b

1b

RAID 0
RAID 1

RAID 0+1:
Mirror of

stripes

RAID 1+0:
Stripe of
mirrors

2a
3a
4p

1a
2b
3p
4a

1b
2p
3b
4b

1c
2c
3c
4c

1p

RAID 5

	

	

	

2
3
4

1
2
3
4

1

RAID 1

756	 Chapter 20	 Storage	

•	 RAID level 6 is similar to RAID 5 with two parity disks. A RAID 6 array
can withstand the complete failure of two drives without losing data.
RAID 6 requires at least four devices.

RAID levels 2, 3, and 4 are defined but rarely deployed. Logical volume managers
usually include both striping (RAID 0) and mirroring (RAID 1) features.

As RAID systems, logical volume managers, and filesystem all rolled into one, ZFS
and Btrfs support striping, mirroring, and configurations similar to RAID 5 and
RAID 6. See page 772 for more details on these options.

Linux supports both ZFS and Btrfs, though you might have to install ZFS sepa-
rately. Btrfs’s RAID 5 and RAID 6 support is not officially ready for production use.

For simple striped and mirrored configurations outside the context of one of these
filesystems, Linux gives you a choice between a dedicated RAID system (md; see
page 758) and the logical volume manager, LVM. The LVM approach is perhaps
more flexible, but the md approach may be a bit more rigorously predictable. If you
opt for md, you can still use LVM to manage the space on the RAID volume. For
RAID 5 and RAID 6, you must use md to implement software RAID.

ZFS is the preferred RAID implementation for FreeBSD. However, two additional
implementations are available.

At the disk driver level, FreeBSD’s geom system can combine disks into RAID arrays
with support for RAID 0, RAID 1, and RAID 3. (RAID 3 is similar to RAID 5 but
uses a dedicated parity disk instead of distributing parity among all disks in a pool.)
You can stack geoms, so RAID 1+0 and RAID 0+1 are possible as well.

FreeBSD also includes support for RAID 0, RAID 1, and RAID 5 in its logical volume
manager, GVinum. However, with the advent of full support for ZFS on FreeBSD,
the future of GVinum appears to be in question. It is not yet officially deprecated
but no longer seems to be actively maintained.

Disk failure recovery
The Google disk failure study cited on page 723 should be pretty convincing ev-
idence of the need for some form of storage redundancy in most production en-
vironments. At an 8% annual failure rate, your organization needs only 150 hard
disks in service to expect an average of one disk failure per month.

2a
3a
4p

1a
2b
3p
4q

1b
2p
3q
4a

1c
2q
3b
4b

1p
2c
3c
4c

1q

RAID 6

	 RAID: redundant arrays of inexpensive disks	 757

St
or

ag
e

JBOD and RAID 0 modes are of no help when hardware problems occur; you must
recover your data manually from backups. Other forms of RAID enter a degraded
mode in which the offending devices are marked as faulty. The RAID arrays contin-
ue to function normally from the perspective of storage clients, although perhaps
at reduced performance.

Bad disks must be swapped out for new ones as soon as possible to restore redun-
dancy to the array. A RAID 5 array or two-disk RAID 1 array can tolerate the fail-
ure of only a single device. Once that failure has occurred, the array is vulnerable
to a second failure.

The specifics of the process are usually pretty simple. You replace the failed disk
with another of similar or greater size, then tell the RAID implementation to re-
place the old disk with the new one. What follows is an extended period during
which the parity or mirror information is rewritten to the new, blank disk. This is
typically an overnight operation. The array remains available to clients during this
phase, but performance is likely to be poor.

To limit downtime and the vulnerability of the array to a second failure, most RAID
implementations let you designate one or more disks as “hot” spares. When a fail-
ure occurs, the faulted disk is automatically swapped for a spare, and the process of
resynchronizing the array begins immediately. Where supported, hot spares should
be used as a matter of course.

Drawbacks of RAID 5
RAID 5 is a popular configuration, but it has some weaknesses, too. The following
issues apply to RAID 6 also, but for simplicity we frame the discussion in terms
of RAID 5.

First, it’s critically important to note that RAID 5 does not replace regular off-line
backups. It protects the system against the failure of one disk—that’s it. It does not
protect against the accidental deletion of files. It does not protect against controller
failures, fires, hackers, or any number of other hazards.

Second, RAID 5 isn’t known for its great write performance. RAID 5 writes data
blocks to N–1 disks and parity blocks to the Nth disk.11 Whenever a random block is
written, at least one data block and the parity block for that stripe must be updated.
Furthermore, the RAID system doesn’t know what the new parity block ought to
contain until it has read the old parity block and the old data. Each random write
therefore expands into four operations: two reads and two writes. (Sequential writes
may fare better if the implementation is smart.)

Finally, RAID 5 is vulnerable to corruption in certain circumstances. Its incremental
updating of parity data is more efficient than reading the entire stripe and recalcu-

	 11.	 Parity data is distributed among all the drives in the array; each stripe has its parity stored on a
different drive. Since there’s no dedicated parity disk, it’s unlikely that any single disk will act as a
bottleneck.

758	 Chapter 20	 Storage	

lating the stripe’s parity from the original data. On the other hand, it means that at
no point is parity data ever validated or recalculated. If any block in a stripe should
fall out of sync with the parity block, that fact will never become evident in normal
use; reads of the data blocks will still return the correct data.

Only when a disk fails does the problem become apparent. The parity block will
likely have been rewritten many times since the occurrence of the original desyn-
chronization. Therefore, the reconstructed data block on the replacement disk will
consist of essentially random data.

This kind of desynchronization between data and parity blocks isn’t all that unlike-
ly, either. Disk drives are not transactional devices. Without an additional layer of
safeguards, there is no simple way to guarantee that either two blocks or zero blocks
on two different disks will be properly updated. It’s quite possible for a crash, power
failure, or communication problem at the wrong moment to create data/parity skew.

This problem is known as the RAID 5 “write hole,” and it has received increasing
attention over the last ten years or so. The implementors of the ZFS filesystem claim
that because ZFS uses variable-width stripes, it is immune to the RAID 5 write
hole. That’s also why ZFS calls its RAID implementation RAID-Z instead of RAID
5, though in practice the concept is similar.

Another potential solution is “scrubbing,” validating parity blocks one by one while
the array is relatively idle. Most RAID implementations include some form of scrub-
bing function. You just have to remember to activate it regularly (by initiating it
from cron or a systemd timer).

mdadm: Linux software RAID
The standard software RAID implementation for Linux is called md, the “multi-
ple disks” driver. It’s front-ended by the mdadm command. md supports all the
RAID configurations listed above as well as RAID 4. An earlier system known as
raidtools is no longer used.

You can also implement RAID on Linux through the logical volume manager
(LVM2) or through Btrfs or another filesystem with built-in volume management
and RAID features. We address LVM2 starting on page 748 and next-generation
filesystems starting on page 772. Generally, these multiple implementations rep-
resent different epochs of software development, with mdadm being the earliest
and ZFS/Btrfs the most recent.

All these systems are actively maintained, so choose whichever you prefer. Sites with-
out an installed base are best off jumping directly to an all-in-one system like Btrfs.

Creating an array
The following scenario configures a RAID 5 array composed of three identical 1TB
hard disks. Although md can use raw disks as components, we prefer to give every
disk a partition table for consistency, so we start by running gparted, creating a

	 RAID: redundant arrays of inexpensive disks	 759

St
or

ag
e

GPT partition table on each disk and assigning all the disk’s space to a single par-
tition of type “Linux RAID.” It’s not strictly necessary to set the partition type, but
it’s a useful reminder to anyone who might inspect the table later.

The following command builds a RAID 5 array from three whole-disk partitions:

$ sudo mdadm --create /dev/md/extra --level=5 --raid-devices=3
/dev/sdf1 /dev/sdg1 /dev/sdh1

mdadm: Defaulting to version 1.2 metadata
mdadm: array /dev/md/extra started.

The virtual file /proc/mdstat always contains a summary of md’s status and the
status of all the system’s RAID arrays. It is especially useful to keep an eye on the
/proc/mdstat file after adding a new disk or replacing a faulty drive. (watch cat
/proc/mdstat is a handy idiom.)

$ cat /proc/mdstat
Personalities : [linear] [multipath] [raid0] [raid1] [raid6] [raid5]

[raid4] [raid10]
md127 : active raid5 sdh1[3] sdg1[1] sdf1[0]
	 2096886784 blocks super 1.2 level 5, 512k chunk, algo 2 [3/2] [UU_]
	 [>....................] recovery = 0.0% (945840/1048443392)
		 finish=535.2min speed=32615K/sec
	 bitmap: 0/8 pages [0KB], 65536KB chunk

unused devices: <none>

The md system does not keep track of which blocks in an array have been used, so
it must manually synchronize all the parity blocks with their corresponding data
blocks. md calls the operation a “recovery” since it’s essentially the same procedure
used when you swap out a bad hard disk. It can take many hours on a large array.

Some helpful notifications appear in the system logs, too (usually /var/log/messages
or /var/log/syslog):

kernel: md: bind<sdf1>
kernel: md: bind<sdg1>
kernel: md: bind<sdh1>
kernel: md/raid:md127: device sdg1 operational as raid disk 1
kernel: md/raid:md127: device sdf1 operational as raid disk 0
kernel: md/raid:md127: allocated 3316kB
kernel: md/raid:md127: raid level 5 active with 2 out of 3 devices,

algorithm 2
kernel: RAID conf printout:
kernel: --- level:5 rd:3 wd:2
kernel: disk 0, o:1, dev:sdf1
kernel: disk 1, o:1, dev:sdg1
kernel: created bitmap (8 pages) for device md127
mdadm[1174]: NewArray event detected on md device /dev/md127
mdadm[1174]: DegradedArray event detected on md device /dev/md127

760	 Chapter 20	 Storage	

kernel: md127: bitmap initialized from disk: read 1 pages, set 15998 of
15998 bits

kernel: md127: detected capacity change from 0 to 2147212066816
kernel: RAID conf printout:
kernel: --- level:5 rd:3 wd:2
kernel: disk 0, o:1, dev:sdf1
kernel: disk 1, o:1, dev:sdg1
kernel: disk 2, o:1, dev:sdh1
kernel: md: recovery of RAID array md127
kernel: md: minimum _guaranteed_ speed: 1000 KB/sec/disk.
kernel: md: using maximum available idle IO bandwidth (but not more than

200000 KB/sec) for recovery.
kernel: md: using 128k window, over a total of 1048443392k.
mdadm[1174]: RebuildStarted event detected on md device /dev/md127

The initial creation command also serves to “activate” the array (make it available
for use). On subsequent reboots, most distributions (including all our examples)
automatically discover and activate any existing arrays.

Note that you specify a device pathname for the composite array when you run
mdadm --create. Old-style md device paths looked like /dev/md0, but when you
specify a path under the /dev/md directory, as was done in this example, mdadm
writes your chosen name into the array’s superblock. This measure ensures that you
can always locate the array by its logical path, even when the array is autostarted
and might be assigned a different array number. As you can see from the log entries
above, the array also has a traditional name (here, /dev/md127). /dev/md/extra is
just a symbolic link to the actual array device.

mdadm.conf: document array configuration
mdadm does not technically require a configuration file, but it will use a configura-
tion file if you supply one, typically /etc/mdadm/mdadm.conf or /etc/mdadm.conf.
We recommend that you add ARRAY entries to the configuration file as you create
new arrays. Doing so documents the RAID configuration in a standard place and
gives administrators an obvious place to look for information when problems occur.

mdadm --detail --scan dumps the current RAID setup in the format required for
inclusion in mdadm.conf. For example,

$ sudo mdadm --detail --scan
ARRAY /dev/md/extra metadata=1.2 name=ubuntu:extra UUID=b72de2fb:60b30

3af:3c176048:dc5b6c8b

With the addition of this line, mdadm can now read mdadm.conf at startup or
shutdown to easily manage the array. For example, to take down the array created
above, we could run

$ sudo mdadm -S /dev/md/extra

	 RAID: redundant arrays of inexpensive disks	 761

St
or

ag
e

And to start it up again, run

$ sudo mdadm -As /dev/md/extra

The first of these commands would work even without the mdadm.conf file, but
the second would not.

We formerly recommended that you add DEVICE entries for the components of each
array to mdadm.conf, too. We take that back. Device names are more ephemeral
these days and mdadm is better at finding and identifying array components than
it used to be. We don’t think DEVICE entries are a best practice anymore.

mdadm has a --monitor mode in which it runs continuously as a daemon pro-
cess and raises an alarm when problems are detected on a RAID array. Use this
feature! To set it up, add a MAILADDR or PROGRAM line to your mdadm.conf file. A
MAILADDR notifies you of issues by email, and a PROGRAM configuration runs an
external reporting tool that you supply (as is useful for integrating with monitoring
systems; see Chapter 28).

You also need to arrange for the monitor daemon to run at boot time. All our ex-
ample distributions have an init script that does this for you, but the names and
procedures for enabling it are slightly different.

debian$ sudo update-rc.d mdadm enable
ubuntu$ sudo update-rc.d mdadm enable

redhat$ sudo systemctl enable mdmonitor
centos$ sudo systemctl enable mdmonitor

Simulating a failure
What happens when a disk actually fails? Let’s find out! mdadm offers the handy
option to simulate a failed disk.

$ sudo mdadm /dev/md/extra -f /dev/sdg1
mdadm: set /dev/sdg1 faulty in /dev/md/extra

$ sudo tail -1 /var/log/messages
Apr 10 16:18:39 ubuntu kernel: md/raid:md127: Disk failure on sdg1,

disabling device.#012md/raid:md127: Operation continuing on 2
devices.

$ cat /proc/mdstat
Personalities : [linear] [multipath] [raid0] [raid1] [raid6] [raid5]

[raid4] [raid10]
md127 : active raid5 sdh1[3] sdf1[0] sdg1[1](F)
	 2096886784 blocks super 1.2 level 5, 512k chunk, algo 2 [3/2] [UU_]

unused devices: <none>

Because RAID 5 is a redundant configuration, the array continues to function in
degraded mode, so users will not necessarily be aware of the problem.

762	 Chapter 20	 Storage	

To remove the drive from the RAID configuration, use mdadm -r:

$ sudo mdadm /dev/md/extra -r /dev/sdg1
mdadm: hot removed /dev/sdg1 from /dev/md/extra

Once the disk has been logically removed, you can shut down the system and re-
place the drive. Hot-swappable drive hardware lets you make the change without
turning off the system or rebooting.

If your RAID components are raw disks, replace them only with an identical
drive. You can replace partition-based components with any partition of similar
size, which is a good reason to build your arrays on top of partitions rather than
raw disks. Still, for bandwidth matching it’s best if the underlying drive hardware
is similar. (Of course, if your RAID configuration is built on top of partitions, you
must run a partitioning utility to define the partitions appropriately before adding
the replacement disk to the array.)

In our example, the failure is just simulated, so we can add the drive back to the
array without replacing any hardware:

$ sudo mdadm /dev/md/extra -a /dev/sdg1
mdadm: hot added /dev/sdc1

md immediately starts to rebuild the array. As always, you can see its progress in
/proc/mdstat. A rebuild can take hours, so consider this fact in your disaster re-
covery (and testing!) plans.

20.9	 Filesystems
Even after a hard disk has been conceptually divided into partitions or logical vol-
umes, it is still not ready to hold files. All the abstractions and goodies described
in Chapter 5, The Filesystem, must be implemented in terms of raw disk blocks.
The filesystem is the code that implements these, and it needs to add a bit of its
own overhead and data.

Early systems bundled the filesystem implementation into the kernel, but it soon
became apparent that support for multiple filesystem types was an important design
goal. UNIX systems developed a well-defined kernel interface that allowed multiple
types of filesystems to be active at once. The filesystem interface also abstracted the
underlying hardware, so filesystems see approximately the same interface to storage
devices as do other UNIX programs that access the disks through device files in /dev.

Support for multiple filesystem types was initially motivated by the need to support
NFS and filesystems for removable media. But once the floodgates were opened,
the “what if ” era began; many different groups started to work on improved filesys-
tems. Some were system-specific, and others (such as ReiserFS) were not tied to
any particular OS.

	 Traditional filesystems: UFS, ext4, and XFS	 763

St
or

ag
e

Most systems have settled on one or two filesystems as mainstream defaults. These
filesystems are rigorously tested along with the rest of the system before stable re-
leases are issued.

The predominant pattern is for systems to officially support one traditional-style
filesystem (UFS, ext4, or XFS) and one next-generation filesystem that includes vol-
ume management and RAID features (ZFS or Btrfs). Support for the latter options
is usually best on physical hardware; cloud systems can use them for data partitions,
but sometimes not for the boot disk.

Although other filesystem implementations are often just a package installation
away, add-on filesystems do bring risk and potential instability. Filesystems are
foundational, so they need to be 100% stable and reliable under all use scenarios.
Filesystem developers work hard to achieve this level of robustness, but the risk
can’t be entirely eliminated.12

Unless you’re setting up a storage pool or data disk for a specific application, we
recommend against straying from your systems’ supported filesystems. That’s what
the documentation and administrative tools most likely assume.

The upcoming sections describe the most common filesystems and their manage-
ment in a bit more detail. We first describe the traditional filesystems UFS, ext4,
and XFS, then move on to the next-generation systems ZFS (page 773) and Btrfs
(page 783).

20.10	 Traditional filesystems: UFS, ext4, and XFS
UFS, ext4, and XFS have separate code bases and histories, but over time they’ve
become eerily similar to one another from an administrative perspective.

These filesystems exemplify the old school approach in which volume management
and RAID are implemented separately from the filesystem itself. The filesystems
limit themselves to plain-vanilla file storage on block devices of defined size. Their
features are more or less limited to those outlined in Chapter 5.

Older filesystems in this category were subject to subtle corruption if power was
interrupted in the middle of a write operation, because then disk blocks could
contain inconsistent data structures. The fsck command was used at boot time
to check filesystems for this kind of problem and to automatically patch the most
common issues.

Modern filesystems include a feature called journaling that averts the possibility of
this type of corruption. When a filesystem operation occurs, the required modifica-
tions are first written to the journal. Once the journal update is complete, a “commit
record” is written to mark the end of the entry. Only then is the normal filesystem

	 12.	 Apple recently converted the world’s iOS devices (of which there are more than a billion) to a com-
pletely new written-from-scratch filesystem called APFS. That this transition was executed invisibly
and without notable disasters was truly a historic feat of engineering.

764	 Chapter 20	 Storage	

modified. If a crash occurs during the update, the filesystem can later replay the
journal log to reconstruct a perfectly consistent filesystem.13

Journaling reduces the time needed to perform filesystem consistency checks (see
the fsck section on page 766) to approximately one second per filesystem. Bar-
ring some type of hardware failure, the state of a filesystem can almost instantly be
assessed and restored.

The Berkeley Fast File System implemented by McKusick et al. in the 1980s was an
early standard that spread to many UNIX systems. With some small adjustments,
it eventually became known as the UNIX File System (UFS) and formed the basis
of several other filesystem implementations, including Linux’s ext series. UFS re-
mains the default filesystem used by FreeBSD.

The “second extended filesystem,” ext2, was for a long time the mainstream Linux
standard. It was designed and implemented primarily by Rémy Card, Theodore
Ts’o, and Stephen Tweedie. Although the code for ext2 was written specifically for
Linux, it is functionally similar to the Berkeley Fast File System.

Ext3 added journaling, and ext4 is a comparatively modest update that raises a few
size limits, increases the performance of certain operations, and allows the use of

“extents” (disk block ranges) for storage allocation rather than just individual disk
blocks. Ext4 is the default filesystem on Debian and Ubuntu.

XFS was developed by Silicon Graphics, Inc., later known as SGI. It was the default
filesystem for IRIX, SGI’s version of UNIX, and was one of the first extent-based
filesystems. That made it particularly suitable for sites that processed large media files,
as many SGI customers did. XFS is the default filesystem on Red Hat and CentOS.

Filesystem terminology
Largely because of their common history, many filesystems share some descriptive
terminology. The implementations of the underlying objects have often changed, but
the terms are still widely used by administrators as labels for fundamental concepts.

“Inodes” are fixed-length table entries, each of which holds information about one
file. The term is probably short for “index nodes,” although its exact etymology is
unclear. Inodes were originally preallocated at the time a filesystem was created,
but some filesystems now create them dynamically as they are needed. Either way,
an inode usually has an identifying number, which you can see with ls -i.

Inodes are the “things” pointed to by directory entries. When you create a hard link
to an existing file, you create a new directory entry, but you do not create a new inode.

A superblock is a record that describes the characteristics of the filesystem. It con-
tains information about the length of a disk block, the size and location of the in-
ode tables, the disk block map and usage information, the size of the block groups,

	 13.	 In most cases, only metadata changes are journaled. The actual data to be stored is written directly to
the filesystem. Some filesystems can use the journal for data too, but at a significant performance cost.

	 Traditional filesystems: UFS, ext4, and XFS	 765

St
or

ag
e

and a few other important parameters of the filesystem. Because damage to the
superblock could erase crucial information, several copies of it are maintained in
scattered locations.

The kernel caches disk blocks to increase efficiency. All types of blocks can be
cached, including superblocks, inode blocks, and directory information. Caches are
normally not “write through,” so there might be some delay between the point at
which an application thinks it has written a block and the point at which the block
is actually saved to disk. Applications can request more predictable behavior for a
file, but this option lowers throughput.

The sync system call flushes modified blocks to their permanent homes on disk,
possibly making the on-disk filesystem fully consistent for a split second. This
periodic save minimizes the amount of data loss that might occur if the machine
were to crash with many unsaved blocks. Filesystems can do syncs on their own
schedule or leave this up to the OS. Modern filesystems have journaling mecha-
nisms that minimize or eliminate the possibility of structural corruption caused
by a crash, so sync frequency now mostly has to do with how many data blocks
might be lost in a crash.

A filesystem’s disk block map is a table of the free blocks it contains. When new files
are written, this map is examined to devise an efficient layout scheme. The block
usage summary records basic information about the blocks that are already in use.

Filesystem polymorphism
Filesystems are software packages with multiple components. One part lives in the
kernel (or even potentially in user space under Linux; search for “FUSE”) and im-
plements the nuts and bolts of translating the standard filesystem API into reads
and writes of disk blocks. Other parts are user-level commands that initialize new
volumes to the standard format, check filesystems for corruption, and perform
other format-specific tasks.

Long ago, the standard user-level commands knew about “the filesystem” that the
system used, and they simply implemented the appropriate functionality. mkfs or
newfs created new filesystems, fsck fixed problems, and mount mostly just invoked
the appropriate underlying system calls.

These days, many more filesystems exist, so systems have had to decide how to ad-
dress this cornucopia of options. For a long time, Linux tried to fit all filesystems
into the standard mold of mkfs and fsck by making those commands be wrappers.
The wrappers called discrete commands named, e.g., mkfs.fsname or fsck.fsname
depending on the type of filesystem being manipulated. These days, the pretense
of homogeneity among filesystems has been stretched past the breaking point, and
most systems now advise you to call the filesystem-specific commands directly.

766	 Chapter 20	 Storage	

Filesystem formatting
The general recipe for creating a new Linux filesystem is

mkfs.fstype [ -L label  ] [other_options ] device

On FreeBSD, the process for creating a UFS filesystem is similar, but with newfs:

newfs [ -L label  ] [other_options ] device

The -L option to both mkfs and newfs sets a volume label for the filesystem such
as “spare,” “home,” or “extra.” This is just one option among many, but it’s an option
that we recommend you use on every filesystem. Labeling the filesystem frees you
from having to track the device on which it’s been installed. It’s particularly handy
given that disk device names can change whenever hardware is adjusted.

The available other_options are filesystem-specific, but their use is uncommon.

fsck: check and repair filesystems
Because of block buffering and the fact that disk drives are not really transactional
devices, filesystem data structures can potentially become self-inconsistent. If these
problems are not corrected quickly, they propagate and snowball.

The original fix for corruption was a command called fsck (“filesystem consistency
check,” spelled aloud or pronounced “FS check” or “fisk”) that carefully inspected
all data structures and walked the allocation tree for every file. It relied on a set of
heuristic rules about what the filesystem state might look like after failures at var-
ious points during an update.

The original fsck scheme worked surprisingly well, but because it involved reading
all the data on a disk, it could take hours on a large drive. An early optimization
was a “filesystem clean” bit that could be set in the superblock when the filesystem
was properly unmounted. When the system restarted, it would see the clean bit and
know to skip the fsck check.

Now, filesystem journals let fsck pinpoint the activity that was occurring at the time
of a failure. fsck can simply rewind the filesystem to the last known consistent state.

Disks are normally fscked automatically at boot time if they are listed in the sys-
tem’s /etc/fstab file. The fstab file has legacy “fsck sequence” fields that ordered
and parallelized filesystem checks. But now that fscks are fast, the only thing that
matters is that the root filesystem be checked first.

You can run fsck by hand to perform an in-depth examination more akin to the
original fsck procedure, but be aware of the time required.

Linux ext-family filesystems can be set to force a recheck after they have been re-
mounted a certain number of times or after a certain period of time, even if all the
unmounts were “clean.” This precaution is probably good hygiene, and in most
cases the default value (usually around 20 mounts) is acceptable. However, on sys-
tems that mount filesystems frequently, such as desktop workstations, even that

	 Traditional filesystems: UFS, ext4, and XFS	 767

St
or

ag
e

frequency of fscks can become tiresome. To increase the interval to 50 mounts,
use the tune2fs command:

$ sudo tune2fs -c 50 /dev/sda3
tune2fs 1.43.3 (04-Sep-2016)
Setting maximal mount count to 50

If a filesystem appears damaged and fsck cannot automatically repair it, do not ex-
periment with it before making an ironclad backup. The best insurance policy is to
dd the entire disk to a backup file or backup disk.

Most filesystems create a lost+found directory at the root of each filesystem in
which fsck can deposit files whose parent directory cannot be determined. The
lost+found directory has some extra space preallocated so that fsck can store or-
phaned files there without having to allocate additional directory entries on an
unstable filesystem. Don’t delete this directory.14

Since the name given to a file is recorded only in the file’s parent directory, names
for orphan files are not available and so the files placed in lost+found are named
with their inode numbers. The inode table does record the UID of the file’s owner,
however, so getting a file back to its original owner is relatively easy.

Filesystem mounting
A filesystem must be mounted before it becomes visible to processes. The mount
point for a filesystem can be any directory, but the files and subdirectories beneath
it are not accessible while a filesystem is mounted there. See Filesystem mounting
and unmounting on page 122 for more information.

After installing a new disk, mount new filesystems by hand to be sure that every-
thing is working correctly. For example, the command

$ sudo mount /dev/sda1 /mnt/temp

mounts the filesystem in the partition represented by the device file /dev/sda1 (de-
vice names will vary among systems) on a subdirectory of /mnt, which is a tradi-
tional path used to contain temporary mounts.

You can verify the size of a filesystem with the df command. The example below uses
the Linux -h flag to request “human readable” output. Unfortunately, most systems’
df defaults to an unhelpful unit such as “disk blocks,” but there is usually a flag to
make df report something specific such as kibibytes or gibibytes.

$ df -h /mnt/web1
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/DEMO-web1 197G 60M 187G 1% /mnt/web1

	 14.	 Some systems have a mklost+found command you can use to re-create this directory if it is deleted.

768	 Chapter 20	 Storage	

Setup for automatic mounting
You will generally want to configure the system to mount local filesystems at boot
time. The /etc/fstab file lists the device names and mount points of all the system’s
disks (among other things).

mount, umount, swapon, and fsck all read the fstab file, so it’s helpful if the data
presented there is correct and complete. mount and umount use the catalog to
figure out what you want done if you specify only a partition name or mount point
on the command line. For example, with the Linux fstab configuration shown on
page 769, the command

$ sudo mount /media/cdrom0

would have the same effect as typing

$ sudo mount -t udf -o user,noauto,exec,utf8 /dev/scd0 /media/cdrom0

The command mount -a mounts all regular filesystems listed in the filesystem
catalog; it is usually executed from the startup scripts at boot time.15 The -t fstype
argument constrains the operation to filesystems of a certain type. For example,

$ sudo mount -at ext4

mounts all local ext4 filesystems. The mount command reads fstab sequentially.
Therefore, filesystems that are mounted beneath other filesystems must follow their
parent partitions in the fstab file. For example, the line for /var/log must follow the
line for /var if /var is a separate filesystem.

The umount command for unmounting filesystems accepts a similar syntax. You
cannot unmount a filesystem that a process is using as its current directory or on
which files are open. Several commands can identify the processes that are inter-
fering with your umount attempt; see page 123.

The FreeBSD fstab file is the most traditional of our example systems. Here’s a sam-
ple from a system with only one real filesystem beyond the root (/spare):

Device Mountpoint FStype Options Dump Pass#
/dev/gpt/rootfs / ufs rw 1 1
/dev/gpt/swap-a none swap sw 0 0
/dev/gpt/swap-b none swap sw 0 0
fdesc /dev/fd fdescfs rw 0 0
proc /proc procfs rw 0 0
/dev/gpt/spare /spare ufs rw 0 0

Each line holds six fields separated by whitespace. Each line describes a single filesys-
tem. The fields are traditionally aligned for readability, but alignment is not required.

The first field gives the device name. The fstab file can include mounts from remote
systems, in which case the first field contains an NFS path. The notation server: /export
denotes the /export directory on the machine named server.

	 15.	 The noauto mount option excludes a given filesystem from automatic mounting by mount -a.

See Chapter 21
for more informa-
tion about NFS.

	 Traditional filesystems: UFS, ext4, and XFS	 769

St
or

ag
e

The second field specifies the mount point, and the third field names the type of
filesystem. The exact type name used to identify local filesystems varies among
machines.

The fourth field specifies mount options to be applied by default. There are many
possibilities; see the man page for mount for the ones that are common to all filesys-
tem types. Individual filesystems usually introduce options of their own.

The fifth and sixth fields are vestigial. They are supposedly a “dump frequency”
column and a column that controls fsck parallelism. Neither is important on con-
temporary systems.

The devices listed for /dev/fd and /proc are dummy entries. These virtual filesys-
tems are task-specific and don’t require any additional information to be mount-
ed. The other devices are identified by their GPT partition labels, which is a more
robust option than using actual device names. To find out the label of an existing
partition, run

	 gpart show -l disk

to print the partition table of the appropriate disk. To set the label on a partition, use

	 gpart modify -i index -l label disk 16

UFS filesystems also have labels of their own, and these show up beneath the
/dev/ufs directory. The UFS labels and partition labels are separate, but they can
be (and probably should be) set to the same value. In this example, /dev/ufs/spare
would work just as well as /dev/gpt/spare. To find a filesystem’s current label, run

	 tunefs -p device

To set the label, run

	 tunefs -L label device.

Unmount the filesystem before setting the label.

Below are some additional examples culled from an Ubuntu system’s fstab. The
general format is the same, but Linux systems use a different way to avoid naming
disk devices.

<file system> <mount point> <type> <options> <d> <p>
proc /proc proc defaults 0 0
UUID=a8e3…8f8a / ext4 errors=remount-ro 0 1
UUID=13e9…b8d2 none swap sw 0 0
/dev/scd0 /media/cdrom0 udf,iso9660 user,noauto,exec,utf8 0 0

	 16.	 A cautionary note: partition tables are sometimes referred to as “disk labels.” Make sure when reading
documentation that you distinguish between the label of an individual partition and the “label” of the
disk itself. Overwriting a disk’s partition table is potentially disastrous.

770	 Chapter 20	 Storage	

The first line addresses the /proc filesystem, which in fact is presented by a kernel
driver and has no actual backing store. As in the FreeBSD example above, the proc
device listed in the first column is just a placeholder.

The second and third lines use filesystem IDs (UUIDs, which we’ve truncated to
make the excerpt more readable) instead of device names to identify volumes. This
system is similar to the UFS label system used by FreeBSD, except that the identi-
fiers are long random numbers instead of text strings. Use the blkid command to
discover the UUID of a particular filesystem.

Filesystems can also have administratively assigned labels; use e2label or xfs_admin
to read or set them. If you want to use labels in fstab (which is tidier), just substi-
tute LABEL=label for UUID=long-random-number.

GPT disk partitions can have UUIDs and labels of their own that are independent
of the UUIDs and labels of the filesystems they contain. For use of these options to
identify partitions in the fstab file, the incantations are PARTUUID= and PARTLABEL=.
However, common practice seems to have converged on the use of filesystem UUIDs.

You can also identify devices with pathnames beneath the /dev/disk directory. Sub-
directories such as /dev/disk/by-uuid and /dev/disk/by-partuuid are automatically
maintained by udev.

USB drive mounting
USB storage devices come in many flavors: personal “thumb” drives, digital cam-
eras, and large external disks, to name a few. Most of these are supported by UNIX
systems as data storage devices.

In the past, special tricks were necessary to manage USB devices. But now that
operating systems have embraced dynamic device management as a fundamental
requirement, USB drives are just one more type of device that shows up or disap-
pears without warning.

From the perspective of storage management, the issues are two-fold:

•	 Getting the kernel to recognize a device and to assign a device file to it
•	 Finding out what assignment has been made

The first step usually happens automatically. Once a device file has been assigned,
you can use the normal procedures described in Disk device files on page 734 to
find out what it is. For additional information about dynamic device management,
see Chapter 11, Drivers and the Kernel.

Swapping recommendations
Raw partitions or logical volumes, rather than structured filesystems, are normally
used for swap space. Instead of using a filesystem to keep track of the swap area’s
contents, the kernel maintains its own simplified mapping from memory blocks
to swap space blocks.

	 Traditional filesystems: UFS, ext4, and XFS	 771

St
or

ag
e

On some systems, it’s also possible to swap to a file in a filesystem partition. With
older kernels this configuration can be slower than using a dedicated partition, but
it’s still handy in a pinch. In any event, logical volume managers eliminate most of
the reasons you might want to use a swap file rather than a swap volume.

The more swap space you have, the more virtual memory your processes can allo-
cate. The best virtual memory performance is achieved when the swap area is split
among several drives. Of course, the best option of all is to not swap; consider add-
ing RAM if you find yourself needing to optimize swap performance.

The proper amount of swap space to allocate depends on how a machine is used.
There is no penalty to overprovisioning except that you lose the extra disk space.
We suggest half the amount of RAM as a rule of thumb, but never less than 2GB
on a physical server.

If a system will hibernate (personal machines, usually), it needs to be able to save
the entire contents of memory to swap in addition to saving all the pages that would
be swapped in normal operation. On these machines, increase the swap space rec-
ommended above by the amount of RAM.

Cloud and virtualized instances have their own peculiarities with respect to swap
space. Paging is always a performance killer, so some sources recommend running
without swap space entirely; if you need more memory, you need a larger instance.
On the other hand, small instances usually have such meager RAM allotments
that they can barely boot without a swap area. The general rule is that it’s fine for
instances to have swap space as long as you don’t use it at steady state (or pay extra
for it). Whatever approach you decide to take, check your base images to see how
they’re set up. Some come with swap preconfigured and some don’t.

Some Amazon EC2 instances come with a local “instance store.” This is essentially
a slice of a local hard disk on the machine that runs the hypervisor. The contents
of the instance store don’t persist across starts and stops. The store is included in
the price of the instance, so you may as well use it for swap space if nothing else.

On Linux systems, you initialize swap areas with mkswap, which takes the device
name of the swap volume as an argument. mkswap writes some header information
to the swap area. That data includes a UUID, which is why swap partitions count as

“filesystems” from the perspective of /etc/fstab and can be identified there by UUID.

You can manually enable swapping to a particular device with swapon device. However,
you will generally want to have this function automatically performed at boot time.
Just list swap areas in the regular fstab file and give them a filesystem type of swap.

To review the system’s active swapping configuration, run swapon -s on Linux sys-
tems or swapctl -l on FreeBSD.

772	 Chapter 20	 Storage	

20.11	 Next-generation filesystems: ZFS and Btrfs
Although ZFS and Btrfs are usually referred to as filesystems, they represent verti-
cally integrated approaches to storage management that include the functions of a
logical volume manager and a RAID controller. Although the current versions of
both systems have a few limitations, most fall into the “not yet implemented” cat-
egory rather than the “can’t do for architectural reasons” category.

Copy-on-write
Both ZFS and Btrfs avoid overwriting data in place and instead use a scheme known
as “copy on write.” To update a block of metadata, for example, the filesystem mod-
ifies the in-memory copy and then writes it to a previously vacant disk block. Of
course, that data block probably has a parent block that points to it, so the parent
is rewritten as well, as is the parent’s parent, and so on back to the topmost level
of the filesystem. (In practice, caching and careful design of data structures opti-
mize-out most of these writes, at least in the short term.)

The advantage of this architecture is that the on-disk copy of the filesystem remains
perpetually consistent. Before the root block is updated, the filesystem looks ex-
actly as it did the last time the root was updated. A few “empty” blocks have been
modified, but nothing points to them, so it makes no difference. The filesystem as
a whole moves directly from one consistent state to another.

Error detection
ZFS and Btrfs also take data integrity far more seriously than do traditional filesys-
tems. These systems store checksums for every disk block, and they verify all blocks
read to ensure that misreads are detected. On storage pools that include mirroring
or parity, bad data is automatically reconstructed from a known-good copy.

Disk drives implement their own layers of error detection and error correction, and
although they fail frequently, they’re not supposed to do so without reporting an
error back to the host computer. Nevertheless, they sometimes do return bad data
without an error indication.

One commonly cited rule of thumb is to expect an instance of silent data corrup-
tion for every 75TB of data read. A 2008 study by Bairavasundaram et al. examined
service records of more than 1.5 million disk drives in NetApp servers and found
that 0.5% of drives showed evidence of silent read errors in each year of service.17

These error rates are small, but by all indications they’re staying about the same even
as disk capacities and the volumes of data stored on disks expand exponentially.
Soon we’ll have hard disks so large that you can’t read the entire contents without

	 17.	 Interestingly, one key finding of this study was that enterprise-grade hard disks were an order of mag-
nitude less likely to experience these types of errors.

	 ZFS: all your storage problems solved	 773

St
or

ag
e

a better-than-even chance of encountering a silent error. The extra validation done
by ZFS and Btrfs is starting to look really important.18

Parity RAID does not address this issue, at least in normal use. Parity can’t be
checked without a reading of the contents of an entire stripe, and it’s inefficient to
expand every disk access into a full-stripe read. Scrubbing can help find latent er-
rors, but only if they’re reproducible.

Performance
All the traditional filesystems that remain in common use have similar performance.
It’s possible to contrive workloads for which one filesystem or another has an edge,
but general-purpose benchmarks rarely show much difference.

Copy-on-write filesystems access storage media somewhat differently from tradi-
tional filesystems, and they lack the decades of iterative refinement that have brought
the old-guard filesystems to their current state of polish. Usually, the traditional
filesystems set the upper bound on filesystem performance.

In many benchmarks, ZFS and Btrfs show performance comparable to tradition-
al filesystems. But at their worst, these filesystems can be about half as fast as the
traditional options.

Judging from Linux benchmarks (the only platform on which direct comparison is
possible, since Btrfs is Linux-only), Btrfs currently has a slight performance edge
over ZFS. However, the results vary widely by access pattern. It is not uncommon
for one of these filesystems to perform well on a particular benchmark while the
other lags far behind.

The performance picture is complicated by the fact that each of these filesystems
has some potential tricks up its sleeve to increase performance. Benchmarks usu-
ally don’t take account of these end-arounds. ZFS lets you add caching SSDs to a
storage pool; it automatically copies frequently read data to the cache and avoids
hitting the hard disks entirely. On Btrfs, you can use chattr +C to disable copy-on-
write semantics for the data in specific files (usually large or frequently modified
ones), thereby skirting some common low-performance scenarios.

For general use as root filesystems and home directory storage, ZFS and Btrfs
perform well and offer many useful advantages. They can also work well as data
storage for specific server workloads. However, in these latter scenarios, it’s worth
taking some time to double-check their behavior in your particular environment.

20.12	 ZFS: all your storage problems solved
ZFS was introduced in 2005 as a component of OpenSolaris, and it quickly made
its way to Solaris 10 and to various BSD-based distributions. In 2008, it became

	 18.	 A related—and also underappreciated—issue is the risk of random bit errors in RAM. They are infre-
quent but they do happen. All production servers should use (and monitor!) ECC memory.

774	 Chapter 20	 Storage	

usable as a root filesystem, and it has been the front-line filesystem of choice for
Solaris ever since. UFS remains the default root filesystem on FreeBSD, but ZFS
has been an officially supported option since FreeBSD 10.

ZFS is more than just a filesystem, RAID controller, and volume manager wrapped
into one. As originally conceived for OpenSolaris, it was a comprehensive rethinking
of storage-related administration that addressed everything from the way filesystems
were mounted to the way they were exported to other systems over NFS and SMB.

Modern BSD and Linux systems need to accommodate a variety of filesystems, so
they’ve been forced to back off a bit from ZFS’s original comprehensive approach.
Nevertheless, ZFS remains a thoughtfully designed system that solves quite a few
administrative problems through its architecture rather than through the addition
of features.

ZFS on Linux
Although ZFS is free software, its use on Linux has been hampered by the fact
that the source code is covered by Sun Microsystems’ Common Development and
Distribution License (CDDL). The Free Software Foundation maintains that the
CDDL is incompatible with the GNU Public License, which covers the Linux ker-
nel. Although add-on versions of ZFS for Linux have long been available through
the OpenZFS project (openzfs.org), the FSF’s position has discouraged Linux dis-
tributions from bundling ZFS into their base systems.

After nearly a decade of impasse over this issue, the FSF’s position is at last being
challenged by Canonical Ltd., developers of Ubuntu. After a legal review, Canonical
formally disputed the FSF’s interpretation of the GPL and included ZFS in Ubuntu
16.04 in the form of a loadable kernel module. So far (mid 2017), no lawsuit has
resulted. If Canonical remains unpunished, it’s possible that ZFS might become a
fully supported root filesystem on Ubuntu and that other distributions might fol-
low suit in supporting it.19

ZFS architecture
Exhibit C shows a schematic of the major objects in the ZFS system and their rela-
tionship to each other.

A ZFS “storage pool” is analogous to a “volume group” in other logical volume
management systems. Each pool is composed of “virtual devices,” which can be
raw storage devices (disks, partitions, SAN devices, etc.), mirror groups, or RAID
arrays. ZFS RAID is similar in spirit to RAID 5 in that it uses one or more parity
devices to implement redundancy for the array. However, ZFS calls the scheme
RAID-Z and uses variable-sized stripes to eliminate the RAID 5 write hole. All

	 19.	 If nothing else, the story of ZFS is an interesting case in which the GPL has actively impeded the de-
velopment of an open source software package and blocked its adoption by users and distributors. If
you’re interested in the legal details, Richard Fontana’s wrap-up of open source legal news for 2016 at
goo.gl/PC9i3t includes a helpful summary.

 	

http://openzfs.org
http://goo.gl/PC9i3t

	 ZFS: all your storage problems solved	 775

St
or

ag
e

writes to the storage pool are striped across the pool’s virtual devices, so a pool that
contains only individual storage devices is effectively an implementation of RAID 0,
although the devices in this configuration are not required to be of the same size.

Unfortunately, the current ZFS RAID is a bit brittle: you cannot add new devices
to an array once it has been defined; nor can you permanently remove a device. As
in most RAID implementations, devices in a RAID set must be the same size. You
can force ZFS to accept mixed sizes, but the size of the smallest volume then dic-
tates the overall size of the array. To use disks of different sizes efficiently in combi-
nation with ZFS RAID, you must partition the disks ahead of time and define the
leftover regions as separate devices.

Most configuration and management of ZFS is done through two commands: zpool
and zfs. Use zpool to build and manage storage pools. Use zfs to create and manage
the entities created from pools, chiefly filesystems and raw volumes used as swap
space, database storage, or backing for SAN volumes.

Example: disk addition
Before we descend into the details of ZFS, here’s a high-level example. Suppose
you’ve added a new disk to your FreeBSD system and the disk has shown up as
/dev/ada1. (An easy way to determine the correct device is to run geom disk list.)

The first step is to add the disk to a new storage pool:

$ sudo zpool create demo ada1

Step two is… well, there is no step two. ZFS creates the pool “demo,” creates a filesys-
tem root inside that pool, and mounts that filesystem as /demo. The filesystem is
automatically remounted when the system boots.

	 	

Exhibit C	 ZFS architecture

ZFS

Storage devices

Partitions

RAID-Z arrays RAID 1 arrays (mirrors)

Virtual devices

Filesystems, swap areas, database storage

Storage pools

776	 Chapter 20	 Storage	

$ ls -a /demo
.	 ..

It would be even more impressive if we could simply add our new disk to the ex-
isting storage pool of the root disk, which on FreeBSD is called “zroot” by default.
(The command would be sudo zpool add rpool ada1.) Unfortunately, the root pool
can contain only a single virtual device. Other pools can be painlessly extended in
this manner, however.

Filesystems and properties
It’s fine for ZFS to automatically create a filesystem on a new storage pool—by de-
fault, ZFS filesystems consume no particular amount of space. All filesystems that
live in a pool can draw from the pool’s available space.

Unlike traditional filesystems, which are independent of one another, ZFS filesys-
tems are hierarchical and interact with their parent and child filesystems in several
ways. You create new filesystems with zfs create:

$ sudo zfs create demo/new_fs
$ zfs list -r demo
NAME USED AVAIL REFER MOUNTPOINT
demo 432K 945G 96K /demo
demo/new_fs 96K 945G 96K /demo/new_fs

The -r flag to zfs list makes it recurse through child filesystems. Most other zfs sub-
commands understand -r, too. Ever helpful, ZFS automounts the new filesystem
as soon as you create it.

To simulate traditional filesystems of fixed size, you can adjust the filesystem’s prop-
erties to add a “reservation” (an amount of space reserved in the storage pool for
the filesystem’s use) and a quota. This adjustment of filesystem properties is one
of the keys to ZFS management, and it’s something of a paradigm shift for admin-
istrators who are accustomed to other systems. Here, we set both values to 1GB:

$ sudo zfs set reservation=1g demo/new_fs
$ sudo zfs set quota=1g demo/new_fs
$ zfs list -r demo
NAME USED AVAIL REFER MOUNTPOINT
demo 1.00G 944G 96K /demo
demo/new_fs 96K 1024M 96K /demo/new_fs

The new quota is reflected in the AVAIL column for /demo/new_fs. Similarly, the
reservation shows up immediately in the USED column for /demo. That’s because
the reservations of /demo’s descendant filesystems are included in its size tally.20

	 20.	 The REFER column shows the amount of data referenced by the active copy of each filesystem.
/demo and /demo/new_fs have similar REFER values because they’re both empty filesystems, not be-
cause there’s any inherent relationship between the numbers.

	 ZFS: all your storage problems solved	 777

St
or

ag
e

Both property changes are purely bookkeeping entries. The only change to the
actual storage pool is the update of a block or two to record the new settings. No
process goes out to format the 1GB of space reserved for /demo/new_fs. Most ZFS
operations, including the creation of new storage pools and new filesystems, are
similarly lightweight.

Using this hierarchical system of space management, you can easily group several
filesystems to guarantee that their collective size does not exceed a certain thresh-
old; you need not specify limits on individual filesystems.

You must set both the quota and reservation properties to properly emulate a
traditional fixed-size filesystem.21 The reservation alone simply ensures that the
filesystem has enough room available to grow at least that large. The quota limits
the filesystem’s maximum size without guaranteeing that space is available for this
growth; another object could snatch up all the pool’s free space, leaving no room
for /demo/new_fs to expand.

On the other hand, there are few reasons to set up a filesystem this way in real life.
We show the use of these properties simply to demonstrate ZFS’s space accounting
system and to emphasize that ZFS is compatible with the traditional model, should
you wish to enforce it.

Property inheritance
Many properties are naturally inherited by child filesystems. For example, if we
wanted to mount the root of the demo pool in /mnt/demo instead of /demo, we
could simply set the root’s mountpoint parameter:

$ sudo zfs set mountpoint=/mnt/demo demo

$ zfs list -r demo
NAME USED AVAIL REFER MOUNTPOINT
demo 1.00G 944G 96K /mnt/demo
demo/new_fs 96K 1024M 96K /mnt/demo/new_fs

$ ls /mnt/demo
new_fs

Setting the mountpoint parameter automatically remounts the filesystems, and the
mount point change affects child filesystems in a predictable and straightforward
way. The usual rules regarding filesystem activity still apply, however; see page 122.

Use zfs get to see the effective value of a particular property; zfs get all dumps them
all. The SOURCE column tells you why each property has its particular value: local
means that the property was set explicitly, and a dash means that the property is

	 21.	 The reservation and quota properties take into account all storage costs of the filesystem, includ-
ing space consumed by snapshots. To limit only the size of the active copy of the filesystem, use the
refreservation and refquota properties instead. The “ref ” prefix indicates “amount of data referred
to” by the active filesystem, the same total shown in the REFER column in zfs list output.

778	 Chapter 20	 Storage	

read-only. If the property value is inherited from an ancestor filesystem, SOURCE
shows the details of that inheritance as well.

$ zfs get all demo/new_fs
NAME PROPERTY VALUE SOURCE
demo/new_fs type filesystem -
demo/new_fs creation Mon Apr 03 0:12 2017 -
demo/new_fs used 96K -
demo/new_fs available 1024M -
demo/new_fs referenced 96K -
demo/new_fs compressratio 1.00x -
demo/new_fs mounted yes -
demo/new_fs quota 1G local
demo/new_fs reservation 1G local
demo/new_fs mountpoint /mnt/new_fs inherited from demo
demo/new_fs checksum on default
demo/new_fs compression off default
... <many more, about 55 in all>

Vigilant readers might notice that the available and referenced properties look
suspiciously similar to the AVAIL and REFER columns shown by zfs list. In fact,
zfs list is just a different way of displaying filesystem properties. If we had includ-
ed the full output of our zfs get command above, there would be a used property
in there, too. Use the -o option to specify the properties you want zfs list to show.

It wouldn’t make sense to assign values to used and to the other size properties, so
these properties are read-only. If the specific rules for calculating used don’t meet
your needs, other properties such as usedbychildren and usedbysnapshots may
give you better insight into how your disk space is being consumed.

You can set additional, nonstandard properties on filesystems for your own use
and for the use of your local scripts. The process is the same as that for standard
properties. For example, many backup and snapshot utilities for ZFS read their
configuration information from filesystem properties.

The names of custom properties must include a colon to distinguish them from
standard properties.

One filesystem per user
Since filesystems consume no space and take no time to create, the optimal num-
ber of them is closer to “a lot” than “a few.” If you keep users’ home directories on
a ZFS storage pool, you may find it helpful to make each home directory a sepa-
rate filesystem.

	 ZFS: all your storage problems solved	 779

St
or

ag
e

There are several benefits:

•	 If you need to set disk usage quotas, home directories are a natural gran-
ularity at which to do this. You can set quotas on both individual users’
filesystems and on the filesystem that contains all users.

•	 Snapshots are per filesystem. If each user’s home directory is a separate
filesystem, the user can access old snapshots through ~/.zfs.22 This feature
alone is a huge time saver for administrators because it means that users
can service most of their own file restore needs.

•	 ZFS lets you delegate permission to perform various operations such as
taking snapshots or rolling back the filesystem to an earlier state. If you
prefer, you can give users control over these operations for their own home
directories. We do not describe the details of ZFS permission management
in this book, however; see the man page entry for zfs allow.

Snapshots and clones
Just like a logical volume manager, ZFS brings copy-on-write to the user level by
allowing you to create instantaneous snapshots. However, there’s an important dif-
ference: ZFS snapshots are implemented per filesystem rather than per volume, so
they have arbitrary granularity.

On the command line, you create snapshots with zfs snapshot. For example, the
following command sequence illustrates creation of a snapshot, use of the snapshot
through the filesystem’s .zfs/snapshot directory, and reversion of the filesystem to
its previous state.

$ sudo touch /mnt/demo/new_fs/now_you_see_me
$ ls /mnt/demo/new_fs
now_you_see_me
$ sudo zfs snapshot demo/new_fs@snap1
$ sudo rm /mnt/demo/new_fs/now_you_see_me
$ ls /mnt/demo/new_fs
$ ls /mnt/demo/new_fs/.zfs/snapshot/snap1
now_you_see_me
$ sudo zfs rollback demo/new_fs@snap1
$ ls /opt/demo/new_fs
now_you_see_me

You assign a name to each snapshot at the time it’s created. The complete specifier
for a snapshot is usually written in the form filesystem@snapshot.

	 22.	 This directory is hidden by default; it does not appear in ls -a output. You can make it visible with zfs
set snapdir=visible filesystem.

780	 Chapter 20	 Storage	

Use zfs snapshot -r to create snapshots recursively. The effect is the same as ex-
ecuting zfs snapshot on each contained object individually: each subcomponent
receives its own snapshot. All the snapshots have the same name, but they’re logi-
cally distinct because the filesystem portion is different.

ZFS snapshots are read-only, and although they can bear properties, they are not
true filesystems. However, you can instantiate a snapshot as a full-fledged, writable
filesystem by “cloning” it:

$ sudo zfs clone demo/new_fs@snap1 demo/subclone
$ ls /mnt/demo/subclone
now_you_see_me
$ sudo touch /mnt/demo/subclone/and_me_too
$ ls /mnt/demo/subclone
and_me_too	 now_you_see_me

The snapshot that is the basis of the clone remains undisturbed and read-only. How-
ever, the new filesystem (demo/subclone in this example) retains a link to both the
snapshot and the filesystem on which it’s based, and neither of those entities can
be deleted as long as the clone exists.

Cloning isn’t a common operation, but it’s the only way to create a branch in a
filesystem’s evolution. The zfs rollback operation demonstrated above can only
return a filesystem to its most recent snapshot, so to use it you must permanently
delete (zfs destroy) any snapshots made since the snapshot that is your reversion
target. Cloning lets you go back in time without losing access to recent changes.

For example, suppose that you’ve discovered a security breach that occurred some
time within the last week. For safety, you want to return a filesystem to its state of
a week ago to be sure today that it contains no hacker-installed back doors. At the
same time, you don’t want to lose recent work or the data for forensic analysis. The
solution is to clone the week-ago snapshot to a new filesystem, zfs rename the old
filesystem, and then zfs rename the clone in place of the original filesystem.

For good measure, also zfs promote the clone; this operation inverts the relation-
ship between the clone and the filesystem of origin. After promotion, the main-line
filesystem has access to all the old filesystem’s snapshots, and the old, moved-aside
filesystem becomes the “cloned” branch.

Raw volumes
You create swap areas and raw storage areas with zfs create, just as you create filesys-
tems. The -V size argument makes zfs treat the new object as a raw volume instead
of a filesystem. The size can use any common unit, for example, 128m.

Since the volume does not contain a filesystem, it is not mounted; instead, it shows
up in the /dev/zvol directory and can be referenced as if it were a hard disk or parti-
tion. ZFS mirrors the hierarchical structure of the storage pool in these directories,

	 ZFS: all your storage problems solved	 781

St
or

ag
e

so sudo zfs create -V 128m demo/swap creates a 128MB swap volume located at
/dev/zvol/demo/swap.

You can create snapshots of raw volumes just as you can with filesystems, but be-
cause there’s no filesystem hierarchy in which to put a .zfs/snapshot directory, the
snapshots show up in the same directory as their source volumes. Clones work too,
just as you’d expect.

By default, raw volumes receive a space reservation equal to their specified size.
You’re free to reduce the reservation or to do away with it entirely, but note that this
configuration can make writes to the volume return an “out of space” error. Clients
of raw volumes might not be designed to deal with such an error.

Storage pool management
Now that we’ve waded into some of the features that ZFS offers at the filesystem and
block-client level, we can go for a longer swim in ZFS’s storage pools.

Up to now, we’ve used a pool called “demo” that we created from a single disk back
on page 775. Here it is in the output of zpool list:

$ zpool list
NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
demo 976M 516K 976G - 0% 0% 1.00x ONLINE -
zroot 19.9G 16.3G 3.61G - 24% 81% 1.00x ONLINE -

The pool named “zroot” contains the bootable root filesystem. Bootable pools are
currently restricted in several ways: they can contain only a single virtual device,
and that device must be either a mirror array or a single disk drive; it cannot be a
striping set or a RAID-Z array. (This is either an implementation limit or a strong
push in the direction of robustness for the root filesystem; we’re not sure which.)

zpool status adds more detail about the virtual devices that make up a storage pool
and reports their current status.

$ zpool status demo
 pool: demo
 state: ONLINE
 scan: none requested
config:

	 NAME STATE READ WRITE CKSUM
	 demo ONLINE 0 0 0
	 ada1 ONLINE 0 0 0

errors: No known data errors

Time to get rid of this demo pool and set up something a bit more sophisticated.
We’ve attached five 1TB drives to our example system. We first create a pool called

“monster” that includes three of those drives in a RAID-Z single-parity configuration.

782	 Chapter 20	 Storage	

$ sudo zpool destroy demo
$ sudo zpool create monster raidz1 ada1 ada2 ada3
$ zfs list monster
NAME USED AVAIL REFER MOUNTPOINT
monster 87.2K 1.84T 29.3K /monster

ZFS also understands raidz2 and raidz3 for double and triple parity configurations.
The minimum number of disks is always one more than the number of parity de-
vices. Here, one drive out of three is used for parity, so roughly 2TB is available for
use by filesystems.

For illustration, we then add the remaining two drives configured as a mirror:

$ sudo zpool add monster mirror ada4 ada5
invalid vdev specification
use '-f' to override the following errors:
mismatched replication level: pool uses raidz and new vdev is mirror
$ sudo zpool add -f monster mirror ada4 ada5

zpool initially balks at this configuration because the two virtual devices have dif-
ferent redundancy schemes. This particular configuration is OK since both vdevs
have some redundancy. In actual use, do not mix redundant and nonredundant
vdevs since there’s no way to predict which blocks might be stored on which de-
vices; partial redundancy is useless.

$ zpool status monster
 pool: monster
 state: ONLINE
 scan: none requested
config:

	 NAME STATE READ WRITE CKSUM
	 monster ONLINE 0 0 0
	 raidz1-0 ONLINE 0 0 0
	 ada1 ONLINE 0 0 0
	 ada2 ONLINE 0 0 0
	 ada3 ONLINE 0 0 0
	 mirror-1 ONLINE 0 0 0
	 ada4 ONLINE 0 0 0
	 ada5 ONLINE 0 0 0

errors: No known data errors

ZFS distributes writes among all a storage pool’s virtual devices. As demonstrated
in the preceding example, it is not necessary for all virtual devices to be the same
size.23 However, the components within a redundancy group should be of similar
size. If they are not, only the smallest size is used on each component. Multiple
simple disks used together in a storage pool is essentially a RAID 0 configuration.

	 23.	 In this example the disks are all the same size, but the virtual devices are not (2TB vs. 1TB).

	 Btrfs: “ZFS lite” for Linux	 783

St
or

ag
e

You can add additional vdevs to a pool at any time. However, existing data won’t be
redistributed to take advantage of parallelism. Unfortunately, you cannot currently
add additional devices to an existing RAID array or mirror. This is an area in which
Btrfs has a distinct advantage, since it accommodates all sorts of reorganizations in
a relatively clean and automatic manner.

ZFS has an especially nice implementation of read caching that makes good use of
SSDs. To set up this configuration, just add the SSDs to the storage pool as vdevs of
type cache. The caching system uses an adaptive replacement algorithm developed
at IBM that is smarter than a normal LRU (least recently used) cache. It knows about
the frequency at which blocks are referenced as well as their recentness of use, so
reads of large files are not supposed to wipe out the cache.

Hot spares are handled as vdevs of type spare. You can add the same disk to mul-
tiple storage pools; whichever pool experiences a disk failure first gets to claim the
spare disk.

20.13	 Btrfs: “ZFS lite” for Linux
Oracle’s Btrfs filesystem project (“B-tree file system,” officially pronounced “butter
FS” or “better FS,” though it’s hard not to think “butter face”) aimed to repeat many
of ZFS’s advances on the Linux platform during the long interregnum when ZFS
seemed like it might be lost to Linux because of licensing issues.

Although Btrfs remains under active development, it’s been a standard part of the
Linux kernel trunk since 2009. It’s available and ready to use on nearly all Linux
systems, and SUSE Enterprise Linux has even made it a supported option for the
root filesystem. Because the code base evolves quickly, it’s probably best to avoid
Btrfs on stability-oriented distributions such as Red Hat for now; old versions have
known issues.

Btrfs vs. ZFS
Because they share some technical underpinnings, comparisons between Btrfs and
ZFS are probably inevitable. However, Btrfs is not a ZFS clone, and it doesn’t seek
to reproduce ZFS’s architecture. For example, you mount Btrfs volumes just like
those of other filesystems, by running the mount command or by listing them in
the /etc/fstab file.

Although Btrfs volumes and their subvolumes exist in a unified namespace, there’s
no hierarchical relationship among them. To make a change to a group of Btrfs
subvolumes, you must modify each of them individually. Btrfs commands do not
operate recursively, and volume properties are not inheritable. This isn’t an omis-
sion so much as a design choice: why load up the filesystem (the developers ask)
with features that you can emulate in a shell script?

Btrfs reflects this preference for simplicity in a variety of ways. For example, Btrfs
storage pools can include only one group of disks in one particular configuration

784	 Chapter 20	 Storage	

(e.g., RAID 5), whereas ZFS pools can include multiple disk groups as well as cach-
ing disks, intent logs, and hot spares.

As is common in the software arena, debates over the relative merits of ZFS and
Btrfs tend to become heated and to focus on stylistic distinctions. However, several
important differences between the two systems rise above the level of nitpicking
and personal preference.

•	 Btrfs is the clear winner when it comes to changing your hardware con-
figuration; ZFS didn’t even show up for this fight. You can add or remove
disks at any time, or even change RAID type, and Btrfs redistributes ex-
isting data accordingly while remaining on-line. In ZFS, such changes are
usually impossible without your dumping your data to external media
and starting over.

•	 Even without memory-intensive features (such as deduplication) enabled,
ZFS functions best with a generous amount of RAM. 2GB is the recom-
mended minimum. That’s a lot of memory for a virtual server.

•	 ZFS’s ability to cache frequently read data on separate cache SSDs is a killer
feature for many use cases, and one for which Btrfs currently has no answer.

•	 As of 2017, the Btrfs implementations of parity raid (RAID 5 and 6) are
not yet ready for production use. That’s not our opinion; it’s the official
word from the developers. This is a significant missing feature.

Setup and storage conversion
In this section we demonstrate a few common Btrfs procedures analogous to those
shown for ZFS in previous sections. We first set up Btrfs for use on a set of two 1TB
hard disks configured for RAID 1 (mirroring):

$ sudo mkfs.btrfs -L demo -d raid1 /dev/sdb /dev/sdc
Label: demo
UUID:
Node size: 16384
Sector size: 4096
Filesystem size: 1.91TiB
Block group profiles:
 Data: RAID1 1.00GiB
 Metadata: RAID1 1.00GiB
 System: RAID1 8.00MiB
SSD detected: no
Incompat features: extref, skinny-metadata
Number of devices: 2
Devices:
 ID SIZE PATH
 1 978.00GiB /dev/sdb
 2 978.00GiB /dev/sdc

	 Btrfs: “ZFS lite” for Linux	 785

St
or

ag
e

$ sudo mkdir /mnt/demo
$ sudo mount LABEL=demo /mnt/demo

We could name any of the component devices in the mount command line, but it’s
simplest to just use the label we assigned to the group, “demo.”

The btrfs filesystem usage command shows how the space on these disks is cur-
rently being used:

$ sudo btrfs filesystem usage /mnt/demo
Overall:
 Device size: 1.91TiB
 Device allocated: 4.02GiB
 Device unallocated: 1.91TiB
 Device missing: 0.00B
 Used: 1.25MiB
 Free (estimated): 976.99GiB (min: 976.99GiB)
 Data ratio: 2.00
 Metadata ratio: 2.00
 Global reserve: 16.00MiB (used: 0.00B)

Data,RAID1: Size:1.00GiB, Used:512.00KiB
 /dev/sdb 1.00GiB
 /dev/sdc 1.00GiB

Metadata,RAID1: Size:1.00GiB, Used:112.00KiB
 /dev/sdb 1.00GiB
 /dev/sdc 1.00GiB

System,RAID1: Size:8.00MiB, Used:16.00KiB
 /dev/sdb 8.00MiB
 /dev/sdc 8.00MiB

Unallocated:
 /dev/sdb 975.99GiB
 /dev/sdc 975.99GiB

The interesting thing to note here is the small initial allocations into the RAID 1
groups for data, metadata, and system blocks. Most disk space remains in an un-
allocated pool that has no intrinsic structure. The mirroring we requested isn’t im-
posed on the disks as a whole, just on the blocks that are actually in use. It’s not a
rigid structure so much as a policy to be implemented at the level of block groups.

This distinction is key to understanding how Btrfs can adapt to changing require-
ments and hardware provisioning. Here’s what happens when we store some files
into the new filesystem and then add a third disk:

$ mkdir /mnt/demo/usr
$ cd /usr; tar cf - . | (cd /mnt/demo/usr; sudo tar xfp -)
$ sudo btrfs device add /dev/sdd /mnt/demo

786	 Chapter 20	 Storage	

$ sudo btrfs filesystem usage /mnt/demo 24
Overall:
 <omitted from this output>

Data,RAID1: Size:3.00GiB, Used:2.90GiB
 /dev/sdb 3.00GiB
 /dev/sdc 3.00GiB

Metadata,RAID1: Size:1.00GiB, Used:148.94MiB
 /dev/sdb 1.00GiB
 /dev/sdc 1.00GiB

System,RAID1: Size:8.00MiB, Used:16.00KiB
 /dev/sdb 8.00MiB
 /dev/sdc 8.00MiB

Unallocated:
 /dev/sdb 973.99GiB
 /dev/sdc 973.99GiB
 /dev/sdd 978.00GiB

The new disk, /dev/sdd, has become available to the pool, but the existing block
groups are fine as they were, so none of them reference the new disk. Future allo-
cations would automatically take advantage of the new disk. If we like, we can force
Btrfs to level the data among all disks:

$ sudo btrfs balance start --full-balance /mnt/demo
Starting balance without any filters.
Done, had to relocate 5 out of 5 chunks

Conversion among RAID levels is also a form of balancing. Now that we have three
disks available, we can convert to RAID 5:

$ sudo btrfs balance start -dconvert=raid5 -mconvert=raid5 /mnt/demo
Done, had to relocate 5 out of 5 chunks

If we had glanced at the usage data during the conversion, we’d have seen block
groups for both RAID 1 and RAID 5 active simultaneously. Disk removals work
similarly: Btrfs incrementally copies all blocks to groups that don’t include the leav-
ing disk, and eventually no data remains there.

Volumes and subvolumes
Snapshots and quotas are filesystem-level entities in Btrfs, so it’s helpful to be able
to define portions of the file tree as distinct entities. Btrfs calls these “subvolumes.”
A subvolume looks a lot like a regular filesystem directory, and in fact, it remains
accessible as a subdirectory of its parent volume, as shown below.

$ sudo btrfs subvolume create /mnt/demo/sub
Create subvolume '/mnt/demo/sub'

	 24.	 btrfs subcommands can be abbreviated to any unique prefix. For example, btrfs filesystem usage is
also accessible as btrfs f u. We spell out commands for clarity and propriety.

	 Btrfs: “ZFS lite” for Linux	 787

St
or

ag
e

$ sudo touch /mnt/demo/sub/file_in_a_subvolume
$ ls /mnt/demo/sub
file_in_a_subvolume

The subvolume is not automatically mounted; it’s visible here as part of the parent
volume. However, you can mount a subvolume independently of its parent with
the subvol mount option. For example,

$ mkdir /sub
$ sudo mount LABEL=demo -o subvol=/sub /sub
$ ls /sub
file_in_a_subvolume

There is no way to prevent a subvolume from showing up within its parent volume
when the parent is mounted. To create the illusion of multiple, independent, nonin-
teracting volumes, just make them subvolumes of the root and mount each of them
separately with the subvol option. The root itself is not required to be mounted
anywhere. In fact, Btrfs lets you specify a volume other than the root to be the de-
fault mount target when no subvol is requested; see btrfs subvolume set-default.

To see or manipulate the full Btrfs hierarchy under this configuration, just mount
the root on a scratch directory with subvol=/. It’s fine for volumes to be mounted
several times and accessible through multiple paths.

Volume snapshots
Btrfs’s version of volume snapshots works a lot like cp, except that copies are shal-
low and initially share all their storage with the parent volume:

$ sudo btrfs subvolume snapshot /mnt/demo/sub /mnt/demo/sub_snap
Create a snapshot of '/mnt/demo/sub' in '/mnt/demo/sub_snap'

Unlike ZFS snapshots, Btrfs snapshots are writable by default. In fact, there is no
such thing as a “snapshot” per se in Btrfs; a snapshot is just a volume that happens
to share some storage with another volume:

$ sudo touch /mnt/demo/sub/another_file
$ ls /mnt/demo/sub
another_file file_in_a_subvolume
$ ls /mnt/demo/sub_snap
file_in_a_subvolume

For an immutable snapshot, just pass the -r option to btrfs subvolume snapshot.
Btrfs does not make a fundamental distinction between read-only snapshots and
writable copies in the way that ZFS does. (In ZFS, writable copies are “clones.” To cre-
ate one, first make a read-only snapshot, then create a clone based on that snapshot.)

Btrfs does not enforce any particular naming or location conventions when it comes
to defining subvolumes and snapshots, so it’s up to you to decide how these entities
should be organized and named. The Btrfs documentation at btrfs.wiki.kernel.org
suggests a couple of conventions for your consideration.

http://btrfs.wiki.kernel.org

788	 Chapter 20	 Storage	

Btrfs also has no “rollback” operation that resets a volume to its state as of a par-
ticular snapshot. Instead, you can just move the original volume aside and mv or
copy a snapshot in its place:

$ ls /mnt/demo/sub
another_file file_in_a_subvolume
$ sudo mv /mnt/demo/sub /mnt/demo/sub.old
$ sudo btrfs subvolume snapshot /mnt/demo/sub_snap /mnt/demo/sub
Create a snapshot of '/mnt/demo/sub_snap' in '/mnt/demo/sub'
$ ls /mnt/demo/sub
file_in_a_subvolume

Note that this change confuses direct mounts of the subvolume. They’ll need to be
remounted afterward.

Shallow copies
The analogy between Btrfs snapshots and cp is more than just coincidence. You
cannot create snapshots—as such—of files or of directories that are not subvolume
roots. But interestingly, you can create shallow copies of arbitrary files and directo-
ries with cp --reflink, even across subvolume boundaries.

This option activates Btrfs-specific magic inside cp that negotiates directly with the
filesystem to arrange for copy-on-write duplication. The semantics are identical to
those of a normal cp and also perilously close to those of a snapshot.

Btrfs doesn’t track shallow copies for you as it would with snapshots, and it also
doesn’t necessarily guarantee perfect point-in-time consistency for actively mod-
ified directory hierarchies. But in other respects, the two operations are markedly
similar. One nice feature of shallow copies is that they require no special permis-
sions; any user can take advantage of them.

If you specify the cp option in the form --reflink=auto, cp shallow-copies when it can
and behaves normally otherwise. That makes it a tempting target for a ~/.bashrc alias:

alias cp="cp --reflink=auto"

20.14	 Data backup strategy
On a good day, your main focus within the storage environment is to ensure that
performance remains good and that sufficient free space is available. Unfortunately,
not every day is a good day. With the Google Labs study finding that a disk drive
has less than a 75% chance of surviving for five years, the deck is stacked against
us. Always have systems in place to protect valuable data against catastrophic loss,
and be prepared to activate your recovery procedure at short notice.

RAID and other data replication schemes protect against the failure of a single fa-
cility or piece of hardware. However, there are many other ways to lose data that
these technologies do not address. For example, if you experience a security breach

	 Data backup strategy	 789

St
or

ag
e

or an infection by ransomware, your data can be altered or corrupted even though
the physical layer remains perfectly intact. Automated replication of compromised
data to multiple disks or sites only increases the misery. You need immutable, point-
in-time backups of critical data that you can revert to as a fallback option.

In past decades, media such as magnetic tapes were a popular storage method
for off-line backups. However, the capacity of these media proved unable to keep
up with the exponentially growing sizes of hard drives and SSDs. Along with the
physical challenges of transporting and storing tapes and of maintaining finicky
mechanical tape drives, the capacity issues ultimately relegated tape media to the
status of 35mm camera film: it’s still technically on the market, but you have to
wonder who’s actually buying the stuff.

Today, most cloud platforms let you capture point-in-time backups in the form of
snapshots, usually on an automated schedule. You pay a monthly fee for the storage
consumed by each snapshot and can set your own retention policies.

Regardless of the exact technology you use to implement backups, you need a writ-
ten plan that answers at least the following questions.

Overall strategy:

•	 What data is to be backed up?
•	 What system or technology will perform the backups?
•	 Where will backup data be stored?
•	 Will backups be encrypted? If so, where will encryption keys be stored?
•	 How much will it cost to store backups over time?

Timelines:

•	 How often will backups be performed?
•	 How often will backups be validated and restore-tested?
•	 How long will backups be retained?

People:

•	 Who will have access to backup data?
•	 Who will have access to the encryption keys that protect backup data?
•	 Who will be in charge of verifying the execution of backups?
•	 Who will be in charge of validating and restore-testing backups?

Use and protection:

•	 How will backup data be accessed or restored in an emergency?

•	 How will you ensure that neither a hacker nor a bogus process can corrupt,
modify, or delete backups? (That is, how will you achieve immutability?)

•	 How will backup data be protected against being taken hostage by an ad-
versarial cloud provider, vendor, or government?

790	 Chapter 20	 Storage	

The best answers to these questions vary by organization, type of data, regulatory
environment, technology platform, and budget, just to name a few potential factors.

Take time today to map out a backup plan for your environment or to review your
existing backup plan.

20.15	 Recommended reading
Lucas, Michael W., and Allan Jude. FreeBSD Mastery: ZFS. Tilted Windmill
Press, 2015.

Jude, Allan, and Michael W. Lucas. FreeBSD Mastery: Advanced ZFS. Tilted
Windmill Press, 2016.

The two titles above are the go-to references for modern ZFS. Although they pur-
port to be FreeBSD-specific, most of the material applies to ZFS on Linux as well.
The Advanced ZFS book is particularly useful in its coverage of topics as varied as
jails, permission delegation, caching strategies, and performance analysis.

Lucas, Michael W., and Allan Jude. FreeBSD Mastery: Storage Essentials. Tilted
Windmill Press, 2015.

McKusick, Marshall Kirk, George V. Neville-Neil, and Robert N. M. Wat-
son. The Design and Implementation of the FreeBSD Operating System (2nd Edition).
Upper Saddle River, NJ: Addison-Wesley Professional, 2014. This book addresses
a variety of kernel-related subjects, but it includes complete chapters on UFS, ZFS,
and the VFS layer.

N
FS

			 791

The Network File System protocol, commonly known as NFS, lets you share filesys-
tems among computers. NFS is nearly transparent to users, and no information is
lost when an NFS server crashes. Clients can simply wait until the server returns
and then continue as if nothing had happened.

NFS was introduced by Sun Microsystems in 1984. It was originally implemented
as a surrogate filesystem for diskless clients, but the protocol proved to be well de-
signed and useful as a general file sharing solution. These days, all UNIX vendors
and Linux distributions offer some version of NFS. The NFS protocol is an open
standard that is documented in RFCs (see RFCs 1094, 1813, and 7530 in particular).

21.1	 Meet network file services
The goal of a network file service is to grant shared access to files and directories
that are stored on the disks of remote systems. User applications must be able to
read and write to these files with the same system calls they use for local files; that
files are stored elsewhere on the network should be transparent to applications. If
more than one network client or application attempts to modify a file simultane-
ously, the file sharing service must resolve any conflicts that arise.

21 The Network File System

792	 Chapter 21	 The Network File System	

The competition
NFS is not the only file sharing system around. The Server Message Block (SMB)
protocol underlies the file sharing capabilities built into Windows and macOS. How-
ever, UNIX and Linux can also speak SMB by running the Samba add-on package.
If you run a hybrid network that includes a variety of different operating systems,
you may find that SMB is the path that presents the fewest compatibility hurdles.

NFS is most commonly used in shops where UNIX and Linux are predominant.
In those contexts it offers a somewhat more natural fit and a higher degree of inte-
gration. But even in these environments, SMB remains a plausible option. It’s un-
common—but not unheard of—for sites consisting exclusively of UNIX and Linux
systems to rely on SMB as their primary file sharing protocol.

Sharing files over a network seems like a simple task, but in fact it’s a confoundingly
complex problem that abounds with edge cases and subtleties. Many protocol issues
have come to light only through bugs encountered in unusual situations. Both NFS
and SMB show the scars of battles fought to maintain security, performance, and
reliability over decades of development and widespread use. Today’s administrators
can be confident that these protocols will not regularly corrupt data or otherwise
incur the wrath of irate users, but it has taken a lot of work and experience to get
to this point.

Storage area network (SAN) systems are another option for high-performance
storage management on a network. SAN servers need not understand filesystems
because they serve only disk blocks, unlike NFS and SMB, which operate at the
level of filesystems and files rather than raw storage devices. A SAN affords fast
read/write access, but it’s unable to manage concurrent access by multiple clients
without the help of a clustered filesystem.

For big data projects, several open source distributed filesystems have come into
common use. GlusterFS and Ceph implement both POSIX-compliant filesystems
and RESTful object storage distributed among a cluster of nodes for fault tolerance.
Commercial versions of both systems are sold by Red Hat, which acquired both de-
velopers. Both systems are production-ready, highly capable filesystems worthy of
consideration for use cases like big data processing and high performance computing.

Cloud-based systems have additional options. Refer to page 281.

Issues of state
One decision made when designing a network filesystem is to determine what part
of the system will track the files that each client has open, information referred to
generically as “state.” A server that records the status of files and clients is said to be
stateful; one that does is stateless. Both approaches have been used over the years,
and both have benefits and drawbacks.

Stateful servers keep track of all open files across the network. This mode of opera-
tion introduces many layers of complexity (more than you might expect) and makes

See Chapter 22
for more details on
SMB and Samba.

	 Meet network file services	 793

N
FS

recovery in the event of a crash far more difficult. When the server returns from
a hiatus, a negotiation between the client and server must occur to reconcile the
last known state of the connection. Statefulness lets clients maintain more control
over files and facilitates the robust management of files opened in read/write mode.

On a stateless server, each request is independent of the requests that have preceded
it. If either the server or the client crashes, nothing is lost in the process. Under this
design, it is painless for servers to crash or reboot, since they do not maintain any
context. However, it’s impossible for the server to know which clients have opened
a file for writing, so it cannot manage concurrency.

Performance concerns
Network filesystems should present a seamless experience to users. Accessing a file
over the network should be no different from accessing a file on a local filesystem.
Unfortunately, wide area networks have high latencies, which make operations be-
have erratically, and low bandwidth, which yields slow performance on large files.
Most file service protocols, including NFS, incorporate techniques to minimize
performance problems on both local and wide area networks.

Most protocols try to minimize the number of network requests. For example, read-
ahead caching preloads portions of a file into a local memory buffer to avoid a delay
when a new section of the file is read. A little extra network bandwidth is consumed
in an effort to avoid the latency of a full round-trip exchange with the server.

Similarly, some systems cache writes in memory and send updates in batches, re-
ducing the delay incurred when communicating write operations to the server.
These types of batch operations are referred to generically as request coalescing.

Security
Any service that grants convenient access to files on a network has great potential
to cause security problems. Local filesystems implement complex access control
algorithms and safeguard files with granular permissions. On a network, these tasks
are greatly complicated by differences in configurations among machines and by
vagaries such as race conditions, bugs in file service software, and unresolved edge
cases in file sharing protocols.

The rise of directory and centralized authentication services has improved the se-
curity of network filesystems. The bottom line is that no client can be trusted to
authenticate itself sanely, so a trusted, central system must verify identities and
approve access to files. Most file sharing services can be integrated with a variety
of different authentication providers.

File sharing protocols do not typically address the issues of privacy and integrity—
or at least, they do not do so directly. As with authentication, this responsibility
is generally outsourced to another layer such as a Kerberos, SSH, or a VPN tun-
nel. However, recent versions of SMB have added strong encryption and integrity

794	 Chapter 21	 The Network File System	

checking. Many sites that run NFS on a trusted LAN choose to forgo cryptography
because an easy and high-performance solution is unavailable.

21.2	 The NFS approach
The newest version of the NFS protocol has been refined to increase platform inde-
pendence, to improve performance over wide area networks such as the Internet,
and to add strong, modular security features. Most implementations also include
diagnostic utilities to help debug configuration and performance problems.

NFS is a network protocol, so in theory it could be implemented in user space just
like most other network services. However, the traditional approach has been for
parts of the NFS implementation (on both server and client sides) to live inside
the kernel, mostly to improve performance. This general pattern continues even
on Linux, where locking functions and certain system calls have proved difficult
to export to user space. Fortunately, the kernel-resident parts of NFS need no con-
figuration and are largely transparent to administrators.

NFS is not an off-the-shelf solution for all file sharing problems. High availability
can only be achieved with warm standbys, but NFS has no built-in provisions for
synchronizing with backup servers. The sudden disappearance of an NFS server
from the network can result in clients holding stale file handles that can be cleaned
up only with a reboot. Strong security is possible but is overly complex. Despite
these drawbacks, NFS remains the most common choice for UNIX and Linux file
sharing on a LAN.

Protocol versions and history
The first public release of the NFS protocol was version 2 in 1989. The original pro-
tocol made some expensive tradeoffs to favor consistency over performance and was
quickly replaced. It’s highly unlikely that you’ll encounter this version in use today.

NFS version 3, which dates from the early 1990s, eliminates this bottleneck with a
coherency scheme that permits asynchronous writes. It also updates several other
aspects of the protocol that were found to have caused performance problems, and
it improves the handling of large files. The net result is that NFS version 3 is quite
a bit faster than version 2.

NFS version 4, dating from 2003 but not used widely until later in that decade, is
a major overhaul that includes many new fixes and features. Highlighted enhance-
ments include

•	 Compatibility and cooperation with firewalls and NAT devices
•	 Integration of the lock and mount protocols into the core NFS protocol
•	 Stateful operation
•	 Strong, modular security
•	 Support for replication and migration

	 The NFS approach	 795

N
FS

•	 Support for both UNIX and Windows clients
•	 Access control lists (ACLs)
•	 Support for Unicode filenames
•	 Good performance even on low-bandwidth connections

The various NFS protocol versions cannot talk to one another, but NFS servers (in-
cluding those on all our example systems) typically implement all three versions. In
practice, all combinations of NFS clients and servers can interoperate with some
version of the protocol. Always use the V4 protocol if both sides support it.

NFS remains actively developed and in widespread use. Version 4.2, written by some
of the original stakeholders from Sun’s heyday, reached RFC draft status in early
2015. The Elastic File System service from AWS, which became generally available
in mid-2016, adds NFSv4.1 filesystems for use by EC2 instances.

Although V4 is a significant step forward in many ways, it hasn’t much altered the
process of configuring and administering NFS. In some ways this is a feature; for
example, you still use the same configuration files and commands to administer
all versions of NFS. In other ways it’s a problem; some aspects of the configuration
process feel jury-rigged (particularly on FreeBSD), and some options have become
ambiguous or overloaded, with different meanings or configuration formats de-
pending on which version of NFS you are using.

Remote procedure calls
When Sun developed the first versions of NFS in the 1980s, they realized that many
of the network-related problems that needed solving for NFS would apply to other
network-based services, too. They developed a more general framework for remote
procedure calls known as RPC or SunRPC, and built NFS on top of that. This work
opened the door for applications of all kinds to run procedures on remote systems
as if they were being run locally.

Sun’s RPC system was primitive and somewhat hackish; far better systems exist
today to fill this need.1 Nevertheless, NFS still relies on Sun-style RPCs for much
of its functionality. Operations that read and write files, mount filesystems, access
file metadata, and check file permissions are all implemented as RPCs. The NFS
protocol specification is written generically, so a distinct RPC layer is not techni-
cally required. However, we are aware of no NFS implementations that stray from
the original architecture in this regard.

Transport protocols
NFS version 2 originally used UDP because that was what performed best on the
LANs and computers of the 1980s. Although NFS does its own packet sequence
reassembly and error checking, UDP and NFS both lack the congestion control al-
gorithms that are essential for good performance on a large IP network.

	 1.	 As do infinitely more horrifying monstrosities than SunRPC; check out SOAP.

796	 Chapter 21	 The Network File System	

To remedy these problems (and others), NFS migrated to a choice of UDP or TCP
in version 3, and to TCP only in version 4.2 The TCP option was first explored as
a way to help NFS work through routers and over the Internet. Over time, most
of the original reasons for preferring UDP over TCP have evaporated in the warm
light of fast CPUs, cheap memory, and high-speed networks.

State
A client must explicitly mount an NFS filesystem before using it, just as a client
must mount a filesystem stored on a local disk. However, NFS versions 2 and 3 are
stateless, and the server does not keep track of which clients have mounted each
filesystem. Instead, the server simply discloses a secret “cookie” at the conclusion
of a successful mount negotiation. The cookie identifies the mounted directory to
the NFS server and so opens a way for the client to access its contents. Cookies
persist between reboots of the server, so a crash does not leave the client in an un-
recoverable muddle. The client can simply wait until the server is available again
and resubmit the request.

NFSv4, on the other hand, is a stateful protocol: both client and server maintain
information about open files and locks. When the server fails, the clients assist in
the recovery process by sending the server their pre-crash state information. A re-
turning server waits for a predefined grace period for former clients to report their
state information before it permits new operations and locks. The cookie manage-
ment of V2 and V3 no longer exists in NFSv4.

Filesystem exports
NFS servers maintain a list of directories (called “exports” or “shares”) that they
make available to clients over the network. By definition, all servers export at least
one directory. Clients can then mount these exports and add them to their fstab files.

In V2 and V3, each export is treated as an independent entity that is exported sepa-
rately. In the V4 specification, a server exports a single hierarchical pseudo-filesys-
tem that incorporates all its exported directories. Essentially, the pseudo-filesystem
is the server’s own filesystem namespace skeletonized to remove anything that is
not exported.

For example, consider the following list of directories, with the directories to be
exported in boldface:

/www/domain1
/www/domain2
/www/domain3
/var/logs/httpd
/var/spool

	 2.	 Technically, any transport protocol that implements congestion control can be used, but TCP is the
only reasonable choice today.

See page 768 for
more information
about the fstab file.

http://www/domain1
http://www/domain2
http://www/domain3

	 The NFS approach	 797

N
FS

In NFS version 3, each exported directory must be separately configured. Client
systems must execute three different mount requests to obtain access to all the
server’s exports.

In NFS version 4, however, the pseudo-filesystem bridges the disconnected por-
tions of the directory structure to create a single view for NFS clients. Rather than
requesting a separate mount for each of /www/domain1, /www/domain2, and
/var/logs/httpd, the client can simply mount the server’s entire pseudo-root di-
rectory and browse the hierarchy.

The directories that are not exported, /www/domain3 and /var/spool, do not ap-
pear during browsing. In addition, individual files contained in /, /var, /www, and
/var/logs are not visible to the client because the pseudo-filesystem portion of the
hierarchy includes only directories. Thus, the client view of the NFSv4-exported
filesystem is

/
├─ var
│ └─ logs
│ └─ httpd
└─ www
 ├─ domain1
 └─ domain2

The server specifies the root of the exported filesystems in a configuration file known
as the exports file, usually kept in /etc. Pure NFSv4 clients cannot peruse the list of
mounts on a remote server. Instead, they simply mount the pseudo-root and then
all available exports become accessible through that mount point.

That’s the story according to the RFC specification. In practice, the situation is some-
what fuzzy. The Solaris implementation conformed to this specification. Linux made
a halfhearted attempt at support for the pseudo-filesystem in the early NFSv4 code,
but later revised it to support the scheme more fully; today’s version appears to re-
spect the intent of the RFC. FreeBSD does not implement the pseudo-filesystem as
described by the RFC. The FreeBSD export semantics are essentially the same as in
version 3; all subdirectories within an export are available to clients.

File locking
File locking (as implemented by the flock, lockf, or fcntl systems calls) has been
a sore point on UNIX systems for a long time. On local filesystems, it has been
known to work less than perfectly. In the context of NFS, the ground is shakier
still. By design, early versions of NFS servers are stateless: they have no idea which
machines are using any given file. However, to implement locking, state informa-
tion is needed. What to do?

The traditional answer was to implement file locking separately from NFS. In
most systems, two distinct daemons, lockd and statd, attempted to make a go of

798	 Chapter 21	 The Network File System	

it. Unfortunately, the task was difficult for a variety of subtle reasons, and NFS file
locking under lockd and statd is generally unreliable.

NFSv4 removed the need for lockd and statd by folding locking (and hence, state-
fulness and all that it implies) into the core protocol. This change introduces signif-
icant complexity but obviates many of the related problems of earlier NFS versions.
Unfortunately, separate lockds and statds are still needed to support V2 and V3
clients if your site has them. Our example systems all ship with the earlier versions
of NFS enabled, so the separate daemons still run by default.

Security concerns
In many ways, NFS V2 and V3 are poster children for everything that is or ever has
been wrong with UNIX and Linux security. The protocol was originally designed
with essentially no concern for security, and convenience has its price. NFSv4 has
addressed the security concerns of earlier versions by mandating support for strong
security services and establishing better means of user identification.

All versions of the NFS protocol are intended to be security-mechanism indepen-
dent, and most servers support multiple “flavors” of security. A few of the common
flavors include

•	 AUTH_NONE – no authentication
•	 AUTH_SYS – UNIX-style user and group access control
•	 RPCSEC_GSS – a stronger flavor that enables flexible security schemes

Historically, most sites used AUTH_SYS authentication, which depends on UNIX
user and group identifiers. In this scheme, the client simply sends the local UID and
GID of the user requesting access to the server. The server compares the values to
those from its own /etc/passwd file3 and determines whether the user should have
access. Thus, if users mary and bob share the same UID on two different clients,
they will have access to each other’s files. Furthermore, users that have root access
on a system can su to whatever UID they wish; the server will then give them ac-
cess to the corresponding user’s files.

Enforcing passwd file consistency among systems is essential in environments that
use AUTH_SYS. But even this is only a security fig leaf; any rogue host (or heaven
forbid, Windows machine) can “authenticate” its users however it likes and there-
by subvert NFS security.

To prevent such problems, most sites can use a more robust security mechanism
such as Kerberos in combination with the NFS RPCSEC_GSS layer. This configu-
ration requires both the client and server to participate in a Kerberos realm. The
Kerberos realm authenticates clients centrally, avoiding the problems of self-iden-
tification described above. Kerberos can also provide strong encryption and guar-
anteed integrity for files transferred over the network. All protocol-conformant
NFS version 4 systems must implement RPCSEC_GSS, but it’s optional in version 3.

	 3.	 Or its network database equivalent, such as NIS or LDAP.

See page 1015 for
more information
about Kerberos.

	 The NFS approach	 799

N
FS

NFS version 4 requires TCP as a transport protocol and communicates over port
2049. Since V4 does not rely on any other ports, opening access through a firewall
is as simple as opening TCP port 2049. As with all access list configurations, be
sure to specify source and destination addresses in addition to the port. If your site
doesn’t need to provide NFS services to hosts on the Internet, block access through
the firewall or use a local packet filter.

File service over wide area networks with NFSv2 and V3 is not recommended be-
cause of the long history of bugs in the RPC protocols and the lack of strong secu-
rity mechanisms. Administrators of NFS version 3 servers should block access to
TCP and UDP ports 2049 and also the portmap port, 111.

Given the myriad and obvious shortcomings of AUTH_SYS security, we strongly
recommend discontinuing all use of NFSv3. If you have ancient operating systems
that can’t be updated to NFSv4 compatibility, at least implement packet filters to
restrict network connectivity.

Identity mapping in version 4
Before launching into the following discussion, we should warn you that we con-
sider all implementations of AUTH_SYS security to be more or less broken for se-
curity purposes. We strongly suggest Kerberos and RPCSEC_GSS authentication;
it’s the only reasonable choice.

As discussed in Chapter 8, User Management, UNIX operating systems identify
users through a collection of UIDs and GIDs in the local passwd file or an LDAP
directory. NFS version 4, on the other hand, represents users and groups as string
identifiers of the form user@nfs-domain and group@nfs-domain. NFSv4 clients and
servers run an identity mapping daemon that translates UNIX identifier values to
strings that match this format.

When a V4 client performs operations that return identities, such as listing the
owners of a set of files with ls -l (the underlying operation is a series of stat calls),
the server’s identity mapping daemon uses its local passwd file to convert the UID
and GID of each file object to a string, such as ben@admin.com. The client’s identity
mapper then reverses the process, converting ben@admin.com into local UID and
GID values, which may or may not be the same as the server’s. If a string value does
not match any local identity, the nobody user account is assigned as a placeholder.

At this point, the remote filesystem call (stat) has completed and returned UID and
GID values to its caller (here, the ls command). Since ls was called with the -l op-
tion, it needs to display text names instead of numbers. So, ls in turn retranslates
the IDs back to textual names using the getpwuid and getgrgid library routines.
These routines once again consult the passwd file or its network database equiva-
lent. What a long, strange trip it’s been.

Confusingly, the identity mapper is used only when retrieving and setting file at-
tributes, typically ownerships. Identity mapping plays no role in authentication or

See page 1027 for
more information
about firewalls.

mailto:ben@admin.com
mailto:ben@admin.com

800	 Chapter 21	 The Network File System	

access control, all of which is handled in the traditional form by RPC. The identity
mapper may do a better job of mapping than the underlying NFS protocol, caus-
ing the apparent file permissions to conflict with the permissions the NFS server
will actually enforce.

Consider, for example, the following commands on an NFSv4 client:

[ben@nfs-client]$ id ben
uid=1000(ben) gid=1000(ben) groups=1000(ben)

[ben@nfs-client]$ id john
uid=1010(john) gid=1010(john) groups=1010(john)

[ben@nfs-client]$ ls -ld ben
drwxr-xr-x	 2	 john root	 4096	 May 27 16:42	 ben

[ben@nfs-client]$ touch ben/file
[ben@nfs-client]$ ls -l ben/file
-rw-rw-r-- 1	 john nfsnobody	 0	 May 27 17:07	 ben/file

First, ben is shown to have UID 1000 and john to have UID 1010. An NFS-exported
home directory called ben appears to have permissions 755 and is owned by john.
However, ben is able to create a file in the directory even though the ls -l output
indicates that he lacks write permission.

On the server, john has UID 1000. Since john has UID 1010 on the client, the iden-
tity mapper performs UID conversion as described above, with the result that “john”
appears to be the owner of the directory. However, the identity mapping daemon
plays no role in access control. For the file creation operation, ben’s UID of 1000
is sent directly to the server, where it is interpreted as john’s UID and permission
is granted.

How do you know which operations are identity mapped and which are not? It’s
simple: whenever a UID or GID appears in the filesystem API (as with stat or chown),
it is mapped. Whenever the user’s own UIDs or GIDs are used implicitly for access
control, they are routed through the designated authentication system.

For this reason, enforcing consistent passwd files or relying on LDAP is essential
for users of AUTH_SYS “security.”

Unfortunately for administrators, identity mapping daemons are not standardized
across systems, so their configuration processes may be different. Specifics for our
example systems are covered on page 810.

Root access and the nobody account
Although users should generally be given identical privileges wherever they go, it’s
traditional to prevent root from running rampant on NFS-mounted filesystems. By
default, the NFS server intercepts incoming requests made on behalf of UID 0 and
changes them to look as if they came from some other user. This modification is

	 Server-side NFS	 801

N
FS

called “squashing root.” The root account is not entirely shut out, but it is limited
to the abilities of a normal user.

A placeholder account named “nobody” is defined specifically to be the pseudo-us-
er as whom a remote root masquerades on an NFS server. The traditional UID for
nobody is 65,534 (the 16-bit twos-complement equivalent of UID -2).4 You can
change the default UID and GID mappings for root in the exports file. Some sys-
tems have an all_squash option to map all client UIDs to the same pseudo-user
UID on the server. This configuration eliminates all distinctions among users and
creates a sort of public-access filesystem.

The intent behind these precautions is nice, but their ultimate value is not as great
as it might seem. Remember that root on an NFS client can su to whatever UID it
wants, so user files are never really protected. The only real effect of root squash-
ing is to prevent access to files that are owned by root and not readable or writable
by the world.

Performance considerations in version 4
NFSv4 was designed to achieve good performance over wide area networks. Most
WANs have higher latency and lower bandwidth than those of LANs. NFS takes
aim at these problems with the following refinements:

•	 An RPC called COMPOUND clumps multiple file operations into one
request, reducing the overhead and latency incurred from multiple re-
mote procedure calls.

•	 A delegation mechanism allows client-side caching of files. Clients can
maintain local control over files, including those open for writing.

These features are part of the core NFS protocol and do not require much attention
from system administrators.

21.3	 Server-side NFS
An NFS server is said to “export” a directory when it makes the directory avail-
able for use by other machines. Exports are presented to NFSv4 clients as a single
filesystem hierarchy through the pseudo-filesystem.

In NFS version 3, the process used by clients to mount a filesystem is separate from
the process used to access files. The operations use separate protocols, and the re-
quests are served by different daemons: mountd for mount discovery and requests,
and nfsd for actual file service. On some systems, these daemons are called rpc.nfsd
and rpc.mountd as a reminder that they rely on RPC as an underlying mechanism

	 4.	 Although the Red Hat NFS server defaults to UID -2, the nobody account in the passwd file uses
UID 99. You can leave things as they are, add a passwd entry for UID -2, or change anonuid and
anongid to 99 if you wish. It really doesn’t matter. Some systems also have an nfsnobody account.

802	 Chapter 21	 The Network File System	

(and hence require the portmap daemon to be running). In this chapter, we omit
the rpc prefix for readability.

NFSv4 does not use mountd at all. If you absolutely must run old clients that only
support NFSv3, mountd must remain active.

Both mountd and nfsd should start when the system boots, and both should re-
main running as long as the system is up. Both Linux and FreeBSD automatically
run the daemons when you enable NFS service.

NFS uses a single access-control database that tells which filesystems should be
exported and which clients can mount them. The operative copy of this database
is usually kept in a file called xtab and also in tables internal to the kernel. xtab is
a binary file maintained for use by the server daemon.

Maintaining a binary file by hand is not much fun, so most systems assume that you
would rather maintain a text file, usually /etc/exports, that enumerates the system’s
exported directories and their access settings. The system can then consult this text
file at boot time to automatically construct the xtab file.

/etc/exports is the canonical, human-readable list of exported directories. Its con-
tents are read by exportfs -a on Linux, and at a simple restart of the NFS server
on FreeBSD. Hence, when you edit /etc/exports, run exportfs -a to activate your
changes on Linux, or run service nfsd restart on FreeBSD. If you serve V3 clients
from FreeBSD, restart mountd as well (service mountd reload).

NFS deals with the logical layer of the filesystem. Any directory can be exported; it
doesn’t have to be a mount point or the root of a physical filesystem. However, for
security, NFS does pay attention to the boundaries between filesystems and does
require each device to be exported separately. For example, on a machine that has
set up /chimchim/users as a separate partition, you could export /chimchim with-
out implicitly exporting /chimchim/users.

Clients are usually allowed to mount subdirectories of an exported directory if they
wish, although the protocol does not require this feature. For example, if a server
exports /chimchim/users, a client could mount only /chimchim/users/joe and
ignore the rest of the users directory.

Linux exports
On Linux, the exports file consists of a list of exported directories in the leftmost
column followed by the hosts that are allowed to access them and associated options
on the right. Whitespace separates the filesystem from the list of clients, and each
client is followed immediately by a parenthesized list of comma-separated options.
Lines can be continued with a backslash. For example, the line

/home	 *.users.admin.com(rw) 172.17.0.0/24(ro)

lets /home be mounted read/write by all machines in the users.admin.com domain,
and read-only by all machines on the 172.17.0.0/24 class C network. If a system in

http://*.users.admin.com(
http://users.admin.com

	 Server-side NFS	 803

N
FS

the users.admin.com domain resides on the 172.17.0.0/24 network, that client will
be granted read-only access. The least privileged rule wins.

Filesystems listed in the exports file without a specific set of hosts are usually
mountable by all machines. That’s a sizable security hole.

The same sizable security hole can be created accidentally by a misplaced space.
For example, the line

/home	 *.users.admin.com (rw)

permits any host read/write access except for *.users.admin.com, which has read-on-
ly permission, the default. Oops.

There is unfortunately no way to list multiple client specifications for a single set
of options. You must repeat the options for all desired clients. Table 21.1 lists the
types of client specifications that can appear in the exports file.

Table 21.1	 Client specifications in the Linux /etc/exports file

Type Syntax Meaning

Hostname hostname Individual hosts
Netgroup @groupname NIS netgroups (infrequently used)
Wild cards * and ? FQDNs a with wild cards; * will not match a dot
IPv4 networks ipaddr/mask CIDR-style specifications (e.g., 128.138.92.128/25)
IPv6 networks ipaddr/mask IPv6 addresses with CIDR notation (2001:db8::/32)

a.	 Fully qualified domain names

Table 21.2 on the next page shows the most commonly used export options un-
derstood by Linux.

The subtree_check option (the default) verifies that every file accessed by a client
lies within an exported subdirectory. If you turn off this option, only the fact that
the file is within an exported filesystem is verified. Subtree checking can cause
occasional problems when a requested file is renamed while the client has the file
open. If you anticipate many such situations, consider setting no_subtree_check.

async tells the NFS server to ignore the protocol spec and reply to requests be-
fore they are written to disk. This might result in a slight performance boost, but
might also result in corrupted data if the server restarts unexpectedly. The default
behavior is sync.

The replicas option is merely a convenience that helps clients discover mirrors if
the server goes off-line. The actual replication of the filesystem must be handled
out of band through some other mechanism such as rsync or DRBD (replication
software for Linux). The replica referral feature was added in NFSv4.1.

http://users.admin.com
http://*.users.admin.com
http://*.users.admin.com

804	 Chapter 21	 The Network File System	

Table 21.2	 Common export options in Linux

Option Description

ro Exports read-only
rw Exports for reading and writing (the default)
rw=list Exports read-mostly. The list enumerates the hosts allowed to

mount for writing; all others must mount read-only.
root_squash Maps (“squashes”) UID 0 and GID 0 to the values specified by

anonuid and anongid. This is the default.
no_root_squash Allows normal access by root. Dangerous.
all_squash Maps all UIDs and GIDs to their anonymous versions a

anonuid=xxx Specifies the UID to which remote roots should be squashed
anongid=xxx Specifies the GID to which remote roots should be squashed
noaccess Blocks access to this dir and subdirs (use with nested exports)
wdelay Delays writes in hopes of coalescing multiple updates
no_wdelay Writes data to disk as soon as possible
async Makes server reply to write requests before actual disk write
nohide Reveals filesystems mounted within exported file trees
hide Is the opposite of nohide
subtree_check Verifies that each requested file is within an exported subtree
no_subtree_check Verifies only that file requests refer to an exported filesystem
secure_locks Requires authorization for all lock requests
insecure_locks Specifies less stringent locking criteria (supports older clients)
sec=flavor Lists security methods for the exported directory b

pnfs Enables V4.1 parallel NFS extensions for direct client access
replicas=path@host Sends clients a list of alternative locations for this export

a.	 This option is useful for supporting PCs and other untrusted single-user hosts.
b.	Values include sys (UNIX authentication, the default), dh (DES, not recommended), krb5 (Kerberos au-

thentication), krb5i (Kerberos authentication and integrity), krb5p (Kerberos authentication, integrity,
and privacy), and none (anonymous access, not recommended).

Early versions of the Linux NFSv4 implementation required administrators to des-
ignate a pseudo-filesystem root with the fsid=0 flag in /etc/exports. This is no lon-
ger required. To create a pseudo-fileystem as described by the RFC, just list exports
as normal and, from an NFSv4 client, mount / on the server. The subdirectories
under the mount point will be the exported filesystems. If you do designate an ex-
port as fsid=0, that filesystem and all its subdirectories are exported for V4 clients.

FreeBSD exports
In keeping with longstanding UNIX tradition, the exports format used on FreeBSD
is entirely different from that of Linux. Each line in the file (except for lines that start
with #, which are comments) is composed of three components: a list of directories

	 Server-side NFS	 805

N
FS

to export, the options to apply to those exports, and the set of hosts to which the
export applies. As on Linux, a backslash denotes a line continuation.

/var/www -ro,alldirs www*.admin.com

The line above exports /var/www and all of its subdirectories read-only to all hosts
matching the pattern www*.admin.com. To implement different mount options for
different clients, simply repeat the line and specify different values. For example,

/var/www -alldirs,sec=krb5p -network 2001:db8::/32

allows read/write access for all hosts in the named IPv6 network. Kerberos is used
for authentication, integrity, and privacy.

On FreeBSD, exports are per server-filesystem. Multiple exports to the same set of
client hosts from the same filesystem must be named on the same line. For example,

/var/www1 /var/www2 -ro,alldirs www*.admin.com

It would be an error for www1 and www2 to be on separate lines with the same host
designations, assuming that www1 and www2 reside within the same filesystem.

To enable NFSv4 you must designate a root by prefixing a line with V4:, for example,

V4: /exports -sec=krb5p,krb5i,krb5,sys -network *.admin.com

Only one effective V4 root path is allowed. However, it can be specified more than
once with different options for different clients. The root can appear anywhere in
the exports file.

The V4: line does not actually export any filesystems. It simply chooses a base di-
rectory for NFSv4 clients to mount. To activate it, list an export within the root:

/exports/www -network *.admin.com

Despite the V4 root designation, the FreeBSD NFS server does not implement the
pseudo-filesystem as described by the RFC. When a V4 root is designated and at
least one export is present under that root, a V4 client can mount the root and ac-
cess all of the files and directories within it regardless of their export status. This
information is not clear in the exports(5) documentation, and the ambiguity can
be quite dangerous. Do not designate the server’s own filesystem root (/) as the V4
root; otherwise, the server’s entire root filesystem will be available to clients.

Because of the V4 root, V2 and V3 clients have a different path to mount than V4
clients have. For example, given the following exports

/exports/www -network 10.0.0.0 -mask 255.255.255.0
V4: /exports -network 10.0.0.0 -mask 255.255.255.0

a V2 or V3 client in the 10.0.0.0/24 network mounts /exports/www, but because
of the pseudo-filesystem designation on /exports, a V4 client must mount the ex-
port as /www. Alternatively, a V4 client can mount / and access the www directory
under that mount point.

http://www-ro,alldirswww*.admin.com
http://www*.admin.com
http://www1/var/www2-ro,alldirswww*.admin.com
http://*.admin.com
http://www-network*.admin.com

806	 Chapter 21	 The Network File System	

Use network ranges for best performance when exporting to a large number of
clients. For IPv4 you can use CIDR notation or a subnet mask. For IPv6 you must
use CIDR; the -mask option is not permitted. For example:

/var/www -network 10.0.0.0 -mask 255.255.255.0
/var/www -network 10.0.0.0/24
/var/www -network 2001:db8::/32

FreeBSD has fewer export options than Linux affords. Table 21.3 summarizes them.

Table 21.3	 Common export options in FreeBSD

Option Description

alldirs Allows mounts at any point in the filesystem
ro Exports read-only (read/write is the default)
o Synonym for ro; exports read-only
maproot=xxx The username or UID to map for access from a remote root user
mapall=xxx Maps all client users to the specified user (like maproot)
sec=flavor Specifies allowable security methods a

a.	 Specify multiple flavors in a comma-separated list, in order of preference. Possible values are
sys (UNIX authentication, the default), krb5 (Kerberos authentication), krb5i (Kerberos au-
thentication and integrity), krb5p (Kerberos authentication, integrity, and privacy), and none
(anonymous access, not recommended).

nfsd: serve files
Once a client’s mount request has been validated, the client can request various
filesystem operations. These requests are handled on the server side by nfsd, the
NFS operations daemon.5 nfsd does not need to run on an NFS client machine
unless the client exports filesystems of its own.

nfsd has no configuration file; options are passed as command-line arguments. You
start and stop nfsd with your system’s standard service mechanisms, i.e., systemctl
on Linux systems running systemd, and the service command on FreeBSD. Table
21.4 shows which file and option to adjust in order to change the arguments passed
to nfsd.

On Linux systems, run systemctl restart nfs-config.service nfs-server.service
to enable nfsd configuration changes. In FreeBSD, use service nfsd restart and
service mountd restart.

The -N option to nfsd disables the specified version of NFS. For example, to dis-
able versions 2 and 3, add -N 2 -N 3 to the appropriate file and option specified

	 5.	 In reality, nfsd simply makes a nonreturning system call to NFS server code embedded in the kernel.

 	

  

	

http://www-network10.0.0.0
http://www-network10.0.0.0/24/var/www
http://www-network10.0.0.0/24/var/www

	 Client-side NFS	 807

N
FS

in Table 21.4 and restart the service. This is a good idea if you are sure you don’t
need to support older clients.

nfsd takes a numeric argument that specifies how many server threads to fork. Se-
lecting the appropriate number of nfsds is important and is unfortunately something
of a black art. If the number is too low or too high, NFS performance can suffer.

The optimal number of nfsd threads depends on the operating system and the
hardware in use. If you notice that ps usually shows the nfsds in state D (uninter-
ruptible sleep) and that some idle CPU is available, consider increasing the number
of threads. If you find the load average (as reported by uptime) rising as you add
nfsds, you’ve gone too far; back off a bit from that threshold.

Run nfsstat regularly to check for performance problems that might be associated
with the number of nfsd threads. See page 811 for more details on nfsstat.

On FreeBSD, the --minthreads and --maxthreads options to nfsd enable automatic
management of the number of threads within the specified bounds. On FreeBSD, see
man rc.conf and refer to the options prefixed with nfs_ for more NFS server settings.

21.4	 Client-side NFS
NFS filesystems are mounted in much the same way as local disk filesystems. The
mount command understands the notation hostname:directory to mean the path
directory on the host hostname. As with local filesystems, mount maps the remote
directory on the remote host into a directory within the local file tree. After the
mount completes, you access an NFS-mounted filesystem just like a local filesys-
tem. The mount command and its associated NFS extensions represent the most
significant concerns to the system administrator of an NFS client.

Before an NFS filesystem can be mounted, it must be properly exported (see page
801). On an NFSv3 client, you can verify that a server has properly exported its
filesystems by running the showmount command:

$ showmount -e monk
Export list for monk:
/home/ben harp.atrust.com

 	

  

	

	 	

Table 21.4	 Where to set startup options for nfsd

System Config file Option to set

Ubuntu /etc/default/nfs-kernel-server RPCNFSDOPTS a

Red Hat /etc/sysconfig/nfs RPCNFSDARGS
FreeBSD /etc/rc.conf nfs_server_flags

a.	 Some versions of the nfs-kernel-server package incorrectly suggest that you
edit RPCMOUNTDOPTS to set some nfsd options. Do not be fooled.

http://harp.atrust.com

808	 Chapter 21	 The Network File System	

This example reports that the directory /home/ben on the server monk has been
exported to the client system harp.atrust.com.

If an NFS mount is not working, first verify that the filesystems have been prop-
erly exported on the server. Make sure that after updating the server’s exports file,
you ran exportfs -a (Linux) or service nfsd restart and service mountd reload
(FreeBSD). Next, recheck the showmount output.

If the directory is properly exported on the server but showmount returns an error
or an empty list, double-check that all the necessary processes are running on the
server (portmap and nfsd; add mountd, statd, and lockd for V3). Make sure the
hosts.allow and hosts.deny files allow access to those daemons and that you are
on the right client system.

The path information displayed by showmount (e.g., /home/ben above) is valid
only for NFS version 2 and 3 servers. NFS version 4 servers export a single unified
pseudo-filesystem and do not use the mount protocol. The traditional NFS con-
cept of separate mount points doesn’t jibe with version 4’s model, so showmount
simply doesn’t apply to the V4 world.

Unfortunately, NFSv4 has no good replacement for showmount. On the server,
the command exportfs -v shows the existing exports, but of course this works only
locally. If you don’t have direct access to the server, you can try to mount the serv-
er’s V4 root and traverse the directory structure manually. You can also mount any
subdirectory of the exported root filesystem.

To actually mount the filesystem in versions 2 and 3, you’d use a command such as

$ sudo mount -o rw,hard,intr,bg server:/home/ben /nfs/ben

To accomplish the same under version 4 on a Linux system, you’d type

$ sudo mount -o rw,hard,intr,bg server:/ /nfs/ben

In this case, the options after -o specify that the filesystem be mounted read/write
(rw), that operations be interruptible (intr), and that retries be done in the back-
ground (bg). Table 21.5 introduces the most common Linux mount options.

The client side of NFS usually tries to autonegotiate a suitable version of the proto-
col. You can specify a specific version by passing -o nfsvers=n.

On FreeBSD, mount is a wrapper that calls /sbin/mount_nfs for NFS mounts. This
wrapper sets NFS options and invokes the nmount system call. To mount a version
4 server on FreeBSD, type:

$ sudo mount -t nfs -o nfsv4 server:/ /mnt

If you don’t specify a version explicitly, mount negotiates one automatically in de-
scending order. In fact, a simple mount server:/ /mnt does the trick in this case be-
cause mount can infer from the format that the filesystem you’re referring to is NFS.

http://harp.atrust.com

	 Client-side NFS	 809

N
FS

Table 21.5	 NFS mount flags and options for Linux

Flag Description

rw Mounts the filesystem read/write (must be exported that way)
ro Mounts the filesystem read-only
bg If the mount fails (server doesn’t respond), keeps trying it in the

background and continues with other mount requests
hard If a server goes down, makes operations that access it block until the

server comes back up
soft If a server goes down, makes operations that access it fail and return

an error, to avoid processes hanging on inessential mounts
intr Allows users to interrupt blocked operations (they return an error)
nointr Does not allow user interrupts
retrans=n Specifies the number of times to repeat a request before returning

an error on a soft-mounted filesystem
timeo=n Sets the timeout period (in tenths of a second) for requests
rsize=n Sets the read buffer size to n bytes
wsize=n Sets the write buffer size to n bytes
sec=flavor Specifies the security flavor
nfsvers=n  Sets the NFS protocol version
proto=proto Selects a transport protocol; must be tcp for NFS version 4

Filesystems mounted hard (the default) cause processes to hang when their servers
go down. This behavior is particularly bothersome when the processes in question
are standard daemons, so we do not recommend serving critical system binaries
over NFS. In general, the intr option reduces the number of NFS-related head-
aches.6 Automount solutions such as autofs, discussed starting on page 812, also
prescribe some remedies for mounting ailments.

The read and write buffer sizes are negotiated to the highest value supported by both
client and server. You can set them to any value between 1KiB and 1MiB.

You can see the available space on an NFS mount with df, just as you would on a
local filesystem:

$ df /nfs/ben
Filesystem 1k-blocks Used Available Use% Mounted on
leopard:/home/ben 17212156 1694128 14643692 11% /nfs/ben

umount works on NFS filesystems just like it does on local filesystems. If the NFS
filesystem is in use when you try to unmount it, you get an error such as

umount: /nfs/ben: device is busy

	 6.	 Jeff Forys, one of our technical reviewers, remarked, “Most mounts should use hard, intr, and bg, be-
cause these options best preserve NFS’s original design goals. soft is an abomination, an ugly Satanic
hack! If the user wants to interrupt, cool. Otherwise, wait for the server and all will eventually be well
again with no data lost.”

810	 Chapter 21	 The Network File System	

Use fuser or lsof to find processes with open files on the filesystem. Kill them, or
in the case of shells, change directories. If all else fails or your server is down, try
running umount -f to force the filesystem to be unmounted.

Mounting remote filesystems at boot time
You can use the mount command to establish temporary network mounts, but you
should list mounts that are part of a system’s permanent configuration in /etc/fstab
so that they are mounted automatically at boot time. Alternatively, mounts can be
handled by an automatic mounting service such as autofs.

The following fstab entries mount the /home filesystem from the server monk:

filesystem mountpoint fstype flags dump fsck
monk:/home /nfs/home nfs rw,bg,intr,hard,nodev,nosuid 0 0

You can make your changes take effect immediately (without rebooting) by run-
ning mount -a -t nfs.

The flags field of /etc/fstab specifies options for NFS mounts; these options are
the same ones you would specify on the mount command line.

Restricting exports to privileged ports
NFS clients are free to use any TCP or UDP source port they like when connect-
ing to an NFS server. However, some servers may insist that requests come from a
privileged port (a port numbered lower than 1,024). Others allow this behavior to
be set as an option. The use of privileged ports delivers little actual security.

Nevertheless, most NFS clients adopt the traditional (and still recommended) ap-
proach of defaulting to a privileged port to avert the potential for conflict. Under
Linux, you can accept mounts from unprivileged ports with the insecure export
option.

21.5	 Identity mapping for NFS version 4
We introduced the general ideas behind NFSv4’s identity mapping system starting
on page 799. In this section we discuss the administrative aspects of the identity
mapping daemon.

All systems that participate in an NFSv4 network should have the same NFS do-
main. In most cases, it’s reasonable to use your DNS domain as the NFS domain.
For example, admin.com is a straightforward choice of NFS domain for the server
ulsah.admin.com. Clients in subdomains (e.g., books.admin.com) may or may not
want to use the same domain name (e.g., admin.com) to facilitate NFS communication.

Unfortunately for administrators, NFSv4 UID mapping has no standard imple-
mentation, so the details of administration differ slightly among systems. Table

See page 768 for
more information
about the fstab file.

http://admin.com
http://ulsah.admin.com
http://books.admin.com
http://admin.com

N
FS

	 nfsstat: dump NFS statistics	 811

21.6 names the mapping daemons on Linux and FreeBSD and notes the location
of their configuration files.

Table 21.6	 NFSv4 identity mapping daemons and their configuration files

System Daemon Configuration file man page

Linux /usr/sbin/rpc.idmapd /etc/idmapd.conf nfsidmap(5)
FreeBSD /usr/sbin/nfsuserd nfsuserd_flags in /etc/rc.conf idmap(8)

Other than having their NFS domains set, identity mapping services require little
assistance from administrators. The daemons are started at boot time by the same
scripts that manage other NFS daemons. After making configuration changes, you’ll
need to restart the identity mapper daemon. Options such as verbose logging and
alternative management of the nobody account are usually available.

21.6	 nfsstat: dump NFS statistics
nfsstat displays various statistics maintained by the NFS system. nfsstat -s shows
server-side statistics, and nfsstat -c shows information for client-side operations.
By default, nfsstat shows statistics for all protocol versions. For example:

$ nfsstat -c

Client rpc:
 calls badcalls retrans badxid timeout wait newcred timers
 64235 1595 0 3 1592 0 0 886

Client nfs:
 calls badcalls nclget nclsleep
 62613 3 62643 0
 null getattr setattr readlink lookup root read
 0% 34% 0% 21% 30% 0% 2%
 write wrcache create remove rename link symlink
 3% 0% 0% 0% 0% 0% 0%
 mkdir readdir rmdir fsstat
 0% 6% 0% 0%

This example is from a relatively healthy NFS client. If more than 3% of RPC calls
time out, it’s likely that your NFS server or network has a problem. You can usually
discover the cause by checking the badxid field. If badxid is near 0 with timeouts
greater than 3%, packets to and from the server are getting lost on the network.
You might be able to solve this problem by lowering the rsize and wsize mount
parameters (read and write block sizes).

If badxid is nearly as high as timeout, then the server is responding, but too slowly.
Either replace the server or increase the timeo mount parameter.

812	 Chapter 21	 The Network File System	

Running nfsstat and netstat occasionally and becoming familiar with their output
helps you discover NFS problems before your users do. We suggest including this
data as part of your site’s monitoring and alerting system.

21.7	 Dedicated NFS file servers
Fast, reliable file service is an essential element of a production computing environ-
ment. Although you can certainly roll your own file servers from workstations and
off-the-shelf hard disks, doing so is often not the best-performing or easiest-to-ad-
minister solution (though it is usually the cheapest).

Dedicated NFS file server products have been on the market for many years. They
offer a host of potential advantages over the homebrew approach:

•	 They are optimized for file service and typically deliver the best possible
NFS performance.

•	 As storage requirements grow, they can scale smoothly to support tera-
bytes of storage and hundreds of users.

•	 They are more reliable than stand-alone boxes thanks to their simplified
software, redundant hardware, and use of disk mirroring.

•	 They usually handle file service for both UNIX and Windows clients. Most
even contain integrated HTTPS, FTP, and SFTP servers.

•	 They often include backup and checkpoint facilities that are superior to
those found on vanilla UNIX systems.

Some of our favorite dedicated NFS servers are made by NetApp. Their products run
the gamut from very small to very large, and their pricing is OK. EMC is another
player in the high-end server market. They make good products, but be prepared
for sticker shock and build up your tolerance for marketing buzzwords.

In an AWS environment, the Elastic File System service is a scalable NFSv4.1 serv-
er-as-a-service that exports filesystems to EC2 instances. Each filesystem can sup-
port multiple GiB/s throughput, depending upon the size of the filesystem. See
aws.amazon.com/efs for more information.

21.8	 Automatic mounting
Mounting filesystems at boot time by listing them in /etc/fstab can cause admin-
istrative headaches on large networks. First, it’s tedious to maintain the fstab file
on hundreds of machines, even with help from scripts and configuration manage-
ment systems. Each host may have slightly different needs and so require individ-
ual attention. Second, if shared filesystems are mounted from many different hosts,
clients become dependent on many different downstream servers. Chaos ensues

http://aws.amazon.com/efs

	 Automatic mounting	 813

N
FS

when one of those servers crashes. Every command that accesses that server’s
mount points will hang.

You can moderate these problems with an automounter, a type of daemon that
mounts filesystems when they are referenced and unmounts them when they are
no longer being used. In addition to deferring mounts until they are actually need-
ed, most automounters can also accept a list of “replicas” (identical backup copies)
for a filesystem. These backups let the network continue to function even when a
primary server becomes unavailable.

As described by Edward Tomasz Napierała, author of the FreeBSD automounter,
this magic requires the cooperation of several related pieces of software:

•	 autofs, a kernel-resident filesystem driver that watches a filesystem for
mount requests, pauses the calling program, and invokes the automount-
er to mount the target filesystem before returning control to the caller

•	 automountd and autounmountd, which read the administrative config-
uration and actually mount or unmount filesystems

•	 automount, an administrative utility

For the most part, automounters are transparent to users. Instead of mirroring an
actual filesystem, the automounter “makes up” a virtual filesystem hierarchy accord-
ing to the specifications given in its configuration files. When a user references a
directory within the automounter’s virtual filesystem, the automountd intercepts
the reference and mounts the actual filesystem the user is trying to reach. The NFS
filesystem is mounted beneath the autofs filesystem in normal UNIX fashion.

The idea of an automounter originally comes from Sun. The Linux version func-
tionally mimics that of Sun, although it is in fact an independent implementation.
FreeBSD maintains yet another implementation, having sacrificed a once widely
used automounter, amd, in the FreeBSD 10.1 release.

The various automount implementations understand three different kinds of con-
figuration files, referred to as “maps”: direct maps, indirect maps, and master maps.7
Direct and indirect maps contain information about the filesystems to be auto-
mounted. A master map lists the direct and indirect maps that automount should
pay attention to. Only one master map can be active at once; the default master
map is kept in /etc/auto_master on FreeBSD and in /etc/auto.master on Linux.

On most systems, automount is a stand-alone command that reads its configura-
tion files, sets up any necessary autofs mounts, and exits. Actual references to aut-
omounted filesystems are handled (through autofs) by a separate daemon process,
automountd. This daemon does its work silently and does not need additional
configuration.

On Linux systems, the daemon is called automount instead of automountd, and
the setup function is performed by a system startup script (systemd for modern

	 7.	 A direct map can also be managed as an NIS database or in an LDAP directory, but doing so is tricky.

814	 Chapter 21	 The Network File System	

distributions). Linux details are given on page 817. In the following discussion,
we refer to the setup command as automount and the daemon as automountd.

If you change the master map or one of the direct maps that it references, you must
rerun automount to pick up the changes. With the -v option, automount shows
you the adjustments it’s making to its configuration. You can add -L to achieve a
dry run effect that lets you examine your configuration and debug problems.

automount (autounmountd on FreeBSD) accepts a -t argument that tells how
long (in seconds) an automounted filesystem can remain unused before being
unmounted. The default is 300 seconds (10 minutes). Since an NFS mount whose
server has crashed can cause programs that touch it to hang, it’s good hygiene to
clean up automounts that are no longer in use; don’t raise the timeout too much.8

Indirect maps
Indirect maps automount several filesystems under a common directory. Howev-
er, the path of the directory is specified in the master map, not in the indirect map
itself. For example, an indirect map might look like this:

users	 harp:/harp/users
devel	 -soft harp:/harp/devel
info		 -ro harp:/harp/info

The first column names the subdirectory in which each automount should be in-
stalled, and subsequent items list the mount options and the NFS path of the filesys-
tem. This example (perhaps stored in /etc/auto.harp) tells automount that it can
mount the directories /harp/users, /harp/devel, and /harp/info from the server
harp, with info being mounted read-only and devel being mounted soft.

In this configuration, the paths on harp and the local host are the same. However,
this correspondence is not required.

Direct maps
Direct maps list filesystems that do not share a common prefix, such as /usr/src
and /cs/tools. A direct map (e.g., /etc/auto.direct) that described both of these
filesystems to automount might look something like this:

/usr/src		 harp:/usr/src
/cs/tools	 -ro monk:/cs/tools

Because they do not share a common parent directory, these automounts must
each be implemented with a separate autofs mount. This configuration requires
more overhead, but it has the added advantage that the mount point and directory
structure are always accessible to commands such as ls. Running ls on a directory
full of indirect mounts can be confusing to users because automount doesn’t show

	 8.	 The other side of this issue is the time required to mount a filesystem. System response is faster and
smoother if filesystems aren’t being continually remounted.

	 Automatic mounting	 815

N
FS

the subdirectories until their contents have been accessed. (ls doesn’t look inside
the automounted directories, so it does not cause them to be mounted.)

Master maps
A master map lists the direct and indirect maps that automount should pay atten-
tion to. For each indirect map, it also specifies the root directory to be used by the
mounts defined in the map.

A master map that referenced the direct and indirect maps shown in the previous
examples would look something like this:

# Directory	 Map
/harp		 /etc/auto.harp -proto=tcp
/-	 /etc/auto.direct

The first column is a local directory name for an indirect map or the special token
/- for a direct map. The second column identifies the file in which the map is stored.
You can have several maps of each type. When you specify mount options at the
end of a line, they set the defaults for all mounts within the map. Linux administra-
tors should always specify the -fstype=nfs4 mount flag for NFS version 4 servers.

On most systems, the default options set on a master map entry do not blend with
the options specified in the direct or indirect map to which it points. If a map en-
try has its own list of options, the defaults are ignored. Linux merges the two sets,
however. If the same option is specified in both places, the map entry’s value over-
rides the default.

Executable maps
If a map file is executable, it’s assumed to be a script or program that dynamically
generates automounting information. Instead of reading the map as a text file, the
automounter executes it with an argument (the “key”) that indicates which subdi-
rectory a user has attempted to access. The script prints an appropriate map entry;
if the specified key is not valid, the script can simply exit without printing anything.

This powerful feature makes up for many of the deficiencies in automounter’s rather
strange configuration system. In effect, you can easily define a site-wide automount
configuration file in a format of your own choice. You can write a simple script
to decode the global configuration on each machine. Some systems come with a
handy /etc/auto.net executable map that takes a hostname as a key and mounts all
exported filesystems on that host.

Since automount scripts run dynamically as needed, it’s unnecessary to distribute
the master configuration file after every change or to convert it preemptively to the
automounter format; in fact, the global configuration file can have a permanent
home on an NFS server.

http:///etc/auto.net

816	 Chapter 21	 The Network File System	

Automount visibility
When you list the contents of an automounted filesystem’s parent directory, the
directory appears empty no matter how many filesystems have been automounted
there. You cannot browse the automounts in a GUI filesystem browser.

An example:

$ ls /portal
$ ls /portal/photos
art_class_2010	 florissant_1003		 rmnp03
blizzard2008	 frozen_dead_guy_Oct2009	 rmnp_030806
boston021130	 greenville.021129		 steamboat2006

The photos filesystem is alive and well and is automounted under /portal. It’s ac-
cessible through its full pathname. However, a review of the /portal directory does
not reveal its existence. If you had mounted this filesystem through the fstab file or
a manual mount command, it would behave like any other directory and would be
visible as a member of the parent directory.

One way around the browsing problem is to create a shadow directory that con-
tains symbolic links to automount points. For example, if /automounts/photos is
a link to /portal/photos, you can ls the contents of /automounts to discover that
photos is an automounted directory. References to /automounts/photos are still
routed through the automounter and work correctly.

Unfortunately, these symbolic links require maintenance and can go out of sync
with the actual automounts unless they are periodically reconstructed by a script.

Replicated filesystems and automount
In some cases, a read-only filesystem such as /usr/share might be identical on sev-
eral different servers. In this case, you can tell automount about several potential
sources for the filesystem. It then chooses a server according to its own idea of
which servers are closest, given network routes, NFS protocol versions, and re-
sponse times to an initial query.

Although automount itself does not see or care how the filesystems it mounts are
used, replicated mounts should represent read-only filesystems such as /usr/share
or /usr/local/X11. There’s no way for automount to synchronize writes across a set
of servers, so replicated read/write filesystems are of little practical use.

You can assign explicit priorities to determine which replica to select first. The pri-
orities are small integers, with larger numbers indicating lower priority. The default
priority is 0, most eligible.

An auto.direct file that defines /usr/man and /cs/tools as replicated filesystems
might look like this:

/usr/man	 -ro harp:/usr/share/man monk(1):/usr/man
/cs/tools	 -ro leopard,monk:/cs/tools

	 Automatic mounting	 817

N
FS

Note that server names can be listed together if the source path on each is the same.
The (1) after monk in the first line sets that server’s priority with respect to /usr/man.
The lack of a priority after harp indicates an implicit priority of 0.

Automatic automounts (V3; all but Linux)
Instead of listing every possible mount in a direct or indirect map, you can tell
automount a little about your filesystem naming conventions and let it figure things
out for itself. The key piece of glue that makes this work is that the mountd running
on a remote server can be queried to find out what filesystems the server exports. In
NFS version 4, the export is always /, which eliminates the need for this automation.

“Automatic automounts” can be configured in several ways, the simplest of which
is the -hosts mount type on FreeBSD. If you list -hosts as a map name in your
master map file, automount then maps remote hosts’ exports into the specified
automount directory:

/net		 -hosts -nosuid,soft

For example, if harp exported /usr/share/man, that directory could then be reached
through the automounter at the path /net/harp/usr/share/man.

The implementation of -hosts does not enumerate all possible hosts from which
filesystems can be mounted; that would be impossible. Instead, it waits for individ-
ual subdirectory names to be referenced, then runs off and mounts the exported
filesystems from the requested host.

A similar but finer-grained effect can be achieved with the * and & wild cards in
an indirect map file. Also, a number of macros available for use in maps expand to
the current hostname, architecture type, and so on. See the automount(1M) man
page for details.

Specifics for Linux
The Linux implementation of automount has diverged a bit from the original Sun
standards. The changes mostly relate to the naming of commands and files.

First, automount is the daemon that actually mounts and unmounts remote filesys-
tems. It fills the same niche as the automountd daemon on other systems and gen-
erally does not need to be run by hand.

The default master map file is /etc/auto.master. Its format and the format of indirect
maps are as described previously. The documentation can be hard to find, however.
The master map format is described in auto.master(5) and the indirect map format
in autofs(5); be careful, or you’ll get autofs(8), which documents the syntax of the
autofs command. (As one of the man pages says, “The documentation leaves a lot
to be desired.”) To cause changes to the master map to take effect, run the command
/etc/init.d/autofs reload, which is equivalent to automount in Sun-land.

818	 Chapter 21	 The Network File System	

The Linux implementation does not support the Solaris-style -hosts clause for
automatic automounts.

21.9	 Recommended reading
Table 21.7 lists the various RFCs for the NFS protocol.

Table 21.7	 NFS-related RFCs

RFC Title Author Date

1094 Network File System Protocol Specification Sun Microsystems Mar 1989
1813 NFS Version 3 Protocol Specification B. Callaghan et al. Jun 1995
2623 NFS Version 2 and Version 3 Security Issues M. Eisler Jun 1999
2624 NFS Version 4 Design Considerations S. Shepler Jun 1999
3530 NFS Version 4 Protocol S. Shepler et al. April 2003
5661 NFS Version 4 Minor Version 1 Protocol S. Shepler et al. Jan 2010
7862 NFS Version 4 Minor Version 2 Protocol T. Haynes Nov 2016

SM
B

			 819

Chapter 21, The Network File System, covers the most popular system for sharing
files among UNIX and Linux systems. However, UNIX systems also need to share
files with systems, such as Windows, that don’t natively support NFS. Enter SMB.

In the early 1980s, Barry Feigenbaum created the BAF protocol to afford shared
network access to files and resources. Before release, the name was changed from
the author’s initials to Server Message Block (SMB). The protocol was rapidly em-
braced by Microsoft and the PC community because it gave “just like local” access
to files on remote systems.

In 1996, a version called the Common Internet File System (CIFS) was released by
Microsoft, mostly as a marketing exercise.1 CIFS introduced (often-buggy) changes
to the original SMB protocol. As a result, Microsoft released SMB 2.0 in 2006 and
then SMB 3.0 in 2012. Although it’s common within the industry to refer to SMB
fileshares as CIFS, the truth is that CIFS was deprecated long ago; only SMB lives on.

If you’re working in a homogeneous UNIX and Linux environment, then this chap-
ter probably isn’t for you. But if you need a way to share files between UNIX and
Windows systems, read on.

	 1.	 Sun Microsystems had also entered the fray in 1996 with its WebNFS offering, and Microsoft saw an
opportunity to market SMB with a more user-friendly implementation and name.

22 SMB

820	 Chapter 22	 SMB	

22.1	 Samba: SMB server for UNIX
Samba is a popular software package, available under the GNU Public License, that
implements the server side of the SMB protocol on UNIX and Linux hosts. It was
originally created by Andrew Tridgell, who first reverse-engineered the SMB pro-
tocol and published the resulting code in 1992. Here, we focus on Samba version 4.

Samba is well supported and under active development to expand its functionality.
It offers a stable, industrial strength way to share files between UNIX and Windows
systems. The real beauty of Samba is that you install only one package on the server
side; no special software is needed on the Windows side.

In the Windows world, a filesystem or directory made available over the network
is known as a “share.” It sounds a bit strange to UNIX ears, but we follow this con-
vention when referring to SMB filesystems.

Although we explore only file sharing in this chapter, Samba can also implement a
variety of other cross-platform services, including

•	 Authentication and authorization
•	 Network printing
•	 Name resolution
•	 Service announcement (file server and printer “browsing”)

Samba can also perform the basic functions of a Windows Active Directory con-
troller. This configuration involves a certain amount of hubris, though; we suspect
that being an AD controller is probably a job best left to Windows servers.

There is certainly value in getting your UNIX and Linux systems added to an AD
domain as clients, however. This arrangement lets you share identity and authentica-
tion information site-wide. See Chapter 17, Single Sign-On, for more information.

Likewise, we don’t recommend Samba as a print server. CUPS is probably your
best bet there. See Chapter 12 for more information about printing in UNIX
and Linux with CUPS.

Most of Samba’s functionality is implemented by two daemons, smbd and nmbd.
smbd implements file and print services as well as authentication and authoriza-
tion. nmbd is responsible for the other major SMB components: name resolution
and service announcement.

Unlike NFS, which requires kernel-level support, Samba requires no drivers or ker-
nel modifications and runs entirely as a user process. It binds to the sockets used for
SMB requests and waits for a client to request access to a resource. Once a request
has been authenticated, smbd forks an instance of itself that runs as the user who
is making the requests. As a result, all normal file access permissions (including
group permissions) are obeyed. The only special functionality that smbd adds on
top of this is a file locking service that gives Windows systems the locking seman-
tics to which they are accustomed.

	 Installing and configuring Samba	 821

SM
B

If you’re left wondering why you’d use SMB over, say, a more UNIX-integrated remote
filesystem such as NFS, the answer is ubiquity. Almost all OSs support SMB at some
level. Table 22.1 summarizes some of the main differences between SMB and NFS.

Table 22.1	 SMB vs. NFS

SMB NFS

User-space servers and processes Kernel server with threads
Per-user server processes Same server (one process) for all clients
Uses underlying OS for access control Has its own access control system
Mounters: usually individual users Mounters: usually systems
Pretty good performance Best performance

Chapter 21 explores NFS in more detail.

22.2	 Installing and configuring Samba
Samba is available for all our example systems. Most Linux distributions include it
by default. Patches, documentation, and other goodies are available from samba.org.
Make sure you are using the most current Samba packages available for your system,
since many updates fix security vulnerabilities.

If Samba is not already installed on your system, you can install it on FreeBSD with
pkg install samba44. On Linux systems, grab the samba-common package through
your package manager of choice.

You configure Samba in the /etc/samba/smb.conf file (/usr/local/etc/smb4.conf on
FreeBSD). The file specifies the directories to share, their access rights, and Samba’s
general operational parameters. Linux packages are kind enough to supply a heav-
ily commented sample configuration that’s a good starting point for new setups.

Samba comes with sensible defaults for its configuration options, and most sites
need only a small configuration file. Run the command testparm -v for a listing of
all the Samba configuration options and the values to which they are currently set.
This listing includes your settings from the smb.conf or smb4.conf file as well as any
default values you have not overridden. Note that once Samba is running, it checks
its configuration file every few seconds and loads any changes—no restart required!

The most common use of Samba is to share files with Windows clients. Access to
these shares must be authenticated through a user account by one of two options.
The first option uses local accounts, for which users specify a password that is man-
aged separately from their other accounts (such as their domain login). The second
option integrates Active Directory authentication and so piggybacks on the user’s
domain login credentials.

http://samba.org

822	 Chapter 22	 SMB	

File sharing with local authentication
The simplest way to authenticate users who want to access Samba shares is by cre-
ating a local account for them on the UNIX or Linux server.

Because Windows passwords work quite differently from UNIX passwords, Samba
cannot control access to SMB shares by means of users’ existing account passwords.
Hence, to use local accounts, you must store (and maintain) a separate SMB pass-
word hash for every user.

Sometimes, however, simplicity outweighs user convenience, and this authentica-
tion system is really simple. Here’s the start of an example smb.conf file that uses it:

[global]
workgroup = ulsah
security = user
netbios name = freebsd-book

The security = user parameter tells Samba to use local UNIX accounts. Be sure the
workgroup name is set to fit your environment. This is typically the Active Directory
domain if you’re in a Windows environment. If you’re not, you can omit this setting.

Samba has its own command, smbpasswd, for setting up Windows-style password
hashes. For example, here we add the user tobi and set a password for him:

$ sudo smbpasswd -a tobi
New SMB password: <password>
Retype new SMB password: <password>

The UNIX account should already exist before you attempt to set its Samba password.
Users can change their Samba password by running smbpasswd without any options:

$ smbpasswd
New SMB password: <password>
Retype new SMB password: <password>

This example changes the Samba password of the current user on the Samba server.
Unfortunately, Windows-only users must log in to a shell prompt on the server to
change their share password. The ability to log in remotely must be set up separately,
most likely through SSH.

File sharing with accounts authenticated by Active Directory
As simple as the basic process is, maintaining a separate authentication database
for shares with smbpasswd does seem archaic in today’s hyper-integrated world.
In most cases, you’ll want users to authenticate through some form of centralized
authority such as Active Directory or LDAP.

Recent years have brought great advances to UNIX and Linux in this area. Chapter
17, Single Sign-On, covers the necessary components, including directory services,

	 Installing and configuring Samba	 823

SM
B

sssd,2 the nsswitch.conf file, and PAM. Once you have deployed those components,
configuring Samba to take advantage of them is easy.

Here’s an example of the start of an smb.conf file for an environment in which Ac-
tive Directory performs user authentication (via sssd):

[global]
	 workgroup = ulsah
	 realm = ulsah.example.com
	 security = ads
	 dedicated keytab file = FILE:/etc/samba/samba.keytab 3
	 kerberos method = dedicated keytab

In this case, the realm parameter should be the same as the local Active Directory
domain name. The dedicated keytab file and kerberos method parameters enable
Samba to work properly with Active Directory’s Kerberos implementation.

Configuring shares
After you’ve configured Samba’s general settings and authentication, you can specify
in the smb.conf file which directories should be shared through SMB. Each share
that you expose needs its own stanza in the configuration file. The name of the
stanza becomes the share name that is advertised to SMB clients.

Here’s an example:

[bookshare]
 path = /storage/bookshare
 read only = no

Here, SMB clients see a mountable share named \\sambaserver\bookshare. It yields
access to the file tree located at /storage/bookshare on the server.

Sharing home directories
You can automatically convert users’ home directories into distinct SMB shares with
the magic stanza name [homes] in the smb.conf file:

[homes]
comment = Home Directories
browseable = no
valid users = %S
read only = no

For example, this configuration would allow user janderson to access her home
directory through the path \\sambaserver\janderson from any Windows system
on the network.

	 2.	 Historically, winbind was used integrate Active Directory with Samba. These days, sssd is the pre-
ferred method.

	 3.	 This keytab file is created by sssd if you’ve set it up according to the instructions in Chapter 17. For
more information about keytabs in Samba, see goo.gl/ZxCUKA (deep link within wiki.samba.org).

http://ulsah.example.com
http://goo.gl/ZxCUKA
http://wiki.samba.org

824	 Chapter 22	 SMB	

At some sites, the default permissions on home directories let users browse one
another’s files. Because Samba relies on UNIX file permissions to implement ac-
cess control, Windows users coming in through Samba can then read one anoth-
er’s home directories, too. However, experience shows that this behavior tends to
confuse Windows users and make them feel exposed.

The variable %S listed as the value of valid users in the example above expands
to the username associated with each share; it thus restricts access to the owner of
the home directory. Omit this line if that is not the behavior you want.

Samba uses its magic [homes] section as a last resort. If a particular user’s home
directory has an explicitly defined share in the configuration file, the parameters
set there override the values set through [homes].

Sharing project directories
Samba can map Windows access control lists (ACLs) to either traditional UNIX file
permissions or ACLs, if the underlying filesystem supports them. But in practice,
we find that ACLs are too complex for most users to deal with.

Instead of using ACLs, we normally set up a special share for each user group that
needs a collective work area. When a user attempts to mount this share, Samba
checks that the applicant is in the appropriate UNIX group before allowing access.
In the example below, a user must be a part of the eng group to mount the share
and access files:

[eng]
comment = Group Share for engineering
; Everybody who is in the eng group may access this share.
; People will have to log in with their Samba account.
valid users = @eng
path = /home/eng

; Disable NT ACLs since we do not use them here.
nt acl support = no

; Make sure that all files have sensible permissions and that dirs
; have the setgid (inherit group) bit set.
create mask = 0660
directory mask = 2770
force directory mode = 2000
force group = eng

; Normal share parameters.
browseable = no
read only = no
guest ok = no

This configuration does not require you to create a pseudo-user to act as the owner
of the shared directory. You just need a UNIX group (here, eng) that includes the
intended users of the share.

See page 140 for
more information
about ACLs.

	 Mounting SMB file shares	 825

SM
B

Users mount the share under their own accounts, but to facilitate collaboration, we
would prefer that any files created within the share be owned by group eng. That
way, other team members can access newly created files by default.

The first step toward ensuring this behavior is to use the force group option to
coerce mounters’ effective group IDs to eng, the UNIX group that controls access
to the share. However, this step alone is not enough to ensure that new files and
directories are assigned a group owner of eng.

As explained on page 133, the setgid option on a directory makes new files creat-
ed within that directory inherit the directory’s group owner.4 We can ensure that
new files are owned by eng by setting the group of the share’s root to eng and then
turning on the setgid bit on that directory:

$ sudo chown root:eng /home/eng
$ sudo chmod u=rwx,g=rwxs,o= /home/eng

These measures are sufficient to manage files created in the root of the share. How-
ever, to make the system work for complex hierarchies of files, we also need to
ensure that newly created directories’ setgid bits are also turned on. The example
configuration above implements this requirement with the force directory mode
and directory mask options.

22.3	 Mounting SMB file shares
Mounting for SMB file shares works quite differently from how it’s done for other
network filesystems. In particular, SMB volumes are mounted by a specific user
rather than being mounted by the system itself.

You need local permission to perform an SMB mount. You also need the password
for an identity that the remote SMB server will allow to mount the share. A typical
command line on Linux is

$ sudo mount -t cifs -o username=joe //redmond/joes /home/joe/mnt

And the equivalent on FreeBSD:

$ sudo mount -t smbfs //joe@redmond/joes /home/joe/mnt

Windows conceptualizes network mounts as being established by a particular user
(hence the username=joe option above), whereas UNIX regards them as more
typically belonging to the system as a whole. Windows servers generally cannot
deal with the concept that several different people might be accessing a mounted
Windows share.

From the perspective of the UNIX client, all files in the mounted directory appear
to belong to the user who mounted it. If you mount the share as root, then all files

	 4.	 Or at least, it does so on Linux. FreeBSD does not honor the setgid bit on a directory; however, its de-
fault behavior is to inherit the group, just as Linux does with the setgid bit turned on. Setting the set-
gid bit on FreeBSD does no harm, however.

826	 Chapter 22	 SMB	

belong to root, and garden-variety users might not be able to write files on the
Windows server.

The mount options uid, gid, fmask, and dmask let you tweak these settings so that
ownership and permission bits are more in tune with the intended access policy for
that share. Check the mount.cifs (Linux) or mount_smbfs (FreeBSD) man page
for more information about these options.

22.4	 Browsing SMB file shares
Samba includes a command-line utility called smbclient that lets you list file shares
without actually mounting them. It also defines an FTP-like interface for interac-
tive access. This feature can be useful when you are debugging or when a script
needs access to a share.

For example, here’s how to list shares available to user dan on the server hoarder:

$ smbclient -L //hoarder -U dan
Enter dan’s password: <password>
Domain=[WORKGROUP] OS=[Unix] Server=[Samba 3.6.21]

 Sharename Type Comment
 --------- ---- -------
 Temp Disk Temp Storage
 Programs Disk Various Programs and Applications
 Docs Disk Shared Documents
 Backups Disk Backups of all sorts

To connect to a share and transfer files, omit the -L flag and include the share name:

$ smbclient //hoarder/Docs -U dan

Once you’re connected, type help for a list of available commands.

22.5	 Ensuring Samba security
It’s important to be aware of the security implications of sharing files and other
resources over a network. For a typical site, you need to do two things to ensure a
basic level of security:

•	 Explicitly specify which clients can access the resources shared by Samba.
This part of the configuration is controlled by the hosts allow clause in
the smb.conf file. Make sure that it contains only the IP addresses, address
ranges, or hostnames that it should.

	 You can include a hosts deny clause in the smb.conf file as well, but note
that denials have priority. If you include a hostname or address in both
the hosts deny clause and the hosts allow clause, that host will not be
able to access the resource.

	 Debugging Samba	 827

SM
B

•	 Block access to the server from outside your organization. Samba uses
encryption only for password authentication. It does not use encryption
for its data transport. In almost all cases, you should block access from
outside your organization to prevent users from accidentally download-
ing files in plain text across the Internet.

	 Blocking is typically implemented at the network firewall level. Samba
uses UDP ports 137–139 and TCP ports 137, 139, and 445.

Since the release of Samba version 3, excellent security documentation has been
available on Samba’s wiki, wiki.samba.org.

22.6	 Debugging Samba
Samba usually runs without requiring much attention. If you do experience a prob-
lem, you can consult two primary sources of debugging information: the smbstatus
command and Samba’s logging facilities.

Querying Samba’s state with smbstatus
smbstatus shows currently active connections and locked files; it’s the first place
to look when issues arise. This information is especially useful for tracking down
locking problems (e.g., “Which user has file xyz open read/write exclusive?”).

$ sudo smbstatus			 # Some output condensed for clarity
Samba version 4.3.11-Ubuntu
PID Username Group Machine

6130 clay atrust 192.168.20.48
23006 dan atrust 192.168.20.25

Service pid machine Connected at

admin 6130 192.168.20.48 Wed Apr 12 07:25:15 2017
swdepot2 6130 192.168.20.48 Wed Apr 12 07:25:15 2017
clients 6130 192.168.20.48 Wed Apr 12 07:25:15 2017
clients 23006 192.168.20.25 Fri Apr 28 14:32:25 2017

Locked files:
Pid Uid DenyMode R/W Oplock SharePath Name

6130 1035 DENY_NONE RDONLY NONE /atrust/admin New Hire Proces...
6130 1035 DENY_ALL RDONLY NONE /home/clay .
23006 1009 DENY_NONE RDONLY NONE /atrust/clients Acme_Supply/Con...

The first section of output lists the users that have connected. The Service column
in the next section shows the actual shares they’ve mounted. The last section, from
which we’ve removed a couple of columns to save space, lists any active file locks.

http://wiki.samba.org

828	 Chapter 22	 SMB	

If you kill the smbd associated with a certain user, all that user’s locks disappear.
Some applications handle this situation gracefully and reacquire any locks they
need. Others freeze and die a horrible death, with much clicking required on the
Windows side just to close the unhappy application. As dramatic as this may sound,
we have yet to see any file corruption resulting from such a procedure.

Be careful when Windows claims that files have been locked by another applica-
tion; it is often right. Fix the problem on the client side by closing the offending
application instead of brute-forcing the locks on the server.

Configuring Samba logging
Configure logging parameters in your smb.conf file:

[global]
The %m causes a separate file to be written for each client.
log file = /var/log/samba.log.%m
max log size = 10000

If you want Samba to log only through syslog then set the following
parameter to 'yes'.
syslog only = no

We want Samba to log a minimal amount of information to syslog.
Everything should go to /var/log/samba/log.{smbd,nmbd} instead.
If you want to log through syslog, increase the following parameter
syslog = 7

Higher log levels produce more information. Logging uses system resources, so
don’t ask for too much detail unless you are actively debugging.

The following example shows log entries generated by an unsuccessful connection
attempt:

[2017/04/30 08:44:47.510724, 2, pid=87498, effective(0,
0), real(0, 0), class=auth] ../source3/auth/
auth.c:315(auth_check_ntlm_password)

 check_ntlm_password: Authentication for user [dan] -> [dan] FAILED
with error NT_STATUS_WRONG_PASSWORD

[2017/04/30 08:44:47.510821, 3] ../source3/smbd/
error.c:82(error_packet_set)

 NT error packet at ../source3/smbd/sesssetup.c(937) cmd=115
(SMBsesssetupX) NT_STATUS_LOGON_FAILURE

A successful attempt looks like this:

[2017/04/30 08:45:30.425699, 5, pid=87502, effective(0,
0), real(0, 0), class=auth] ../source3/auth/
auth.c:292(auth_check_ntlm_password)

 check_ntlm_password: PAM Account for user [dan] succeeded

	 Recommended reading	 829

SM
B

[2017/04/30 08:45:30.425864, 2, pid=87502, effective(0,
0), real(0, 0), class=auth] ../source3/auth/
auth.c:305(auth_check_ntlm_password)

 check_ntlm_password: authentication for user [dan] -> [dan] -> [dan]
succeeded

The smbcontrol command is handy for altering the debug level of a running Samba
server without altering the smb.conf file. For example,

$ sudo smbcontrol smbd debug "4 auth:10"

This command sets the global debug level to 4 and sets the debug level for authen-
tication-related matters to 10. The smbd argument specifies that all smbd daemons
on the system should have their debug levels set. To debug a specific established
connection, use the smbstatus command to determine which smbd daemon han-
dles the connection, then pass its PID to smbcontrol to debug just that one con-
nection. At log levels over 100, you’ll start to see encrypted passwords in the logs.

Managing character sets
Starting with version 3.0, Samba encodes all filenames in UTF-8. If your server
runs with a UTF-8 locale, which we recommend, this a great match.5 If you are in
Europe and are still using one of the ISO 8859 locales on the server, you may find
that Samba-created filenames that include accented characters (e.g., ä, ö, ü, é, or è)
do not display correctly when you run ls. The solution is to tell Samba to use the
same encoding as your server:

unix charset = ISO8859-15
display charset = ISO8859-15

Make sure the filename encoding is correct right from the start. Otherwise, files
with improperly encoded names accumulate. Fixing them later is a surprisingly
complex task.

22.7	 Recommended reading
Red Hat. Red Hat Enterprise Linux System Administrator’s Guide: File and Print
Servers. goo.gl/LPjNXa (deep link into access.redhat.com/documentation).

Samba Project. Samba Wiki Page. wiki.samba.org. This wiki is updated relative-
ly frequently and is an authoritative source of information, though portions are
somewhat disorganized.

	 5.	 Type echo $LANG to see if your system is running in UTF-8 mode.

http://goo.gl/LPjNXa
http://access.redhat.com/documentation
http://wiki.samba.org

This page intentionally left blank

SECTION FOUR
OPERATIONS

This page intentionally left blank

Co
nfi

gu
ra

tio
n

			 833

A longstanding tenet of system administration is that changes should be structured,
automated, and applied consistently among machines. But that’s easier said than
done when you’re confronted with a heterogeneous fleet of systems and networks
in various states of health.

Configuration management software automates the management of operating sys-
tems on a network. Administrators write specifications that describe how servers
should be configured, and the configuration management software then brings real-
ity into conformance with the specifications. Several open source implementations
of configuration management are in widespread use. In this chapter, we introduce
the basics of configuration management and describe the major players.

As an automation tool, configuration management is closely affiliated with the
DevOps philosophy of IT operations, which we describe in more detail starting
on page 1106. People sometimes conflate DevOps and configuration management,
so you may occasionally hear these terms used interchangeably. Nevertheless, they
are distinct. In this chapter, we show several examples that demonstrate how con-
figuration management enables—but not is not identical to—several key elements
of DevOps.

23 Configuration Management

834	 Chapter 23	 Configuration Management	

“Configuration management system” is a bit of a handful to read and write, so we
often shorten that term to “CM system” (or even simply CM). (Unfortunately, the
abbreviation CMS is already in widespread use for “content management system.”)

23.1	 Configuration management in a nutshell
The traditional approach to sysadmin automation is an intricate complex of home-
grown shell scripts supplemented by ad hoc fire fighting when scripts fail. This
scheme works about as well as you might expect. Over time, systems managed in
this way usually degenerate into a chaotic wreckage of package versions and con-
figurations that can’t be reliably reproduced. It’s sometimes called the snowflake
model of system administration because no two systems are ever alike.

Configuration management is a better approach. It captures desired state in the form
of code. Changes and updates can then be tracked over time in a version control
system, which creates an audit trail and a point of reference. The code also acts as
informal documentation of a network. Any administrator or developer can read
the code to determine how the system is configured.

When all a site’s servers are under configuration management, the CM system ef-
fectively acts as both an inventory database and a command-and-control center for
the network. CM systems also offer “orchestration” features, which let you apply
changes and run ad hoc commands remotely. You can target groups of hosts whose
hostnames match particular patterns or whose configuration variables match a given
set of values. Managed clients report information about themselves to the central
database for analysis and monitoring.

Most configuration management “code” uses a declarative—as opposed to proce-
dural—idiom. Rather than writing scripts that tell the system what changes to make,
you describe the state you want to achieve. The configuration management system
then uses its own logic to adjust target systems as necessary.

Ultimately, the job of a CM system is to apply a series of configuration specifications,
aka operations, to an individual machine. Operations vary in granularity, but they
are typically coarse enough to correspond to items that might plausibly appear on
a sysadmin’s to-do list: create a user account, install a software package, and so on.
A subsystem such as a database might require anywhere between 5 and 20 opera-
tions to fully configure. Full configuration of a freshly booted system might entail
dozens or hundreds of operations.

23.2	 Dangers of configuration management
Configuration management is a major improvement over the ad hoc approach, but
it is not a magic wand. A few sharp edges are particularly important for adminis-
trators to be aware of in advance.

See Chapter 7 for
more information
about shell scripting.

	 Elements of configuration management	 835

Co
nfi

gu
ra

tio
n

Although all major CM systems use similar conceptual models, they describe these
models with different lexicons. Unfortunately, the terminology used by a particu-
lar CM system often has more to do with conforming to a marketing theme than
with maximizing clarity.

The result is a general lack of conformity and standardization among systems. Most
administrators will encounter several CM systems throughout the course of their
careers and will develop preferences derived from that experience. Unfortunately,
knowledge of one system is not directly portable to another.

As a site grows, so too must the infrastructure needed to support its configuration
management system. A site with a few thousand servers needs a handful of systems
dedicated to running the CM workloads. This overhead imposes both direct and
indirect costs in the form of hardware resources and ongoing maintenance. CM
system upgrades can be major projects in their own right.

A certain level of operational maturity and rigor is necessary for a site to fully em-
brace configuration management. Once a host is under the control of a CM sys-
tem, it must not be modified manually, or it immediately reverts to the status of a
snowflake system.1

Although some CM systems are easier to pick up than others, they are all notorious
for having a steep learning curve, especially for administrators who lack prior expe-
rience with automation. If you match this description, consider practicing on a lab
of virtual machines to hone your skills before you tackle your production network.

23.3	 Elements of configuration management
In this section, we review the components of a CM system and the concepts used to
configure it at a greater level of detail. Then, starting on page 841, we survey four
of the most commonly used CM systems: Ansible, Salt, Puppet, and Chef.

Rather than adopt any particular CM system’s terminology, we use the clearest and
most directly descriptive term we can find for each concept. Table 23.2 on page
843 maps the correspondences between our vocabulary and those of the four CM
systems listed above. If you’re already familiar with one of those CM systems, you
might find it helpful to refer to this table as you read the material below.

Operations and parameters
We’ve already introduced the concept of operations, which are the small-scale actions
and checks used by a CM system to achieve a particular state. Every CM system
includes a large set of supported operations, and more arrive with each new release.

	 1.	 On more than one occasion, we have seen cases in which hurried (or lazy) administrators have man-
ually updated a configuration-managed host and set their changes to be immutable, thus overriding
the expected state and preventing the CM system from applying future changes. This kind of hack re-
sults in great confusion when an admin’s colleagues cannot quickly determine why the expected con-
figuration is not being applied. In one case, it caused a major service outage.

836	 Chapter 23	 Configuration Management	

Here are some sample operations that all CM systems can handle right out of the box:

•	 Create or remove a user account or set its attributes
•	 Copy files to or from the system being configured
•	 Synchronize directory contents
•	 Render a configuration file template
•	 Add a new line in a configuration file
•	 Restart a service
•	 Add a cron job or systemd timer
•	 Run an arbitrary shell command
•	 Create a new cloud server instance
•	 Create or remove a database account
•	 Set database operating parameters
•	 Perform Git operations

This is just a sampling; most CM systems define hundreds of operations, including
many that perform potentially complex niche operations, such as setting up specific
databases, run-time environments, or even pieces of hardware.

If operations seem suspiciously similar to shell commands, your intuition is accu-
rate. They are scripts, usually written in the implementation language of the CM
system itself and exploiting the system’s standard tools and libraries. In many cases,
they run standard shell commands under the hood as part of their implementation.

Just as UNIX commands accept arguments, most operations accept parameters. For
example, a package management operation would accept parameters that specify
the package name, version, and whether the package is to be installed or removed.

Parameters vary according to the operation. As a convenience, they usually have
default values that are suitable for the most common use cases.

CM systems let you use variable values (see the next section) to define parameters.
They can also infer parameter values according to the environment of the system,
such as the network it lives on, whether a particular configuration property is pres-
ent, or whether the system’s hostname matches a given regular expression.

A well-behaved operation knows nothing about the host or hosts to which it might
eventually be applied. The implementation is written to be relatively generic and
OS-agnostic. Binding operations to specific systems occurs at a higher level of the
configuration management hierarchy.

Despite CM systems’ focus on declarative configuration, operations must ultimately
run like any other command. Execution has a start and an end. It can succeed or
fail. It reports its status back to the calling environment.

However, operations differ from typical UNIX commands in a few important ways:

•	 Most operations are designed to be applied repeatedly without causing
problems. Borrowing a term from linear algebra, you’ll sometimes see
this latter property referred to as “idempotence.”

	 Elements of configuration management	 837

Co
nfi

gu
ra

tio
n

•	 Operations know when they change the system’s actual state.

•	 Operations know when the system state needs to be changed. If the cur-
rent configuration already conforms to the specification, the operation
exits without doing anything.

•	 Operations report their results to the CM system. Their report data is
richer than a UNIX-style exit code and can aid in debugging.

•	 Operations strive to be cross-platform. They usually define a constrained
set of functions that are common to all supported platforms, and they in-
terpret requests in accordance with the local system.

Some operations can’t be made idempotent without a little help from a sysadmin who
knows more about the context. For example, if an operation runs a garden-variety
UNIX command, the CM system has no direct way of knowing what effect that
command had on the system.

You also have the option of writing your own custom operations. They’re just scripts,
and the CM system typically provides a well-greased path for integrating your cus-
tom operations with the standard ones.

Variables
Variables are named values that influence how configurations are applied to in-
dividual machines. They commonly set parameter values and fill in the blanks in
configuration templates.

Variable management in CM systems is often quite rich. A few points of note:

•	 Variables can typically be defined in many different places and contexts
within the configuration base.

•	 Each definition has a scope in which it’s visible. Scope types vary by CM
system and might encompass a single machine, a group of machines, or
a particular set of operations.

•	 Multiple scopes can be active in any given context. Scopes can be nested,
but more commonly they are simply coactive.

•	 Because multiple scopes can define values for the same variable, some
form of conflict resolution is necessary. Some systems merge values, but
most use precedence rules or definition order to pick a winning value.

Variables are not limited to having scalar values; arrays and hashes are also accept-
able variable values in all CM systems. Some operations accept nonscalar parameter
values directly, but such values are more typically used above the level of individual
operations. For example, an array might be enumerated in a loop to apply the same
operation more than once with different parameters.

838	 Chapter 23	 Configuration Management	

Facts
CM systems investigate each configuration client to determine descriptive facts
such as the IP address of the primary network interface and the OS type. This in-
formation is then accessible from within the configuration base through variable
values. As with any other variable, these values can be used to define parameter
values or to expand templates.

It can take awhile to determine all the facts associated with a particular system.
Therefore, CM systems generally cache facts, and they do not necessarily rebuild
the cache on every run. If you find that a particular configuration flow is encoun-
tering stale configuration data, you might need to explicitly invalidate the cache.

All CM systems let target machines add their own values to the fact database, either
by including a static file of declarations or by running custom code on the target
machine. This feature is useful both for extending the types of information that can
be accessed through the facts database and for moving static configuration infor-
mation onto client machines.

Client-side hints can be particularly useful for managing cloud and virtual servers.
You simply apply cloud-level markers (such as EC2 tags) as an instance is created,
and the configuration management system can then flesh out the appropriate con-
figuration by checking the markers. Keep in mind the security implications of this
approach, however: the client controls the facts that it reports, so make sure that
a compromised client can’t exploit the configuration management system to gain
additional privileges.

Depending on the CM system, you may be able to transcend your local context
when sniffing around in the variable or fact space. In addition to accessing the con-
figuration information for the current host, you may also be able to access data for
other hosts, or even to introspect the state of the configuration base itself. This is
a useful feature for coordinating a distributed system such as a cluster of servers.

Change handlers
If you change a web server’s configuration file, you had better restart the web server.
That’s the basic concept behind handlers, which are operations that run in response
to some sort of event or situation rather than as part of a baseline configuration.

In most systems, a handler runs whenever one or more of a designated set of op-
erations reports that it has modified the target system. The handler isn’t told any-
thing about the exact nature of the change, but because the association between
operations and their handlers is fairly specific, additional information isn’t needed.

Bindings
Bindings complete the basic configuration model by associating specific sets of
operations to specific hosts or groups of hosts. You can also bind operations to a
dynamic set of clients that’s defined by the value of a fact or variable. CM systems

	 Elements of configuration management	 839

Co
nfi

gu
ra

tio
n

can also define host groups by looking up information in a local inventory system
or by calling a remote API.

In addition to their basic linking role, bindings in most CM systems also act as vari-
able scopes. This feature lets you customize the behavior of the operations you’re
assigning by defining or customizing variable values for the clients that are targeted.

A given host can match criteria for many different bindings. For example, a node
might live on a certain subnet, be managed by a particular department, or fill an
explicitly designated role (e.g., Apache web server). The CM system takes account
of all of these factors and activates the operations associated with each binding.

Once you set up the bindings for a host, you can invoke your CM system’s top-level
“configure everything” mechanism to make the CM system identify all the opera-
tions that should run on the target and execute them in order.

Bundles and bundle repositories
A bundle is a collection of operations that perform a specific function, such as in-
stalling, configuring, and running a web server. CM systems let you package bun-
dles into a format that’s suitable for distribution or reuse. In most cases, a bundle is
defined by a directory, and the name of the directory defines the name of the bundle.

CM vendors maintain public repositories that include both officially blessed and
user-contributed bundles. You can use these “as is” or modify them to suit your
needs. Most CM systems provide native commands for interacting with repositories.

Environments
It’s often useful to segregate configuration-managed clients into multiple “worlds,”
such as the traditional categories of development, test, and production. Large instal-
lations can create even finer distinctions to support processes such as the gradual
(“staged”) rollout of new code into production.

These different worlds are known generically as “environments,” both inside and
outside the configuration management context. This seems to be the single term
on which all configuration management systems agree.

When properly implemented, environments are not just groups of clients. They’re
an additional axis of variation that can affect multiple aspects of the configuration.
The development and production environments might both include web servers
and database servers, for example, but the details of how those roles are defined
might vary among environments.

For example, it’s common for the database and web server to run on the same ma-
chine in the development environment. However, the production environment
usually has multiple servers of each type. A production environment might also
define server types that don’t exist in the development environment, such as those
that do load balancing or act as DMZ proxies.

840	 Chapter 23	 Configuration Management	

The environment system is usually thought of as a sort of pipeline for configuration
code. As a thought experiment, you can imagine that fixed groups of clients run the
development, test, and production environments. As a given configuration base is
validated, it propagates from one environment to the next, ensuring that changes
are properly vetted before they reach the all-important production systems.

On most CM systems, different environments are just different versions of the same
configuration base. If you’re a Git user, think of them as tags in a Git repository: the
development tag points to the most recent version of the configuration base, and
the production tag might point to a commit that’s several weeks old. The tags move
forward as releases make their way through testing and deployment.

Different environments can provide different variable values to clients. For exam-
ple, the database credentials used in development likely differ from those used on
production systems, as do the details of the network configuration and perhaps the
users and groups who are permitted access.

See Chapter 26, Continuous Integration and Delivery, for more information about
environments.

Client inventory and registration
Because CM systems define lots of ways to segregate clients into categories, the
overall universe of machines under configuration management must be well de-
fined. The inventory of managed hosts can live in a flat file or in a proper relational
database. In some cases, it may even be entirely dynamic.

The exact mechanism through which configuration code is distributed, parsed, and
executed varies among CM systems. Most systems actually give you several options
in this regard. Here are a few common approaches:

•	 A daemon runs continuously on each client. The daemon pulls its config-
uration code from a designated CM server (or server group).

•	 A central CM server pushes configuration data to each client. This process
can run on a regular schedule, or it can be initiated by administrators.

•	 Each managed node runs a client that wakes up periodically, reads config-
uration data from a local clone of the configuration base, and applies the
relevant configuration to itself. There is no central configuration server.

Configuration information is sensitive and often includes secrets such as passwords.
To protect this data, all CM systems define some way for clients and servers to au-
thenticate each other and to encrypt private information.

The process of putting a new client under configuration management can be made
as simple as installing the appropriate client-side software. If the environment has
been configured to support automatic bootstrapping, a new client can automatically
contact its configuration server, authenticate itself, and initiate the configuration

	 Popular CM systems compared	 841

Co
nfi

gu
ra

tio
n

process. OS-specific initialization mechanisms typically kick off this chain of events
the first time the client is bootstrapped. The flow is depicted in Exhibit A.

Exhibit A	 Initialization process for a new CM-managed client

New client �rst boot
role = web

environment = production

Client downloads and
installs agent

CM agent automati-
cally authenticates

and registers with the
CM server

Client enters
operation, leaving
agent running as a

background daemon

CM agent applies the
list of bindings

Server identi�es
the bindings for a

production web server

23.4	 Popular CM systems compared
Currently, four major players own the market for general configuration manage-
ment on UNIX and Linux systems: Ansible, Salt, Puppet, and Chef. Table 23.1 shows
some general information about these packages.

Table 23.1	 Major configuration management systems

Languages and formats Daemons

System Web site Impl Config Template Server Client

Ansible ansible.com Python YAML Jinja No No
Salt saltstack.com Python YAML Jinja Optional Optional
Puppet puppet.com Ruby custom  ERB a Optional Optional
Chef chef.io Ruby Ruby ERB Optional Yes

a.	 ERB (embedded Ruby) is a basic syntax for embedding Ruby code in templates.

All of these packages are relatively young. The oldest, Puppet, debuted in 2005. It
still claims the largest market share, in large part because of its early head start. Chef
was released in 2009, followed by Salt in 2011 and Ansible in 2012.

The general category of configuration management software was pioneered by Mark
Burgess’s CFEngine in 1993. CFEngine is still around and is still actively developed,

842	 Chapter 23	 Configuration Management	

but the majority of its user base has been siphoned away by newer systems. See
cfengine.com for current information.

Microsoft has its own CM solution in the form of PowerShell Desired State Con-
figuration. Although it originates in the Windows world and is primarily designed
to configure Windows clients, Microsoft has also published extensions for config-
uring Linux systems. It’s worth noting that all four of the systems in Table 23.1 can
configure Windows clients as well.

A number of projects focus on specific subdomains of configuration management,
notably new-system provisioning (e.g., Cobbler) and software deployment (e.g.,
Fabric and Capistrano). The general proposition behind these systems is that by
more closely modeling a specific problem domain, they can provide a simpler and
more targeted set of features.

Depending on your needs, you may or may not find that these specialized systems
provide a reasonable rate of return on your learning investment. Generic configu-
ration management systems like those in Table 23.1 are not perfectly suited to all
possible activities.

The systems in Table 23.1 work with pretty much any type of contemporary
UNIX-compatible client machine, although there’s always a support frontier. Chef
has a modest edge in compatibility and supports even AIX.

OS support on the configuration server side (for those systems that use a config-
uration server) is more limited. Chef, for example, requires RHEL or Ubuntu for
its server. Containerized versions of the server can run anywhere, though, so this
isn’t as much an obstacle as it might seem.

Terminology
Table 23.2 shows the terms used by each of our example CM systems for the entities
outlined in Elements of configuration management.

Business models
All the products we discuss are freemium-model packages, which means that the
basic systems are open source and free, but that each system has a corporate backer
that sells support, consulting services, and add-on packages.

In theory, vendors have a potential motivation to withhold useful functionality from
the open source releases to motivate add-on sales. In the configuration management
space, however, this effect has not been evident. The open source versions of the
software are full-featured and more than adequate for most sites.

Add-on services are mostly of interest to large organizations. If your site falls into
this category, you may want to evaluate configuration management systems with
respect to the functionality and pricing of the full-stack offerings. The main upsells

See Chapter 25 for
more information
about containers.

 	

http://cfengine.com

	 Popular CM systems compared	 843

Co
nfi

gu
ra

tio
n

are usually support, custom development, training, GUIs, and reporting and mon-
itoring solutions. In this book, we discuss only the basic, free versions.

Architectural options
In theory, CM systems don’t require servers. Software could run only on the machines
being configured. You’d copy the configuration base to each target host and simply
run a command to say, “Here, configure yourself according to these specifications.”

In practice, it’s nice not to have to fuss with the details of getting configuration in-
formation pushed out to clients and executed. CM systems always make some pro-
vision for centralized control, even if the master machine is defined as “wherever
you happen to be logged in and have a clone of the configuration base.”

Ansible uses no daemons at all (other than sshd), which is an appealing simplifica-
tion. Configuration runs happen when an administrator (or cron job) on the server
runs the ansible-playbook command. ansible-playbook executes the appropriate
remote commands over SSH, leaving no trace of its presence on the client machine
after configuration has completed. The only requirements for client machines are
that they be accessible through SSH and have Python 2 installed.2

	 2.	 Depending on the system, you might need a Python add-on or two as well. For example, Fedora re-
quires the python-dnf package.

Table 23.2	 Configuration management Rosetta Stone

Our term Ansible Salt Puppet Chef

operation task state resource resource
op type module function resource type,

provider
provider

op list tasks states class, manifest recipe
parameter parameter parameter property, attribute attribute
binding play(book) top file classification,

declaration
run list

master host control master master server
client host host minion agent, node node
client group group nodegroup node group role

variable variable variable parameter, variable attribute
fact fact grain fact automatic attribute

notification notification requisite notify notifies
handler handler state subscribe subscribes

bundle role formula module cookbook
bundle repo galaxy GitHub forge supermarket

844	 Chapter 23	 Configuration Management	

Salt, Puppet, and Chef include both master- and client-side daemons. Typical de-
ployment scenarios run daemons on both sides of the relationship, and this is the
environment you’ll see described in most documentation. It’s possible to run each
of these without a server also, but this configuration is less common.

It’s tempting to assume that CM systems with daemons must be more heavyweight
and more complex than those without (i.e., Ansible). However, that isn’t necessarily
true. In Salt and Puppet, the daemons are facilitators and accelerators. They’re use-
ful but optional, and they don’t change the fundamental architecture of the system,
although they do enable some advanced features. If you prefer, you are free to run
these systems without daemons and to replicate the configuration base by hand.
Salt even has an SSH-based mode that works similarly to Ansible.

Given that, why would you want to mess around with a bunch of optional dae-
mons? Several reasons:

•	 It’s faster. Ansible works hard to overcome the performance limits imposed
by SSH and by its lack of client-side caching, but it is still noticeably more
sluggish than Salt. When you’re reading a system administration book, ten
seconds sounds insignificant. In the midst of resolving an outage, it feels
endless, especially when repeated across dozens or hundreds of clients.

•	 Some features can’t exist without central coordination. For example, Salt
lets clients notify the configuration master of events such as full disks. You
can then respond to these events through the normal configuration man-
agement facilities. Having a central connection point facilitates a variety
of interclient data-sharing features.

•	 Only the master-side daemon is really a potential source of administrative
complexity. CM systems work hard to make client bootstrapping a one-
line operation, regardless of whether a daemon is involved.

•	 The presence of active agents on both client and server opens a variety of
architectural options not available in one-sided configurations.

In terms of architecture, Chef is the outlier among configuration management sys-
tems in that its server daemon is a top-tier entity within the conceptual model. Salt
and Puppet serve configuration data directly from plaintext files on disk; to make
changes, you simply edit the files. By contrast, the Chef server is an opaque and au-
thoritative source of configuration information. Changes must be uploaded to the
server with the knife command or they will not be available to clients. (However,
even Chef has a serverless mode of operation in the form of chef-solo.)

We mention all this not to promote serverful systems per se, but simply to point out
that the main fault line among CM systems runs between Chef and everything else.
Ansible, Salt, and Puppet all have about the same, modest level of overall complex-
ity. Chef requires significantly more investment to maintain and master, especially
when its extensive line of add-on modules is added to the mix.

	 Popular CM systems compared	 845

Co
nfi

gu
ra

tio
n

Because of its serverless model, Ansible is often tagged as a sort of “easy option” for
configuration management. But in fact, the basic architectures of Salt and Puppet
are similarly approachable.3 Don’t write them off as advanced options.

The converse is also true: Ansible is more than just a gimped-out starter system for
short-attention-span sysadmins. It’s a legitimate option for complex sites, although
its sluggish performance becomes increasingly more apparent in this context.

Language options
Ansible and Salt are written in Python. Puppet and Chef are written in Ruby. But
except in the case of Chef, this information is probably less relevant than it might
initially appear.

No Python code appears in the average Ansible or Salt configuration. Both of these
systems use YAML (an alternate syntax for expressing JavaScript object notation,
aka JSON), as their primary configuration language. YAML is just structured data,
not code, so it has no inherent behavior other than the interpretation assigned by
the configuration management system.

Here’s a simple example from Salt that keeps the SSH service enabled and running:

ssh.server.run_ssh:
	 service:
		 - name: sshd
		 - running
		 - enable: true

To make YAML files more dynamically expressive, both Ansible and Salt augment
them with a templating system, Jinja2, as a preprocessor.4 Jinja has its roots in Py-
thon, but it’s not just a simple Python wrapper. In use, it feelsmore like a template
system than a real programming language. Even Salt, which relies more heavily
on Jinja than does Ansible, cautions against putting too much logic into Jinja code.

The bottom line is that unless you write your own custom operation types or use
explicit escapes into Python, you won’t be encountering much Python in the An-
sible and Salt worlds.5 (Extending the CM system with your own code can in fact
be quite easy and quite helpful, however.)

Both Puppet and Chef use Ruby-based, domain-specific languages as their primary
configuration systems. Chef ’s version is a lot like a configuration management an-

	 3.	 A strong case could be made that Salt is the simplest system of all, if you disregard its advanced facili-
ties and somewhat peculiar documentation.

	 4.	 In fairness, Salt is actually format- and preprocessor-agnostic, and it supports several input pipelines
(including raw Python) right out of the box. However, departing from the greased path of Jinja and
YAML means leaving the documentation and the rest of the world behind. It’s probably best deferred
until you’re quite familiar with Salt.

	 5.	 Jon Corbet, one of our technical reviewers, agrees that these systems don’t expose much Python…
until things go horribly wrong. “At that point,” he adds, “familiarity with Python tracebacks and data
structure representations helps a lot.”

846	 Chapter 23	 Configuration Management	

alog of Rails from the web development world. That is, it has been extended with a
few concepts that are designed to facilitate configuration management, but it’s still
recognizably Ruby. For example:

service 'sshd' do
	 supports :restart => true, :status => true
	 action [:enable, :start]
end

Most configuration management tasks can be achieved without delving below the
surface of Ruby, but Ruby’s full power is available if you need it. You’ll appreciate
this hidden depth more and more as your comfort with Ruby and Chef increases.

By contrast, Puppet has put in quite a bit of work to be conceptually independent of
Ruby and to use it only as an implementation layer. Although the language remains
Ruby under the hood and is amenable to the insertion of Ruby code, the Puppet
language has its own idiosyncratic structure that is more akin to a declarative sys-
tem such as YAML than a programming language:

service	 {
	 "ssh":
		 ensure => "running",
		 enable => "true"
}

In our opinion, Puppet hasn’t done administrators any favors with this architecture.
Instead of letting you leverage your existing knowledge of Ruby (or parlay your
Puppet experience into a more general familiarity with Ruby), Puppet just defines
its own insulated world.

Dependency management options
No matter how your configuration management system structures its data, the work
list for a given client ultimately boils down to a set of operations for the client to ex-
ecute. Some of those operations have execution-order dependencies, and some don’t.

For example, consider the following Ansible tasks for installing a www user account,
such as might be used to own the files for a web application:

- name: Ensure that www group exists
	 group: name=www state=present

-	name: Ensure that www user exists
	 user: name=www group=www state=present createhome=no

We want the www user to have its own dedicated group, also named www. Ansible’s
user module does not create groups automatically, so we must do that in a separate
step. And the group creation must precede the creation of the www account; it’s an
error to specify a nonexistent group in a user operation.

	 Popular CM systems compared	 847

Co
nfi

gu
ra

tio
n

Ansible executes operations in the order in which they are presented by the config-
uration, so this configuration snippet works just fine. Chef works this way, too, in
part because it’s much harder to rearrange code than data. Even if it wanted to, Chef
couldn’t reliably break your code into pieces and reassemble the pieces as it sees fit.

By contrast, Puppet and Salt allow dependencies to be explicitly declared. For ex-
ample, in Salt, the equivalent set of states would be

www-user:
	 user.present:
		 - name: www
		 - gid: www
		 - createhome: false
		 - require:
			 - www-group

www-group:
	 group.present:
		 - name: www

We inverted the order of the operations here for dramatic effect. But because of
the require declaration, the operations run in the correct order regardless of how
they appear in the source file. The following command applies the configuration:

$ sudo salt test-system state.apply order-test
test-system:

 ID: www-group
 Function: group.present
 Name: www
 Result: True
 Comment: Group www is present and up to date
 Started: 23:30:39.825839
 Duration: 3.183 ms
 Changes:

 ID: www-user
 Function: user.present
 Name: www
 Result: True
 Comment: User www is present and up to date
 Started: 23:30:39.829218
 Duration: 27.435 ms
 Changes:

Summary for test-system

Succeeded:	2
Failed: 	0

Total states run: 2

848	 Chapter 23	 Configuration Management	

The require parameter can be added to any operation (“state,” in Salt) to ensure
that the named prerequisites run before the current operation. Salt defines several
types of dependency relationships, and declarations can appear on either side of
a relationship.

Puppet works similarly. It also helps to ease the pain of declaring dependencies by
inferring them automatically in some common circumstances. For example, a user
configuration that names a particular group automatically becomes dependent on
the resource that configures that group. Nice!

So… Why would you want to declare your dependencies explicitly when configura-
tion order seems natural and effortless? Apparently, lots of administrators have been
asking this question, as both Salt and Puppet have moved to a hybrid dependency
model in which presentation order is significant. However, it’s only a factor within
a given configuration file; inter-file dependencies must still be explicitly declared.

The main benefit of declaring dependencies is that it makes configurations more
resilient and explicit. The CM system is not obliged to abort the configuration pro-
cess at the first sign of trouble, because it knows which subsequent operations might
be affected by a failure. It can abort one dependency chain while allowing others
to continue. Nice, but in our view not a significant payback for the extra work of
declaring dependencies.

In theory, a CM system that knows dependency information can parallelize the
execution of independent operation chains on a particular host. However, neither
Salt nor Puppet attempts this feat.

General comments on Chef
We’ve seen deployments of the mainline CM packages at organizations of various
sizes, and they all display something of a tendency toward entropy. The Ansible ac-
cess options section starting on page 869 includes some hints for keeping things
organized. However, an even more fundamental rule is to avoid taking on more
complexity than is helpful for your environment.

In practice, this means you need to be clear about whether you’re living in Chef
territory or not. Chef thinks big. To get the most out of Chef, you should have

•	 Hundreds or thousands of machines under configuration management
•	 An administrative staff of nonuniform privileges and experience (Chef ’s

internal permissions system and multiple interfaces are quite helpful here)
•	 Specific reporting, compliance, or regulatory requirements to enforce
•	 The patience to train new team members without prior Chef experience

Sure, you can run Chef stand-alone on a single machine for free. Nobody’s stop-
ping you! But you’ll still have to pay the cognitive overhead for many of the enter-
prise-level features you aren’t using. They’re baked into the architecture and the
documentation.

	 Popular CM systems compared	 849

Co
nfi

gu
ra

tio
n

We like Chef. It’s complete, robust, and scalable—more so than the alternatives.
But at heart, it’s just another configuration management system that does the same
basic stuff as Ansible, Salt, and Puppet. Keep Chef in perspective, and resist the
temptation to adopt it just “because it’s the most powerful” (or “because it uses
Ruby,” for that matter).

We have found that bringing beginners up to speed with Chef can be a significant
challenge, especially for those without prior configuration management experience.
Chef requires a developer mindset more than the other systems do. Prior program-
ming experience is helpful.

Chef ’s attribute precedence system is powerful but can also be a source of frustration.
Its peculiar combination of foodie and Internet-meme nomenclature is annoying
and uninformative. Resolving dependencies among cookbooks can be challenging;
sometimes an upstream dependency breaks, and all your systems develop prob-
lems unless you remembered to pin all your dependencies to a particular version.

General comments on Puppet
Puppet is the oldest of the four main CM systems and the one with the largest in-
stalled base. It has lots of users, lots of contributed modules, and a free web GUI.
Still, it’s losing market share fairly steadily to more recent competitors.

As a determinedly middle-of-the-road option, Puppet is under pressure from both
ends of the market. It’s famous for server-side bottlenecks that cause problems
when managing thousands of hosts, and several major Puppet deployments have
abandoned it over the last couple of years (most publicly, Lyft, which adopted Salt).
These days, such large-scale scenarios seem to be better handled with a tiered Chef
or Salt network.

In the arena of small deployments, Ansible and Salt are mounting a serious chal-
lenge with their relatively low barriers to entry. As discussed on page 844, Puppet
is not complex at heart. However, it does drag along some historical baggage that
tends to impede newcomers. For example, relatively few operations are built into
the Puppet core. Most sites will need to go prospecting for user-contributed mod-
ules to complete their basic configurations.

Our subjective impression is that Puppet went through some false starts early in its
design and development. Although Puppet has worked hard to correct these issues,
history and backward compatibility take an inevitable toll on the current product.

It doesn’t help that Puppet transmutes the golden treasure of Ruby into the lump
of coal that is the Puppet configuration language. That was probably a sensible de-
cision back in 2005, when Ruby was obscure and Rails had not yet appeared on
the scene to propel it to stardom. These days, the Puppet configuration language
just seems gratuitous.

None of these issues is a deal breaker, but Puppet seems to have no clear and com-
pelling advantage that might counterbalance such concerns. We are not aware of

850	 Chapter 23	 Configuration Management	

any bake-off or comparative review written within the last few years in which Pup-
pet emerged as a recommended option.

Of course, if you’ve inherited an existing Puppet installation, there’s no need to start
looking for an immediate replacement. Puppet works fine; the distinctions among
these systems are mostly a matter of style and marginal advantage.

General comments on Ansible and Salt
Ansible and Salt are both nice systems, and we recommend one of these options
for the majority of sites.

We’ve taken a deeper look at both of these systems in Introduction to Ansible and
Introduction to Salt, which begin on pages 852 and 871, respectively. Each of
those sections reviews the system’s configuration syntax and the general flavor of
day-to-day use.

Ansible and Salt look deceptively similar on the surface, mostly because they both
use YAML and Jinja as their default formats. Under the hood, however, they almost
couldn’t be more different. Accordingly, we defer our head-to-head comparison of
Ansible and Salt until page 893, once we’ve discussed them both in a bit more detail.

Before we look into the systems themselves, however, we cast a jaundiced eye on
YAML itself.

YAML: a rant
As mentioned earlier, YAML is just an alternate syntax for JSON. For example, this
YAML for Ansible: 6

-	name: Install cpdf on cloud servers
	 hosts: cloud
	 become: yes
	 tasks:
		 -	name: Install OCAML packages
			 package: name={{ item }} state=present
			 with_items:
				 - gmake
				 - ocaml
				 - ocaml-opam

	 6.	 In theory, a YAML document should start with three dashes on a line by themselves, and the Ansible
documentation often follows this convention. However, this “start YAML document” line is essential-
ly vestigial. As far as we are aware, it can safely be omitted in all cases.

	 Popular CM systems compared	 851

Co
nfi

gu
ra

tio
n

maps to the following JSON:

[{
	 "name": "Install cpdf on cloud servers",
	 "hosts": "cloud",
	 "become": "yes",
	 "tasks": [{
		 "name": "Install OCAML packages",
		 "package": {
			 "name": "{{ item }}",
			 "state": "present",
		 },
		 "with_items": ["gmake", "ocaml", "ocaml-opam"]
	 }]
}]

In the JSON world, brackets enclose lists and curly braces enclose hashes. A colon
separates a hash key from its value. These delimiters can appear directly in YAML,
but YAML also understands indentation to indicate structure, much like Python.
YAML marks items in a list with a preceding dash.

Take a moment to verify that you understand how the YAML example above maps
into JSON, because Ansible and Salt are actually JSON-based worlds. The YAML
is just a shorthand. We pick on Ansible below, as its version of YAML is a bit more
idiosyncratic, but most of the general points apply to Salt as well.7

Clearly, the YAML version is more readable than the JSON version. The problem
isn’t YAML per se, but rather the compromises inherent in trying to force data of
the complexity found in configuration management systems into the mold of JSON.

YAML is good for representing simple data structures, but it’s not a tool that scales
well to arbitrary complexity. When cracks appear in the model, they have to be
puttied over with a variety of ad hoc fixes.

The example above already contains such a patch. Did you spot it?

			 package: name={{ item }} state=present

Ignore the {{ item }} part; that’s just a Jinja expansion. The crime here is the
name=value syntax, which is really just a nonstandard shorthand for defining a
sub-hash:

 			 package:
				 name: {{ item }}
				 state: present

	 7.	 Once again, Salt partisans will protest that Salt can’t be blamed for YAML and Jinja because it has no
actual dependencies on these systems. You’re free to use any one of a number of alternatives. That’s all
true. At the same time, it’s a lot like saying that you’re not responsible for the country’s government
because you didn’t vote.

852	 Chapter 23	 Configuration Management	

Or is it? Actually not, because Ansible doesn’t allow hash values that start with a
Jinja expansion. That Jinja term now must sport quotes:

			 package:
				 name: "{{ item }}"
				 state: present

And what if the operation accepts a “free form” argument?

-	name: Cry for help
	 shell: echo "Please, sir, I just want the syntax to be consistent"
	 args:
		 warn: no

Visually, this doesn’t look so bad. But think about what’s actually going on: shell is
the operation type, and warn is a parameter for shell just as state is a parameter for
package in the previous example. So what is that extra args dictionary doing there?

Well, shell typically has a complex string as its main argument (the shell command
to run), so it’s been made a special type of operation that accepts a string instead
of a parameter hash as its value. The args dictionary is actually a property of the
task-item wrapper, not the shell operation. Its contents are covertly stuffed down
into the shell operation on your behalf to make the whole construction work.

No problem; keep calm and carry on. But it’s a confusing subtlety that muddles a
relatively basic example.

The problem isn’t this specific scenario. It’s the constant drip of edge cases, ambi-
guities, and compromises that are needed to coerce configuration data into JSON
format. Does this particular argument go in the operation? In the state? In the bind-
ing? It’s all just a big JSON hierarchy, so the answer is rarely obvious.

Look again at the “Install cpdf on cloud servers” playbook on page 850. Is it ob-
vious that with_items should be at the same level as package and not at the same
level as name and state (which are in fact logically beneath package)? Probably not.

The underlying intent behind the YAML approach is praiseworthy: use an existing
format that people already know, and represent configuration information as data
instead of code. Still, these systems have syntactic warts that would probably not
be permitted in a real programming language.8

23.5	 Introduction to Ansible
Ansible has no server daemon and installs no software of its own on clients, so it’s
really just a set of commands (most notably, ansible-playbook, ansible-vault, and
ansible) that you install on any system from which you wish to manage clients.

	 8.	 Despite the looseness of YAML as used in configuration management systems, its specification is ac-
tually quite lengthy. In fact, it’s longer than the specification for the entire Go programming language.

	 Introduction to Ansible	 853

Co
nfi

gu
ra

tio
n

Standard OS-level packages are widely available for Ansible, although the package
names vary from system to system. On RHEL and CentOS, make sure you have
the EPEL repository enabled on the master systems. As with most things, OS-spe-
cific packages are often somewhat out of date with respect to the trunk. If you don’t
mind forgoing package management, Ansible is easy to install from the GitHub
repository (ansible/ansible) or through pip.9

The default location of Ansible’s master configuration file is /etc/ansible/ansible.cfg.
(As with most add-ons, FreeBSD moves the ansible directory to /usr/local/etc.)
The default ansible.cfg file is short and sweet. The only change we’d recommend is
to add the following lines to the end: 10

[ssh_connection]
pipelining = true

These lines turn on pipelining, an SSH feature that significantly improves perfor-
mance. Pipelining requires that sudo on clients not be configured to require inter-
active terminals; however, that is the default.

If you keep your configuration data under /etc/ansible, you’ll need to use sudo to
make changes, and you tie yourself to one particular server machine. Alternatively,
you can easily set up Ansible for use under your own account. The server just runs
ssh to reach other systems, so root privileges are unnecessary unless you need to
run privileged commands on the server side.

Fortunately, Ansible makes it a snap to combine system-wide and personal config-
urations. Don’t remove the system-wide configuration; just shadow it by creating

~/.ansible.cfg and setting the location of your inventory file and roles directory:

[defaults]
inventory = ./hosts
roles_path = ./roles

The inventory is the list of client systems, and roles are bundles that abstract various
aspects of client configuration. We return to both of these topics shortly.

Here, we define both locations as relative paths, which assumes that you’ll cd to
your clone of the configuration base and that you’ll follow the stated naming con-
ventions. Ansible also understands the shell’s ~ notation for home directories if
you prefer to use fixed paths. (Ansible allows ~ pretty much everywhere else, too.)

Ansible example
Before we delve into too much more detail, we first look at a small example that
demonstrates a few basic Ansible operations.

	 9.	 pip is a package manager for Python. Try pip install ansible to pull the latest version from PyPI, the
Python Package Index. You might need to install pip from your distribution’s packaging system first.

	 10.	 It is curious that ansible.cfg uses .ini format instead of YAML, as do several other Ansible configura-
tion files. We don’t know the reason for this.

See page 216 for
more information
about EPEL.

See page 76 to
allow sudo without
a control terminal.

854	 Chapter 23	 Configuration Management	

The following set of steps would set up sudo on a new system (as might be required,
e.g., on FreeBSD, which does not include sudo by default).

1.	 Install the sudo package.
2.	 Copy a standard sudoers file from a server and install it locally.
3.	 Make sure the sudoers file has appropriate permissions and ownerships.
4.	 Create a UNIX group called “sudo”.
5.	 Add every system administrator with an account on the local machine

to the sudo group.

The Ansible code below implements these steps. Because this code is designed to
illustrate several points about Ansible, it isn’t necessarily an example of idiomatic
Ansible code.

-	name: Install sudo package
	 package: name=sudo state=present

-	name: Install sudoers file
	 template:
		 dest: "{{ sudoers_path }}"
		 src: sudoers.j2
		 owner: root
		 group: wheel
		 mode: 0640

-	name: Create sudo group
	 group: name=sudo state=present

-	name: Get current list of usernames
	 shell: "cut -d: -f1 /etc/passwd"
	 register: userlist

-	name: Add administrators to the sudo group
	 user: name={{ item }} groups=sudo append=true
	 with_items: "{{ admins }}"
	 when: "{{ item in userlist.stdout_lines }}"

The statements are applied in order, much as they would be in a shell script.

The expressions enclosed in double curly braces (e.g., "{{ admins }}") are variable
expansions. Ansible interpolates facts in a similar manner. This kind of parameter
management flexibility is a common characteristic of configuration management
systems, and it’s one of their main advantages over raw scripts. You define the general
procedure in one place and the configuration specifics elsewhere. The CM system
then collapses the global specification and ensures that the proper parameters are
applied to each target host.

The file sudoers.j2 is a Jinja2 template that expands to become the sudoers file on
the target machine. The template can consist of static text or it can have internal
logic and variable expansions of its own.

	 Introduction to Ansible	 855

Co
nfi

gu
ra

tio
n

Templates are usually kept along with configurations in the same Git repository,
allowing for one-stop shopping when configurations are applied. There’s no need
to maintain a separate file server from which templates can be copied. The con-
figuration management system uses its existing access to the target host to install
templates, so credential management need be set up only once.

We had to work around a couple of rough edges. Ansible’s user module, used here
to add system administrators to the sudo UNIX group, normally ensures that the
specified account exists, and it creates the account if it does not. In this scenario,
we want to affect only accounts that already exist, so we’re forced to manually check
for the existence of each account before we permit user to modify it.11

To do that, the configuration runs the shell command cut –d: -f1 /etc/passwd to
obtain a list of existing accounts and captures (“registers”) the output under the
name userlist. It’s similar in principle to the sh line

userlist=$(cut –d: -f1 /etc/passwd)

Each account listed in the admins variable (with_items: "{{ admins }}") is con-
sidered separately. During its turn, the account name is assigned to the variable
item. (The name item is an Ansible convention; the configuration does not spec-
ify it.) For each account found within the output of the cut command (the when
clause), the user clause is invoked.

There’s a bit of extra glue we haven’t shown that binds this configuration to a partic-
ular set of target hosts and that tells Ansible to make the changes as root. When we
activate that binding (by running ansible-playbook example.yml), Ansible starts
working to configure several target hosts in parallel. If any operation fails, Ansible
reports the error and stops working on the host that generated it. Other hosts can
continue until they’re done.

Client setup
Ansible needs three things from each configuration management client:

•	 SSH access
•	 sudo permission 12

•	 A Python 2 interpreter

If the client is a Linux cloud server, it may be Ansible-accessible right out of the box.
Systems like FreeBSD that don’t install sudo or Python by default might need a bit
more tweaking, but you can do some of the initial bootstrapping through Ansible

	 11.	 In a more typical scenario, the configuration management system would be responsible for setting up
administrators’ accounts as well as sudo access. The configuration specifications for both functions
would likely refer to the same admins variable, and so there would be no possibility of conflict and
no need to validate each account name.

	 12.	 Ansible does not actually require sudo access per se. It’s only needed if you want to run privileged op-
erations. But you typically will.

856	 Chapter 23	 Configuration Management	

with raw operations, which execute commands remotely without the usual Python
wrapper. Or you can just write your own bootstrapping script.

Several choices must be made when Ansible clients are set up. We suggest a reasonable
game plan in Ansible access options (starting on page 869), but for now, let’s assume
you’ve created a dedicated “ansible” user on the client, that the appropriate SSH key
is in your default set, and that you’re willing to enter the sudo password by hand.

Clients don’t introduce themselves to Ansible, so you need to add them to Ansible’s
host inventory. By default, the inventory is a single file called /etc/ansible/hosts.

One nice feature of Ansible is that you can replace any flat configuration file with a
directory of the same name. Ansible then merges the contents of the files the direc-
tory contains. This feature is useful for structuring your configuration base, but it’s
also Ansible’s way of incorporating dynamic information: if a particular file is exe-
cutable, Ansible runs it and captures the output instead of reading the file directly.13

This aggregation feature is so useful and so commonly used that we recommend
bypassing the larval flat-file stage of most configuration files and skipping directly
to directories. For example, we can define an Ansible client by adding the follow-
ing line to /etc/ansible/hosts/static (or to ~/hosts/static within a personal con-
figuration base):

new-client.example.com ansible_user=ansible

FreeBSD clients put Python in an unusual location, so you’ll need to tell Ansible
about that:

freebsd.example.com ansible_python_interpreter=/usr/local/bin/python
ansible_user=ansible

This should all be on a single line in the hosts file. (On page 858 we present a
much better way to set these variables, but that method is just a generalization of
this same idea.)

To check connectivity with a new host, run the setup operation, which returns the
client’s fact catalog:

$ ansible new-client.example.com -m setup
new-client.example.com | SUCCESS => {
	 "ansible_facts": {
		 "ansible_all_ipv4_addresses": [
			 "172.31.25.123"
],
		 ...
<200+ more lines omitted>

	 13.	 Actually, Ansible is even smarter than this. It ignores certain file types entirely, e.g., .ini files. So not
only can you put in scripts, but also configuration files for scripts.

http://new-client.example.com
http://freebsd.example.com
http://new-client.example.com
http://new-client.example.com

	 Introduction to Ansible	 857

Co
nfi

gu
ra

tio
n

The name “setup” is unfortunate, as no explicit setup is actually required. You can
go directly to actual configuration operations if you wish. In addition, you can run
the setup operation as often as you like to review the client’s fact catalog.

Check to be sure that privilege escalation through sudo is also working correctly:

$ ansible new-client.example.com -a whoami --become --ask-become-pass
SUDO password: <password>
new-client.example.com | SUCCESS | rc=0 >>
root

Here, the command operation, which runs shell commands, is the default. We could
have said -m command explicitly with equivalent results. The -a flag introduces
operation parameters; in this case, the actual command to execute.

“Becoming” is Ansible’s odd locution for privilege escalation; you “become” another
user. The “other user” is root by default, but you can specify a different one with the

-u option. Unfortunately, you have to force Ansible to ask you for the sudo password
(with --ask-become-pass), and it does so regardless of whether the remote system
actually prompts for the password.

Client groups
Groups are defined within the hosts directory as well, although the syntax can be-
come a bit awkward:

client-four.example.com

[webservers]
client-one.example.com
client-two.example.com

[dbservers]
client-one.example.com
client-three.example.com

If this doesn’t look so bad, that’s because we’ve skirted the main problem areas. The
.ini format is flat(ish), so some tricks are needed if you want to define hierarchical
groups or add extras directly to the hosts file (e.g., variable assignments for a group).
These features aren’t actually that important in practice, however.

Note that we had to list client-four at the top of the file because that host is not
included in any groups. We can’t just append to the hosts file, because that would
make client-four a member of the dbservers group, even if we added a blank line
as a separator.

This is another reason why configuration directories are helpful. In practice, we’d
probably want to put each group definition in a separate file.

Ansible lets you freely intermix client names and group names on command lines
and within the configuration base. Neither is specially marked, and both can be
subject to globbing. Regular-expression-style matching is also available for both;

http://new-client.example.com
http://new-client.example.com
http://client-four.example.com
http://client-one.example.com
http://client-two.example.com
http://client-one.example.com
http://client-three.example.com

858	 Chapter 23	 Configuration Management	

just start the pattern with a ~. There’s also a set algebra notation for combining co-
horts of clients in various ways.

For example, the following command uses a globbing expression to select the web-
servers group. It executes the ping operation on each member of that group.

$ ansible 'web*' -m ping
client-one.example.com | SUCCESS => {
	 "changed": false,
	 "ping": "pong"
}
client-two.example.com | SUCCESS => {
	 "changed": false,
	 "ping": "pong"
}

Variable assignments
As we saw on page 856, variable values can be assigned within inventory files. But
that’s gauche; don’t do it that way.

Every host and group can have its own collection of variable definitions in YAML
format. By default, these definitions are stored under /etc/ansible/host_vars and
/etc/ansible/group_vars in files named for the host or group. You can use a .yml
suffix if you want; Ansible finds the appropriate files either way.

As with other Ansible configurations, these files can be converted to directories if
you’d like to add some additional structure or scripting. Ansible does its usual rou-
tine of ignoring configuration files, running scripts, and combining all the results
into a final package.

Ansible automatically defines a group called “all” for you. Just like other groups, “all”
can have its own group variables. For example, if you standardize on using client
accounts named “ansible” for configuration management, that’s a good fact to put
in the global configuration (here, in, say, group_vars/all/basics):

ansible_user: ansible

If multiple value declarations exist for a variable, Ansible selects a final value ac-
cording to precedence rules rather than declaration order. Ansible currently has
14 different precedence categories, but the relevant point in this case is that host
variables trump group variables.

Conflicts among overlapping groups are resolved at random, which can make for
inconsistent behavior and tricky debugging. Try to structure your variable decla-
rations so that there’s no possibility for overlaps.

http://client-one.example.com
http://client-two.example.com

	 Introduction to Ansible	 859

Co
nfi

gu
ra

tio
n

Dynamic and computed client groups
Ansible’s grouping system really comes into its own when dynamic scripting is added
to the mix. The dynamic inventory scripts used with cloud providers, for example,
don’t simply list all the available servers. They also slice and dice those servers into
ad hoc groupings according to metadata from the cloud.

For example, Amazon’s EC2 lets you assign arbitrary tags to each instance. You
might assign the tag webserver to every instance that needs an NGINX stack and
dbserver to every instance that needs PostgreSQL. The ec2.py dynamic inventory
script would then create groups named tag_webserver and tag_dbserver. These
groups can have their own group variables and can be named in bindings (“play-
books”), just like any other group.

The situation gets murkier when it comes to grouping clients on criteria internal
to Ansible, such as the values of facts. You can’t do this directly. What you can do
instead is target playbooks to broader groups (such as “all”) and apply condition-
al expressions to individual operations which, when the proper conditions do not
apply, cause the operation to be skipped.

For example, the following playbook ensures that /etc/rc.conf contains a line to
configure the hostname on each FreeBSD client:

-	name: Set hostname at startup on FreeBSD systems
	 hosts: all
	 tasks:
		 - lineinfile:
				 dest: /etc/rc.conf
				 line: hostname="{{ hostname }}"
				 regexp: ^hostname
			 when: ansible_os_family == "FreeBSD"

(If the last line looks like it needs some {{ }}, your instinct is good. This is actually
just a bit of Ansible syntactic sugar to help keep configurations tidy. when clauses
are always going to be Jinja expressions, so Ansible surrounds their contents with
double braces for you automatically. This feature is helpful, but it’s just one of a fairly
extensive list of irregularities in Ansible’s YAML parsing.)

In this example, every host in inventory is considered for the lineinfile operation.
But thanks to the when clause, only FreeBSD hosts actually run it. This approach
works fine, but it doesn’t make the FreeBSD hosts into a true group. They can’t, for
example, have a normal group_vars entry, although you can simulate the effect
with some jury-rigging.

860	 Chapter 23	 Configuration Management	

A structurally preferable but slightly more verbose alternative is to use a group_by
operation, which runs locally and classifies hosts according to an arbitrary key val-
ue for which you designate a template:

-	name: Group hosts by OS type
	 hosts: all
	 tasks:
		 - group_by: key={{ ansible_os_family }}

-	name: Set hostname at startup on FreeBSD systems
	 hosts: FreeBSD
	 tasks:
 		 - lineinfile:
				 dest: /etc/rc.conf
				 line: hostname="{{ hostname }}"
				 regexp: ^hostname

The basic game plan is similar, but the classification occurs in a separate “play” (An-
sible’s term for what we call a binding; see page 864). We then start a new play so
that we can specify a different set of target hosts, this time using the FreeBSD group
that the first play defined for us.

The advantage of using group_by is that we perform the classification only once. We
can then hang any number of tasks off the second play with confidence that we’re
targeting only the intended clients.

Task lists
Ansible calls operations “tasks,” and a collection of tasks in a separate file is called
a task list. Like all but a few parts of an Ansible configuration, task lists are just
YAML, so the files have a .yml suffix.

The binding of task lists to specific hosts is done in higher-level objects called play-
books, which are described on page 864. For now, let’s focus on the operations
themselves and not worry about how they come to be applied to a particular host.

As an example, we revisit the “install sudo” example from page 853 with a slightly
different focus and implementation. This time, we create the administrator accounts
from scratch and give each one its own UNIX group of the same name. We then set
up a sudoers file that lists the administrators explicitly (instead of just assigning
privileges to a “sudo” UNIX group).14

	 14.	 A task or state file should normally have a well-defined domain and a clear objective, whereas this
agenda is kind of a jumble. We chose these operations to illustrate some general points rather than as
an example of appropriate configuration base structure.

	 Introduction to Ansible	 861

Co
nfi

gu
ra

tio
n

Some input data is needed to drive these operations: in particular, the location of
the sudoers file and the names and usernames of administrators. We should put
this information in a separate variable file, say, group_vars/all/admins.yml:

sudoers_path: /etc/sudoers
admins:
	 - { username: manny, fullname: Manny Calavera }
	 - { username: moe, fullname: Moe Money }

The value of admins is an array of hashes; we iterate through this array to create all
the accounts. Here’s what the complete task list would look like:

- name: Install sudo package
	 package: name=sudo state=present

- name: Create personal groups for admins
	 group: name={{ item.username }}
	 with_items: "{{ admins }}"

- name: Create admin accounts
	 user:
		 name: "{{ item.username }}"
		 comment: "{{ item.fullname }}"
		 group: "{{ item.username }}"
		 groups: wheel
	 with_items: "{{ admins }}"

- name: Install sudoers file
	 template:
		 dest: "{{ sudoers_path }}"
		 src: templates/sudoers.j2
		 owner: root
		 group: wheel
		 mode: 0600

From the perspective of YAML and JSON, the tasks form a list. Each dash at the
left margin starts a new task, which is represented by a hash.

In this example, every task has a name field that describes its function in English.
The names are technically optional, but if you don’t include them, Ansible tells you
very little about what it’s doing when you run the configuration (other than listing
the module names: package, group, etc.).

Each task must have among its keys the name of exactly one operation module. The
value of that key is itself a hash that enumerates the operation parameters. Param-
eters that you do not explicitly set assume default values.

The notation

- name: Install sudo package
	 package: name=sudo state=present

862	 Chapter 23	 Configuration Management	

is an Ansible extension to YAML that’s essentially equivalent to

- name: Install sudo package
	 package:
		 name: sudo
		 state: present

There’s some potential weirdness here in the case of operations like shell that have
“freeform” arguments, but we won’t rehash that here. See the YAML rant on page 850.

The one-line format is not only more compact, but it also lets you set parameters
whose values are Jinja expressions without quotes, as seen in the task that creates
personal groups for admins. In the normal syntax, a Jinja expression cannot appear
at the start of a value unless the entire value is in quotes. The quoting is benign, but
it does add visual noise. Despite appearances, the quotes do not force the value to
be a string.

Now we’re ready to break out a few of the more notable aspects of this example task
list in the sections below.

state parameters
In Ansible, operation modules can often perform several different tasks depend-
ing on the state you request. For the package module, for example, state=present
installs the package, state=absent removes it, and state=latest ensures that the
package is both present and up to date. Operations often look for different sets of
parameters depending on the state being invoked.

In a few cases (e.g., the service module with state=restarted, which restarts a
daemon), this model wanders a bit from what might normally be conceived of as a

“state,” but overall it works well. The state can be omitted (as shown here when cre-
ating the sudo group), in which case it assumes a default value, usually something
positive and empowering such as present, configured, or running.

Iteration
with_items is an iteration construct that repeats a task once for each element it’s
supplied with. For quick reference, here’s another copy of the two tasks in our ex-
ample that use with_items:

- name: Create personal groups for admins
	 group: name={{ item.username }}
	 with_items: "{{ admins }}"

- name: Create admin accounts
	 user:
		 name: "{{ item.username }}"
		 comment: "{{ item.fullname }}"
		 group: "{{ item.username }}"
		 groups: wheel
	 with_items: "{{ admins }}"

	 Introduction to Ansible	 863

Co
nfi

gu
ra

tio
n

Note that with_items is an attribute of the task, not the operation that the task runs.

On each pass through a loop, Ansible sets the value of item to one of the items
supplied to with_items. In this case, we assigned the variable admins a list of
hashes, so item is always a hash. The notation item.username is shorthand for
item['username']. Use whichever you prefer.

Each of these tasks loops through the admins array separately. One pass creates
UNIX groups and the other creates user accounts. Although Ansible does define a
grouping mechanism for tasks (called a block), that construct unfortunately does
not support with_items.

If you really need the effect of a single loop that executes multiple tasks in sequence,
you can achieve it by moving the loop body into a separate file and including it
into the main task list:

- include: sudo-subtasks.yml
	 with_items: "{{ admins }}"

with_items is not the only loop available in Ansible. There are also loop forms
dedicated to iterating over hashes (termed “dictionaries” in Python), over lists of
files, and over globbing patterns.

Interaction with Jinja
The Ansible documentation is not very specific about how YAML and Jinja interact,
but it’s important to understand the details. As constructs like with_items demon-
strate, Jinja is not simply a preprocessor that’s run over a file before it is handed off
to YAML (as is the case in Salt). In fact, Ansible parses YAML with Jinja expressions
intact. It then Jinja-expands each string value immediately before use. Parameters
of iterated operations are reevaluated during each iteration.

Jinja has control structures of its own, including loops and conditionals. However,
they are inherently incompatible with Ansible’s delayed-evaluation architecture,
and so they are not allowed in Ansible’s YAML files (although they can be used in
templates). Ansible constructs such as when and with_items are not just window
dressing for the equivalent Jinja. They represent a rather different approach to
structuring the configuration.

Template rendering
Ansible uses the Jinja2 template language both to add dynamic features to YAML
files and to flesh out configuration file templates installed by the template module.
We use a template in this example to set up the sudoers file. Here are the variable
definitions again for reference:

sudoers_path: /etc/sudoers
admins:
	 - { username: manny, fullname: Manny Calavera }
	 - { username: moe, fullname: Moe Money }

864	 Chapter 23	 Configuration Management	

And the task code:

- name: Install sudoers file
	 template:
		 dest: "{{ sudoers_path }}"
		 src: templates/sudoers.j2
		 owner: root
		 group: wheel
		 mode: 0600

The file sudoers.j2 is a mix of plain text and Jinja2 code for the dynamic bits. For
example, here’s a skeletal example that gives “sudo ALL” privileges to each admin:

Defaults env_keep += "HOME"

{% for admin in admins %}
{{ admin }} ALL=(ALL) ALL
{% endfor %}

The for loop wrapped by {% %} is Jinja2 syntax. Unfortunately, you can’t indent
loop bodies sensibly as you might in a real programming language, because doing
so would cause the output of the template to be indented as well.

The expanded version looks like this:

Defaults env_keep += "HOME"

manny ALL=(ALL) ALL
moe ALL=(ALL) ALL

Note that variable values automatically flow through to templates. The values are
available to configuration files under exactly the same names used to define them;
no prefix or additional hierarchy is imposed. Autodiscovered fact variables are in
the top-level namespace, too, but to forestall potential name conflicts they all begin
with the prefix ansible_.

Ansible’s module for installing static files is called copy. However, you may as well
treat all configuration files as templates, even if their contents initially consist of
static text. You can then add customizations in the future without having to touch
the configuration code; just edit the template. Reserve copy for binary files and for
static files that will never need expansion, such as public keys.

Bindings: plays and playbooks
Bindings are the mechanism through which tasks become associated with sets of
client machines. Ansible’s binding object is called a play. Here’s a simple example:

- name: Make sure NGINX is installed on web servers
	 hosts: webservers
	 tasks:
		 - package: name=nginx state=present

	 Introduction to Ansible	 865

Co
nfi

gu
ra

tio
n

Just as multiple tasks can be concatenated to form a task list, multiple plays in se-
quence form a “playbook.”

As in other systems, the basic elements of a binding are a set of hosts and a set of
tasks. However, Ansible’s system allows several additional options to be specified
at the play level. They’re listed in Table 23.3.

Table 23.3	 Ansible play elements

Key Format What it specifies

name string Name to print out when executing the play, optional
hosts list, string Client systems on which to run associated tasks and roles
vars hash Variable values to set for the scope of this play
vars_files list Files from which to read variable values
become* strings Privilege escalation (e.g., sudo) options
tags list Categories for selective execution; see page 868
tasks list Operations to run; may include separate files
handlers list Operations to run in response to notify
roles list Bundles (roles) to invoke for these hosts; see page 866

The biggies here are the variable-related options, not so much because they appear
in plays per se, but because they’re available pretty much anywhere—even when
executing includes. Ansible can activate the same task list or playbook again and
again with different sets of variable values. It’s a lot like defining a function (e.g.,

“make a user account”) and then calling it with different sets of arguments.

Ansible formalizes this system in its implementation of bundles (called “roles”), which
we discuss on page 866. Roles are powerful, but under the hood, they’re just a set
of standardized conventions for doing includes, so they’re also easy to understand.

Here’s a simple play that demonstrates the use of handlers:

- name: Update cow-clicker web app
	 hosts: clickera,clickerb
	 tasks:
		 - name: rsync app files to /srv
			 synchronize:
				 mode: pull
				 src: web-repo:~sites/cow-clicker
				 dest: /srv/cow-clicker
				 notify: restart nginx
	 handlers:
		 - name: restart nginx
			 service: name=nginx state=restarted

866	 Chapter 23	 Configuration Management	

This playbook runs on hosts clickera and clickerb. It mirrors files from a central
(local) repository by running rsync (using the synchronize module), then restarts
the NGINX web server if any updates were made.

When a task with a notify clause makes changes to the system, Ansible runs the
handler of the requested name. Handlers themselves are just tasks, but they’re de-
clared in a separate section of the play.

Playbooks are the primary unit of execution in Ansible. You run them with
ansible-playbook:

$ ansible-playbook global.yml --ask-sudo-pass

Ansible approaches multihost execution task by task. As it reads a playbook, each
task is run in parallel on the targeted hosts. When every host has completed the task,
Ansible continues to the next task. By default, Ansible runs tasks simultaneously on
up to five hosts, but you can set a different limit with the -f flag.

When debugging problems, it’s often helpful to include the -vvvv argument to in-
crease the amount of debugging output. You’ll see the exact commands that are
executed on the remote system and their detailed responses.

Roles
As we described generically starting on page 839, bundles (our term) are the
packaging mechanism defined by a CM system to facilitate reuse and sharing of
configuration fragments.

Ansible calls its bundles “roles,” and they are in fact nothing but a structured system
of include operations and variable precedence rules. They make it easy to put the
variable definitions, task lists, and templates associated with a configuration into a
single directory, making them readily available for reuse and sharing.

Each role is a subdirectory of a directory called roles that’s normally found at the
top level of your configuration base. You can also add site-wide role directories by
setting the roles_path variable in ansible.cfg, as shown on page 853. All known
role directories are searched whenever you include a role in a playbook.

Role directories can have the subdirectories shown in Table 23.4.

Roles are invoked through playbooks and nowhere else. Ansible looks for a file
called main.yml within each of the role’s subdirectories. If it exists, the contents
are automatically incorporated into any playbook that invokes the role. For exam-
ple, the playbook

-	name: Set up cow-clicker app throughout East region
	 hosts: web-servers-east
	 roles:
		 - cow-clicker

 	

	 Introduction to Ansible	 867

Co
nfi

gu
ra

tio
n

is roughly equivalent to

-	name: Set up cow-clicker app throughout East region
	 hosts: web-servers-east
	 vars_files:
		 - roles/cow-clicker/defaults/main.yml
		 - roles/cow-clicker/vars/main.yml
	 tasks:
		 - include: roles/cow-clicker/tasks/main.yml
	 handlers:
		 - include: roles/cow-clicker/handlers/main.yml

However, variable values from the default folder do not override values that have
already been set. In addition, Ansible makes it easy to refer to files from the files
and templates directories, and it sub-includes any roles mentioned as dependen-
cies in the meta/main.yml file.

Files other than main.yml are ignored by the roles system, so you can break the
configuration into whatever pieces are appropriate and just include those parts
into main.yml.

Ansible lets you pass a set of variable values to a particular instance of a role. In
effect, this makes the role act as a sort of parameterized function. For example,
you might define a bundle that’s used to deploy a Rails app. You could invoke that
bundle several times within a playbook, supplying the parameters of a different
app for each invocation:

-	name: Install ULSAH Rails apps
	 hosts: ulsah-server
	 roles:
		 - { role: rails_app, app_name: ulsah-reviews }
		 - { role: rails_app, app_name: admin-com }

In this example, the rails_app role would probably depend on a role for nginx
or some other web server, so it would not be necessary to mention the web server
role explicitly. If you wanted to customize the web server installation, you could

	
	
	
		

Table 23.4	 Subdirectories of an Ansible role

Subdir Contents

defaults Default values for variables (overridable)
vars Variable definitions (not overridable, but can reference overrides)
tasks Tasks lists (sets of operations)
handlers Operations that respond to notifications
files Data files (typically used as a source for copy operations)
templates Templates to be processed by Jinja before installation
meta List of bundles to run in preparation for this bundle

868	 Chapter 23	 Configuration Management	

simply include the appropriate variable values in the rails_app invocation, and
those values would be propagated downward.

Ansible’s public role repository is located at galaxy.ansible.com. You can search for
roles with the ansible-galaxy command, but you’re better off using the web site.
It lets you sort by rating or download count, and you can easily click through to
the GitHub repo that hosts the actual code for each role. Several roles are usually
available to address most common scenarios, so it’s worth examining the code to
determine which version will serve your needs best.

Once you’ve settled on a role implementation, copy the files to your roles directory
by running ansible-galaxy install. For example:

$ ansible-galaxy install ANXS.postgresql
- downloading role 'postgresql', owned by ANXS
- downloading role from https://github.com/ANXS/postgresql/v1.4.0.tar.gz
- extracting ANXS.postgresql to /etc/ansible/roles/ANXS.postgresql
- ANXS.postgresql was installed successfully

Recommendations for structuring the configuration base
Most configuration bases are organized hierarchically. That is, various pieces of the
configuration feed into a master playbook that controls the global state. However,
you can also define task-specific playbooks that are unrelated to the global scheme.

Try to keep task lists and handlers out of playbook files. Instead, put them in sep-
arate files and interpolate them with include. This structure makes a clean separa-
tion between bindings and behavior, and it puts all tasks on an equal footing. For
extra style points, avoid freestanding task lists entirely and standardize on roles.

It’s sometimes recommended that a single playbook should cover all the tasks that
relate to each logically distinct group of hosts. For example, all the roles and tasks
that relate to web servers should be included in a single webserver.yml playbook.
This approach avoids replication of host groups and provides a clear locus of con-
trol for each host group.

On the other hand, following this rule means that there’s no direct way to run a
portion of the global configuration, even for debugging. Ansible can run only play-
books; there is no simple command that runs a specific task list on a given machine.

The official solution for this issue is tagging, which works fine but requires some
setup. You can include a tags field in or above any task to classify it. At the com-
mand line, use ansible-playbook’s -t option to specify the subset of tags you want
to run. In most debugging scenarios, you’ll also want to use the -l option to limit
execution to a specified test host.

Assign tags at as high a level as you can within the configuration hierarchy. Under
normal circumstances, you should have no temptation to assign tags to individual
tasks. (If you do, it may be a sign that the particular task list should be split up.)

http://galaxy.ansible.com

	 Introduction to Ansible	 869

Co
nfi

gu
ra

tio
n

Instead, attach tags to the include or roles clause that incorporates a specific task
list or role into the configuration. The tags then cover all the included tasks.

Alternatively, you can just construct scratch playbooks that run parts of the config-
uration base on a test host. Setting up these scratch playbooks is a minor annoy-
ance, but so is tagging.

Ansible access options
Ansible needs SSH and sudo access on every client system, which sounds straight-
forward and familiar until you consider that the configuration management system
holds the master keys to the entire organization. It’s hard for daemon-based systems
to be more secure than the root account on the configuration server, but Ansible
can potentially do better than this with some thoughtful planning.

For simplicity, it’s best if SSH access is funneled through a dedicated account such
as “ansible” that has the same name on each client. That account should use a sim-
ple shell and should have a minimal dot-file configuration.

On cloud servers, you can use a standard bootstrapping account (such as ec2-user on
EC2) for Ansible control. Just make sure that after the initial setup, the account has
been properly locked down and does not allow, e.g., su to root without a password.

You have some flexibility regarding the actual security design. But keep the follow-
ing points in mind:

•	 Ansible needs one credential (password or private key) to gain access to a
remote system, and another to escalate privileges with sudo. Proper security
hygiene suggests that these be separate credentials. A single compromised
credential should not grant an intruder root access to a target machine.15

•	 If both credentials are stored in the same place with the same form of pro-
tection (encryption, file permissions), they are effectively a single credential.

•	 Credentials can be reused on machines that are peers (e.g., web servers in
a farm), but it should not be possible to use credentials from one server to
access a more sensitive—or even substantially different—server.

•	 Ansible has transparent support for encrypted data through the ansible-vault
command, but only if the data is contained in a YAML or .ini file.

•	 Administrators can remember only a few passwords.

•	 It’s unreasonable to demand more than one password for a given operation.

	 15.	 Some sites set up client-side “ansible” accounts with the NOPASSWD option in the sudoers file, such
that no password is required for the ansible account to run sudo. This is a terribly insecure configu-
ration. If you can’t bring yourself to type a password, at least install the PAM SSH agent module and
require a forwarded SSH key for sudo access. See page 590 for more information about PAM.

870	 Chapter 23	 Configuration Management	

Sites will arrive at their own tradeoffs, but we suggest the following system as a ro-
bust but usable baseline that conforms to these guidelines:

•	 SSH access is controlled by key pairs that are used by Ansible only.

•	 Password-based SSH access is prohibited on client systems (by setting
PasswordAuthentication no in /etc/ssh/sshd_config).

•	 SSH private keys are protected by a passphrase (set with ssh-keygen -p).
All private keys have the same passphrase.

•	 Private SSH keys are kept in a known location on the Ansible master ma-
chine. They do not live within the configuration base, and administrators
agree not to copy them elsewhere.

•	 Remote accounts (“ansible” accounts) have random UNIX passwords that
are listed in the configuration base in encrypted form. All of them are en-
crypted with the same passphrase, but it’s different from the passphrase
used for SSH private keys. You will need to add some Ansible glue to make
sure the right passwords are used with the right client hosts.

In this scheme, both sets of credentials are encrypted, which makes them resistant
to simple violations of file permissions. This layer of indirection also lets you change
the master passphrases easily without changing the underlying keys.

Administrators need remember only two passphrases: the passphrase that gives
access to SSH private keys, and the Ansible vault password, which allows Ansible
to decrypt the host-specific sudo-passwords (as well as any other confidential in-
formation included in your configuration base).

If you require more granularity for administrator permissions (which is likely), you
can encrypt multiple sets of credentials with different passphrases. If the sets are
cumulative (as opposed to disjoint), no individual administrator needs to remem-
ber more than two passphrases.

It’s assumed in this system that administrators will use ssh-agent to manage access
to private keys. All keys can be activated with a single ssh-add command, and the
SSH password need be entered only once per session. To work on a system other
than the usual Ansible master, admins can use SSH’s ForwardAgent option to tun-
nel keys through to the machine on which work is being done. All other security
information is included in the configuration base itself.

It’s true that ssh-agent and key forwarding are only as secure as the machines on
which they run. (Less so, really: like sudo with a grace period, they are only as se-
cure as your personal account.) However, the risk is mitigated by limits on time
and context. Use the -t argument to ssh-agent or ssh-add to cap the lifetime of
activated keys, and terminate connections that have access to forwarded keys once
you are no longer using them.

See page 1020 for more
details on ssh-agent.

	 Introduction to Salt	 871

Co
nfi

gu
ra

tio
n

If possible, private keys should never be deployed onto client systems. If clients need
privileged access to controlled resources (e.g., to clone a controlled Git repository),
use the proxying features built into SSH and Ansible, or use ssh-agent to make pri-
vate keys temporarily available to the client without copying them.

For some reason, Ansible cannot currently recognize encrypted files in the con-
figuration base and prompt you to enter the passphrase for decryption. You have
to force its hand with the --ask-vault-pass argument to the ansible-playbook and
ansible commands. There’s a --vault-password-file option available for noninter-
active use, but of course, that reduces security. If you decide to use a password file,
it should be accessible only to the dedicated ansible account.

23.6	 Introduction to Salt
Out in the world, you might see Salt referred to as Salt, SaltStack, or Salt Open. These
terms are essentially interchangeable. The vendor’s name is SaltStack, and they use
SaltStack as a generic term to refer to the complete product line, which includes
some enterprise add-ons that we don’t discuss in this book. However, many people
call the open source system SaltStack, too.

Salt Open is a more recently introduced name that designates only the open source
components of Salt. But currently, that name doesn’t seem to be used anywhere
outside of saltstack.com.

SaltStack maintains its own package repository at repo.saltstack.com which hosts
up-to-date packages for every Linux packaging system. See the web site for instruc-
tions on how to add the repo to your configuration. Some distributions include free-
range Salt packages of their own, but it’s generally best to go directly to the source.

You’ll need the salt-master package on the configuration server (the “master”). If
you have any dealings with cloud providers, also install the salt-cloud package.
It wraps a variety of cloud providers into a standard interface and simplifies the
process of creating new cloud servers to be managed through Salt. It’s essentially
similar to cloud providers’ native CLI tools, but it handles machines at both the
Salt and cloud layers. New machines are automatically bootstrapped, enrolled, and
approved. Deleted machines are removed from Salt as well as the provider’s cloud.

SaltStack doesn’t host a package repo for FreeBSD, but it is a supported platform.
The web installer is FreeBSD aware:

$ curl -L https://bootstrap.saltstack.com -o /tmp/saltboot
$ sudo sh /tmp/saltboot -P -M

By default, the web installer installs client-side software as well as the master server.
If you don’t want that, pass the -N option to saltboot.

Salt’s configuration files go in /etc/salt, both on the master server and on clients
(“minions”). It’s theoretically possible to run the server daemon as an unprivileged
user, but that requires manually chowning a bunch of system directories that Salt

See Chapter 25 for
more information
about containers.

http://saltstack.com
http://repo.saltstack.com

872	 Chapter 23	 Configuration Management	

expects to interact with. If you’re tempted to head down this road, you’re probably
better off using a containerized version of the server or saving the configuration
into a pre-baked machine image.

Salt has a simple access control system that you can configure to allow unprivileged
users to initiate Salt operations on minions. However, you must do manual per-
mission hacking similar to that required for nonroot operation. Considering that
the master has direct root access to all minions, we find this feature rather suspect
from a security perspective. If you do use it, keep a tight lid on the permissions
that are granted.

Salt maintains a separation between configuration files that set variable values (the
“pillar”) and configuration files that define operations (“states”). The distinction
goes all the way to the top: you must set separate locations for these configuration
hierarchies. They both default to living under /srv, which is equivalent to the fol-
lowing /etc/salt/master file:

file_roots:
	 base:
		 - /srv/salt

pillar_roots:
	 base:
		 - /srv/pillar

Here, base is a required common environment on top of which additional environ-
ments (e.g., development) can be layered. Variable definitions go in the /srv/pillar
root, and everything else lives in /srv/salt.

Note that the paths themselves are list elements, since they’re prefixed with dashes.
You can include multiple directories, which makes the salt-master daemon serve a
merged view of the listed directories to minions. This is a useful feature when you
are organizing a large configuration base, since it permits you to add structure that
Salt wouldn’t natively understand.

Typically, you’ll want to manage the configuration base as a single Git repository
that includes both the salt and pillar subdirectories. This isn’t a good fit for the
default layout because it means that /srv would be the repo root; consider moving
everything down a level to /srv/salt/salt and /srv/salt/pillar.

The Salt documentation doesn’t do a very good job of explaining why the pillar
and the states have to be completely separate, but in fact this distinction is central
to Salt’s architecture. The salt-master daemon doesn’t pay the slightest attention
to state files; it simply makes them available to minions, who are responsible for
parsing and executing them.

	 Introduction to Salt	 873

Co
nfi

gu
ra

tio
n

The pillar is entirely different. It’s evaluated on the master and propagated to min-
ions as a single, unified JSON hierarchy. Each minion sees a different view of the
pillar, but none of them can see the implementation machinery behind these views.

In part, this is a security measure: Salt makes a strong guarantee that minions can-
not access each other’s pillars. It’s also a data-sourcing distinction, as dynamic pillar
content always originates from the master. This makes for a nice complementarity
with grains (Salt’s version of facts), which originate on minions.

Salt’s communication bus uses TCP ports 4505 and 4506 on the server. Make sure
these ports are allowed through any firewalls or packet filters that lie between the
server and the prospective clients. The clients themselves do not accept network
connections, so this step needs to be done only once, for the server.

When first investigating Salt, you might find it informative to run salt-master -l debug
in a terminal window (instead of as a system service). This makes salt-master run
in the foreground and print out activity on Salt’s communication bus as it occurs.

Minion setup
As on the master side, you have a choice of native packages from SaltStack’s repo
or a universal bootstrap script. The repo is hardly worth fussing with on minions,
so we recommend the latter:

$ curl -o /tmp/saltboot -sL https://bootstrap.saltstack.com
$ sudo sh /tmp/saltboot -P

The bootstrap script works on any supported system. On systems without curl, wget
and fetch also work fine. See the saltstack/salt-bootstrap repository on GitHub for
specific installation scenarios and source code.16

By default, the salt-minion daemon tries to register itself with a master machine
named “salt”. (This “magic name” system was first popularized by Puppet.) You can
use DNS wizardry to make the name resolve appropriately, or you can set an explicit
master in /etc/salt/minion (/usr/local/etc/salt/minion on FreeBSD):

master: salt.example.com

Restart salt-minion after modifying this file (usually, service salt_minion restart,
note the underscore rather than a dash).

	 16.	 For production systems that are started automatically, minimize your exposure to external events
by downloading a locally cached version of the boot script. Install a specific version of the Salt client,
also from a local cache, or preload it on the machine image. Run the boot script with a -h option to
see all the options it supports.

See page 1027 for more
information about
network firewalls.

See Chapter 16
for more informa-
tion about DNS.

874	 Chapter 23	 Configuration Management	

salt-master accepts client registrations from any random machine that can reach it,
but you must approve each client with the salt-key command on the master con-
figuration server before it becomes active:

$ sudo salt-key -l unaccepted
Unaccepted Keys:
new-client.example.com

If everything looks good, accept all pending keys

$ sudo salt-key -yA
The following keys are going to be accepted:
Unaccepted Keys:
new-client.example.com
Key for minion new-client.example.com accepted.

You can now check connectivity from the server with the test module:

$ sudo salt new-client.example.com test.ping
new-client.example.com:
	 True

In this example, new-client.example.com looks suspiciously like a hostname, but it
really isn’t. It’s just the machine’s Salt ID, a string that defaults to the hostname but
can be set to anything you like in the client’s /etc/salt/minion file:

master: salt.example.com
id: new-client.example.com

IDs and IP addresses have nothing to do with each other. For example, even if
52.24.149.191 were the client’s actual IP address, you could not directly target it
that way with Salt commands: 17

$ sudo salt 52.24.149.191 test.ping
No minions matched the target. No command was sent, no jid was assigned.
ERROR: No return received

Variable value binding for minions
As we saw in the server setup section, Salt has separate filesystem hierarchies for
state bindings and variable-value bindings (the “pillar”). Each of these directory
trees has a top.sls file at the root that binds groups of minions to files within the
tree. The two top.sls files both use the same layout. (.sls is just Salt’s standard ex-
tension for YAML files.)

	 17.	 Of course, you can do IP-based matching. It just has to be explicit. See page 877.

http://new-client.example.com
http://new-client.example.com
http://new-client.example.com
http://new-client.example.com
http://new-client.example.com:
http://new-client.example.com
http://salt.example.com
http://new-client.example.com

	 Introduction to Salt	 875

Co
nfi

gu
ra

tio
n

As an example, here’s the layout of a simple Salt configuration base that shows both
the salt and pillar roots:

$ tree /srv/salt
/srv/salt
├── salt
│ ├── top.sls
│ ├── hostname.sls
│ ├── bootstrap.sls
│ ├── sshd.sls
│ └── baseline.sls
└── pillar
 ├── top.sls
 ├── baseline.sls
 ├── webserver.sls
 └── freebsd.sls

2 directories, 9 files

To bind the variables defined in pillar/baseline.sls and pillar/freebsd.sls to our
example client, we could include the following lines in pillar/top.sls:

base:
	 new-client.example.com:
		 - baseline
		 - freebsd

As in the master file, base is a required, common environment that can be overlaid
in more sophisticated setups. See page 888 for more about this.

It’s possible for baseline.sls and freebsd.sls to define some of the same variable
values. For scalar and array values, the last source listed in top.sls is the one that
takes effect. Hashes, however, are merged.

For example, if a minion binds to one variable file that looks like this:

admin-users:
	 manny:
		 uid: 724
	 moe:
		 uid: 740

and one that looks like this:

admin-users:
	 jack:
		 uid: 1004

then Salt merges the two versions.

http://new-client.example.com:

876	 Chapter 23	 Configuration Management	

The pillar data presented to minions is

admin-users:
	 manny:
		 uid: 724
	 moe:
		 uid: 740
	 jack:
		 uid: 1004

Minion matching
In the scenario above, what we probably want is to apply baseline.sls to all clients,
and to apply freebsd.sls to all clients that are running FreeBSD. Here’s how we can
do that with selection patterns in the pillar/top.sls file:

base:
	 '*.example.com':
		 - baseline
	 'G@os:FreeBSD':
		 - freebsd

The star matches all client IDs in example.com. We could have just used '*' here,
but we wanted to emphasize that it’s a globbing pattern. The G@ prefix requests a
match on grain values. The grain being inspected is named os, and the value sought
is FreeBSD. Globbing is allowed here, too.

A less magical way to write the matching expression for FreeBSD would be

	 'os:FreeBSD':
		 - match: grain
		 - freebsd

The choice is up to you, but the @ notation expands cleanly to complex expressions
that involve parentheses and Boolean operations. Table 23.5 lists most of the com-
mon matching types, although a few have been omitted.

If Table 23.5 looks disturbingly complex, take heart; these are just options. Real-world
selectors look a lot more like our simple examples.

If you’re wondering what all those grains or pillar values are that you can match
against, it’s easy to find out. Just use

$ sudo salt minion grains.items

or

$ sudo salt minion pillar.items

to obtain a complete list.

You can define named groups in the /etc/salt/master file. They’re called nodegroups,
and they are useful for moving complex group selectors out of top.sls files. However,

 	

 

	
	
	

http://'*.example.com':
http://example.com

	 Introduction to Salt	 877

Co
nfi

gu
ra

tio
n

they’re not really a true grouping mechanism so much as a way to name patterns
for reuse. As a result, their behavior is a bit squirrelly. They can only be defined in
terms of compound-type selectors (not, for example, by a simple list of clients, un-
less you use an L@ clause), and you must use an explicit match: type of nodegroup
to match against them. There’s no global shorthand notation.

Salt states
Salt operations are called “states.” As in Ansible, they’re defined in YAML format,
and in fact they look vaguely similar to Ansible tasks. However, the fine-grained
details are quite different. You can include a series of state definitions in a .sls file.

States are bound to specific minions in the top.sls file at the root of the salt arm of
the configuration base. This file looks and functions exactly like the top.sls file for
variable bindings; see the examples on page 875.

Take a look at the following Salt version of the same example we worked through
with Ansible starting on page 853: we install sudo and create a corresponding sudo
group to which we assign administrators who should have sudo privileges. We then
create a group of administrator accounts, each of which has its own UNIX group of
the same name. Finally, we then copy in a sudoers file from the configuration base.

As it happens, we can use exactly the same variable file for Salt that we used for Ansible:

sudoers_path: /etc/sudoers
admins:
	 - { username: manny, fullname: Manny Calavera }
	 - { username: moe, fullname: Moe Money }

	
		
	
		
	
		

	
		
	
		

	
		
		

Table 23.5	 Salt minion match types

Code Target Match type match: Example

–a ID glob glob *.cloud.example.com
E ID regex pcre E@(nw|wc)-link-\d+
L ID list list L@hosta,hostb,hostc b

G grain glob grain G@domain:*.example.com
E grain regex grain_pcre E@virtual:(xen|VMWare)
I pillar glob pillar I@scaling_type:autoscale
J pillar regex pillar_pcre J@server-class:(web|database)
S IP address CIDR block ipcidr S@52.24.9/20
–c compound compound compound not G@os_family:RedHat

a.	 This is the default. No match-type code is needed (or defined).
b.	 Note the lack of spaces; individual expressions can’t include them.
c.	 Codes are used to label individual terms.

878	 Chapter 23	 Configuration Management	

To make these definitions available to all minions, we put them in the configuration
base at pillar/example.sls and add a binding to top.sls:

base:
	 '*':
		 - example

Here’s a Salt version of the operations:

install-sudo-package:
	 pkg.installed:
		 - name: sudo
		 - refresh: true

create-sudo-group:
	 group.present:
		 - name: sudo

{% for admin in pillar.admins %}

create-group-{{ admin.username }}:
	 group.present:
		 - name: {{ admin.username }}

create-user-{{ admin.username }}:
	 user.present:
		 - name: {{ admin.username }}
		 - gid: {{ admin.username }}
		 - groups: [wheel, sudo]
		 - fullname: {{ admin.fullname }}

{% endfor %}

install-sudoers-file:
	 file.managed:
		 - name: {{ pillar.sudoers_path }}
		 - source: salt://files/sudoers
		 - user: root
		 - group: wheel
		 - mode: '0600'

This version shows the operations in their most canonical form for easier compar-
ison with the equivalent Ansible task list that starts on page 861. We can make a
few additional changes to clean things up a bit, but first, a look at this longer version.

Salt and Jinja
The first thing to notice is that the file includes a Jinja loop delimited by {% and
%}. These delimiters are similar to {{ and }} except that {% and %} do not return
values. The contents of the loop are interpolated into the YAML file as many times
as the loop runs.

	 Introduction to Salt	 879

Co
nfi

gu
ra

tio
n

Although Jinja uses Python-like syntax, YAML already “owns” the indentation in a
.sls file, so Jinja is forced to define block-ending tokens such as endfor. In straight
Python, blocks would normally be defined through indentation.

Salt defines only a rudimentary iteration construct in its basic YAML scheme (see
the comments regarding names on page 884). Conditionals and robust iteration
have to be provided by Jinja, or by whatever template language the .sls file is run
through. (In fact, Salt does not care about YAML, either. It just expands config-
uration files through a designated pipeline and consumes the final JSON output,
which must be fully literal.)

On one hand, this approach is clean. There’s no conceptual ambiguity about what’s
going on, and it’s easy to examine an expanded .sls file to make sure it means what
you intended. On the other hand, it means you’ll be using Jinja to provide any logic
required by your configuration. The mix of templating code and YAML can easily
become somewhat dazzling. It’s a bit like writing the logic of a web app using only
HTML templates.

Several rules of thumb can help keep Salt configurations tidy. First, Salt has usable
and well-defined mechanisms for implementing variable-value overlays. Use these
to keep as much configuration as possible in the domain of data rather than code.

Many examples in the Salt documentation use Jinja conditionals when they aren’t
the best solution, for example.18 The following .sls file installs the Apache web server,
which has different package names on different distributions:

apache-pkg.sls
apache:
	 pkg.installed:
		 {% if grains['os'] == 'RedHat' %}
		 - name: httpd
		 {% elif grains['os'] == 'Ubuntu' %}
		 - name: apache2
		 {% endif %}

This variation could be dealt with more elegantly through the pillar:

apache-pkg.sls
{{ pillar['apache-pkg'] }}:
	 pkg.installed

pillar/top.sls
base:
	 '*':
		 - defaults
	 'G@os:Ubuntu':
		 - ubuntu

	 18.	 In fairness, the examples are usually designed to illustrate some point other than general tidiness.

See page 215 for
general information
about Python.

880	 Chapter 23	 Configuration Management	

pillar/defaults.sls
apache-pkg: httpd

pillar/ubuntu.sls
apache-pkg: apache2

Although replacing one file with four might not initially seem like a simplification,
it’s now an extensible and code-free system. Multi-OS environments will encounter
many such variations, and they can all be dealt with in one place.

If a value has to be dynamically calculated, consider whether you can put the code
at the top of the .sls file and simply memorialize it for later use in a variable. For
example, another way to write the Apache package installation above would be

{% set pkg_name = 'httpd' %}
{% if grains['os'] == 'Ubuntu' %}
	 {% set pkg_name = 'apache2' %}
{% endif %}

{{ pkg_name }}:
	 pkg.installed:

This at least has the advantage of separating the Jinja logic from the actual configuration.

If you must intermix Jinja logic with YAML, consider whether you can break out
some of the YAML segments into separate files. You can then interpolate these
segments as appropriate. Once again, the idea is simply to separate the code and
YAML rather than alternating back and forth between them.

For nontrivial calculations, you can abandon YAML altogether and replace it with
pure Python, or with one of the Python-based DSLs that Salt includes by default.
See the Salt documentation for “renderers” for more information.

State IDs and dependencies
To return to our sudo example from page 878, here are its first two states again
for reference:

install-sudo-package:
	 pkg.installed:
		 - name: sudo
		 - refresh: true

create-sudo-group:
	 group.present:
		 - name: sudo

You can see that the individual states are not items in a list (as they are in Ansible)
but rather the elements of a hash. The hash key for each state is an arbitrary string
called the ID. As usual with hashes, IDs must be unique or they’ll collide.

	 Introduction to Salt	 881

Co
nfi

gu
ra

tio
n

But wait! The potential domain for collisions is not just this particular file, but the
entire client configuration. State IDs must be globally unique, because Salt is even-
tually going to stuff them all together into one big hash.

It’s a bit of a funny hash, though, because it preserves the order of keys. In a stan-
dard hash, keys emerge in random order when the hash is enumerated. That’s the
way that Salt used to work, too, and as a result, all dependencies among states had
to be explicitly declared. These days, the hash preserves the order of presentation by
default, although that can still be overridden if explicit dependencies are declared
(or if this behavior is turned off in the master file).

There’s still some trickiness, though. In the absence of other constraints, order of
execution conforms to the original .sls files. However, Salt still presumes that states
are not logically dependent on one another unless you say so. If a state fails to exe-
cute, Salt notes the error but then continues and runs the next state.

If you want a dependent state not to run if its ancestors fail, you can declare that
explicitly. For example:

create-sudo-group:
	 group.present:
		 - name: sudo
		 - require:
			 - install-sudo-package

In this configuration, Salt won’t try to create a sudo group unless the sudo package
was successfully installed.

Requisites also come into play when ordering states from multiple files. Unlike
Ansible, Salt does not interpolate the contents of an include file at the point the
include was encountered. It simply adds the file to its to-read list. If multiple files
attempt to include the same source, there is still be only one copy of the source in
the final assembly, and the order of states might not be what you expected. In-order
execution is guaranteed only within a file; if any states depend on externally defined
operations, they must declare explicit requisites.

The requisite mechanism is also used to achieve an effect analogous to Ansible’s
notifications. Actually, a handful of alternatives to require are syntactically inter-
changeable with it but imply subtle shadings of behavior. One of those, watch, is
particularly useful for doing things when another state makes changes to the system.

For example, the following configuration sets the system’s time zone and the argu-
ments to be passed to ntpd when it starts up. This configuration always makes sure
that ntpd is running and configured to start at boot time. In addition, it restarts
ntpd if either the system time zone or the ntpd flags are updated.

882	 Chapter 23	 Configuration Management	

set-timezone:
	 timezone.system:
		 - name: America/Los_Angeles

set-ntpd-opts:
	 augeas.change: 19
		 - context: /files/etc/rc.conf
		 - lens: shellvars.lns
		 - changes:
			 - set ntpd_flags '"-g"' 20

ntpd:
	 service.running:
		 - enable: true
		 - watch:
			 - set-ntpd-opts
			 - set-timezone

State and execution functions
In a .sls file, the names that appear directly under state IDs are the operations those
states should run. Some specific cases from our example scenario are pkg.installed
and group.present.

These names include both a “module” part and a “function” part. Together, they
are roughly analogous to an Ansible module name together with a state value. For
example, Ansible uses a package module with state=present for installing pack-
ages, whereas Salt uses a dedicated pkg.installed function within the pkg module.

Salt makes a big whoop-de-do of distinguishing operations that do things to target
systems (“execution functions”) from those that idempotently enforce a particular
configuration (“state functions”). State functions usually call their associated exe-
cution functions when they need to make changes.

The general idea is that only state functions should be mentioned in .sls files, and
only execution functions should appear on command lines. Salt primly enforces
these rules, sometimes to confusing effect.

State and execution functions live in separate Python modules, but related modules
usually share the same name. For example, there’s both a timezone state module
and a timezone execution module. There can’t be any overlap in function names
between the two modules, though, because that would create ambiguity. The end
result is that to set the time zone from a .sls file, you must use timezone.system:

set-timezone:
	 timezone.system:
		 - name: America/Los_Angeles

	 19.	 Augeas is a tool that understands many different file formats and facilitates automated changes.
	 20.	 As evidenced by this line, quoting issues in YAML can be subtle…

	 Introduction to Salt	 883

Co
nfi

gu
ra

tio
n

But to set a minion’s time zone from the command line, you use timezone.set_zone:

$ sudo salt minion timezone.set_zone America/Los_Angeles

If you get it wrong and need to consult the documentation, you’ll find the two halves
of timezone in different sections of the manual. It’s also not always clear from be-
havior exactly which type of function is which. For example, git.config_set, which
sets Git repository options, is a state function, but state.apply, which idempotently
enforces configurations, is an execution function.

Ultimately, you just have to know which functions are which and the contexts to
which they belong. If you need to call a function from the “wrong” context—which
is sometimes necessary—you can use the adapter functions module.run (runs an
execution function from a state context) and state.single (runs a state function
from an execution context). For example, the adapted timezone calls above would be

set-timezone:
	 module.run:
		 - name: timezone.set_zone
		 - timezone: America/Los_Angeles

and

salt minion state.single timezone.system name=America/Los_Angeles

Parameters and names
Once again, here are the first two states from page 878 for reference:

install-sudo-package:
	 pkg.installed:
		 - name: sudo
		 - refresh: true

create-sudo-group:
	 group.present:
		 - name: sudo

Indented under the name of each operation (that is, the module.function construc-
tion) is its list of parameters. In Ansible, the parameters for an operation form one
big hash. Salt wants them as a list, with each entry prefaced by a dash. More specif-
ically, Salt wants a list of hashes, though there’s typically only one key in each hash.

Most parameter lists include a parameter called name, which is the standard label
for “the thing this operation is configuring.” Alternatively, you can supply a list of
targets in a parameter called names. For example:

create-groups:
	 group.present:
		 - names:
			 - sudo
			 - rvm

884	 Chapter 23	 Configuration Management	

If you provide a names parameter, Salt reruns the operation multiple times, sub-
stituting one item from the names list into the name parameter on each pass. This
is a mechanical process, and the operation itself is not aware of the iteration. It’s a
run-time (as opposed to parse-time) operation, much like Ansible’s with_items
construction. But because Jinja expansion has already completed, there’s no op-
portunity to base the values of other parameters on the name. If you need to adjust
multiple parameters, ignore names and just iterate with a Jinja loop.

Some operations can handle multiple arguments at once. For example, pkg.installed
can hand off multiple package names at once to the underlying OS package manag-
er, which may be useful for efficiency or dependency resolution. Because Salt hides
names iteration, such operations are forced to use a separate parameter name to
enable bulk operations. For example, the states

install-packages:
	 pkg.installed:
		 - names: [sudo, curl]

 and

install-packages:
	 pkg.installed:
		 - pkgs: [sudo, curl]

both install sudo and curl. The first version does it in two distinct operations, and
the second does it in one.

We stress this seemingly minor point because it’s easy to make mistakes with names.
Because it’s mechanical, names iterates even operations that pay no attention to the
name parameter. On reviewing the Salt log, you’ll see that multiple executions have
run successfully, but somehow the target system still doesn’t seem to be properly
configured. So it’s helpful to understand exactly what’s going on.

If you don’t specify an explicit name for a state, Salt copies the state ID to this field.
You can use this behavior to simplify state definitions a bit. For example,

create-sudo-group:
	 group.present:
		 - name: sudo

becomes

sudo:
	 group.present

or even just

sudo: group.present

YAML doesn’t allow hash keys without values, so now that group.present no lon-
ger has any listed parameters, it has to become a simple string instead of a hash key
with a parameter list as a value. That’s fine; Salt checks for this explicitly.

	 Introduction to Salt	 885

Co
nfi

gu
ra

tio
n

The shorthand style is usually clearer than the long form. A separate ID field can
theoretically serve as a comment or an explanation, but most IDs seen in the wild
simply restate behavior that is already obvious. If you want comments, add comments.

The shorthand form has a potential problem, though: since state IDs must be glob-
ally unique, short IDs named for common system entities are more vulnerable to
ID collisions. Salt detects and reports conflicts, so this is really more an annoyance
than a serious issue. But if you’re writing a Salt formula with the intention of re-
using it in several configuration bases or you are planning to share it with the Salt
community, stick with IDs that are less likely to clash.

Salt allows several operations to be included in a single state. Since the two operations
above share a name field, we can combine them into a single state without having
to state any explicit names. However, there’s yet another YAML snare awaiting us:

sudo:
	 pkg.installed:
		 - refresh: true
	 group.present: []

The value of the sudo key now has to be a hash; it can’t be a hash with the string
group.present somehow tacked on. Accordingly, we now have to treat group.present
as a hash key and provide an explicit parameter list as a value, even though that list
is empty. That’s true even if we drop the refresh parameter from pkg.installed:

sudo:
	 pkg.installed: []
	 group.present: []

Just as we collapsed these two states, we can collapse our two states that do user ac-
count management. A more idiomatic version of the state list from page 878 is thus

sudo:
	 pkg.installed: []
	 group.present: []

{% for admin in pillar.admins %}
{{ admin.username }}:
	 group.present: []
	 user.present:
		 - gid: {{ admin.username }}
		 - groups: [wheel, sudo]
		 - fullname: {{ admin.fullname }}
{% endfor %}

{{ pillar.sudoers_path }}:
	 file.managed:
		 - source: salt://files/sudoers
		 - user: root
		 - group: wheel
		 - mode: '0600'

886	 Chapter 23	 Configuration Management	

State binding to minions
As it happens, there’s not much more to say about Salt state bindings. They work
exactly like pillar bindings. There’s a top.sls file at the root of the state hierarchy,
and it maps minion groups to state files. Here’s a skeletal example:

base:
	 '*':
		 - bootstrap
		 - sitebase
	 'G@os:Ubuntu':
		 - ubuntu
	 'G@webserver':
		 - nginx
		 - webapps

In this configuration, all hosts apply states from bootstrap.sls and sitebase.sls from
the root of the state hierarchy. Ubuntu systems also run ubuntu.sls, and web serv-
ers (that is, minions that have a top-level webserver entry in their grains databases)
run states to configure NGINX and local web apps.

Order in top.sls corresponds to the general order of execution on each minion. But
as usual, explicit dependency information within states overrides the default order.

Highstates
Salt refers to the bindings in top.sls as a minion’s “highstate.”21 You activate the
highstate by telling the minion to run the state.apply function with no arguments:

$ sudo salt minion state.apply

The state.highstate function is equivalent to state.apply with no arguments.
You’ll see both forms used.

Especially when debugging new state definitions, you might want a minion to run
only a single state file. That’s easily accomplished with state.apply:

$ sudo salt minion state.apply statefile

Leave out the .sls suffix on the state file name; Salt will add it. Also keep in mind
that the path to the state file has nothing to do with your current directory. It’s al-
ways interpreted relative to the state root as defined in the minion’s configuration
file. This command does not redefine the minion’s highstate in any way; it simply
runs the specified state file.

The salt command accepts a variety of flags for targeting different sorts of minion
groups, but it’s easiest to just remember -C for “compound” and use one of the
shorthands from Table 23.5 on page 877.

	 21.	 There’s a bit of potential terminological confusion in that Salt also uses “highstate” to mean “a parsed
and assembled JSON tree of states,” which it then processes to form a “lowstate”—also a JSON tree—
which is the low-level input to the execution engine.

	 Introduction to Salt	 887

Co
nfi

gu
ra

tio
n

For example, to highstate all Red Hat minions:

$ sudo salt -C G@os:RedHat state.highstate

The default match type is ID globbing, so the command

$ sudo salt '*' state.highstate

is the command for “validate the entire site’s configuration.”

In keeping with Salt’s minion-centric execution model, all parallel executions begin
simultaneously, and minions do not report back until they have completed execution.
The salt command prints each minion’s results as soon as it receives them. There is
no way to display incremental results while a state file is executing.

If you have lots of minions or a complex configuration base, the salt command’s
default output can be quite a lot to look through because it reports on every opera-
tion considered by every minion. Add the option --state-output=mixed to reduce
this output to one line for operations that succeed and cause no changes. The option

--state-verbose=false suppresses output for no-change operations entirely, but salt
still prints a header and summary for each minion.

Salt formulas
Salt calls its bundles “formulas” (well, “formula,” really). Like Ansible roles, they’re
just a directory of files, although Salt formulas have an outer wrapper that includes
some metadata and versioning information as well. In actual use, you just need the
inner formula directory.

Formula directories go in one of the salt roots defined in the master file. If you
want, you can create a root just for formulas. Formulas sometimes include example
pillar data, but you’re responsible for installing that yourself.

Salt does nothing special to support formulas, except that if you name a directory in
a top.sls file or include statement, Salt looks for an init.yml file within that direc-
tory and reads that. This convention provides a clear default path into the formula.
Many formulas also include stand-alone states that you can reference by specifying
both the directory and filename.

Nothing in Salt can be included in a configuration more than once, and that includes
formulas. You can make multiple inclusion requests, but they’ll be coalesced. As a re-
sult, formulas cannot be instantiated multiple times in the way that Ansible roles can.

It doesn’t matter anyway, because Salt defines no way to pass parameters to a formula
other than by putting variable values in the pillar. (Jinja expressions can set the val-
ues of variables, but those settings exist only within the context of the current file.)

To simulate the effect of invoking a formula repeatedly, you can supply pillar data
in the form of a list or hash that the formula can iterate through on its own. How-
ever, the formula must be explicitly written with this structure in mind. You can’t
impose it after the fact.

888	 Chapter 23	 Configuration Management	

The central Salt repository for community-contributed formulas is currently just
GitHub. Look for the username salt-formulas. Each formula is a separate project.

Environments
Salt makes several gestures toward explicit support for environments (e.g., the
separation of development, test, and production universes). Unfortunately, its en-
vironment facilities are somewhat peculiar, and they don’t map straightforward-
ly to the most common real-world use cases. It’s possible to get environments up
and running with a little bit of determination and a tube of Jinja glue, but we find
that in practice, many sites simply punt and run separate master servers for each
environment instead. This jibes well with security and compliance standards that
require separation of environments at the network layer.

As we saw back on page 872, the /etc/salt/master file enumerates the various places
where configuration information can be stored. It also associates an environment
with each set of paths:

file_roots:
	 base:
		 - /srv/salt

pillar_roots:
	 base:
		 - /srv/pillar

Here, /srv/salt and /srv/pillar are the state and pillar root directories for the default
environment, called base. For simplicity, we have omitted mention of pillar data
in the discussion below; environment management works the same way for both
arms of the configuration base.

Sites with more than one environment will typically add an additional layer to the
configuration directory hierarchy to represent that fact: 

file_roots:
	 base:
		 - /srv/base/salt
	 development:
		 - /srv/development/salt
	 production:
		 - /srv/production/salt

(Evidently, these example cowboys have no test environment. Don’t try this at home!)

An environment can list multiple root directories. If there’s more than one, the
server transparently merges their contents. However, each environment performs
a separate merge, and the final results remain segregated.

Inside top.sls files (the bindings that associate minions to particular states and
pillar files), top-level keys are always environment names. So far, we’ve only seen

See page 953 for
more information
about environments.

	 Introduction to Salt	 889

Co
nfi

gu
ra

tio
n

examples that used the base environment, but of course any valid environment can
go in this spot. For example:

base:
	 '*':
		 - global
development:
	 '*-dev':
		 - webserver
		 - database
production:
	 '*web*-prod':
		 - webserver
	 '*db*-prod':
		 - database

The exact import of an environment’s appearance in a top.sls file depends on how
you’ve configured Salt. In all cases, environments must already be defined in the
master file; top files cannot create new environments. In addition, state files are
required to originate from the environment context in which they are mentioned.

By default, Salt does not associate minions with any particular environment, and
minions can receive state assignments from any or all of the environments in top.sls.
In the snippet above, for example, all minions run the global.sls state from the base
environment. Depending on their IDs, individual minions may also receive states
from the production or development environments.22

The Salt documentation encourages this way of configuring environments, but we
have some reservations. One potential issue is that minions end up as frankenservers
that draw configuration elements from multiple environments. You can’t trace any
given minion’s configuration back to one particular environment at one particular
point in time, because every minion has multiple parents.

This distinction is important because a single base environment must be shared
among all other environments. Which one should it be? The development version
of the base environment? The production version? A completely separate and staged
configuration base? Exactly when should you migrate the base environment to a
new release?

There’s also some additional complexity lurking under the covers. Each environ-
ment is a full-fledged Salt configuration hierarchy, so it can, in theory, have its own
top.sls file. Each of those top.sls files can, in theory, refer to multiple environments.
When confronted with this situation, Salt tries to merge all the top files into one

	 22.	 When you set a minion’s ID to match the development or production pattern, you are functionally as-
sociating it to the corresponding environment. However, Salt itself does not make an explicit associa-
tion—at least, not in this configuration.

890	 Chapter 23	 Configuration Management	

composite frankenconfiguration.23 Environments can demand the execution of
one another’s states—states that they don’t own, control, or know anything about.
It would be horrifying if it weren’t so silly.

It’s not clear exactly what use cases this architecture attempts to enable. Although
top file merging is the default behavior, the docs repeatedly warn you away from
setting things up this way. Instead, you’re encouraged to designate a single top.sls
file, most likely in base, to control all environments.

If you do that, though, it soon becomes apparent that there’s some organizational
friction between this “external” top file and the rest of the environments. The top
file is an integral part of an environment’s configuration, so states and top files are
normally co-developed; a change to one often requires changes to the other. With
a separate top file, you must effectively separate each environment into two pieces
that must be manually kept synchronized with each other. In addition, the master
top file must be shared with, synchronized with, and compatible with all other en-
vironments. When you promote the test environment to production, for example,
you must make sure the master top.sls is adjusted to reflect the proper settings for
that specific version of the new production release.

Alternatively, you can hard-wire minions to a given environment, either by setting
the value of environment in the minion’s /etc/salt/minion file or by including the
flag saltenv=environment on salt command lines. Under this regime, a minion sees
only the top.sls file of its assigned environment. Within that top file, its view is also
further limited to entries that appear under that environment.

For example, a machine pinned to the development environment might see the
top.sls file from page 889 in the following abbreviated form (assuming that the
top.sls file was found at the root of the development state tree):

development:
	 '*-dev':
		 - webserver
		 - database

This mode of operation is quite a bit closer than the default to the traditional con-
cept of environments. There can be no unintended cross-talk among environments,
which limits the potential for unintended behavior. It also has the advantage that as
a particular version of the configuration base is promoted through the environment
chain, different portions of the top.sls file automatically apply themselves to clients.

The main disadvantage is that you lose the ability to factor out parts of the config-
uration that are common to more than one environment. There’s no built-in way
to “see” outside the context of the current environment, so elements of the baseline
configuration must be replicated into every environment.

	 23.	 Merging occurs at the YAML level, though, so you’d better hope that multiple top files don’t try to as-
sign states to the same matching pattern within the same environment. If they do, some states will be
silently discarded. Oops.

	 Introduction to Salt	 891

Co
nfi

gu
ra

tio
n

Rewritten to work in the context of this approach, the top.sls file from page 889
would look something like this:

development:
	 '*':
		 - global
	 '*-dev':
		 - webserver
		 - database
production:
	 '*':
		 - global
	 '*web*-prod':
		 - webserver
	 '*db*-prod':
		 - database

The base environment itself is now vestigial, so we’ve dropped it from the top.sls
file and copied that key’s former contents directly into the development and pro-
duction environments.

Keep in mind that we’re now operating in a world where every environment tree
has its own top.sls file. For this example, we assume that the top.sls file hasn’t di-
verged between the two environments, so the same contents would appear in both
copies of top.sls.

Of course, manually reproducing the elements of the common configuration inside
each environment is prone to error. A better option is to define the common con-
figuration as a Jinja macro so that it can automatically be repeated:

{% macro baseline() %}
	 '*':
		 - global
{% endmacro %}

development:
	 {{ baseline() }}
	 '*-dev':
		 - webserver
		 - database
production:
	 {{ baseline() }}
	 '*web*-prod':
		 - webserver
	 '*db*-prod':
		 - database

We’re assuming in this scenario that all minions are pinned to specific environments,
so we can now potentially remove the environment indicators from minion IDs.
However, it’s a good idea to retain them for security.

892	 Chapter 23	 Configuration Management	

The issue is that minions control their own environment settings. If a minion in the
development environment were compromised, for example, it could declare itself
to be a production server and potentially gain access to the keys and configurations
used in the production environment.24 (This is perhaps one reason why the Salt
documentation seems a bit skittish about recommending environment pinning.)

Making environment-specific configurations contingent on both the environment
settings and the minion IDs protects against this line of attack. If a minion changes
its ID, the master no longer recognizes it as an approved client and ignores it until
an administrator approves the change with the salt-key command.

If you prefer not to use IDs in this way, an alternative is to use pillar data as a cross-
check. Whatever you do, you can’t just drop the suffix and turn '*-dev' into '*',
because the shared portion of the configuration already uses '*' as a key. Duplicate
patterns within an environment are a YAML violation.

When debugging environments, you’ll find a couple of execution functions espe-
cially helpful. config.get shows the value that a particular minion (or set of min-
ions) is using for a configuration option:

$ sudo salt new-client-dev config.get environment
new-client-dev:
	 development

Here, we can see that the minion with ID new-client-dev has been pinned to the
development environment, just as its ID would suggest. To see what the top.sls
configuration looks like from that minion’s perspective, use state.show_top:

$ sudo salt new-client-dev state.show_top
new-client-dev:

	 development:
		 - global
		 - webserver
		 - database

The output shows only the states that are active and selected for the target minion.
In other words, they are the states that would run if you invoked state.highstate
on that minion.

Note that all the displayed states come from the development environment. Because
the minion is pinned, that will always be the case.

Documentation roadmap
Salt’s documentation (docs.saltstack.com) will likely earn your admiration, but
perhaps only after a period of frustration. The main sticking point is that topics are
nested several layers deep, but the headings at the top two layers do not necessarily

	 24.	 The issue isn’t really state configuration, since minions have free access to all state files. The problem
is with pillar data, which is assembled on the master side and should generally be kept secure.

http://docs.saltstack.com

	 Ansible and Salt compared	 893

Co
nfi

gu
ra

tio
n

hint at what you’ll find at layer three. The Architecture section, for example, contains
no information about Salt’s architecture (it’s really about multiserver deployments).

Some of the most useful reference material lies within sections that are organized
as scenarios or tutorials. Front-to-back reading can sometimes evoke a dying sys-
admin’s fever dream: themes cyclically loom and recede without fully resolving.
Once in a while, you’ll experience a moment of lucidity in which to appreciate the
severity of your condition.

Some pointers:

•	 The top-level Using Salt section is an overview by concept, and most of
Configuration Management is labeled as a tutorial. Because of their for-
mats, these sections look like supplemental materials. But that’s not true;
they are pretty much the primary documentation for the material they
cover. Don’t skip.

•	 The best reference information is beneath State System Reference, under
Configuration Management. A lot of the stuff in here is not important for
a first reading, but Highstate data structure definitions, Requisites and oth-
er global state arguments, and The top file are particularly worth reading.
(The top file is also the authoritative documentation for environments.)

•	 The docs you’ll use most frequently—the ones covering state and execution
functions—are concealed under Salt Module Reference and camouflaged
among 19 other module types that are of interest mostly to module de-
velopers. Bookmark the sections for Full list of builtin state modules and
Full list of builtin execution modules.

23.7	 Ansible and Salt compared
We like both Ansible and Salt. Each of them has some friction points, however, and
we recommend them for different environments. The sections below comment on
a few of the factors you might consider when choosing between them.

Deployment flexibility and scalability
Salt covers a broader range of deployment environments than does Ansible. It’s
simple enough that you can reasonably use it to manage a single server, but it also
scales effortlessly and essentially without limit. If you want to learn one system that
covers the broadest possible range of use cases, Salt is a good choice.

In part, that’s because Salt’s architecture makes relatively few demands of the master
server. Minions receive their instructions and don’t report back until they’re done,
with all status information being reported at once. Minions call the server to ob-
tain configuration data, but aside from serving pillar data, the server itself performs
relatively little computation.

894	 Chapter 23	 Configuration Management	

Once your site outgrows a single Salt master, you can convert your infrastructure
to a tiered or replicated server scheme. We don’t cover those options in this book,
but they’re easy to set up and work well.

Large deployments are a comparative weak spot for Ansible. It does include some
features to help you implement multitier server systems, but the transition to this
model is not as transparent as it is in Salt.

Ansible is an order of magnitude slower than Salt, and because of its architecture, it
must handle clients in batches. However, most servers can handle far more than the
default 5 simultaneous clients. You can also change Ansible’s execution strategy so
that clients aren’t kept in strict lockstep with each other. Even a tuned Ansible system
won’t approach the speed of Salt, but it’s better than one might naïvely anticipate.

Built-in modules and extensibility
Bake-offs of configuration management software sometimes attempt to compare the
number of operation types that various systems support out of the box. However,
these comparisons are hard to get right because of underlying structural differences.
Functions that are spread across several modules in Ansible might be addressed
by one in Salt, for example. An atomic operation in one system may correspond to
several operations in another.

At present, Salt and Ansible are roughly comparable in this respect. In addition to
extensive standard libraries, both systems have a structure in place for absorbing
community-written modules into the core or an easily accessible add-on pack.

In any event, total module count doesn’t matter nearly as much as coverage of the
systems and software your site is actually using. All CM systems cover basic op-
erations pretty well, but as you move into the long tail, offerings vary dramatically.

It’s likely that you’ll eventually want to tackle some tasks for which your CM sys-
tem doesn’t have an off-the-shelf solution. Fortunately, Salt and Ansible are both
easy to extend with your own Python code. Embrace this extensibility early on and
make it part of your repertoire.

Security
As outlined in Ansible access options starting on page 869, Ansible can be made
almost arbitrarily secure. The only limit to security is your own willingness to re-
type passwords and deal with security red tape.

Ansible’s vault system lets you keep configuration data in an encrypted format.
That’s actually a pretty big deal, because it means that neither the Ansible server
nor the configuration base needs to be particularly secure. (Salt’s modular archi-
tecture probably makes this an easy feature to add, but it doesn’t come in the box.)

By contrast, Salt can only be as secure as the root account on the master server.
Although the master daemon itself is simple to set up, the server on which it runs

	 Best practices	 895

Co
nfi

gu
ra

tio
n

should receive your site’s most aggressive securement. Ideally, the master should
be a machine or virtual server dedicated to this task.

In practice, administrators hate intrusive security protocols as much as anyone
else does. Most real-world Ansible installations have relatively lax security. Just
as Ansible can be made arbitrarily secure, it can also be made arbitrarily insecure.

Even if you strive to keep Ansible fully secured, you may have trouble maintain-
ing this approach once your site grows beyond the point at which configuration
management can be handled by an administrator typing commands in a terminal
window. Nothing that runs out of cron, for example, can depend on the presence
of an administrator to enter passwords. Working around that constraint inevitably
ends up lowering security to the level of the root account.

The bottom line on security is that Ansible gives you both more options and more
opportunities to shoot yourself in the foot. It’s more securable, but that doesn’t nec-
essarily mean that it’s more secure. Either system is fine for the average site. Keep
your own needs and constraints firmly in mind when evaluating these systems.

Miscellaneous
Table 23.6 (below) and Table 23.7 (on the next page) summarize some of the addi-
tional strengths and weakness of both Ansible and Salt.

Table 23.6	 Ansible pros and cons

Advantages Disadvantages

Requires only SSH and Python; no daemons Very slow
Clear and concise documentation Server-heavy; harder to scale
Built-in loops and conditionals, minimal Jinja Lots of files with identical names
Works fine as a nonroot user Idiosyncratic YAML syntax
Operations can use each other’s output Hand-managed client inventory
Clean and flexible use of config directories Minimal grouping facilities
Secure, general encryption facility Many different variable scopes
Roles can be instantiated repeatedly No daemons means fewer options
Larger user base than Salt No real support for environments

23.8	 Best practices
If you’ve worked on a software project, you might find many of the issues addressed
by configuration management systems to be familiar from the development world.
Development environments encompass many of the same vagaries: multiple plat-
forms, multiple products derived from the same code base, multiple types of builds

896	 Chapter 23	 Configuration Management	

Table 23.7	 Salt pros and cons

Advantages Disadvantages

Fast Relies heavily on Jinja
At heart, simpler than Ansible Documentation oddly organized
Flexible, consistent bindings Poor support for nonroot use
Integrated support for cloud servers Formulas can’t be instantiated
Concise configuration syntax No built-in encryption solution
Multitier server deployments No access to results of operations
Structured event monitoring Minimal support for variable value defaults
Execution logs easily exported Requires explicit dependency declarations
Fanatically modularized Fanatically modularized

and configurations, and deployment through successive steps of development, test-
ing, and production.

These are complex issues, and development environments are only tools. Developers
use a variety of additional controls—development guidelines, design reviews, cod-
ing standards, internal documentation, and clear architectural boundaries, among
others—to limit the slide toward entropy.

Unfortunately, administrators often wander into configuration management ter-
ritory without a proper suit of developer’s armor. At first glance, configuration
management seems deceptively straightforward, like a slightly more general and
sophisticated way to approach routine scripting tasks. Configuration management
vendors work hard to reinforce this impression. Their web sites are siren songs of
ease and grace; each one features a tutorial in which you deploy a web server by
running ten lines of configuration code.

In reality, the edge of the abyss may be closer than it seems, particularly when multi-
ple administrators contribute to the same configuration base over time. Real-world
specifications for even a single-purpose server run to hundreds of lines of code
segmented into multiple different functional roles. Without coordination, it’s easy
to turn the CM system into a muddle of conflicting or parallel code.

Best practices vary by configuration management system and by environment, but
a few rules apply to most situations:

•	 Keep the configuration base under version control. This isn’t a best prac-
tice so much as a basic requirement for CM sanity. Not only does Git
provide change tracking and history, but it has already solved many of
the mechanical problems involved in coordinating projects across ad-
ministrative boundaries.

•	 Configuration bases are inherently hierarchical, at least in a logical sense.
Some standards apply site-wide, some apply to every server in a partic-
ular department or region, and some are specific to particular hosts. In

	 Best practices	 897

Co
nfi

gu
ra

tio
n

addition, you’ll most likely need the ability to make exceptions in certain
cases. Depending on your site’s operations, you might also need to main-
tain multiple independent hierarchies.

	 Plan for all of this structure in advance, and consider how you might
manage scenarios in which different groups control different parts of the
configuration base. At the very least, conventions for classifying hosts
(e.g., EC2 instances, Internet-facing hosts, database servers) should be
coordinated site-wide and adhered to consistently.

•	 CM systems allow different parts of the configuration base to be kept in
different directories or repositories. However, this structure provides lit-
tle actual benefit, and it complicates day-to-day configuration work. We
recommend one big, integrated configuration base. Manage hierarchy and
coordination at the Git layer.

•	 Sensitive data (keys, passwords) should not be put under version control
unless encrypted, even in private code repositories. Git in particular is
not designed to maintain security. Your CM system may have some en-
cryption features built in, but if not, roll your own.

•	 Because it effectively has root access to many other hosts, a configuration
server is one of the most concentrated sources of security risk in your or-
ganization. It’s reasonable to dedicate a server to this role, and it should
receive your most stringent security hardening.

•	 Configurations should run without reporting spurious changes. Scripts
and shell commands are usually the biggest sticking points. Check your
CM system’s documentation for advice on this topic, as it’s one of the most
frequent issues that users encounter.

•	 Don’t test on production servers. But do test! It’s easy to spin up a test
system in the cloud or in Vagrant. Chef even provides an elaborate test-
ing and development system in the form of Kitchen. Make sure your test
system matches your real systems by using the same machine image and
network configuration.

•	 Read the code for add-on bundles that you obtain from public repositories.
It’s not that these sources are particularly suspicious; it’s just that systems
and conventions differ widely. In many cases, you’ll find that a few local
tweaks are needed. If you can bypass the CM system’s package manager
and clone bundles directly from a Git repo, then you can easily upgrade
to later releases without losing your customizations.

•	 Subdivide configurations ruthlessly. Every file should have a clear and
single purpose. (Ansible users might want to select a text editor that deals
well with 50 different files all named main.yml.)

898	 Chapter 23	 Configuration Management	

•	 Configuration-managed servers should be 100% managed. That is, there
should be no penumbra of administrative work that was performed by
hand and that no one knows how to replicate. This issue appears primarily
when moving existing servers onto configuration management.25

•	 Do not allow yourself or your team to “temporarily disable” the CM sys-
tem on a node or to use a heavy-handed method of overriding the CM
system (for example, by setting the immutable attribute on a configura-
tion file that is typically under CM control). These changes are inevitably
forgotten, and confusion or outages ensue.

•	 It’s not hard to open a gateway from existing administrative databases into
a configuration management system, and there’s a lot of value in doing so.
CM systems are designed for this kind of interfacing. For example, you
might identify system administrators and their zones of activity in your
site-wide LDAP database, and make this information available within the
configuration management environment through gateway scripts. Ideally,
every piece of information should have a single authoritative source.

•	 CM systems are excellent for managing the state of a machine. They are
not intended for stateful, coordinated activities such as software deploy-
ment operations, although the documentation and even some examples
might lead you to believe that they are. In our experience, a dedicated
continuous deployment system is more suitable.

•	 In elastic cloud environments where computational capacity is added in
response to real-time demand, the time that it takes for a new node to
bootstrap through configuration management can be agonizingly slow.
Optimize by including packages and long-running configuration items
within the baseline machine image rather than downloading and install-
ing them at boot time.

	 If you use configuration management to set configuration parameters for
an application, make sure that that step comes early in the bootstrapping
process so that the application comes on-line more quickly. We try to limit
the CM run time to less than 60 seconds for dynamically scaled nodes.

•	 As an administrator working with a CM system, you will allot much of
your time to writing CM code, testing changes against a representative set
of systems, committing the updates to a repository, and applying changes
to your site in a staged fashion. To be most effective, you should perfect
this process by investing time up front to learn best practices and tricks
for your system of choice.

	 25.	 When converting an existing “snowflake” server to configuration management, you may find it useful
to clone the original system for use as a basis for comparison. It can take multiple cycles of configura-
tion management and testing to home in on all the system’s particulars.

	 Recommended reading	 899

Co
nfi

gu
ra

tio
n

23.9	 Recommended reading
Cowie, Jon. Customizing Chef: Getting the Most Out of Your Infrastructure Auto-
mation. Sebastopol, CA: O’Reilly Media, 2014.

Frank, Felix, and Martin Alfke. Puppet 4 Essentials (2nd Edition). Birmingham,
UK: Packt Publishing, 2015.

Geerling, Jeff. Ansible for DevOps: Server and configuration management for hu-
mans. St. Louis, MO: Midwestern Mac, LLC, 2015. This book is focused mostly on
basic Ansible wrangling, but it does include some helpful material about combining
Ansible with specific systems such as Vagrant, Docker, and Jenkins.

Hochstein, Lorin. Ansible: Up and Running (2nd Edition). Sebastopol, CA: O’Reilly
Media, 2017. Like Ansible for DevOps, this book covers both the Ansible basics and
interactions with common environments such as Vagrant and EC2. Some highlights
are the inclusion of a larger-scale example configuration, a chapter on writing your
own Ansible modules, and tips on debugging.

Morris, Kief. Infrastructure as Code: Managing Servers in the Cloud. Sebastopol,
CA: O’Reilly Media, 2016. This book includes few specifics about configuration
management per se, but it’s helpful for understanding how configuration manage-
ment integrates into the larger scheme of DevOps and structured administration.

Sebenik, Craig, and Thomas Hatch. Salt Essentials. Sebastopol, CA: O’Reilly
Media, 2015. This is a short and rather skeletal book that sticks pretty closely to
the basics of Salt. It’s not the style of book we’d ordinarily recommend, but given
the unevenness of the official documentation, it’s a potentially useful reference for
those who seek a “second opinion.”

Taylor, Mischa, and Seth Vargo. Learning Chef: A Guide to Configuration Man-
agement and Automation. Sebastopol, CA: O’Reilly Media, 2013.

Uphill, Thomas, and John Arundel. Puppet Cookbook (3rd Edition). Birming-
ham, UK: Packt Publishing, 2015.

900

Server virtualization makes it possible to run multiple operating system instances
concurrently on the same physical hardware. Virtualization software parcels out
CPU, memory, and I/O resources, dynamically allocating their use among several

“guest” operating systems and resolving resource conflicts. From the user’s point of
view, a virtual server walks and talks like a full-fledged physical server.

This decoupling of hardware from the operating system affords numerous luxuries.
Virtualized servers are more flexible than their “bare metal” kin. They’re portable
and can be programmatically managed. The underlying hardware is used more
efficiently because it can service multiple guests simultaneously. And if that isn’t
enough, virtualization technology underpins both cloud computing and containers.

Implementations of virtualization have changed over the years, but the core concepts
are not new to the industry. Big Blue used virtual machines on early mainframes
while researching time-sharing concepts in the 1960s. The same techniques were
used throughout the mainframe heyday of the 1970s until the client/server boom
of the 1980s, when the difficulty of virtualizing the Intel x86 architecture led to a
short period of relative dormancy.

The ever-growing size of server farms rekindled interest in virtualization for modern
systems. VMware and other providers conquered the challenges of x86 and made

24 Virtualization

See Chapter 25 for
more information
about containers.

	 Virtual vernacular	 901

Vi
rt

ua
liz

at
io

n

it easy to automatically provision operating systems. These facilities eventually led
to the rise of on-demand, Internet-connected virtual servers: the infrastructure we
now know as cloud computing. More recently, advances in OS-level virtualization
have ushered in a new era of OS abstraction in the form of containers.

In this chapter, we begin by clarifying the terms and concepts you need in order
to understand virtualization for UNIX and Linux. We then introduce the leading
virtualization solutions used on our example operating systems.

24.1	 Virtual vernacular
The terminology used to describe virtualization is somewhat opaque, largely be-
cause of the way the technology evolved. Competing vendors worked independently
without the benefit of standards, yielding a bewildering array of ambiguous phrases
and acronyms.1

To further confuse the issue, “virtualization” itself is an overloaded term that de-
scribes more than the scenario described above, in which guest operating systems
run within the context of virtualized hardware. OS-level virtualization—more com-
monly referred to as containerization—is a related but distinct set of facilities that
has become just as ubiquitous as server virtualization. For those without hands-on
exposure to these technologies, it can often be difficult to grasp the differences. We
contrast the two approaches later in this section.

Hypervisors
A hypervisor (also known as a virtual machine monitor) is a software layer that
mediates between virtual machines (VMs) and the underlying hardware on which
they run. Hypervisors are responsible for sharing system resources among the guest
operating systems, which are isolated from one another and which access the hard-
ware exclusively through the hypervisor.

Guest operating systems are independent, so they needn’t be the same. CentOS
can run alongside FreeBSD and Windows, for example. VMware ESX, XenServer,
and FreeBSD bhyve are examples of hypervisors. The Linux kernel-based virtual
machine (KVM) converts the Linux kernel into a hypervisor.

Full virtualization
The first hypervisors fully emulated the underlying hardware, defining virtual re-
placements for all the basic computing resources: hard disks, network devices, in-
terrupts, motherboard hardware, BIOSs, and so on. This mode, called full virtual-
ization, runs guests without modification but incurs a performance penalty because
the hypervisor must constantly translate between the system’s actual hardware and
the virtual hardware exposed to guests.

	 1.	 Conway’s Law comes to mind: “Organizations which design systems are constrained to produce de-
signs which are copies of the communication structures of these organizations.”

902	 Chapter 24	 Virtualization	

Simulating an entire PC is a complex task. Most hypervisors that offer full virtu-
alization separate the task of maintaining multiple environments (virtualization)
from the task of simulating the hardware within each environment (emulation).

The most common emulation package used in these systems is an open source proj-
ect called QEMU. You can find more information at qemu.org, but in most cases
the emulator doesn’t require much attention from administrators.

Paravirtualization
The Xen hypervisor introduced “paravirtualization,” in which modified guest op-
erating systems detect their virtualized state and actively cooperate with the hy-
pervisor to access hardware. This approach improves performance by an order of
magnitude or more. However, guest operating systems need substantial updates to
run this way, and the exact modifications depend on the specific hypervisor in use.

Hardware-assisted virtualization
In 2004 and 2005, Intel and AMD introduced CPU features (Intel VT and AMD-V)
that facilitate virtualization on the x86 platform. These extensions gave rise to

“hardware-assisted virtualization,” also known as “accelerated virtualization.” In this
scheme, the CPU and memory controller are virtualized by the hardware, albeit
under the control of the hypervisor. Performance is very good, and guest operat-
ing systems need not know that they’re running on a virtualized CPU. These days,
hardware-assisted virtualization is the assumed baseline.

Although the CPU is a primary point of contact between the hardware and guest
operating systems, it is only one component of the system. The hypervisor still
needs some way to present or emulate the rest of the system’s hardware. Either
full virtualization or paravirtualization can be used for this task. In some cases, a
mix of approaches is used; it depends on the virtualization-awareness of the guest.

Paravirtualized drivers
One great advantage of hardware-assisted virtualization is that it largely restricts
the need for paravirtualization support to the level of device drivers. All operating
systems allow add-on drivers, so setting up a guest with paravirtualized disk drives,
display cards, and network interfaces is as simple as installing the appropriate drivers.
The drivers know the secret handshake that lets them connect with the hypervisor’s
paravirtualization support, and the guest OS remains none the wiser.

A few pesky aspects of the PC architecture, such as the interrupt controller and the
BIOS resources, fall into the domain of neither the CPU nor the device drivers. In
the past, the predominant approach has been to implement these remaining com-
ponents through full virtualization. For example, Xen’s HVM (Hardware Virtual

http://qemu.org

	 Virtual vernacular	 903

Vi
rt

ua
liz

at
io

n

Machine) mode combines support for CPU-level virtualization extensions with a
copy of the QEMU PC emulator. And PVHVM (ParaVirtualized HVM) mode adds
to this scheme paravirtualized drivers on guest operating systems, greatly reducing
the amount of full virtualization needed to keep the system running. However, the
hypervisor still needs an active copy of QEMU for each virtual machine so that it
can cover the odds and ends not addressed by the paravirtualized drivers.

Modern virtualization
The most recent versions of Xen and other hypervisors have more or less eliminated
the need to emulate legacy hardware. Instead, they rely on CPU-level virtualization
features, paravirtualized guest-OS drivers, and a few additional sections of para-
virtualized code within guest kernels. Xen calls this mode PVH (ParaVirtualized
Hardware), and it’s considered to be a close-to-ideal blend that yields optimal per-
formance but imposes the lowest possible requirements on guest kernels.

You might encounter any of the varieties of virtualization described above in the wild
or when reading documentation. However, it’s not worth memorizing any partic-
ular taxonomy or worrying too much about virtualization modes. The boundaries
among these modes are porous, and the hypervisor generally works out the best
options for a given guest. If you keep your software updated, you automatically ben-
efit from the latest enhancements. The only reason to choose anything other than
the default operating mode is to support older hardware or ancient hypervisors.

Type 1 vs. type 2 hypervisors
Many reference materials draw a somewhat dubious distinction between “type 1”
and “type 2” hypervisors. A type 1 hypervisor runs directly on the hardware with-
out a supporting OS, and for that reason is sometimes called a bare-metal or na-
tive hypervisor. Type 2 hypervisors are user-space applications that run on top of
another general-purpose OS. Exhibit A depicts these two models.

Exhibit A	 Comparison of type 1 and type 2 hypervisors

Guest
OS

Guest
OS

Guest
OS

Memory
Hardware

I/O CPUs

Type 1 hypervisor

Guest
OS

Guest
OS

Guest
OS

Memory
Hardware

I/O CPUs

Host OS
Type 2 hypervisor

Type 2Type 1

904	 Chapter 24	 Virtualization	

VMware ESXi and XenServer are considered type 1, and FreeBSD’s bhyve is type 2.
Likewise, workstation-oriented virtualization packages such as Oracle’s VirtualBox
and VMware Workstation are also type 2.

It’s true that type 1 and type 2 systems are different, but the delineation is not always
so binary. KVM, for example, is a Linux kernel module that gives virtual machines
direct access to CPU virtualization features. Differentiating among types of hyper-
visor is more an academic exercise than a point of practice.

Live migration
Virtual machines can move between hypervisors running on different physical
hardware in real time, in some cases without interruptions in service or loss of con-
nectivity. This feature is called live migration. The magic lies in a memory dance
between the source and target hosts. The hypervisor copies changes from the source
to the destination, and as soon as the memory is identical between the two, the
migration completes. Live migration is helpful for high-availability load balancing,
disaster recovery, server maintenance, and general system flexibility.

Virtual machine images
Virtual servers are created from images, which are templates of configured oper-
ating systems that a hypervisor can load and execute. The image file format varies
by hypervisor. Most hypervisor projects maintain a collection of images that you
can download and use as a basis for your own customizations. You can also take a
snapshot of a virtual machine to create an image, either as a backup of important
data or to use as the basis for creating more virtual machines.

Because the virtual machine hardware presented by the hypervisor is standardized,
images are portable among systems even if their actual hardware differs. Images
are specific to a particular hypervisor, but conversion tools that port images among
hypervisors are available.

Containerization
OS-level virtualization—or containerization—is a different approach to isolation
that does not use a hypervisor. Instead, it relies on kernel features that isolate pro-
cesses from the rest of the system. Each process “container” or “jail” has a private
root filesystem and process namespace. The contained processes share the kernel
and other services of the host OS, but they cannot access files or resources outside
of their containers. Exhibit B illustrates this architecture.

Because it does not require virtualization of the hardware, the resource overhead
of OS-level virtualization is low. Most implementations offer near-native perfor-
mance. This type of virtualization precludes the use of multiple operating systems,

See Chapter 25 for
more information
about containers.

 	

	 Virtualization with Linux	 905

Vi
rt

ua
liz

at
io

n

Exhibit B	 Containerization

Memory
Hardware

I/O CPUs

Jailed processes

Jailed processes

Jailed processes

Host OS kernel

User space
host

processes

however, because the host kernel is shared by all containers.2 Linux’s LXC, Docker
containers, and FreeBSD jails are implementations of containers.

It’s easy to confuse containers with virtual machines. Both define portable, isolated
execution environments, and both look and act like full operating systems with root
filesystems and running processes. Yet their implementations are entirely different.

A true virtual machine has an OS kernel, an init process, drivers to interact with
hardware, and the full trappings of a UNIX operating system. A container, on the
other hand, is merely the facade of an operating system. It uses the strategies de-
scribed above to give individual processes a suitable execution environment. Table
24.1 on the next page illustrates some of the practical differences.

It’s common to use containers in combination with virtual machines. Virtual ma-
chines are the best way to subdivide physical servers into manageable chunks. You
can then run applications in containers atop the VMs to achieve optimal system
density (this procedure is sometimes called “bin packing”). The containers-on-VMs
architecture is standard for containerized applications that need to run on public
cloud instances.

We focus on true virtualization for the rest of this chapter. See Chapter 25, Con-
tainers, for more details on containerization.

24.2	 Virtualization with Linux
Xen and KVM are the leading open source virtualization projects for Linux. Xen,
now a project of the Linux Foundation, powers some of the largest public clouds,
including Amazon Web Services and IBM’s SoftLayer. KVM is the kernel-based
virtual machine integrated into the mainline Linux kernel. Both Xen and KVM have
demonstrated their stability through many production installations at large sites.

	 2.	 This is not entirely true. FreeBSD’s Linux emulation layer permits Linux containers on FreeBSD hosts.

906	 Chapter 24	 Virtualization	

Table 24.1	 Comparing virtual machines with containers

Virtual machine Container

A full-fledged OS that shares underlying
hardware through a hypervisor

An isolated group of processes managed
by a shared kernel

Requires a complete boot procedure to
initialize; starts in 1-2 minutes

Processes run directly by the kernel; no
boot required; starts in < 1 second

Long-lived Frequently replaced

Has one or more dedicated virtual disks
attached through the hypervisor

Filesystem view is a layered construct
defined by the container engine

Images measured in gigabytes Images measured in megabytes

A few dozen or fewer per physical host Many per virtual or physical host

Complete isolation among guests OS kernel and services shared with host

Multiple independent operating systems
running side by side

Must run the same kernel as the host (OS
distribution may differ)

Xen
Initially developed by Ian Pratt as a research project at the University of Cambridge,
the Linux-friendly Xen has grown to become a formidable virtualization platform
that challenges even the commercial giants in terms of performance, security, and
especially, cost.

As a paravirtual hypervisor, Xen claims a mere 0.1%–3.5% overhead, far less than
fully virtualized solutions. Because Xen is open source, a variety of management
tools are available with varying levels of feature support. The Xen source code is
available from xenproject.org, but many Linux distributions include native support.

Xen is a bare-metal hypervisor that runs directly on the physical hardware. A run-
ning virtual machine is called a domain. There is always at least one domain, re-
ferred to as domain zero or dom0. Dom0 has full hardware access, manages the
other domains, and runs all the hypervisor’s own device drivers. Unprivileged do-
mains are referred to as domU.

Dom0 typically runs a Linux distribution. It looks just like any other Linux system
but includes the daemons, tools, and libraries that complete the Xen architecture
and enable communication among domU, dom0, and the hypervisor.

The hypervisor is responsible for CPU scheduling and memory management for the
system as a whole. It controls all domains, including dom0. However, the hypervisor
itself is in turn controlled and managed from dom0. What a tangled web we weave.

http://xenproject.org

	 Virtualization with Linux	 907

Vi
rt

ua
liz

at
io

n

Table 24.2 lists the most interesting puzzle pieces of a Linux dom0.

Table 24.2	 Xen components in dom0

Path Contents

/etc/xen Primary configuration directory
auto Guest OS config files to autostart at boot time
scripts Utility scripts that create network interfaces, etc.
/var/log/xen Xen log files
/usr/sbin/xl Xen guest domain management tool

Each Xen guest-domain configuration file in /etc/xen specifies the virtual resources
available to a domU, including disk devices, CPU, memory, and network interfaces.
Each domU has a separate configuration file. The format is flexible and gives admin-
istrators granular control over the constraints applied to each guest. If a symbolic
link to a domU configuration file is added to the auto subdirectory, that guest OS
is automatically started at boot time.

Xen guest installation
It takes several steps to get a guest server up and running under Xen. We recommend
the use of a tool such as virt-manager (virt-manager.org) to simplify the process.
virt-manager was originally a Red Hat project, but it has now been deproprieta-
rized and is available for most Linux distributions. virt-install, its command-line
OS provisioning tool, accepts installation media from a variety of sources, including
SMB or NFS mounts, physical CDs or DVDs, and HTTP URLs.

Guest domains’ disks are normally stored in virtual block devices (VBDs) in dom0.
The VBD can be connected to a dedicated resource such as a physical disk drive
or logical volume. Or, it can be a loopback file, also known as a file-backed VBD,
created with dd. Performance is better with a dedicated disk or volume, but files
are more flexible and can be managed with normal Linux commands (such as mv
and cp) in dom0. Backing files are sparse files that grow as needed.

Unless the system is experiencing performance bottlenecks, a file-backed VBD is
usually the best choice. It’s a simple process to transfer a VBD onto a dedicated
disk if you change your mind.

The installation of a guest domain might look like this:

$ sudo virt-install -n chef -f /vm/chef.img -l http://example.com/myos
-r 512 --nographics

This is a typical Xen guest domain with the name “chef,” a disk VBD location of
/vm/chef.img, and installation media obtained through HTTP. The instance has
512MiB of RAM and uses no X Windows graphics support during installation.

http://virt-manager.org

908	 Chapter 24	 Virtualization	

virt-install downloads the files needed to start the installation and then kicks off
the installer process.

When the screen clears, install Linux through the standard text-based process,
which includes network configuration and package selection. After the installation
completes, the guest domain reboots and is ready for use. To disconnect from the
guest console and return to dom0, just press <Control-]>.

It’s worth noting that although this example uses text-based installation, graph-
ics-based installation through Virtual Network Computing (VNC) is also available.

virt-install saves the domain’s configuration in /etc/xen/chef. Here’s what it looks like:

name = "chef"
uuid = "a85e20f4-d11b-d4f7-1429-7339b1d0d051"
maxmem = 512
memory = 512
vcpus = 1
bootloader = "/usr/bin/pygrub"
on_poweroff = "destroy"
on_reboot = "restart"
on_crash = "restart"
vfb = []
disk = ["/vm/chef.dsk,xvda,w"]
vif = ["mac=00:16:3e:1e:57:79,bridge=xenbr0"]

You can see that the NIC defaults to bridged mode. In this case, the VBD is a “block
tap” file that affords better performance than does a standard loopback file. The
writable disk image file is presented to the guest as /dev/xvda.

The xl tool is convenient for day-to-day management of virtual machines. It lets
you start and stop VMs, connect to their consoles, and investigate their current
state. Below, we show the running guest domains, then connect to the console for
the chef domU. IDs are assigned in increasing order as guest domains are created,
and they are reset when the host reboots.

$ sudo xl list
Name ID Mem(MiB) VCPUs State Time(s)
Domain-0 0 2502 2 r----- 397.2
chef 19 512 1 -b---- 12.8
$ sudo xl console 19

To change the configuration of a guest domain (e.g., to attach another disk or to
change the network to NAT mode instead of bridged), edit the guest’s configuration
file in /etc/xen and reboot the guest.

KVM
KVM, the Kernel-based Virtual Machine, is a full virtualization platform that is
the default for most Linux distributions. Like Xen’s HVM mode, KVM takes ad-
vantage of the Intel VT and AMD-V CPU extensions and relies (in a typical setup)

	 Virtualization with Linux	 909

Vi
rt

ua
liz

at
io

n

on QEMU to implement a fully virtualized hardware system. Although the system
is native to Linux, it has also been ported to FreeBSD as a loadable kernel module.

Since KVM defaults to full virtualization, many guest operating systems are sup-
ported, including Windows. Paravirtualized Ethernet, disk, and graphics card
drivers are available for Linux, FreeBSD, and Windows. Their use is optional but
recommended for performance.

Under KVM, the Linux kernel itself serves as the hypervisor. Memory manage-
ment and scheduling are handled through the host’s kernel, and guest machines
are normal Linux processes. Enormous benefits accompany this unique approach
to virtualization. For example, the complexity introduced by multicore processors
is handled by the kernel, and no hypervisor changes are required to support them.
Linux commands such as top, ps, and kill show and control virtual machines, just
as they would for other processes. The integration with Linux is seamless.

KVM guest installation
Although the technologies behind Xen and KVM are fundamentally different, the
tools that install and manage guest operating systems are eerily similar. As under
Xen, you can use virt-install to create new KVM guests. Use the virsh command
to manage them.

The flags passed to virt-install vary slightly from those used for a Xen installation.
To begin with, the --hvm flag says that the guest should be hardware virtualized, as
opposed to paravirtualized. In addition, the --connect argument guarantees that
the correct default hypervisor is chosen, since virt-install supports more than one
hypervisor. Finally, the use of --accelerate is recommended, to take advantage of the
acceleration capabilities in KVM. Ergo, a full command for installing an Ubuntu
server guest from DVD-ROM looks something like this:

$ sudo virt-install --connect qemu:///system -n UbuntuYakkety
-r 512 -f ~/ubuntu-Yakkety.img -s 12 -c /dev/dvd --os-type linux
--accelerate --hvm --vnc

Would you like to enable graphics support? (yes or no)

Assuming that the Ubuntu installation DVD has been inserted, this command
launches the installation and stores the guest in the file ~/ubuntu-Yakkety.img,
allowing it to grow to 12GB. Since we specified neither --nographics nor --vnc,
virt-install asks whether to enable graphics.

The virsh utility spawns its own shell from which you can run commands. To open
the shell, type virsh --connect qemu:///system. The following series of commands
demonstrates some of the core functionality of virsh. Type help in the shell to see
a complete list, or see the man page for the nitty-gritty details.

910	 Chapter 24	 Virtualization	

$ sudo virsh --connect qemu:///system
virsh # list --all
 Id Name State
--
 3 UbuntuYakkety running
 7 CentOS running
 - Windows2016Server shut off

virsh # start Windows2016Server
Domain WindowsServer started

virsh # shutdown CentOS
Domain CentOS is being shutdown

virsh # quit

24.3	 FreeBSD bhyve
FreeBSD’s virtualization software is bhyve, a relatively new system first added in
FreeBSD 10.0. It can run BSD, Linux, and even Windows guests. However, it runs
on a limited set of hardware and is missing some of the core features found in oth-
er implementations.

With so many virtualization platforms that support FreeBSD on the market already,
it’s unclear why the bhyve effort started when it did. Unless you are developing a
custom platform that requires embedded FreeBSD virtualization, we recommend
choosing another solution until this project matures.

24.4	 VMware
VMware is the biggest player in the virtualization industry and was the first vendor
to develop techniques to virtualize the fractious x86 platform. VMware is a com-
mercial entity, but some of its products are free. They’re all worthy of consideration
when you are choosing a site-wide virtualization technology.

The primary product of interest to UNIX and Linux administrators is ESXi,3 which
is a bare-metal hypervisor for the Intel x86 architecture. ESXi is free, but some use-
ful functionality is limited to paid licensees.4

In addition to ESXi, VMware offers some powerful, advanced products that facili-
tate centralized deployment and management of virtual machines. They also have
the most mature live migration technology we’ve seen. In-depth coverage of the full
VWware product suite is beyond the scope of this chapter, however.

	 3.	 ESXi stands for “Elastic Sky X, integrated.” Can’t make this stuff up.
	 4.	 Free like a box of puppies.

	 VirtualBox	 911

Vi
rt

ua
liz

at
io

n

24.5	 VirtualBox
VirtualBox is a consumer-grade, cross-platform, type 2 hypervisor. It performs “prob-
ably good enough” virtualization of systems, typically for individuals. It’s popular
among developers and end users because it is free, easy to install, easy to use, and
often simplifies the creation and management of test environments. Performance
and hardware support are both weak points. VirtualBox is generally not suitable
for “production” virtualization use.5

The history of VirtualBox is long and sordid. It originally began as a commercial
product of Innotek GmbH but was released as open source before Innotek was ac-
quired by Sun Microsystems in 2008. After Oracle swallowed Sun in 2010, the product
was rebranded as Oracle VM VirtualBox. VirtualBox lives on today (available under
the GPLv2 open source license) and remains under active development at Oracle.

VirtualBox runs on Linux, FreeBSD, Windows, macOS, and Solaris. Oracle does
not publish or support the FreeBSD version of the host, but it’s available as a com-
munity port. Supported guest OSs include Windows, Linux, and FreeBSD.

By default, you wrangle virtual machines through VirtualBox’s GUI. If you’re inter-
ested in running VMs on a system that doesn’t run a GUI, explore VBoxHeadless,
the morbid name for VirtualBox’s CLI tool. You can download VirtualBox and read
more about it at virtualbox.org.

24.6	 Packer
Packer (packer.io), from the esteemed open source company HashiCorp, is a tool
for building virtual machine images from a specification file. It can build images
for a variety of virtualization and cloud platforms. Integrating Packer into your
workflow lets you be more or less virtualization-platform-agnostic. You can easily
build your customized image for whatever platform you’re using on a given day.

To create an image, Packer launches an instance from a source image of your
choosing. It then customizes the instance by running scripts or invoking other
provisioning steps that you specify. Finally, it saves a copy of the virtual machine’s
state as a new image.

This process is particularly helpful for supporting an “infrastructure as code” way
of managing servers. Instead of manually applying changes to images, you modify
a template that describes the image in abstract terms. You then check the specifi-
cation into a repository as you would with traditional source code. This technique
supplies you with outstanding transparency, repeatability, and reversibility. It also
creates a clear audit trail.

	 5.	 The VirtualBox web site does claim that it’s a “professional” solution which is licensed for “enterprise”
use. This may in fact be the case with regard to Oracle operating systems, which are the only prebuilt
VMs available.

http://virtualbox.org
http://packer.io

912	 Chapter 24	 Virtualization	

Packer configurations are JSON files. Most administrators agree that JSON is a poor
choice of format since it’s notoriously picky about quotes and commas and doesn’t
allow comments. With luck, HashiCorp will soon convert Packer to their much
improved custom configuration format, but until then you’re stuck editing JSON.

In a template, “builders” define how to create an image and “provisioners” config-
ure and install software for the image. Builders exist for AWS, GCP, DigitalOcean,
VMware, VirtualBox, and Vagrant, among others. Provisioners can be shell scripts,
Chef cookbooks, Ansible roles, or other configuration management tools.

The following template, custom_ami.json, demonstrates AWS’s amazon-ebs build-
er and the shell provisioner.

{
	 "builders": [{
		 "type": "amazon-ebs",
		 "access_key": "AKIAIOSFODNN7EXAMPLE",
		 "secret_key": "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY",
		 "region": "us-west-2",
		 "source_ami": "ami-d440a6e7",
		 "instance_type": "t2.medium",
		 "ssh_username": "ubuntu",
		 "ssh_timeout": "5m",
		 "subnet_id": "subnet-ef67938a",
		 "vpc_id": "vpc-516b8934",
		 "associate_public_ip_address": true,
		 "ami_virtualization_type": "hvm",
		 "ami_description": "ULSAH AMI",
		 "ami_name": "ULSAH5E",
		 "tags": {
			 "Name": "ULSAH5E Demo AMI"
		 }
	 }],
	 "provisioners": [
		 {
			 "type": "shell",
			 "source": "customize_ami.sh"
		 }
]
}

Just as the CLI tool needs certain parameters to launch an instance, the amazon-ebs
builder needs data such as API credentials, instance type, the source AMI on which
to base the new image, and a VPC subnet where the instance should be located.
Packer uses SSH to execute the provisioning step, so we make sure the instance
has a public IP address.

	 Vagrant	 913

Vi
rt

ua
liz

at
io

n

In this case, the provisioner is a shell script called customize_ami.sh. Packer copies
the script to the remote system with scp and runs it. There’s nothing special about
such a script; it can do anything you’d normally do from a script. For example, it can
add new users, download and configure software, or execute security hardening steps.

To create the AMI, invoke packer build:

$ packer build custom_ami.json

packer build notes each step of the creation process on the console. The amazon-ebs
builder takes the following steps:

1.	 It automatically creates a key pair and a security group.
2.	 It starts the instance and waits for it to become accessible on the network.
3.	 It uses scp and ssh to perform the requested provisioning steps.
4.	 It creates an AMI by calling the EC2 CreateImage API.
5.	 It cleans up by terminating the instance.

If everything works correctly, Packer prints the AMI ID as soon as it is available for
use. If a problem occurs during the build, Packer prints a magenta-colored error
message and exits after cleaning up after itself.

The -debug argument to packer build pauses at each step to let you troubleshoot
problems. You can also use the null builder to fix any errors without launching an
instance each time you try to run a build.

24.7	 Vagrant
Also developed by HashiCorp, Vagrant is a wrapper that sits on top of virtualiza-
tion platforms such as VMware, VirtualBox, and Docker. However, it is not itself
a virtualization platform.

Vagrant simplifies virtual environment provisioning and configuration. Its mission
is to quickly and easily create disposable, preconfigured development environments
that closely mirror production environments. This glue function lets developers write
and test code with minimal involvement from sysadmins or an operations team.

It’s possible (but not required) to use Vagrant in combination with Packer. For ex-
ample, you might standardize the base image that you use for your production plat-
forms through Packer, then distribute a Vagrant build of that image to developers.
The developers can then spin up an instance of the image on their laptop or cloud
provider of choice, with any necessary customizations. This method balances the
need for centralized management of production images with developers’ need for
access to a similar environment that they can directly control.

914	 Chapter 24	 Virtualization	

24.8	 Recommended reading
The web site virtualization.info is an excellent source of current news, trends, and
gossip in the virtualization and cloud computing sectors.

Hashimoto, Mitchell. Vagrant: Up and Running: Create and Manage Virtualized
Development Environments. Sebastopol, CA: O’Reilly Media, 2013.

Kusnetsky, Dan. Virtualization: A Manager’s Guide: Big Picture of the Who, What,
and Where of Virtualization. Sebastopol, CA: O’Reilly Media, 2011.

Mackey, Tim, and J. K. Benedict. XenServer Administration Handbook: Practical
Recipes for Successful Deployments. Sebastopol, CA: O’Reilly Media, 2016.

Senthil, Nathan. VirtualBox at Warp Speed: Virtualization with VirtualBox. Se-
attle, WA: Amazon Digital Services, 2015.

Troy, Ryan, and Matthew Helmke. VMware Cookbook: A Real-World Guide to
Effective VMware Use, 2nd Edition. Sebastopol, CA: O’Reilly Media, 2012.

http://virtualization.info

Co
nt

ai
ne

rs

			 915

Few technologies have generated as much excitement and hype in recent years as
the humble container, whose explosion in popularity coincided with the release
of the open source Docker project in 2013. Containers are of particular interest to
system administrators because they standardize software packaging, an ambition
that has long been tantalizingly out of reach.

To illustrate the utility of containers, consider a typical web application developed
in any modern language or framework. At a minimum, the following ingredients
are needed to install and run the app:

•	 The code for the application and its correct configuration

•	 Libraries and other dependencies, potentially numbered in the dozens,
each pinned to a specific version that is known to be compatible

•	 An interpreter (e.g., Python or Ruby) or run time (JRE) to execute the
code, also version pinned

•	 Localizations such as user accounts, environment settings, and services
provided by the operating system

25 Containers

916	 Chapter 25	 Containers	

A typical site runs dozens or hundreds of such applications. Maintaining unifor-
mity in each of these areas across multiple application deployments is a constant
challenge, even with the assistance of the tools discussed in Chapter 23, Config-
uration Management, and Chapter 26, Continuous Integration and Delivery. In-
compatible dependencies required by separate applications lead to systems that are
underutilized because they cannot be shared. In addition, at sites where software
developers and system administrators are functionally separated, careful coordina-
tion is needed because it’s not always straightforward to identify who’s responsible
for what parts of the operating environment.

A container image simplifies matters by packaging an application and its prerequi-
sites into a standard, portable file. Any host with a compatible container run-time
engine can create a container by using the image as a template. Tens or hundreds of
containers can run simultaneously without conflicts. With images typically being
a few hundred megabytes in size or less, it’s practical to copy them among systems.
This easy application portability is perhaps the primary reason for the popularity
of containers.

This chapter focuses on Docker. The eponymous business behind Docker has played
a central role in bringing containers into mainstream use, and the Docker ecosys-
tem is the one you’re most likely to encounter as a system administrator. Docker,
Inc., offers several products related to containers, but we limit our discussion to
the main container engine and the Swarm cluster manager.

Several viable alternative container engines are available. rkt, from CoreOS, is the
most complete. It has a cleaner process model than Docker and a more secure de-
fault configuration. rkt integrates well with the Kubernetes orchestration system.
systemd-nspawn, from the systemd project, is another option for lightweight con-
tainers. It has fewer features than Docker or rkt, but in some cases that can be a good
thing. rkt cooperates with systemd-nspawn to configure container namespaces.

25.1	 Background and core concepts
The container’s rapid rise to grace can be attributed more to timing than to the
emergence of any single technology. Containers are a fusion of numerous existing
kernel features, filesystem tricks, and networking hacks. A container engine is the
management software that pulls it all together.

In essence, a container is an isolated group of processes that are restricted to a private
root filesystem and process namespace. The contained processes share the kernel
and other services of the host OS, but by default they cannot access files or system
resources outside their container. Applications that run within a container are not
aware of their containerized state and do not require modification.

After you read the following sections, it should be clear that containers contain
no magic. In fact, they rely on some features of UNIX and Linux that have been

	 Background and core concepts	 917

Co
nt

ai
ne

rs

around for many years. See Chapter 24, Virtualization, for a description of how
containers differ from virtual machines.

Kernel support
The container engine uses several kernel features that are essential for isolating
processes. In particular:

•	 Namespaces isolate containerized processes from the perspective of sever-
al operating system facilities, including filesystem mounts, process man-
agement, and networking. The mount namespace, for example, shows
processes a customized view of the filesystem hierarchy.1 Containers can
run with varying levels of integration with the host operating system, de-
pending on how these namespaces have been configured.

•	 Control groups (contextually abbreviated to cgroups) limit the use of sys-
tem resources and prioritize certain processes over others. Cgroups pre-
vent runaway containers from consuming all available CPU and memory.

•	 Capabilities allow processes to execute certain sensitive kernel operations
and system calls. For example, a process might have a capability that per-
mits it to change the ownership of a file or to set the system time.

•	 Secure computing mode (usually shortened to seccomp) restricts access
to system calls. It allows more fine-grained control than do capabilities.

Development of these features was driven in part by the Linux Containers project,
LXC, which began at Google in 2006. LXC was the basis of Borg, Google’s internal
virtualization platform. LXC supplies the raw functions and tools needed to create
and run Linux containers, but with more than 30 command-line tools and config-
uration files, it’s quite complicated. The first few releases of Docker were essentially
user-friendly wrappers that made LXC easier to use.

Docker now relies on an improved, standards-based container run time dubbed
containerd. It too relies on Linux namespaces, cgroups, and capabilities to isolate
containers. Learn more at containerd.io.

Images
A container image is akin to a template for a container. Images rely on union filesys-
tem mounts for performance and portability. Unions overlay multiple filesystems
to create a single, consistent hierarchy.2 Container images are union filesystems
that are organized to resemble the root filesystem of a typical Linux distribution.
The directory layout and the locations of binaries, libraries, and supporting files all

	 1.	 This is similar in principle to the chroot system call, which irreversibly sets a process’s apparent root
directory and thereby disables access to files and directories above the level of the chroot.

	 2.	 The LWN.net article “A brief history of union mounts” describes the relevant background. The related
articles are interesting reading, too. See lwn.net/Articles/396020.

http://containerd.io
http://LWN.net
http://lwn.net/Articles/396020

918	 Chapter 25	 Containers	

conform to standard Linux filesystem hierarchy specifications. Specialized Linux
distributions have been developed for use as the basis of container images.

To create a container, Docker points to the read-only union filesystem of an image
and adds a read/write layer that the container can update. When containerized
processes modify the filesystem, their changes are transparently saved within the
read/write layer. The base remains unmodified. This is known as a copy-on-write
strategy.

Many containers can share the same immutable base layers, thus improving storage
efficiency and reducing startup times. Exhibit A depicts the scheme.

Exhibit A	 Docker images and the union filesystem

Container from
base image

Read/write �lesystem layer

Container from
base image

Read/write �lesystem layer

Container from
base image

Read/write �lesystem layer

Layer 2

Layer 1

Layer 0

Base image

Read
only

Networking
The default way to connect containers to the network is to use a network namespace
and a bridge within the host. In this configuration, containers have private IP ad-
dresses that aren’t reachable from outside the host. The host acts as a poor man’s
IP router and proxies traffic between the outside world and the containers. This
architecture gives administrators control over which container ports are exposed
to the outside world.

It’s also possible to forgo the private container addressing scheme and expose en-
tire containers directly to the network. This is called host mode networking, and
it means that the container has unfettered access to the host’s network stack. This

	 Docker: the open source container engine	 919

Co
nt

ai
ne

rs

might be desirable in some situations, but it also presents a security risk because
the container is not fully isolated.

See Docker networks on page 927 for more details.

25.2	 Docker: the open source container engine
Docker, Inc.’s primary product is a client/server application that builds and manages
containers. The Docker container engine, written in Go, is highly modular. Sepa-
rate, individual projects manage pluggable storage, networking, and other features.

Docker, Inc., is not without controversy. Its tools tend to evolve rapidly, and new
versions have sometimes been incompatible with existing deployments. Some sites
worry that relying on Docker’s ecosystem will result in vendor lock-in. And as with
any new technology, containers introduce complexity and require some study to
understand.

To counter these sources of resistance, Docker, Inc., became one of the founding
members of the Open Container Initiative, a consortium whose mission is to guide
the growth of container technology in a healthily competitive direction that fosters
standards and collaboration. You can learn more at opencontainers.org. In 2017,
Docker founded the Moby project and contributed the primary Docker Git repos-
itory to it to facilitate easier community development of the Docker execution en-
gine. Refer to mobyproject.org for details.

Our discussion of Docker is based on version 1.13.1. Docker maintains an ex-
ceptionally rapid pace of development, and the current features are a moving tar-
get. We focus on the nuts and bolts here, but be sure to supplement our tutorial
with the reference material at docs.docker.com. You might also dip your toes into
the Moby sandbox at play-with-moby.com and the Docker lab environment at
labs.play-with-docker.com.

Basic architecture
docker is an executable command that handles all management tasks for the Docker
system. dockerd is the persistent daemon process that implements container and
image operations. docker can run on the same system as dockerd and can com-
municate with it through UNIX domain sockets, or it can contact dockerd from a
remote host over TCP. The architecture is depicted in Exhibit B on the next page.

dockerd owns all the scaffolding needed to run containers. It creates the virtual
network plumbing and maintains the data directory in which containers and images
are stored (/var/lib/docker by default). It’s responsible for creating containers by
invoking the appropriate system calls, setting up union filesystems, and executing
processes. In short, it is the container management software.

http://opencontainers.org
http://mobyproject.org
http://docs.docker.com
http://play-with-moby.com
http://labs.play-with-docker.com

920	 Chapter 25	 Containers	

Exhibit B	 Docker architecture

Ubuntu FreeBSD

Ubuntu FreeBSDDebian

dockerd

docker

Containers

Host operating system

Local images

Docker image registry

Instances of

CachesManages

Pushes and pulls imagesControls
through network or
local domain socket

Administrators interface with dockerd from the command line by running sub-
commands of the docker client. You can create a container with docker run, for
example, or view information about the server with docker info. Table 25.1 sum-
marizes some frequently used subcommands.

An image is the template for a container. It includes the files that processes running
within the container instance depend on, such as libraries, operating system bina-
ries, and applications. Linux distributions can function as convenient base images
because they define a complete operating environment. However, an image is not
necessarily based on a Linux distribution. The “scratch” image is an explicitly empty
image intended as a basis for creation of other, more practical images.

A container relies on the image template as a basis for execution. When dockerd
runs a container, it creates a writable filesystem layer that is separate from the source
image. The container can read any of the files and other metadata stored within the
image, but any writes are confined to the container’s own read/write layer.

An image registry is a centralized collection of images. dockerd communicates with
registries when you docker pull an image that isn’t already present or when you
docker push one of your own images. The default registry is Docker Hub, which
stockpiles images for many popular applications. Most standard Linux distributions
also publish Docker images.

 	

	 Docker: the open source container engine	 921

Co
nt

ai
ne

rs

You can run your own registry, or you can add your custom images to private regis-
tries that are hosted on Docker Hub. Any system with Docker can pull images from
a registry as long as the registry server is accessible over the network.

Installation
Docker runs on Linux, macOS, Windows, and FreeBSD, but Linux is the flagship
platform. FreeBSD support is considered experimental. Visit docker.com to choose
the installation method that best suits your environment.

Users in the docker group can control the Docker daemon through its socket, which
effectively gives those users root privileges. This is a significant security risk, so we
suggest that you use sudo to control access to docker rather than adding users to
the docker group. In the examples below, we run docker commands as the root user.

The installation process may not immediately start the daemon. If it isn’t running,
start it through the system’s normal init system. On CentOS, for example, run sudo
systemctl start docker.

Client setup
If you’re connecting to a local dockerd and you’re in the docker group or have
sudo privileges, no client configuration is necessary. The docker client connects
to dockerd through a local socket by default. You can modify the default client be-
havior by setting environment variables.

To connect to a remote dockerd, set the DOCKER_HOST environment variable.
The usual HTTP port for the daemon is 2375, and the TLS version is 2376.

 	

Table 25.1	 Frequently used docker subcommands

Subcommand What it does

docker info Displays summary information about the daemon
docker ps Displays running containers
docker version Displays extensive version info about the server and client
docker rm Removes a container
docker rmi Removes an image
docker images Displays local images
docker inspect Displays the configuration of a container (JSON output)
docker logs Displays the standard output from a container
docker exec Executes a command in an existing container
docker run Runs a new container
docker pull/push Downloads images from or uploads images to a remote registry
docker start/stop Starts or stops an existing container
docker top Displays containerized process status

http://docker.com

922	 Chapter 25	 Containers	

For example:

$ export DOCKER_HOST=tcp://10.0.0.10:2376

Always use TLS to communicate with remote daemons. If you use plain HTTP, you
may as well hand out root privileges freely to anyone on your network. You can find
additional details on Docker TLS configuration in Use TLS starting on page 940.

We also suggest enabling the content trust:

$ export DOCKER_CONTENT_TRUST=1

This feature validates the integrity and publisher of Docker images. Enabling the
content trust prevents the client from pulling images that are not trusted.

If you run docker through sudo, you can prevent sudo from purging your envi-
ronment variables with the -E flag. You can also whitelist specific environment
variables by setting the value of the env_keep variable in /etc/sudoers. For example,

Defaults env_keep += "DOCKER_CONTENT_TRUST"

The container experience
To create a container, you need an image to use as a template. The image has all the
filesystem bits needed to run programs. A new installation of Docker has no images.
To download images from the Docker Hub, use docker pull.3

docker pull debian
Using default tag: latest
latest: Pulling from library/debian
f50f9524513f: Download complete
d8bd0657b25f: Download complete
Digest: sha256:e7d38b3517548a1c71e41bffe9c8ae6d6...
Status: Downloaded newer image for debian:latest

The hex strings are the layers of the union filesystem. If the same layer is used by more
than one image, Docker needs only a single copy. We didn’t request a specific tag,
or version, of the Debian image, so Docker downloaded the “latest” tag by default.

Examine the locally available images with docker images:

docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu latest 07c86167cdc4 2 weeks ago 187.9 MB
ubuntu wily b5e09e0cd052 5 days ago 136.1 MB
ubuntu trusty 97434d46f197 5 days ago 187.9 MB
ubuntu 15.04 d1b55fd07600 8 weeks ago 131.3 MB
centos 7 d0e7f81ca65c 2 weeks ago 196.6 MB
centos latest d0e7f81ca65c 2 weeks ago 196.6 MB
debian jessie f50f9524513f 3 weeks ago 125.1 MB
debian latest f50f9524513f 3 weeks ago 125.1 MB

	 3.	 You can review the available images by browsing hub.docker.com.

http://hub.docker.com

	 Docker: the open source container engine	 923

Co
nt

ai
ne

rs

This machine has the images for several Linux distributions, including the just-down-
loaded Debian image. The same image can be tagged more than once. Notice that
debian:jessie and debian:latest share an image ID; they are two different names for
the same image.

Armed with an image, it’s remarkably simple to run a basic container:

docker run debian /bin/echo "Hello World"
Hello World

What just happened? Docker created a container from the Debian base image and
ran the command /bin/echo "Hello World" inside it.4 The container stops run-
ning when the command exits: in this case, immediately after echo completes. If
the “debian” image didn’t already exist locally, the daemon would attempt to au-
tomatically download it before running the command. We didn’t specify a tag, so
the “latest” image was used by default.

We start an interactive shell with the -i and -t flags to docker run. The command
below starts a bash shell within the container and connects the “outer” shell’s I/O
channels to it. We also assign the container a hostname, which is helpful for iden-
tifying it in logs. (Otherwise, we’d see the container’s random ID in log messages.)

ben@host$ sudo docker run --hostname debian -it debian /bin/bash
root@debian:/# ls
bin dev home lib64 mnt proc run srv tmp var
boot etc lib media opt root sbin sys usr
root@debian:/# ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.5 0.4 20236 1884 ? Ss 19:02 0:00 /bin/bash
root 7 0.0 0.2 17492 1144 ? R+ 19:02 0:00 ps aux
root@debian:/# uname -r
3.10.0-327.10.1.el7.x86_64
root@debian:/# exit
exit
ben@host$ uname -r
3.10.0-327.10.1.el7.x86_64

The experience is oddly similar to accessing a virtual machine. There is a complete
root filesystem, but the process tree appears nearly empty. /bin/bash is PID 1 be-
cause it’s the command that Docker started in the container.

The result of uname -r is the same both inside and outside the container. That will
always be the case; we show it as a reminder that the kernel is shared.

Processes in containers cannot see other processes running on the system because
of PID namespacing. However, processes on the host can see the containerized
processes. The PID of a process as seen from within a container differs from the
PID that is visible from the host.

	 4.	 This is GNU echo, not to be confused with the echo command built into most shells. They do exactly
the same thing.

924	 Chapter 25	 Containers	

For real work, you need long-lived containers that run in the background and accept
connections over the network. The following command runs in the background
(-d) a container named “nginx” that’s generated from the official NGINX image.
We tunnel port 80 from the host into the same port within the container:

docker run -p 80:80 --hostname nginx --name nginx -d nginx
Unable to find image 'nginx:latest' locally
latest: Pulling from library/nginx
fdd5d7827f33: Already exists
a3ed95caeb02: Pull complete
e04488adab39: Pull complete
2af76486f8b8: Pull complete
Digest: sha256:a234ab64f6893b9a13811f2c81b46cfac885cb141dcf4e275ed3

ca18492ab4e4
Status: Downloaded newer image for nginx:latest
0cc36b0e61b5a8211432acf198c39f7b1df864a8132a2e696df55ed927d42c1d

We didn’t have the “nginx” image locally, so Docker had to pull it from the registry.
Once the image was downloaded, Docker started the container and printed its ID,
a unique 65-character hexadecimal string.

docker ps shows a brief summary of running containers:

docker ps
IMAGE COMMAND STATUS PORTS
nginx "nginx -g 'daemon off" Up 2 minutes 0.0.0.0:80->80/tcp

We didn’t tell docker what to run in the container, so it used the default command
that was specified when the image was created. The output shows this command to
be nginx -g 'daemon off ' which runs nginx as a foreground process rather than as
a background daemon. The container has no init to manage processes, and if the
nginx server were started as a daemon, the container would run but immediately
exit when the nginx process forked and exited to enter the background.

Most server daemons offer a command-line flag that forces them to run in the
foreground. If your software doesn’t run in the foreground or if you need to run
several processes in a container, you can assign a process control system such as
supervisord to act as a lightweight init for the container.

With NGINX running in the container and port 80 mapped from the host, we can
make HTTP requests to the container with curl. NGINX serves a generic HTML
landing page by default.

host$ curl localhost
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...

	 Docker: the open source container engine	 925

Co
nt

ai
ne

rs

We can use docker logs to view the STDOUT from the container, which in this
case is the NGINX access log. The only traffic is our curl request:

docker logs nginx
172.17.0.1 - - [24/Feb/2017:19:12:24 +0000] "GET / HTTP/1.1" 200 612

"-" "curl/7.29.0" "-"

We can also use docker logs -f to get a real-time stream of a container’s output, just
like running tail -f on a growing log file.

docker exec creates a new process in an existing container. For example, to debug
or troubleshoot, we could start an interactive shell in a container:

docker exec -ti nginx bash
root@nginx:/# apt-get update && apt-get -y install procps
root@nginx:/# ps ax
 PID TTY STAT TIME COMMAND
 1 ? Ss 0:00 nginx: master process nginx -g daemon off;
 7 ? S 0:00 nginx: worker process
 8 ? Ss 0:00 bash
 21 ? R+ 0:00 ps ax

Container images are as slim as possible and are often missing common adminis-
trative utilities. In this sequence, we first updated the package index and then in-
stalled ps, which is part of the procps package.

The process list reveals the nginx master daemon, an nginx worker, and our bash
shell. When we exit the shell created with docker exec, the container continues to
run. If PID 1 exited while our shell was active, the container would terminate and
our shell would also exit.

We can stop and start the container:

docker stop nginx
nginx
docker ps
IMAGE COMMAND STATUS PORTS
docker start nginx
docker ps
IMAGE COMMAND STATUS PORTS
nginx "nginx -g 'daemon off" Up 2 minutes 0.0.0.0:80->80/tcp

docker start starts the container with the same arguments that were passed when
the container was created with docker run.

When containers exit, they remain on the system in a dormant state. You can list all
containers, including those that are stopped, with docker ps -a. It’s not particularly
harmful to keep unneeded old containers lying around, but it’s considered poor
hygiene and might cause name collisions if you reuse container names.

When we finish with the container, we can stop and remove it:

docker stop nginx && docker rm nginx

926	 Chapter 25	 Containers	

docker run --rm runs a container and removes it automatically when it exits, but
this works only for containers that are not daemonized with -d.

Volumes
The filesystem layers for most containers consist of static application code, libraries,
and other supporting or OS files. The read/write filesystem layer allows containers
to make local modifications to these layers. However, heavy reliance on the over-
lay filesystem isn’t the best storage solution for data-intensive applications such as
databases. For those kinds of apps, Docker has the notion of volumes.

A volume is an independent, writable directory within a container that’s maintained
separately from the union filesystem. If the container is removed, the data in the
volume persists and can be accessed from the host. Volumes can also be shared
among multiple containers.

We add a volume to a container with docker’s -v argument:

docker run -v /data --rm --hostname web --name web -d nginx

If /data already exists within the container, any files found there are copied to the
volume. We can find the volume on the host by running docker inspect:

docker inspect -f '{{ json .Mounts }}' web
...
 "Mounts": [
 {
 "Name": "8f026ebb9c0cda27441fb7fd275c8e767685f260...f5fd1939823558",
 "Source": "/var/lib/docker/volumes/8f026ebb9c0cda...93823558/_data",
 "Destination": "/data",
 "Driver": "local",
 "Mode": "",
 "RW": true,
 "Propagation": ""
 }
]

The inspect subcommand returns verbose output; we applied a filter so that only
the mounted volumes would be printed. If the container terminates or needs to
be removed, we can find the data volume at the Source directory on the host. The
Name looks more like an ID, but it’s useful if we need to identify the volume later.

For a higher-level overview of volumes on the system, we run docker volume ls.

Docker also supports “bind mounts,” which mount volumes on the host and in
containers simultaneously. For example, we can bind-mount /mnt/data from the
host to /data in the container with the following command:

docker run -v /mnt/data:/data --rm --name web -d nginx

When the container writes to /data, the changes are also visible in /mnt/data on
the host.

	 Docker: the open source container engine	 927

Co
nt

ai
ne

rs

For bind-mounted volumes, Docker does not copy existing files from the contain-
er’s mount directory to the volume. As with a traditional filesystem mount, the vol-
ume’s contents supersede the original contents of the container’s mount directory.

When running containers in the cloud, we suggest combining bind mounts with
the block storage options offered by cloud providers. For example, AWS’s Elastic
Block Storage volumes make great backing stores for Docker bind mounts. They
have built-in snapshot facilities and can move among EC2 instances. They can
also be copied between nodes, which makes it straightforward for other systems
to retrieve a container’s data. You can leverage EBS’s native snapshotting facilities
to create a simple backup system.

Data volume containers
One helpful pattern that has emerged from real-world experience is the data-only
container. Its purpose is to hold a volume configuration on behalf of other contain-
ers so that those containers can be easily restarted and replaced.

Create a data container by using either a normal volume or a bind-mounted volume
from the host. The data container never actually runs.

docker create -v /mnt/data:/data --name nginx-data nginx

Now you can use the data container’s volume in the nginx container:

docker run --volumes-from nginx-data -p 80:80 --name web -d nginx

The “web” container has read and write access to the /data volume of the data-only
“nginx-data” container. “web” can be restarted, removed, or replaced, but so long as
it is started with --volumes-from, the files in /data will remain persistent.

In truth, combining data persistence with containers is a bit of an impedance mis-
match. Containers are meant to be created and removed at a moment’s notice in
response to external events. The ideal is to have a fleet of identical servers that run
dockerd, with containers being deployable to any of the servers. Once you add
persistent data volumes, however, the container becomes coupled to a particular
server. As much as we’d like to be living in the ideal world, many applications do
need persistent data.

Docker networks
As discussed in Networking on page 918, there is more than one way to connect
containers to the network. During installation, Docker creates three default net-
working options. List them with docker network ls:

docker network ls
NETWORK ID NAME DRIVER
6514e7108508 bridge bridge
1a72c1e4b230 none null
e0f4e608c92c host host

928	 Chapter 25	 Containers	

In the default bridge mode, containers reside on a private namespaced network
within the host. The bridge connects the host’s network to the container namespace.
When you create a container and map a port from the host with docker run -p,
Docker creates iptables rules that route traffic from the host’s public interface to
the container’s interface on the bridge network.

With “host” networking, no separate network namespace is used. Instead, the con-
tainer shares the network stack with the host, including all its interfaces. Ports ex-
posed by the container are also exposed on the interfaces of the host. Some software
behaves better when running with host networking, but this configuration can also
lead to port conflicts and other problems.

“None” networking indicates that Docker shouldn’t take any steps whatsoever to
configure networking. It is intended for advanced use cases that have custom net-
working requirements.

Pass the --net argument to docker run to select a container’s network.

Namespaces and the bridge network
A bridge is a Linux kernel feature that connects two network segments. During in-
stallation, Docker quietly creates a bridge called docker0 on the host. Docker chooses
an IP address space for the far side of the bridge that it calculates as unlikely to col-
lide with any networks reachable by the host. Each container is given a namespaced
virtual network interface that has an IP address within the bridged network range.

The address selection algorithm is practical but not perfect. Your network may have
routes that aren’t visible from the host. If a collision occurs, the host will no longer
be able to access the remote network that has the overlapping address space, but
it will be able to reach local containers. If you find yourself in this situation or if
you need to customize the bridge’s address space for some other reason, use the

--fixed-cidr argument to dockerd.

Network namespaces rely on virtual interfaces, strange constructs that are created
in pairs, where one side is in the host’s namespace and the other is in the contain-
er’s. Data flows in one end of the pair and out the other end, thus connecting the
container to the host. In most cases a container has only one such pair. Exhibit C
illustrates the concept.

One half of each pair is visible from the host’s networking stack. For example, here
are the visible interfaces on a CentOS host with just one container running:

centos$ ip addr show
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast

state UP qlen 1000
 link/ether 08:00:27:c3:36:f0 brd ff:ff:ff:ff:ff:ff
 inet 10.0.2.15/24 brd 10.0.2.255 scope global dynamic enp0s3
 valid_lft 71368sec preferred_lft 71368sec
 inet6 fe80::a00:27ff:fec3:36f0/64 scope link
 valid_lft forever preferred_lft forever

See page 440 for
more information
about iptables.

 	

	 Docker: the open source container engine	 929

Co
nt

ai
ne

rs

3: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue
state UP

 link/ether 02:42:d4:30:59:24 brd ff:ff:ff:ff:ff:ff
 inet 172.17.42.1/16 scope global docker0
 valid_lft forever preferred_lft forever
 inet6 fe80::42:d4ff:fe30:5924/64 scope link
 valid_lft forever preferred_lft forever
53: veth584a021@if52: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue master docker0 state UP
 link/ether d6:39:a7:bd:bf:eb brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet6 fe80::d439:a7ff:febd:bfeb/64 scope link
 valid_lft forever preferred_lft forever

The output shows enp0s3, the primary interface on the host, and docker0, the virtual
Ethernet bridge, which uses the 172.17.42.0/16 range. The veth interface is the host
side of the virtual interface pair that connects the container to the bridged network.

The container’s side of the bridged pair is not visible from the host without low-level
inspection of the networking stack. This invisibility is just a side effect of the way
network namespaces work. However, we can find the interface by inspecting the
container itself:

docker inspect -f '{{ json .NetworkSettings.Networks.bridge }}' nginx
 "bridge": {
 "Gateway": "172.17.42.1",
 "IPAddress": "172.17.42.13",
 "IPPrefixLen": 16,
 "MacAddress": "02:42:ac:11:00:03"
 }

The container’s IP address is 172.17.42.13, and the default gateway is the docker0
bridge interface. (This is the bridge network depicted in Exhibit C.)

In the default bridge configuration, all containers can communicate with one an-
other because they are all on the same virtual network. However, you can create ad-
ditional network namespaces to isolate containers from one another. That way, you
can serve multiple, isolated environments from the same set of container instances.

Exhibit C	 A docker bridge network

Container #2
eth0: 172.17.42.19

Container #1
eth0: 172.17.42.13

veth9722da1

veth63aed12

docker0
172.17.42.1

enp0s3
10.0.2.15

External
network

Host operating system

930	 Chapter 25	 Containers	

Network overlays
Docker has lots of additional networking flexibility available to help with advanced
use cases. For example, you can create user-defined private networks that automat-
ically have container linking. With network overlay software, containers running
on separate hosts can route traffic to each other through a private network address
space. Virtual eXtensible LAN (VXLAN) technology, described in RFC7348, is one
system that can be combined with containers to implement advanced networking
capabilities. See the Docker networking documentation for more details.

Storage drivers
UNIX and Linux systems offer multiple ways to implement a union filesystem.
Docker is technology-agnostic in this regard and filters all filesystem operations
through a storage driver that you select.

The storage driver is configured as part of the docker daemon launch options. Your
choice of storage engine has important consequences for performance and stability,
especially in production environments that support many containers. Table 25.2
shows the current menu of drivers.

The VFS driver effectively disables the use of a union filesystem. Docker creates a
complete copy of an image for each container, resulting in higher disk usage and
longer container start times. However, this implementation is simple and robust. If
your use case involves long-lived containers, VFS is a reliable choice. We’ve never
encountered a site that uses VFS in production, however.

Btrfs and ZFS are also not true union filesystems. However, they implement over-
lays efficiently and reliably because they natively support copy-on-write filesystem
clones. Docker support for Btrfs and ZFS is currently limited to a few specific Linux
distributions (and FreeBSD, for ZFS), but these are good options to keep an eye on
for the future. The less filesystem magic specific to the container system, the better.

Storage driver selection is a nuanced topic. Unless you or somebody on your team
has comprehensive knowledge of one of these filesystems, we recommend that you
stick with the default for your distribution. The Docker storage driver documen-
tation has further information.

dockerd option editing
You’ll inevitably need to modify some of dockerd’s settings. Tuning options include
the storage engine, DNS options, and the base directory in which images and meta-
data are stored. Run dockerd -h to see a complete list of arguments.

 	

	 Docker: the open source container engine	 931

Co
nt

ai
ne

rs

You can examine a running daemon’s configuration with docker info:

centos# docker info
Containers: 6
 Running: 0
 Paused: 0
 Stopped: 6
Images: 9
Server Version: 1.10.3
Storage Driver: overlay
 Backing Filesystem: xfs
Logging Driver: json-file
Plugins:
 Volume: local
 Network: bridge null host
Kernel Version: 3.10.0-327.10.1.el7.x86_64
Operating System: CentOS Linux 7 (Core)
OSType: linux
Architecture: x86_64

Table 25.2	 Docker storage drivers

Driver Description and comments

aufs A reimplementation of the original UnionFS
The original Docker storage engine
Default for Debian and Ubuntu
Now deprecated because it’s not part of the mainline Linux kernel

btrfs Uses the Btrfs copy-on-write filesystem (see page 783)
Btrfs is stable and is included in the mainline Linux kernel
Docker’s use is distribution-limited and somewhat experimental

devicemapper Default for RHEL/CentOS 6
Direct LVM mode strongly recommended but needs configuration
Has a history of bugs
Study Docker’s devicemapper documentation

overlay Based on OverlayFS
Considered the replacement for AuFS
The default in CentOS 7 if the overlay kernel module is loaded

vfs Not a real union filesystem
Slow but stable, suitable for some production environments
Good as a proof of concept or as a testbed

zfs Uses the ZFS copy-on-write filesystem (see page 773)
Default for FreeBSD
Considered experimental on Linux

932	 Chapter 25	 Containers	

This is a good place to check that any customizations you made have taken effect.

Docker conforms to the operating system’s native init system for managing dae-
mon processes, including settings for startup options. For example, on a distribu-
tion that uses systemd, the following command edits the Docker service unit to
set a nondefault storage driver, a set of DNS servers, and a custom address space
for the bridge network:

$ systemctl edit docker
[Service]
ExecStart=
ExecStart=/usr/bin/docker daemon -D --storage-driver overlay \
 --dns 8.8.8.8 --dns 8.8.4.4 --bip 172.18.0.0/19

The redundant ExecStart= is not a mistake. It’s a systemd-ism that clears the de-
fault setting, ensuring that the new definition is used exactly as shown. Once the
edits are complete, we restart the daemon with systemctl and review the changes:

centos$ sudo systemctl restart docker
centos$ sudo systemctl status docker
 docker.service
 Loaded: loaded (/etc/systemd/system/docker.service; static;
 vendor preset: disabled)
 Drop-In: /etc/systemd/system/docker.service.d
 └─override.conf
 Active: active (running) since Wed 2016-03-09 23:14:56 UTC; 12s ago
 Main PID: 4328 (docker)
 CGroup: /system.slice/docker.service
 └─4328 /usr/bin/docker daemon -D --storage-driver overlay

--dns 8.8.8.8 --dns 8.8.4.4 --bip 172.18.0.0/19
...

On systems running upstart, configure daemon options in /etc/default/docker.
For older systems with SysV-style init, use /etc/sysconfig/docker.

By default, dockerd listens for connections from docker on the UNIX domain
socket at /var/run/docker.sock. To set the daemon to listen on a TLS socket in-
stead, use the daemon option -H tcp://0.0.0.0:2376. See page 940 for more details
about how to set up TLS.

Image building
You can containerize your own applications by building images that include your
application code. The build process begins with a base image. You add your appli-
cation by committing any changes as new layers and saving the image to the local
image database. You can then create containers from the image. You can also push
your image to a registry to make it accessible to other systems running Docker.

Each layer of an image is identified by a cryptographic hash of its contents. The
hash serves as a validation system that lets Docker confirm that no corruption or
malicious intervention has modified the contents of the image.

See Chapter 2 for
more information
about editing unit
files with systemctl.

	 Docker: the open source container engine	 933

Co
nt

ai
ne

rs

Choosing a base image
Before creating a custom image, choose a suitable base. The rule of thumb for base
images is that the smaller footprint, the better. The base should have what you need
to run your software and nothing more.

Many of the official images are based on a distribution called Alpine Linux, which
weighs in at a lean 5MB but may have library incompatibilities with some appli-
cations. The Ubuntu image is larger at 188MB, but still small in comparison to a
typical server installation. You might be able to find a base image that has your ap-
plication run-time components already configured. Default base images exist for
the most common languages, run-times, and application platforms.

Thoroughly vet your base image before you make a final decision. Examine the
base’s Dockerfile (see the next section) and any nonobvious dependencies to avoid
surprises. Base images may have unexpected requirements or include vulnerable
versions of software. In some circumstances, you may need to copy the Dockerfile
of a base image and rebuild it to suit your needs.

When dockerd downloads an image, it downloads only the layers that it doesn’t
already have. If all your applications use the same base, there is less data for the
daemon to download and containers start faster when first run.

Building from a Dockerfile
A Dockerfile is a recipe for building an image. It contains a series of instructions
and shell commands. The docker build command reads the Dockerfile, runs its
instructions in sequence, and commits the result as an image. Software projects
that have a Dockerfile usually keep it in the root directory of the Git repository to
facilitate building new images that contain that software.

The first instruction in a Dockerfile specifies an image to use as the base. Each sub-
sequent instruction commits a change to a new layer, which is used in turn as the
base for the next instruction. Each layer includes only the changes from the previous
layer. The union filesystem merges the layers to create a container’s root filesystem.

Here is a Dockerfile that builds the official NGINX image for Debian:5

FROM debian:jessie
MAINTAINER NGINX Docker Maintainers "docker-maint@nginx.com"
ENV NGINX_VERSION 1.10.3-1~jessie
RUN apt-get update \
	 && apt-get install -y ca-certificates nginx=${NGINX_VERSION} \
	 && rm -rf /var/lib/apt/lists/*
forward request and error logs to docker log collector
RUN ln -sf /dev/stdout /var/log/nginx/access.log \
	 && ln -sf /dev/stderr /var/log/nginx/error.log
EXPOSE 80 443
CMD ["nginx", "-g", "daemon off;"]

	 5.	 From github.com/nginxinc/docker-nginx. Slightly simplified.

mailto:"docker-maint@nginx.com"
http://github.com/nginxinc/docker-nginx

934	 Chapter 25	 Containers	

NGINX uses the debian:jessie image as a base. After declaring a maintainer, the file
sets an environment variable (NGINX_VERSION) that’s then available to every sub-
sequent instruction in the Dockerfile and also to any process that runs inside the
container once the image has been built and instantiated. The first RUN instruction
does the heavy lifting by installing NGINX from a package repository.

By default, NGINX sends log data to /var/log/nginx/access.log, but the conven-
tion for containers is to log messages to STDOUT. In the final RUN command, the
maintainers use a symbolic link to redirect the access log to the STDOUT device
file. Similarly, errors are redirected to the container’s STDERR.

The EXPOSE command tells dockerd which ports the container listens on. The exposed
ports can be overridden at container run time with the -p option to docker run.

The final instruction in the NGINX Dockerfile is the command that dockerd should
execute when it starts the container. In this case, the container runs the nginx bi-
nary as a foreground process.

See Table 25.3 for a rundown of common Dockerfile instructions. The reference
manual at docs.docker.com is the authoritative documentation.

Composing a derived Dockerfile
We can use a very simple Dockerfile to build a derived NGINX image that adds a
custom index.html, replacing the default from the official image:

$ cat index.html
<!DOCTYPE html>
<title>ULSAH index.html file</title>
<p>A simple Docker image, brought to you by ULSAH.</p>
$ cat Dockerfile
FROM nginx
Add a new index.html to the document root
ADD index.html /usr/share/nginx/html/

Other than having a custom index.html, our new image will be identical to the
base image. Here’s how we build the customized image:

docker build -t nginx:ulsah .
Step 1 : FROM nginx
 ---> fd19524415dc
Step 2 : ADD index.html /usr/share/nginx/html/
 ---> c0c25eaf7415
Removing intermediate container 04cc3278fdb4
Successfully built c0c25eaf7415

We use docker build with -t nginx:ulsah to create an image with the name nginx and
the tag ulsah to distinguish it from the official NGINX image. The trailing dot tells
docker build where to search for the Dockerfile (in this case, the current directory).

 	

  

	

http://docs.docker.com
http://index.html
http://index.html
http://index.html
http://index.html
http://index.html
http://index.html
http://index.html

	 Docker: the open source container engine	 935

Co
nt

ai
ne

rs

Now we can run the image and see our customized index.html:

docker run -p 80:80 --name nginx-ulsah -d nginx:ulsah
$ curl localhost
<!DOCTYPE html>
<title>ULSAH index.html file</title>
<p>A simple Docker image, brought to you by ULSAH.</p>

We can check that our image is listed among the local images by running the com-
mand docker images:

docker images | grep ulsah
REPOSITORY TAG IMAGE ID CREATED SIZE
nginx ulsah c0c25eaf7415 3 minutes ago 134.6 MB

To remove images, run docker rmi. You can’t remove an image until you’ve stopped
and removed any containers that are using it:

docker ps | grep nginx:ulsah
IMAGE COMMAND STATUS PORTS
nginx:ulsah "nginx -g 'daemon off" Up 37 seconds 0.0.0.0:80->80/tcp
docker stop nginx-ulsah && docker rm nginx-ulsah
nginx-ulsah
nginx-ulsah
docker rmi nginx:ulsah

Table 25.3	 Abbreviated list of Dockerfile instructions

Instruction What it does

ADD Copies files from the build host to the image a

ARG Sets variables that can be referenced during the build but not
from the final image; not intended for secrets

CMD Sets the default commands to execute in a container
COPY Like ADD, but only for files and directories
ENV Sets environment variables available to all subsequent build

instructions and containers spawned from this image
EXPOSE Informs dockerd of the network ports exposed by the container
FROM Sets the base image; must be the first instruction
LABEL Sets image tags (visible with docker inspect)
RUN Runs commands and saves the result in the image
STOPSIGNAL Specifies a signal to send to the process when told to quit with

docker stop; defaults to SIGKILL
USER Sets the account name to use when running the container and

any subsequent build instructions
VOLUME Designates a volume for storing persistent data
WORKDIR Sets the default working directory for subsequent instructions

a.	 The source can be a file, directory, tarball, or remote URL.

http://index.html:
http://index.html

936	 Chapter 25	 Containers	

Both docker stop and docker rm echo the name of the container they affect, re-
sulting in “nginx-ulsah” being printed twice.

Registries
A registry is an index of Docker images that dockerd can access through HTTP.
When an image is requested that doesn’t exist on the local disk, dockerd pulls it
from the registry. Images are uploaded to a registry with docker push. Although
image operations are initated by the docker command, only dockerd actually in-
teracts with registries.

Docker Hub is a hosted registry service run by Docker, Inc. It hosts images for many
distributions and open source projects, including all our example Linux systems.
The integrity of these official images is verified through a content trust system, thus
ensuring that the image you download is provided by the vendor whose name is on
the label. You can also publish your own images to Docker Hub for others to use.

Anyone can download public images from Docker Hub, but with a subscription you
can also create private repositories. Once you have a paid account at hub.docker.com,
log in from the command line with docker login to access the private registry so
that you can push and pull your own custom images. You can also trigger an image
build whenever a commit is detected on a GitHub repository.

Docker Hub is not the only subscription-based registry. Others include quay.io,
Artifactory, Google Container Registry, and the Amazon EC2 Container Registry.

Docker Hub is the generous benefactor of the greater image ecosystem, and it also
benefits from being the default registry when nothing more specific is requested.
For example, the command

docker pull debian:jessie

first looks for a local copy of the image. If the image isn’t available locally, the next
stop is Docker Hub. You can tell docker to use a different registry by including a
hostname or URL in the image specification:

docker pull registry.admin.com/debian:jessie

Similarly, when building an image to push to a custom registry, you must tag it with
the registry’s URL, and you must authenticate before you push:

docker tag debian:jessie registry.admin.com/debian:jessie .
...
docker login https://registry.admin.com
Username: ben
Password: <password>
docker push registry.admin.com/debian:jessie

Docker saves the login details to a file in your home directory called .dockercfg so
that you need not log in again the next time you interact with the private registry.

http://hub.docker.com
http://quay.io

	 Containers in practice	 937

Co
nt

ai
ne

rs

For performance or security reasons, you might prefer to run your own image reg-
istry. The registry project is open source (github.com/docker/distribution), and a
simple registry is easy to run as a container:6

docker run -d -p 5000:5000 --name registry registry:2

The registry service is now running on port 5000. You can pull an image from it by
qualifying the name of the image you’re seeking:

docker pull localhost:5000/debian:jessie

The registry implements two authentication methods: token and htpasswd. token
delegates authentication to an external provider, which is likely to require custom
development effort. htpasswd is simpler and allows HTTP basic authentication
for registry access. Alternatively, you can set up a proxy (e.g., NGINX) to handle
authentication. Always run the registry with TLS.

The default private registry configuration is not appropriate for a large-scale deploy-
ment. Considerations for production use include storage space, authentication and
authorization requirements, image cleanup, and other maintenance tasks.

As your containerized environment expands, your registry will be inundated with
new images. For users working in the cloud, an object store such as Amazon S3 or
Google Cloud Storage is one possible way to store all this data. The registry natively
supports both services.

Better yet, you can outsource your registry functions to the registries built into your
cloud platform of choice and have one less thing to worry about. Both Google and
Amazon run managed container registry services. You pay for storage and for the
network traffic to upload and download images.

25.3	 Containers in practice
Once you’re comfortable with the general way that containers work, you’ll find that
certain administrative chores need to be approached differently in a containerized
world. For example, how do you manage log files for containerized applications?
What are some security considerations? How do you troubleshoot errors?

The list below offers a few rules of thumb to help you adjust to life inside a container:

•	 When your application needs to run a scheduled job, don’t run cron in
a container. Use the cron daemon from the host (or a systemd timer) to
schedule a short-lived container that runs the job and exits. Containers
are meant to be disposable.

•	 Need to log in and check out what a process is doing? Don’t run sshd in
your container. Log in to the host with ssh, then use docker exec to open
an interactive shell.

	 6.	 The registry:2 tag differentiates the latest-generation registry from the previous version, which im-
plements an API that is incompatible with current versions of Docker.

http://github.com/docker/distribution

938	 Chapter 25	 Containers	

•	 If possible, set up your software to accept its configuration information
from environment variables. You can pass environment variables to con-
tainers with the -e KEY=value argument to docker run. Or set up many
variables at once from a separate file with --env-file filename.

•	 Ignore the commonly dispensed advice “one process per container.” That’s
nonsense. Split processes into separate containers only when it makes
sense to do so. For example, it’s usually a good idea to run an application
and its database server in separate containers because they are separated
by clear architectural boundaries. But it’s perfectly OK to have more than
one process in a container when that’s appropriate. Use common sense.

•	 Focus on the automatic creation of containers for your environment.
Write scripts to build images and upload them to registries. Make sure
that software deployment procedures involve replacing containers, not
updating them in place.

•	 On that note, avoid maintaining containers. If you’re accessing a container
manually to fix something, figure out what the problem is, resolve it in
the image, then replace the container. Immediately update your automa-
tion tooling if necessary.

•	 Stuck? Ask questions on the Docker User mailing list, on the Docker
Community Slack, or in the #docker IRC channel on freenode.

Everything an application needs to function should be available within its contain-
er: the filesystem, network access, and kernel facilities. The only processes that run
in a container are the ones that you start. It is atypical of containers to run normal
OS services such as cron, rsyslogd, and sshd, although it is certainly possible to
do so. Those duties are best left to the host OS. If you find yourself needing these
services within a container, reconsider your problem and see if you can solve it in
a more container-friendly way.

Logging
UNIX and Linux applications traditionally use syslog (now the rsyslogd daemon)
to process log messages. Syslog handles log filtering, sorting, and routing to remote
systems. Some applications don’t use syslog and instead write directly to log files.

Containers do not run syslog. Instead, Docker collects the logs for you through
logging drivers. Container processes need only write logs to STDOUT and errors
to STDERR. Docker collects those messages and sends them to a configurable
destination.

If your software supports logging only to files, apply the same technique as the
NGINX example on page 933: create symbolic links from log files to /dev/stdout
and /dev/stderr when you build the image.

	 Containers in practice	 939

Co
nt

ai
ne

rs

Docker forwards the log entries it receives to a selectable logging driver. Table 25.4
lists some of the more common and useful logging drivers.

Table 25.4	 Docker logging drivers

Driver What it does

json-file Writes JSON logs in the daemon’s data directory (default) a

syslog Writes logs to a configurable syslog destination b

journald Writes logs to the systemd journal a

gelf Writes logs in the Graylog Extended Log Format
awslogs Writes logs to the AWS CloudWatch service
gcplogs Writes logs to Google Cloud Logging.
none Does not collect logs

a.	 Log entries stored this way are accessible through the docker logs command.
b.	Supports UDP, TCP, and TCP+TLS.

When using json-file or journald, you can access log data from the command line
through docker logs container-id.

You set the default logging driver for dockerd with the --log-driver option. You can
also assign a logging driver at container run time with docker run --logging-driver.
Some drivers accept additional options. For example, the --log-opt max-size op-
tion configures log file rotation for the json-file driver. Use this option to avoid
filling up the disk with log files. Refer to the Docker logging documentation for
complete details.

Security advice
Container security relies on processes within containers being unable to access files,
processes, and other resources outside their sandbox. Vulnerabilities that allow at-
tackers to escape containers—known as breakout attacks—are serious but rare. The
code that underlies container isolation has been in the Linux kernel since at least
2008; it’s mature and stable. As with bare-metal or virtualized systems, insecure
configurations are a far more likely source of compromises than are vulnerabilities
in the isolation layer.

Docker maintains an interesting list of known software vulnerabilities that are and are
not mitigated by containerization. See docs.docker.com/engine/security/non-events.

Restrict access to the daemon
Above all, protect the docker daemon. Because dockerd necessarily runs with ele-
vated privileges, it’s trivial for any user with access to the daemon to gain full root
access to the host.

http://docs.docker.com/engine/security/non-events

940	 Chapter 25	 Containers	

The following sequence of commands demonstrates the risk:

$ id
uid=1001(ben) gid=1001(ben) groups=1001(ben),992(docker)
docker run --rm -v /:/host -t -i debian bash
root@e51ae86c5f7b:/# cd /host
root@e51ae86c5f7b:/host# ls
bin dev home lib64 mnt proc run srv test usr
boot etc lib media opt root sbin sys tmp var

This transcript shows that any user in the docker group can mount the host’s root
filesystem to a container and gain full control of its contents. This is just one of
many possible ways to elevate privileges through Docker.

If you use the default UNIX domain socket to communicate with the daemon, add
only trusted users to the docker group, which has access to the socket. Better yet,
control access through sudo.

Use TLS
We said it before, and we’ll say it again: if the docker daemon must be remotely ac-
cessible (dockerd -H), require the use of TLS to encrypt network communications
and to mutually authenticate the client and server.

Setting up TLS involves having a certificate authority issue certificates to the docker
daemon and clients. Once the key pairs and certificate authority are in place, actu-
ally enabling TLS for docker and dockerd is a simple matter of supplying the right
command-line arguments. Table 25.5 lists the essential settings.

Table 25.5	 TLS arguments common to docker and dockerd

Argument Meaning or argument

--tlsverify Require authentication
--tlscert a Path to a signed certificate
--tlskey a Path to a private key
--tlscacert a Path to the certificate of a trusted authority

a.	 Optional. The default locations are ~/.docker/{cert,key,ca}.pem.

Successful use of TLS relies on a mature certificate management processes. Certifi-
cate issuance, revocation, and expiration are a few of the issues that need attention.
Heavy is the burden of a security-conscious administrator.

Run processes as unprivileged users
Processes in containers should run as nonroot users, just as they should on a full-
fledged operating system. This practice limits an attacker’s ability to launch breakout

See page 1008 for in-
formation about TLS.

	 Containers in practice	 941

Co
nt

ai
ne

rs

attacks. When you are writing a Dockerfile, use the USER instruction to run future
commands in the image under the named user account.

Use a read-only root filesystem
To further restrict containers, you can specify docker run --read-only, thereby
limiting the container to a read-only root filesystem. This works well for stateless
services that never need to write. You can also mount a read/write volume that your
process can modify, but leave the root filesystem read-only.

Limit capabilities
The Linux kernel defines 40 separate capabilities that can be assigned to processes.
By default, Docker containers are granted a large subset of these. You can enable
an even greater subset by starting a container with the --privileged flag. However,
this option disables many of the isolation benefits of using Docker. You can tune the
specific capabilities that are available to containerized processes with the --cap-add
and --cap-drop arguments:

docker run --cap-drop SETUID --cap-drop SETGID debian:jessie

You can also drop all privileges and add back just the ones you need:

docker run --cap-drop ALL --cap-add NET_RAW debian:jessie

Secure images
The Docker content trust feature validates the authenticity and integrity of images
in a registry. The publisher of the image signs it with a secret key, and the registry
validates it with the corresponding public key. This process ensures that the image
was produced by the expected creator. You can use content trust to sign your own
images or to validate the images in a remote registry. The feature is available on
Docker Hub and on some third party registries, such as Artifactory.

Unfortunately, most of the content on Docker Hub is unsigned and should be con-
sidered untrustworthy. Indeed, most images on the Hub are never patched, updat-
ed, or audited in any way.

This lack of a proper chain of trust associated with many Docker images is rep-
resentative of the miserable state of security on the Internet in general. It’s quite
common for software packages to depend on third party libraries with little or no
concern being given to the trustworthiness of the content that’s pulled in. Some
software repositories have no cryptographic signatures whatsoever. It’s also common
to find articles that actively encourage disabling validation. Responsible system ad-
ministrators are highly suspicious of unknown and untrusted software repositories.

See page 82 for more
information about
Linux capabilities.

942	 Chapter 25	 Containers	

Debugging and troubleshooting
Containers bring with them a particularly heinous complement of obscure debug-
ging techniques. When an application is containerized, its symptoms become more
difficult to characterize and their root causes more puzzling. Many applications can
run without modification inside a container, but in some scenarios they may be-
have differently. You might also encounter bugs within Docker itself. This section
helps navigate these treacherous waters.

Errors usually manifest themselves in log files, so that’s the first place to look for
information. Use the advice in Logging on page 938 to configure logging for con-
tainers, and always review the logs when you encounter issues.

If you experience problems with a running container, try

docker exec -ti containername bash

to open an interactive shell. From there you can attempt to reproduce the problem,
examine the filesystem for evidence, and search for configuration errors.

If you see errors related to the docker daemon or if you have trouble starting it,
search the issues list at github.com/moby/moby. You may find others that have the
same problem, and one of them may have identified a potential fix or workaround.

Docker doesn’t automatically clean up images or containers. When neglected, these
remnants can consume an inordinate amount of disk space. If your container work-
load is predictable, configure a cron job to clean up by running docker system
prune and docker image prune.

A related annoyance are “dangling” volumes, volumes that were once attached to
a container but for which the container has since been removed. Volumes are in-
dependent of containers, so any files within them will continue to consume disk
space until the volumes are destroyed. You can use the following incantation to
clean out orphaned volumes:

docker volume ls -f dangling=true # List dangling volumes
docker volume rm $(docker volume ls -qf dangling=true) # Remove 'em

Base images you depend on may have a VOLUME instruction in their Dockerfile. If
you don’t notice this case, you might end up with a full disk after running a few
containers from that image. You can show the volumes associated with a container
by running docker inspect:

docker inspect -f '{{ .Volumes }}' container-name

25.4	 Container clustering and management
One of the great promises of containerization is the prospect of co-locating many
applications on the same host while avoiding interdependencies and conflicts,
thereby making more efficient use of servers. This is an appealing vision, but the
Docker engine is responsible only for individual containers, not for answering the

http://github.com/moby/moby

	 Container clustering and management	 943

Co
nt

ai
ne

rs

broader question of how to run many containers on distributed hosts in a highly
available configuration.

Configuration management tools such as Chef, Puppet, Ansible, and Salt all support
Docker. They can ensure that hosts run a certain set of containers with declared
configurations. They also support image building, registry interfaces, network and
volume management, and other container-related chores. These tools centralize and
standardize container configuration, but they do not solve the problem of conducting
the deployment of many containers across a network of servers. (Note that although
configuration management systems are useful for a variety of container-related
tasks, you will rarely need to use configuration management inside of containers.)

For network-wide container deployments, you need container orchestration soft-
ware, also known as container scheduling or container management software. An
entire symphony of open source and commercial tooling is available to handle
large numbers of containers. Such tools are crucial for running containers at scale
in a production context.

To understand how these systems work, think of the servers on the network as a
farm of compute capacity. Each node in the farm offers CPU, memory, disk, and
network resources to the scheduler. When the scheduler receives a request to run a
container (or set of containers), it places the container on a node that has sufficient
spare resources to meet the container’s needs. Because the scheduler knows where
containers have been placed, it can also assist in routing network requests to the
correct nodes within the cluster. Administrators interact with the container man-
agement system rather than dealing with any individual container engine. Exhibit
D illustrates this architecture.

Exhibit D	 Basic container scheduler architecture

Container

Container

Container

Container

Agent

Container
engine

Container scheduler
Administrative control

Inbound requests

Control

Routing meshNodes

Container management systems supply several helpful features:

•	 Scheduling algorithms select the best node in light of a job’s requested
resources and the utilization of the cluster. For example, a job with high
bandwidth requirements might be slotted onto a node with a 10 Gb/s
network interface.

944	 Chapter 25	 Containers	

•	 Formal APIs allow programs to submit jobs to the cluster, opening the
door to integration with external tools. It’s easy to use container manage-
ment systems in conjunction with CI/CD systems to simplify software
deployments.

•	 Container placement can accommodate the needs of high-availability con-
figurations. For example, an application may need to run on host nodes
in several distinct geographical regions.

•	 Health monitoring is built in. The system can terminate and reschedule
unhealthy jobs and can route jobs away from unhealthy nodes.

•	 It’s easy to add or remove capacity. If your compute farm doesn’t have
enough resources available to satisfy demand, you can simply add an-
other node. This facility is especially well suited to cloud environments.

•	 The container management system can interface with a load balancer
to route network traffic from external clients. This facility obviates the
complex administrative process of manually configuring network access
to containerized applications.

One of the most challenging tasks in a distributed container system is mapping
service names to containers. Remember that containers are typically ephemeral in
nature and may have dynamic ports assigned. How do you map a friendly, persistent
service name to multiple containers, especially when the nodes and ports change
frequently? This problem is known as service discovery, and container management
systems have various solutions.

It helps to be familiar with the underlying container execution engine before diving
into orchestration tooling. All the container management systems we’re aware of
rely on Docker as the default container execution engine, although some systems
also support other engines.

A synopsis of container management software
Despite their relative youth, the container management tools we discuss below are
mature beyond their years and can be considered production grade. In fact, many
are already used in production at high-profile, large-scale technology companies.
Most are open source and have sizable user communities. Based on recent trends,
we anticipate substantial development in this area in the coming years.

In the upcoming sections, we highlight the functionality and features of the most
widely used systems. We also mention their integration points and common use cases.

Kubernetes
Kubernetes—sometimes shortened to “k8s” because there are eight letters between
the leading “k” and the trailing “s”—has emerged as a leader in the container man-
agement space. It originated within Google and was launched by some of the same

	 Container clustering and management	 945

Co
nt

ai
ne

rs

developers that worked on Borg, Google’s internal cluster manager. Kubernetes
was released as an open source project in 2014 and now has more than a thousand
active contributors. It has the most features and the fastest development cycle of
any system we’re aware of.

Kubernetes consists of a few separate services that integrate to form a cluster. The
basic building blocks include

•	 The API server, for operator requests
•	 A scheduler, for placing tasks
•	 A controller manager, for tracking the state of the cluster
•	 The Kubelet, an agent that runs on all cluster nodes
•	 cAdvisor, for monitoring container metrics
•	 A proxy, for routing incoming requests to the appropriate container

The first three items on this list run on a set of masters (which can optionally serve
dual duty as nodes) for high availability. The Kubelet and cAdvisor processes run
on each node, handling requests from the controller manager and reporting sta-
tistics about the health of their tasks.

In Kubernetes, containers are deployed as a “pod” which contains one or more
containers. All containers in a pod are guaranteed to be co-located on the same
node. Pods are assigned a cluster-wide unique IP address, and they are labeled for
identification and placement purposes.

Pods are not meant to be long-lived. If a node dies, the controller schedules a re-
placement pod on a different node with a new IP address. Therefore, you cannot
use the address of a pod as a durable name.

Services are collections of related pods with an address that is guaranteed not to
change. If a pod within a service dies or fails a health check, the service removes
that pod from its rotation. You can also use the built-in DNS server to assign re-
solvable names to services.

Kubernetes has integrated support for service discovery, secret management, deploy-
ment, and pod autoscaling. It has pluggable networking options to enable container
network overlays. It can support stateful applications by migrating volumes among
nodes as needed. Its CLI tool, kubectl, is one of the most intuitive that we’ve ever
worked with. In short, it has more advanced features than we can possibly cover
in this short section.

Although Kubernetes has the most active and engaged community and the most
advanced features, those assets are accompanied by a steep learning curve. Recent
versions have improved the experience for first-time users, but a full-fledged, cus-
tomized Kubernetes deployment is not for the timid. Production k8s deployments
impose a substantial administrative and operational burden.

946	 Chapter 25	 Containers	

The Google Container Engine service is implemented with Kubernetes, and it of-
fers one of the best experiences for teams that want to run containerized workloads
without the operational overhead of cluster management.

Mesos and Marathon
Mesos is an entirely different breed. It was conceived at the University of Califor-
nia at Berkeley around 2009 as a generic cluster manager. It quickly made its way
to Twitter, where it now runs on thousands of nodes. Today, Mesos is a top-level
project from the Apache Foundation and boasts a large number of enterprise users.

The major conceptual entities in Mesos are masters, agents, and frameworks. A
master is a proxy between agents and frameworks. Masters relay offers of system
resources from agents to frameworks. If a framework has a task to run, it chooses
an offer and instructs the master to run the task. The master sends along the task
details to the agent.

Marathon is a Mesos framework that deploys and manages containers. It includes
a handsome user interface for managing applications and a simple, RESTful API.
To run an application, you write a request definition in JSON format and submit
it to Marathon through the API or the UI. Because it’s an external framework, the
deployment of Marathon is flexible. Marathon can run on the same node as the
master for convenience, or it can run externally.

Support for multiple, coexisting frameworks is Mesos’s biggest differentiator. Apache
Spark, the big-data processing tool, and Apache Cassandra, a NoSQL database,
both offer Mesos frameworks, thus allowing you to use Mesos agents as nodes in
a Spark or Cassandra cluster. Chronos is a framework for scheduled jobs, rather
like a version of cron that runs on a cluster instead of an individual machine. The
ability to run so many frameworks on the same set of nodes is a nice feature and
helps create a unified and centralized experience for administrators.

Unlike Kubernetes, Mesos does not come with batteries included. For example,
load balancing and traffic routing are pluggable options that depend on your pre-
ferred solution. Marathon includes a tool, the Marathon-lb, that implements this
service, or you can choose your own. We’ve had success using HashiCorp’s Consul
and HAProxy. Designing and implementing an exact solution is left as an exercise
for the administrator.

Like Kubernetes, Mesos requires some contemplation to understand and use. Me-
sos and most of its frameworks rely on Apache Zookeeper for cluster coordination.
Zookeeper is somewhat difficult to administer and is known for complex failure
cases. In addition, a high-availability Mesos cluster requires a minimum of three
nodes, which may be an onerous burden at some sites.

	 Container clustering and management	 947

Co
nt

ai
ne

rs

Docker Swarm
Not to be left behind, Docker offers Swarm, a container cluster manager built di-
rectly into Docker. The current incarnation of Swarm emerged in 2016 as an answer
to the growing popularity of Mesos, Kubernetes, and other cluster managers that
used Docker containers under the hood. Container orchestration is now a major
focus for Docker, Inc.

Swarm is easier to get started with than is Mesos or Kubernetes. Any node that runs
Docker can join the swarm as a worker node, and any worker node can also be a
manager. There is no need to run separate nodes as masters.7 Starting a swarm is as
simple as running docker swarm init. There are no additional processes to manage
and configure, and there is no state to track. It works out of the box.

You can use familiar docker commands to run services (as in Kubernetes, collec-
tions of containers) on the swarm. You declare the state you want to achieve (“three
containers running my web application”) and Swarm schedules the tasks on the
cluster. It automatically handles failure states and zero-downtime updates.

Swarm has a built-in load balancer that adjusts automatically as containers are added
or removed. The Swarm load balancer is not as full-featured as tools such as NGINX
or HAProxy, but on the other hand, it doesn’t require any administrative attention.

Swarm supplies a secure Docker experience by default. All connections between
nodes in a swarm are TLS-encrypted, and no configuration is required on the part
of the administrator. This is a major differentiator for Swarm when compared to
its competitors.

AWS EC2 Container Service
AWS offers ECS, a container management service designed for EC2 instances (AWS’s
native virtual servers). In a manner reminiscent of many Amazon services, AWS
launched ECS with minimal functionality but has steadily enhanced it over time.
ECS has matured into a fine choice for sites that are already invested in AWS and
want to stick to E-Z mode.

ECS is a “mostly managed” service. The cluster manager components are operated
by AWS. Users run EC2 instances that have Docker and the ECS agent installed. The
agent connects to the central ECS API and registers its resource availability. To run
a task on your ECS cluster, you submit a task definition in JSON format through
the API. ECS then schedules the task on one of your nodes.

Because the service is mostly managed, the barrier to entry is low. You can get
started with ECS in just a few minutes. The service scales well to at least hundreds
of nodes and thousands of concurrent tasks.

	 7.	 Strictly speaking this is true for Kubernetes and Mesos as well, but we’ve found it to be common prac-
tice to separate masters from agents in high-availability configurations.

948	 Chapter 25	 Containers	

ECS integrates with other AWS services. For example, load balancing among mul-
tiple tasks, along with the requisite service discovery, are handled by the Applica-
tion Load Balancer service. You can add resource capacity to your ECS cluster by
taking advantage of EC2 autoscaling. ECS also integrates with AWS’s Identity and
Access Manager service to grant permissions for your container tasks to interact
with other services.

One of the most polished parts of ECS is the included Docker image registry. You
can upload Docker images to the EC2 Container Registry, where they’re stored
and made available to any Docker client, whether it’s running on ECS or not. If
you’re running containers on AWS, use the container registry in the same region
as your instances. You’ll achieve far better reliability and performance than with
any other registry.

The ECS user interface, although functional, shares the limitations of other AWS
interfaces. The AWS CLI tool has complete support for the ECS API. For manage-
ment of applications on ECS, we recommend turning to third party, open source
tools such as Empire (github.com/remind101/empire) or Convox (convox.com)
for a more streamlined experience.

25.5	 Recommended reading
Docker, Inc. Official Docker Documentation. docs.docker.com. Docker has good
documentation. It’s comprehensive and usually up to date.

Matthias, Karl, and Sean Kane. Docker Up & Running. Sebastopol, CA: O’Reil-
ly Media, 2015. This book focuses on running Docker containers in production
environments.

Mouat, Adrian. Using Docker: Developing and Deploying software with Contain-
ers. Sebastopol, CA: O’Reilly Media, 2016. This book covers topics from basic to
advanced and includes plenty of examples.

Turnbull, James. The Docker Book. www.dockerbook.com.

The Container Solutions blog at container-solutions.com/blog includes technical
HOWTOs, best practices, and interviews with experts in the container space.

http://github.com/remind101/empire
http://convox.com
http://docs.docker.com
http://www.dockerbook.com
http://container-solutions.com/blog

Co
nt

in
uo

us

			 949

Until the past decade or so, updating software was a hair-pulling, time-consuming
exercise in frustration. Release processes typically involved ad hoc, home-grown
scripts that were invoked in enigmatic order and saddled with outdated and in-
complete documentation. Testing—if it existed at all—was performed by a quality
assurance team that was far removed from the development cycle and often became
a major obstacle to shipping code. Administrators, developers, and project manag-
ers would plan days-long marathons for the final stages of releasing updates to live
users. Service outages were often scheduled weeks in advance.

Given this unsavory context, it should come as no surprise that some very smart
people were working diligently to improve the situation. After all, where some see
only problems, others see opportunity.

At top of mind is Martin Fowler, an oracle of the software industry and chief sci-
entist of the influential development shop ThoughtWorks. In an insightful article
(goo.gl/Y2lisI), Fowler describes continuous integration as “a software development
practice where members of a team integrate their work frequently,” thus remov-
ing one of the major pain points of software work: the tiresome task of reconciling
code fragments that have diverged dramatically over a long period of independent

26 Continuous Integration
and Delivery

http://goo.gl/Y2lisI

950	 Chapter 26	 Continuous Integration and Delivery	

development. The practice of continuous integration is now ubiquitous among
software development teams.

Hot on the heels of this innovation came continuous delivery, which is similar in
concept but which targets a separate goal: reliably deploying updated software to live
systems. Continuous delivery embraces the release of small, incremental changes
to IT infrastructure. If something breaks (that is, if a “regression” is introduced), it
becomes straightforward to isolate and resolve the issue because the changes be-
tween versions are small. At the extreme end, some sites aim to deploy new code
to users multiple times per day. Bugs and security issues can be resolved in hours
rather than weeks.

In combination, continuous integration and continuous delivery (henceforth de-
noted CI/CD) encompass the tools and processes needed to facilitate frequent, in-
cremental software and configuration updates.

CI/CD is a pillar of the DevOps philosophy. It’s the glue that holds together devel-
opers and operations folks. It is as much a business asset as a technical innovation.
Once introduced, CI/CD becomes the bedrock of an IT organization because it
imposes logic and organization on release processes that were previously chaotic.

Sysadmins are central to the design, implementation, and ongoing maintenance of
CI/CD systems. Administrators install, configure, and operate the tools that make
CI/CD function. They are responsible for ensuring that software build processes
are fast and reliable.

Testing is an important element of CI/CD, and although administrators may not
write the tests (though they sometimes do!), they are often responsible for setting
up the infrastructure and the systems on which the tests are performed. Perhaps
most importantly, it is ultimately system administrators who are responsible for
deployments, the “delivery” component of CI/CD.

An effective CI/CD system is implemented not with a solitary tool but rather with a
collection of software that works in unison to form a cohesive environment. Myriad
open source and commercial tools are available to coordinate the various elements
of CI/CD. These coordination tools rely on other software packages to do the ac-
tual work (e.g., compiling code or setting up servers in a particular configuration).
Indeed, there are so many options that the initial approach to CI/CD can be over-
whelming. If nothing else, the recent proliferation of tools in this space is evidence
of CI/CD’s growing importance to the industry.

In this chapter we attempt to navigate the maze of CI/CD concepts, terminology,
and tools. We cover the basics of a CI/CD pipeline, the various types of testing and
their relevance to CI/CD, the practice of running multiple environments in paral-
lel, and some of the most popular open source tools. At the end of the chapter, we
dissect an example CI/CD pipeline that uses some of the most popular tools. When
you’re finished with this chapter, you should understand some of the principles and
techniques that go into creating a powerful, flexible CI/CD system.

See page 1106 for more
comments on DevOps.

	 CI/CD essentials	 951

Co
nt

in
uo

us

26.1	 CI/CD essentials
Many terms related to CI/CD sound similar and have overlapping meanings. So
let’s first take a closer look at the differences between continuous integration, de-
livery, and deployment:

•	 Continuous integration is the process of collaborating on a shared code
base, merging disparate code changes into a version control system, and
automatically creating and testing builds.

•	 Continuous delivery is the process of automatically deploying builds to
nonproduction environments after the continuous integration process
completes.

•	 Continuous deployment closes the loop by deploying to live systems that
serve real users without any operator intervention.

Continuous deployment without any human supervision can be intimidating, but
that’s precisely the point: the idea is to reduce the fear factor by deploying as often
as possible, eliminating more and more issues until the team has enough confidence
in the testing and tooling to enable automatic releases.

Continuous deployment need not be the ultimate goal of all sites. There may be
compliance or risk reasons to pause at any point in the pipeline. If that’s the case,
you can still benefit from making each stage of the process as simple as possible
for the human who pushes the final button. Every organization should choose its
own boundaries.

Principles and practices
Business agility is one of the key benefits of CI/CD. Continuous deployment facil-
itates the release of well-tested features to production in minutes or hours instead
of weeks or months. Because every change is built, tested, and deployed immedi-
ately, the delta between versions is much smaller. And that decreases the risk of
deployment and helps narrow the range of possible root causes if something goes
wrong. Rather than staging a small number of big-bang deployments per year, you
might find yourself releasing new code multiple times per week or even per day.

CI/CD stresses the release of more features, more often. This goal is achievable only
when developers write and commit code in smaller chunks. To realize continuous
integration, developers need to push code changes at least once per day after run-
ning tests locally.

For administrators, CI/CD processes greatly reduce the amount of time spent pre-
paring for and implementing releases. They also reduce the time spent debugging
problems when deployments inevitably fail. Few things are more satisfying than
watching a new feature release itself to production without any human intervention.

The next sections cover some basic rules of thumb to keep in mind as you develop
your CI/CD processes.

952	 Chapter 26	 Continuous Integration and Delivery	

Use revision control
All code should be tracked in a source control system. We recommend Git, but
there are lots of options. Most software development teams use source control as
a matter of course.

For sites that embrace the infrastructure-as-code concept (as we demonstrate in
the section CI/CD in practice starting on page 964), you can track infrastructure-​
related code alongside your applications. You can even store documentation and
configuration settings in source control.

Make sure version control is the single source of truth. Nothing can be managed
manually or off the record.

Build once, deploy often
A CI/CD pipeline begins with a build. The output of the build (the “artifact”) is
used from that point forward for testing and deployment. The only way to confirm
that a specific build is ready to go to production is to run all tests against that build.
Deploy the same artifact to at least one or two environments that match produc-
tion as closely as possible.

Automate end-to-end
Building, testing, and deploying code without manual intervention is the key to
reliable and reproducible updates. Even if you’re not planning to deploy code con-
tinuously to production, the final production deployment step should run fully
unattended after being triggered by a human.

Build every integration commit
An integration merges changes made by multiple developers or teams of developers.
The product is a composite code base that incorporates everyone’s updates.

An integration does not randomly snatch work in progress out of developers’ hands
and stick it in the mainline code base; that’s a recipe for disaster. Individual devel-
opers are responsible for managing their own development stream. When they’re
ready, they initiate an integration. Integrations occur as frequently as possible.

Integrations are performed through the source control system. The exact workflow
varies. Individual developers might be responsible for merging their work back to the
trunk, or a designated release overseer might integrate several developers or teams
at once. The merge process can be largely automated, but there’s always the poten-
tial for two sets of changes to conflict. That situation requires human intervention.

The idea behind continuous integration is that commits to the revision control sys-
tem’s integration branch automatically result in a build. The “integration branch”
part is important because source control serves several purposes. In addition to
being a vehicle for collaboration and integration, it’s also useful as a backup system,

	 CI/CD essentials	 953

Co
nt

in
uo

us

as a checkpoint for work in progress, and as a system that lets developers work on
several updates while keeping the changes related to those updates logically sepa-
rate. Therefore, only commits to the integration branch result in a build.

Frequent integrations make it easy to trace a broken build back to the exact lines of
code that caused the problem. The revision control system can then determine the
identity of the responsible developer. But note: a broken build should carry little or
no stigma. The goal is just to get the build running again. Encourage a blame-free
culture within your teams.

Share responsibility
When something goes wrong, the pipeline needs to be fixed. No new code can be
pushed until the previous problem has been resolved. It’s the equivalent of halting
the assembly line in a factory. It is the responsibility of the entire team to fix the
build before resuming development work.

CI/CD shouldn’t be a mysterious system that runs in the background and occa-
sionally sends email when something is broken. Every team member should have
access to the CI/CD interface to view dashboards and logs. Some sites create hu-
morous widgets such as RGB lighting fixtures that act as a visual indicator of the
pipeline’s current status.

Build fast, fix fast
CI/CD is designed to yield feedback as quickly as possible, ideally within minutes
after pushing code to source control. This rapid response guarantees that develop-
ers pay attention to the result. If the build fails, the developers will likely be able to
fix the problem quickly because the changes they just committed are fresh in their
minds. Slow build processes are counterproductive. Strive to eliminate redundant
and time-consuming steps. Ensure that your build system has enough agents, and
that the agents have sufficient system resources to build quickly.

Audit and verify
Part of the CI/CD system includes a detailed history of every software release, in-
cluding its progression from development to production. This auditability can be
useful to ensure that only authorized builds are deployed. The settings and event
timelines related to each environment can be irrefutably verified.

Environments
Applications do not run in isolation. They depend on external resources such as da-
tabases, caches, network filesystems, DNS records, remote HTTP APIs, other appli-
cations, and external network services. An execution environment includes all these
resources and anything else that the application needs so it can run. Building and
maintaining such environments is a target of substantial administrative attention.

954	 Chapter 26	 Continuous Integration and Delivery	

Most sites run at least three environments, listed here in ascending order of importance:

•	 Development (“dev” for short), for integrating updates from multiple de-
velopers, testing infrastructure changes, and checking for obvious failures.
Development is used mostly by the technical staff and not by business types
or end users. In the context of CI/CD, the development environment may
be created and reset multiple times per day.

•	 Staging (or “stage”), for manual and automated testing and for further
vetting of changes and software updates. Some organizations call this the

“test” environment. Testers, product owners, and other business stake-
holders use the staging environment to review new features and bug fixes.
Staging can also be used for penetration testing and other security checks.

•	 Production (“prod”), for implementing service for real users. The pro-
duction environment usually includes extensive measures to ensure high
performance and strong security. An outage in production is an all-hands-
on-deck emergency that must be resolved immediately.

A typical CI/CD system promotes software through each of these environments in
succession, filtering out errors and software defects along the way. You can deploy
to production with confidence because you know that changes have already been
tested in two other environments.

Environment parity is a subject of some complexity for administrators. The purpose
of the nonproduction or “lower” environments is to prepare and scrutinize changes
of all types before they are made in production. Substantive differences among en-
vironments can result in unforeseen incompatibilities that might ultimately cause
degraded performance, downtime, or even the destruction of data.

For example, imagine that the development and staging environments have under-
gone an operating system upgrade, but production still runs the older OS version.
It’s time for a software deployment. The new software is thoroughly tested in dev
and stage, and it seems to work fine. However, an unexpected incompatibility be-
comes evident during the production rollout because the older version of a certain
library is missing functionality used by the new code.

This scenario is quite common, and it’s one reason why administrators must be
vigilant about keeping environments in sync. The closer that lower environments
match production, the higher your chances of maintaining high availability and
delivering software successfully.

Running multiple environments at full capacity can be expensive and time-consuming.
Because production serves far more users than the lower environments, it’s usually
necessary to run a larger number of more expensive systems in that environment.
Production data sets tend to be larger, and the provisioned disk space and server
size are beefed up to compensate.

	 Pipelines	 955

Co
nt

in
uo

us

Even this type of difference among environments can cause unanticipated problems.
A load balancer misconfiguration that didn’t matter in dev or stage may reveal a
defect, or a database query that runs quickly in dev and stage might turn out to be
far slower when applied to production-scale data.

Matching production capacity in lower environments is a tricky problem. Strive to
have at least one lower environment that has redundancy in all the same places that
production does (e.g., multiple web servers, fully replicated databases, and match-
ing failover strategies for any clustered systems). It’s fine for the staging servers to
be smaller in size, although any tests you run to check performance will not reflect
production numbers.

For best results, data sets in lower environments should be similar in size and con-
tent to those of production. One strategy is to create nightly snapshots of all rele-
vant production data and copy it to the lower environment. For compliance and
good security hygiene, sensitive user data must be anonymized before it’s used this
way. For truly massive data sets that are not practical to copy, import a smaller but
still meaningful sample.

Despite your best efforts, lower environments will never be exactly like the produc-
tion environment. Some configuration settings (such as credentials, URLs, addresses,
and hostnames) will differ. Use configuration management to track these config-
uration items among environments. When the CI/CD system runs a deployment,
consult your source of truth to find the relevant configuration for that environment
and make sure that all environments are deployed in the same way.

Feature flags
A feature flag enables or disables an application feature depending on the value of
a configuration setting. Developers can build support for feature flags into their
software. You can use feature flags to enable certain features in specific environ-
ments. For example, you can enable a feature for the staging environment while
keeping it disabled in production until it’s fully tested and ready for the user base.

For instance, consider an e-commerce application that has a shopping cart. The
business wants to run a promotion that requires some changes to the code. The
development team can build the feature and release it to all three environments in
advance, but enable it only on dev and stage. When the business is ready to adver-
tise and activate the promotion, enabling the feature becomes a simple, low-risk
configuration change rather than a software release. If the feature has a bug, it’s easy
to disable it without updating the software.

26.2	 Pipelines
A CI/CD pipeline is a series of steps, called “stages,” that run in sequence. Each stage
is essentially a script that performs tasks specific to your software project.

956	 Chapter 26	 Continuous Integration and Delivery	

At the most basic level, a CI/CD pipeline

•	 Reliably builds and packages software
•	 Runs a series of automated tests to search for bugs and configuration errors
•	 Deploys code to one or more environments, culminating in production

Exhibit A illustrates the stages in a simple (yet mature) CI/CD pipeline.

Exhibit A	 A basic CI/CD pipeline

Deploy to
dev env

Run
Tests

Bad
build

Bad
build

Bad
build

Build Deploy to
stage env

Run
Tests

Deploy to
prod env

Run
Tests

Roll
back

Ongoing
Tests

Commit

FAIL FAIL FAIL FAIL

Maturity

The following sections break down the three stages in further detail.

The build process
A build is a snapshot of the current status of a software project. It’s typically the first
stage of any CI/CD pipeline, possibly after a code analysis stage that monitors code
quality and searches for security risks. The build step transforms the code into an
installable piece of software. Builds can be triggered by a commit to the integration
branch of the code repository or they can run on a regular schedule or on demand.

Every pipeline run starts with a build, but not every build reaches production. Once
a build passes testing, it becomes a “release candidate.” If the release candidate is
actually deployed to production, it becomes a “release.” If you do continuous deploy-
ment, every release candidate is also a release. Exhibit B illustrates these categories.

Exhibit B	 Builds, release candidates, and releases

Builds Release
candidates Releases

Every time
you change code All tests passed Deployed to production

	 Pipelines	 957

Co
nt

in
uo

us

The precise steps of the build process depend on the language and software. For a
program in C, C++, or Go, the build process is a compilation, often initiated by make,
that results in an executable binary. For languages that do not require compilation,
such as Python or Ruby, the build stage might involve packaging the project with
all relevant dependencies and assets, including libraries, images, templates, and
markup files. Some builds might involve only configuration changes.

The output of the build stage is a “build artifact.” The nature of that artifact depends
on the software and the configuration of the rest of the pipeline. Table 26.1 lists
some of the common types of artifacts. Whatever the format, the artifact is the ba-
sis for deployments throughout the rest of the pipeline.

Table 26.1	 Common types of build artifacts

Type What it’s for

.jar or .war file Java archive or Java web application archive
Static binary Statically compiled programs, commonly C or Go
.rpm or .deb file OS-native software packages for Red Hat or Debian
pip or gem package Packaged Python or Ruby applications
Container image Applications that run under Docker
Machine image Virtual servers, especially for public or private clouds
.exe file Windows executable

Build artifacts are saved to an artifact repository. The type of repository depends
on the type of artifact. At its simplest, a repository can be a directory on a remote
server that’s accessible through SFTP or NFS. It can also be a yum or APT reposi-
tory, a Docker image repository, or, in the cloud, an object store such as an AWS S3
bucket. The repository must be available to all the systems that need to download
and install the artifact during a deployment.

Testing
Each stage in a CI/CD pipeline runs tests to catch buggy code and bad builds so
that the code that makes it through to production is free of defects (or at least, as
free as possible). Testing is the linchpin of this process. It engenders trust that a
release is ready to deploy.

If a build fails any test, the remaining stages of the pipeline are pointless. The team
must determine why the build failed and address the underlying issue. Because builds
are created for every code push, it’s easy to isolate the problem to the latest commit.
The fewer lines of code changed between builds, the easier the problem’s isolation.

Failures do not always stem from software bugs. They can occur because of net-
work conditions or infrastructure errors that require administrative attention. If
the application depends on outside resources, such as third party APIs, there can be

958	 Chapter 26	 Continuous Integration and Delivery	

upstream failures in the external resource. Some tests can run in isolation, but other
tests require the same infrastructure and data that will be present in production.

Consider adding each of the following types of tests to your CI/CD pipeline:

•	 Static code analysis examines code for syntax errors, duplication, viola-
tions of coding guidelines, security problems, or excessive code complex-
ity. These checks are fast and do not involve executing the actual code.

•	 Unit tests are written by the same developers who write the application code.
They reflect the developer’s view of how the code is supposed to function.
The intent is to test the input and output of every method and function
(unit) in the code. “Code coverage” is a (sometimes misleading) metric
that describes what portion of the code is being unit-tested.1

•	 Integration tests take unit tests one step further by running the application
in its intended execution environment. Integration tests run the applica-
tion with its underlying frameworks and with external dependencies such
as outside APIs, databases, queues, and caches.

•	Acceptance tests simulate typical use. In contrast to unit tests, acceptance
tests reflect a user’s point of view. For web-based software, this stage might
include remote-controlling browser page loads through tools such as Se-
lenium. For mobile software, the build artifact might go to a device farm
that runs the app on many different mobile devices. Different browsers
and versions make acceptance tests challenging to create, but in the end,
these tests have meaningful results.

•	 Performance tests search for performance problems introduced by the
latest code. To identify bottlenecks, these so-called stress tests should
invoke the application within a perfect clone of your production envi-
ronment, with real traffic patterns. Tools such as JMeter or Gatling can
simulate thousands of concurrent users interacting with an application in
a programmed pattern. To gain the most from performance testing, en-
sure that monitoring and graphing instrumentation are in place. Those
tools clarify both the application’s typical performance and its behavior
under a new build.

•	 Infrastructure tests go hand-in-hand with programmatically provisioned
cloud infrastructure. If you create temporary cloud infrastructure as part
of your CI/CD pipeline, you can write test cases to verify the proper con-
figuration and operation of the infrastructure itself. Does the system run
through configuration management successfully? Are only the expected
daemons running? Serverspec (serverspec.org) is one interesting tool in
this space.

	 1.	 Sometimes the code that’s difficult to test is also the most likely to have defects. Your code may have
85% code coverage (which is quite high by industry standards), but if the most complex code isn’t
tested, bugs might be missed. Code coverage alone is not an adequate measure of code quality.

See Chapter 28 for
information about
monitoring and
graphing systems.

http://serverspec.org

	 Pipelines	 959

Co
nt

in
uo

us

Depending on the characteristics of your project, some tests are more important
than others. For example, software that implements a REST API has no need for
browser-based acceptance tests. Instead, you’ll likely focus on integration tests. On
the other hand, for shopping cart software, browser tests for all the important user
paths (catalog, product pages, cart, checkout) are mandatory. Consider the needs
of your project and implement testing accordingly.

These workflows don’t have to be linear. Actually, because one of the goals is to get
feedback as quickly as possible, it’s a good idea to run as much of the testing as pos-
sible in parallel. But keep in mind that some tests might depend on the results of
other tests; others might potentially interfere with each other. (Ideally, tests should
have no cross-dependencies.)

Avoid the temptation to ignore or overlook broken tests. It’s easy to get in the habit
of understanding the reason for a failure, considering it to be harmless or inappli-
cable, and suppressing the test. However, this thinking is dangerous and can lead
to a less reliable testing system. Keep in mind the golden rule of CI/CD: fixing a
broken pipeline is the top priority.

To reinforce this tenet, make it difficult to ignore failed tests. It should be a technical
requirement, enforced through the CI/CD software, that production deployments
cannot occur if there are any broken tests.

Deployment
Deployment is the act of installing software and preparing it for use within a server
environment. The specifics of how this is done depend on the technology stack. A
deployment system must understand how to retrieve the build artifact (e.g., from
a package repository or container image registry), how to install it on the server,
and what setup steps, if any, are necessary. A deployment concludes when a new
version of software is running and the old version has been disabled.

A deployment might be as simple as updating some HTML files on disk. No restart
or further configuration required! But for most cases, a deployment involves at least
installing a package and restarting an application. Complex, large-scale production
deployments might involve installing code on multiple systems while serving live
traffic, without pausing for a service outage.

System administrators play an important role in the deployment process. They are
usually responsible for creating deployment scripts, monitoring important appli-
cation health indicators during deployments, and ensuring that the infrastructure
and configuration needs of other team members are met.

The following list describes just a few of the possible ways to deploy software:

•	 Run a basic shell script that invokes ssh to log in to each system, down-
loads and installs the build artifact, and then restarts the application. These
types of scripts are usually home grown and do not scale to more than a
handful of systems.

960	 Chapter 26	 Continuous Integration and Delivery	

•	 Use a configuration management tool to orchestrate the installation pro-
cess across a managed set of systems. This strategy is more organized and
scalable than the use of shell scripts. Most configuration management
systems are not designed specifically to facilitate deployments, although
they can be used for this purpose.

•	 If the build artifact is a container image and the application runs on a con-
tainer management platform such as Kubernetes, Docker Swarm, or AWS
ECS, the deployment might be nothing more than a quick API call to the
container manager. The container service manages the rest of the deploy-
ment process on its own. See Containers and CI/CD starting on page 978.

•	 A few open source projects standardize and streamline deployment.
Capistrano (capistranorb.com) is a Ruby-based deployment tool that ex-
tends Ruby’s Rake system to run commands on remote systems. Fabric
(fabfile.org) is a similar tool written in Python. These tools, by developers
for developers, are essentially elaborate shell scripts.

•	 Software deployment is a well-explored problem for users of public clouds.
Most cloud ecosystems include both integrated and third party deploy-
ment services that can be used from a CI/CD pipeline. Some examples
include Google Deployment Manager, AWS CodeDeploy, and Heroku.

Tailor the deployment technique to your site’s technology stack and service needs. If
you have a simple environment with a few servers and a small handful of applications,
a configuration management tool might be appropriate. At sites with a large number
of servers spread among data centers, a specialized deployment tool is called for.

An “immutable” deployment codifies the principle that servers should never be
modified (or “mutated”) once they’ve been initialized. To deploy a new release, the
CI/CD tooling creates entirely new servers with the updated build artifact included
in the image. In this model, servers are considered disposable and temporary. This
strategy is predicated on a programmable infrastructure such as a public or private
cloud, where instances can be allocated through an API call. Some of the largest
users of the public cloud embrace immutable deployments.

In CI/CD in practice starting on page 964, we walk through a sample immutable
deployment that uses HashiCorp’s Terraform tool to create and update infrastructure.

Zero-downtime deployment techniques
At some sites, services must continue to run even while they are being upgraded or
redeployed, either because an outage poses unacceptable risk (health care, govern-
ment services) or because it might have substantial financial costs (high-volume
e-commerce or financial services). Updating live software without service inter-
ruptions is the Xanadu of software deployments, and it’s the source of much anx-
iety and yak-shaving.

http://capistranorb.com
http://fabfile.org

	 Jenkins: the open source automation server	 961

Co
nt

in
uo

us

One common way to achieve a zero-downtime release is a “blue/green” deployment.
The concept is straightforward: stage the new software on a standby system (or set
of systems), run tests to confirm its functionality, then switch traffic from the live
system to the standby once the tests are complete.

This strategy works particularly well when traffic is proxied through a load balanc-
er. The live systems handle all the user connections while the standby systems are
being prepared. When the time is right, the standby systems can be added to the
load balancer and the previously live systems removed. The deployment is com-
plete when all the old systems are out of the rotation and all the transactions they
were handling have concluded.

A “rolling” deployment updates existing systems in a stepwise fashion, modifying
software on one system at a time. Each system is removed from the load balancer,
updated, then added back to the rotation to accept user traffic. This type of deploy-
ment can cause problems if the application cannot tolerate two different versions
running simultaneously.

Both the blue/green and rolling deployment strategies can accommodate a “canary,”
akin to the hapless canary in a coal mine. You first allocate a small amount of traffic
to a single system (or small percentage of systems) that runs the new release. If the
new release has problems, you back it out and correct the problem, having impacted
only a handful of users. Of course, the canary systems need precise telemetry and
monitoring so that you can determine whether problems have been introduced.

26.3	 Jenkins: the open source automation server
Jenkins is an automation server written in Java. It’s by far the most popular soft-
ware used to implement CI/CD. With broad adoption and an extensive ecosystem
of plug-ins, Jenkins is well suited to a variety of use cases.

It’s easy to dabble with Jenkins by running it in a Docker container:

$ docker run -p 8080:8080 --name jenkins jenkinsci/jenkins

Once the container starts, you can access the Jenkins user interface in a web browser
on port 8080. You’ll find the initial administrator password buried in the container
output. In practice, you would need to change that password immediately!

A single-container configuration is fine for learning the ropes, but you’ll likely need
a more robust solution in production environments. The Jenkins download page
(jenkins.io/download) has installation instructions that we needn’t rehash here.
Refer to those docs for installation on Linux and FreeBSD. CloudBees, the maker
of Jenkins, also offers a high-availability version called Jenkins Enterprise.

Jenkins has plug-ins for every conceivable task. Use plug-ins to outsource builds
to different types of agents, send notifications, coordinate releases, and execute
scheduled jobs. Plug-ins integrate with open source tools and with all the major
cloud platforms and external SaaS providers. Plug-ins give Jenkins superpowers.

See page 684 for
more information
about load balancers.

http://jenkins.io/download

962	 Chapter 26	 Continuous Integration and Delivery	

Most Jenkins configuration is done through the web UI, and being merciful to your
attention span, we don’t attempt to cover the UI’s nooks and crannies. Instead, we
introduce the fundamentals of Jenkins along with some of its most important features.

Basic Jenkins concepts
At its core, Jenkins is a coordination server that links a series of tools into a chain—
or, to use CI/CD terminology, a pipeline. Jenkins is an organizer and facilitator; all
actual work depends on outside services such as source code repositories, compil-
ers, build tools, testing harnesses, and deployment systems.

A Jenkins job, or project, is a collection of linked stages. Creating a project is the first
order of business for a new installation. You can link the project’s steps together so
that they run in sequence or in parallel. You can even set up conditional steps that
do different things depending on the results of previous steps.

Every project should be connected to a source code repository. Jenkins has native
support for pretty much every version control system: Git, Subversion, Mercurial,
even ancient systems such as CVS. There are also integration plug-ins for higher-level
version control services such as GitHub, GitLab, and BitBucket. You’ll need to give
Jenkins the appropriate credentials to allow it to download code from your repository.

The “build context” is the current working directory on the Jenkins system that’s
executing a build. Source code is copied into the build context along with any sup-
porting files that are needed for the build.

Once you’ve wired up Jenkins to a version control repository, you can create a build
trigger. This is the signal for Jenkins to copy the current source code and start the
build process. Jenkins can poll the source repository for new commits and initiate
a build whenever it finds one. It can also start builds on a schedule or be triggered
by a web hook, a feature supported by GitHub.

After setting up the trigger, create the build steps, that is, the specific tasks that will
create a build. Steps can be code-base-specific, or they can be generic shell scripts.
For example, Java projects are usually built with a tool called Maven. A Jenkins
plug-in supports Maven directly, so you can simply add a Maven build step. For a
project written in C, the first build step might just be a shell script that runs make.

The remaining build steps depend on your goals for the project. The most common
builds include steps that initiate the testing tasks discussed in Testing starting on
page 957. You may need a step to create a custom build artifact such as a tarball, OS
package, or container image. You can also include steps that trigger administrator
notifications, take deployment-related actions, or coordinate with outside tooling.

For a CI/CD project, the build steps can address all the stages of a pipeline: build
the code, run tests, upload the artifact to a repository, and kick off a deployment.

	 Jenkins: the open source automation server	 963

Co
nt

in
uo

us

Each stage of the pipeline is a just a build step within the Jenkins project. The Jen-
kins interface presents an overview of the status of each step, so it’s easy to see at a
glance what’s happening in the pipeline.

Sites that have many applications should have separate Jenkins projects for each.
Each project will have a distinct code repository and build steps. The Jenkins sys-
tem needs all the tools and dependencies to run a build for any of its projects. For
example, if you have configured both a Java project and a C project, your Jenkins
system must have both Maven and make installed.

Projects can depend on other projects. Use this to your advantage by structuring
projects as generic, inheritable templates. For example, if you have a variety of ap-
plications that are built differently but deployed in the same way (e.g., as containers
running on a server cluster), you can create a generic “deploy” project that manag-
es the common deployment stage. Individual application projects can execute the
deploy project, thereby eliminating a now-redundant build step.

Distributed builds
At sites that support dozens of applications, each with its own dependencies and
build steps, it’s easy to inadvertently create dependency conflicts and bottlenecks
because too many pipelines are running at once. To compensate, Jenkins lets you
graduate to a distributed build architecture. This mode of operation uses a “build
master,” a central system that keeps track of all the projects and their current state,
and “build agents,” which run the actual build steps for a project. If you use Jenkins
a lot, you’ll move to this configuration pretty quickly.

Build agents run on hosts that are separate from the build master. The Jenkins mas-
ter logs in to the slaves (usually through SSH) to start the agent process and to add
labels that document the slaves’ capabilities. For example, you might distinguish
your Java-capable agents from your C-capable agents by applying appropriate labels.

For best results, run agents in containers, remote VMs, or ephemeral cloud instances
that scale out and back on demand. If you have a container cluster, you can use Jen-
kins plug-ins to run agents in the cluster through a container management system.

Pipeline as code
Thus far, we’ve described the process of setting up Jenkins projects by stringing
together individual build steps in the web UI. This is the quickest way to get start-
ed with Jenkins, but from an infrastructure perspective it’s also a bit opaque. The

“code”—in this context, the contents of each build step—is managed by Jenkins. You
can’t check graphical build steps into a code repository, and if you lose the Jenkins
server, there’s no easy way to replace it; you’ll need to restore your projects from
a recent backup.

964	 Chapter 26	 Continuous Integration and Delivery	

Jenkins version 2 introduced a major new feature, called the Pipeline, that affords
first-class support for CI/CD pipelines. A Jenkins pipeline codifies the steps of a
project in a declarative, domain-specific language that’s based on the Groovy pro-
gramming language. You can commit the Jenkins pipeline code, called a Jenkinsfile,
alongside the code that’s associated with the pipeline.

The following Jenkinsfile demonstrates a basic build/test/deploy cycle:

pipeline {
 agent any
 stages {
 stage('Build') {
 steps {
 sh 'make'
 }
 }
 stage('Test') {
 steps {
 sh 'make test'
 }
 }
 stage('Deploy') {
 steps {
 sh 'deploy.sh'
 }
 }
 }
}

The agent any notation instructs Jenkins to prepare a workspace for this pipeline
on any available build agent.2 The Build, Test, and Deploy stages parallel the con-
ceptual stages of a CI/CD pipeline. In our example, each stage has a single step that
invokes a shell (sh) to execute a command.

The Deploy stage runs a custom script, deploy.sh, that handles the entire deploy-
ment, including copying the build artifact (generated by the Build stage) to a set of
servers and restarting server processes. In practice, deployment would usually be
divided into multiple stages to afford better visibility and control over the full process.

26.4	 CI/CD in practice
We now turn to a contrived example to illustrate the concepts presented so far. We’ve
concocted a simple application, UlsahGo, that’s a lot more basic than anything you
might need to manage in the real world. It’s entirely self-contained and has no de-
pendencies on other applications.

	 2.	 A workspace is the same as a build context: a location on the agent’s local disk that contains all the
files needed by the build, including the source code and dependencies. Every build has a private
workspace.

	 CI/CD in practice	 965

Co
nt

in
uo

us

Our example includes the following elements:

•	 The UlsahGo web application, with just one small feature
•	 Unit tests for the application
•	 A virtual machine image for DigitalOcean, which contains the application
•	 A single-server development environment, created on demand
•	 A load-balanced, multiserver staging environment, created on demand
•	 A CI/CD pipeline that ties all these parts together

We use several popular tools and services in this example:

•	 GitHub as the code repository
•	 DigitalOcean virtual machines and load balancers
•	 HashiCorp’s Packer, for provisioning the DigitalOcean image
•	 HashiCorp’s Terraform, to create deployment environments
•	 Jenkins, to manage the CI/CD pipeline

Your applications might use a different technology stack, but the general concepts
are similar, regardless of the tooling.

Exhibit C depicts the first several stages of the example pipeline. The diagram
shows the pipeline polling GitHub for new commits to the UlsahGo project. When
a commit is found, Jenkins runs the unit test suite. If the tests pass, Jenkins builds
the binary. If the binary builds successfully, the pipeline continues to create the de-
ployment artifact, a DigitalOcean machine image that includes the binary. If any of
the stages fail, the pipeline reports an error.

Exhibit C	 Demonstration pipeline (part one)

Error

Build
UlsahGo

binary

Build
DigitalOcean

image

Unit
tests

Commit
polling

Build step fails

Unit tests fail Image build fails

Jenkins Pipeline

Found
commit

Unit
tests
pass

Build
succeeds

UlsahGo GitHub
repository

Continue to
deployment

stages

We describe the deployment stages in detail later. But first we should review these
initial stages.

966	 Chapter 26	 Continuous Integration and Delivery	

UlsahGo, a trivial web application
Our example application is a web service with a single feature. It returns, as JSON,
the authors associated with a specified edition of this book. For example, the fol-
lowing query shows the authors for this edition:

$ curl ulsahgo.admin.com/?edition=5
{
 "authors": [
 "Evi",
 "Garth",
 "Trent",
 "Ben",
 "Dan"
],
 "number": 5
}

We do some sanity checking to make sure users aren’t getting too carried away, for
example, by requesting implausible editions:

$ curl -vs ulsahgo.admin.com/?edition=6
< HTTP/1.1 404 Not Found
< Content-Type: application/json
{
 "error": "6th edition is invalid."
}

Our application also has a health-check endpoint. Health checks are an easy way
for monitoring systems to ask the application, “Hey, are you working OK?”

$ curl ulsahgo.admin.com/healthy
{
 "healthy": "true"
}

Developers typically work closely with administrators to create the build and test
stages of a CI/CD pipeline. In this case, since the application is written in Go, we
can use the standard Go tools (go build and go test) in our pipeline.

Unit testing UlsahGo
Unit tests are the first test suite to run because they operate at the source code level.
Unit tests involve testing the application’s functionality at the finest possible gran-
ularity: its functions and methods. Most languages have testing frameworks that
offer native support for unit tests.

	 CI/CD in practice	 967

Co
nt

in
uo

us

Let’s examine one unit test for UlsahGo. Consider the following function:

func ordinal(n int) string {
 suffix := "th"
 switch n {
 case 1:
 suffix = "st"
 case 2:
 suffix = "nd"
 case 3:
 suffix = "rd"
 }
 return strconv.Itoa(n) + suffix
}

The function takes an integer as input and determines the corresponding ordinal
expression. For example, when passed a 1, the function returns “1st.” UlsahGo uses
this function to format the text in the error message for invalid editions.

Unit tests try to prove that given some input, the function returns the expected
output. Here’s a unit test that exercises this function:

func TestOrdinal(t *testing.T) {
 ord := ordinal(1)
 exp := "1st"
 if ord != exp {
 t.Error("expected %s, got %s", exp, ord)
 }

 ord = ordinal(10)
 exp = "10th"
 if ord != exp {
 t.Error("expected %s, got %s", exp, ord)
 }
}

This unit test runs the function on two values, 1 and 10, and confirms that the ac-
tual response matches the expectation.3 We can run the tests through Go’s built-in
testing framework:

$ go test
PASS
ok 	github.com/bwhaley/ulsahgo	 0.006s

If some part of the application changes in the future—for example, if updates are
made to the ordinal() function—the tests report any divergence from the expected
output. Developers are responsible for updating unit tests as they adjust the code.
Experienced developers by design write code that is easy to test. They aim to have
complete coverage of each method and function.

	 3.	 The ordinal() function implements three special cases and a general case. A full set of unit tests
would exercise each of these possible paths through the code.

http://github.com/bwhaley/ulsahgo

968	 Chapter 26	 Continuous Integration and Delivery	

Taking first steps with the Jenkins Pipeline
With the code ready to ship and the unit tests in place, the first step in our CI/CD
journey is to configure the project in Jenkins. The GUI interface walks us through
the process. Here are our selections:

•	 Our new project is a Pipeline project, defined by code as opposed to a
traditional “freestyle” project with build steps mostly defined through
user interface elements.

•	 We want to track our pipeline alongside our source code repository in
a Jenkinsfile, so we choose “Pipeline script from SCM” for the Pipeline
definition.

•	 We trigger the build by polling GitHub for commits. We add credentials
so that Jenkins can access the UlsahGo repository and configure Jenkins
to poll GitHub for changes every five minutes.

The initial setup takes just a few moments. In real life, we would use a GitHub web
hook to notify Jenkins that a new commit was available, thus avoiding polling and
sparing GitHub from our unnecessary calls to their API.

With this setup, Jenkins executes the pipeline described by the Jenkinsfile in the
repository whenever a new commit is pushed to GitHub.

Consider how your repositories are organized. In this project we chose to combine
CI/CD and application code in the same repository, with all CI/CD-related files be-
ing kept in the pipeline subdirectory. The UlsahGo repository is laid out as follows:

$ tree ulsahgo
ulsahgo
├─ pipeline
│ ├─ Jenkinsfile
│ ├─ packer
│ │ ├─ provisioner.sh
│ │ ├─ ulsahgo.json
│ │ └─ ulsahgo.service
│ ├─ production
│ │ ├─ tf_prod.sh
│ │ └─ ulsahgo.tf
│ └─ testing
│ ├─ tf_testing.sh
│ └─ ulsahgo.tf
├─ ulsahgo.go
└─ ulsahgo_test.go

An integrated structure works well for a small project like this one. Jenkins, Packer,
Terraform, and other tools can look in the pipeline subdirectory for their configu-
ration files. Modifying the deployment pipeline is a simple matter of updating the
repository. For more complex environments where multiple projects share a com-
mon infrastructure, it makes sense to have a dedicated infrastructure repository.

	 CI/CD in practice	 969

Co
nt

in
uo

us

With the project in place, we can commit our first Jenkinsfile. The first step in any
pipeline is to check out the source code. Here’s a complete Jenkinsfile pipeline
script that does just that:

pipeline {
 agent any
 stages {
 stage('Checkout') {
 steps {
 checkout scm
 }
 }
 }
}

The checkout scm line instructs Jenkins to check out the code from “software con-
figuration management,” a generic industry term for source control.

With Jenkins polling GitHub and the checkout stage complete, we can move on to
setting up the test and build stages. Our Go project has no external dependencies.
The only requirement for building and testing our code is the go binary. We have
already installed go on our Jenkins system (with apt-get -y install golang-go) so
we need only add the test and build stages to the Jenkinsfile:

stage('Unit tests') {
 steps {
 sh 'go test'
 }
}
stage('Build') {
 steps {
 sh 'go build'
 }
}

After we commit the changes, Jenkins discovers the new commit and executes the
pipeline. Jenkins emits friendly log output indicating that it has done so:

Mar 30, 2017 4:35:00 PM hudson.triggers.SCMTrigger$Runner run
INFO: SCM changes detected in UlsahGo. Triggering #4
Mar 30, 2017 4:35:11 PM org.jenkinsci.plugins.workflow.job.WorkflowRun

finish
INFO: UlsahGo #4 completed: SUCCESS

The Jenkins GUI uses a weather metaphor to indicate the health of recent builds. A
sun icon represents a project that is building successfully, and a stormy cloud icon
represents failures. You can debug build failures by inspecting the console output,
which is found under the build details. It shows the STDOUT printed by any part
of the build.

970	 Chapter 26	 Continuous Integration and Delivery	

Here’s a snippet from the go test and go build steps of our pipeline:

[Pipeline] stage
[Pipeline] { (Unit Tests)
[Pipeline] sh
[UlsahGo] Running shell script
+ go test
PASS
ok 	_/var/jenkins_home/workspace/UlsahGo	 0.006s
[Pipeline] }
[Pipeline] // stage
[Pipeline] stage
[Pipeline] { (Build)
[Pipeline] sh
[UlsahGo] Running shell script
+ go build
[Pipeline] }
[Pipeline] // stage
[Pipeline] }
[Pipeline] // node
[Pipeline] End of Pipeline
Finished: SUCCESS

You can normally pinpoint the cause of a failed build by reviewing the log. Look
for error messages that identify the failed step. You can also add your own log mes-
sages to supply clues about the state of the system, such as the values of variables
or the contents of a script at a given point in the execution. Writing output for the
purpose of debugging is a time-honored programming tradition.

The output of our build is a single binary file, ulsahgo, which contains our entire
application. (This, incidentally, is one of the primary benefits of Go programs and
one of the reasons Go is popular with sysadmins: it’s easy to create static binaries
that run on multiple architectures and have no external dependencies. Installing a
Go application is often as simple as copying it to the system.)

Building a DigitalOcean image
With ulsahgo ready to ship, we next build a virtual machine image for the Digita-
lOcean cloud. We start with a vanilla Ubuntu 16.04 image, install the latest updates,
and then install ulsahgo. The resulting image becomes the deployment artifact for
the remaining stages of the pipeline.

If you’re unfamiliar with the tool packer, which creates virtual machine images,
refer to the section Packer on page 911 before continuing.

packer reads its image configuration from a template that has two primary sections:
builders, which interact with remote APIs to create machines and images, and op-
tional provisioners, which run custom configuration steps.

	 CI/CD in practice	 971

Co
nt

in
uo

us

The template for our UlsahGo image has only one builder:

"builders": [{
 "type": "digitalocean",
 "api_token": "rj8FsrMI17vqTlB8qqBn9f7xQedJkkZJ7cqJcB1O5nmO6ihz",
 "region": "sfo2",
 "size": "512mb",
 "image": "ubuntu-16-04-x64",
 "snapshot_name": "ulsahgo-latest",
 "ssh_username": "root"
}]

The builder tells packer which platform to build the image on and how to authen-
ticate to the API, among other provider-specific details.

Three provisioning steps follow:

"provisioners": [
 {
 "type": "file",
 "source": "ulsahgo",
 "destination": "/tmp/ulsahgo"
 },{
 "type": "file",
 "source": "pipeline/packer/ulsahgo.service",
 "destination": "/etc/systemd/system/ulsahgo.service"
 },{
 "type": "shell",
 "script": "pipeline/packer/provisioner.sh"
 }
]

The first two provisioning steps add files to the image. The first file is the application
itself, ulsahgo, which is uploaded to /tmp for later use. The second is a systemd
drop-in unit file that manages the service.

The last provisioner executes a custom shell script on the remote system. The script,
provisioner.sh, updates the system and then sets up the application:

#!/usr/bin/env bash
app=ulsahgo

Update the OS and add a user
apt-get update && apt-get -y upgrade
/usr/sbin/useradd -s /usr/sbin/nologin $app

Set up the working directory and app
mkdir /opt/$app && chown $app /opt/$app
cp /tmp/$app /opt/$app/$app
chown $app /opt/$app/$app && chmod 700 /opt/$app/$app

Enable the systemd unit
systemctl enable $app

See page 45 for more
information about
systemd unit files.

972	 Chapter 26	 Continuous Integration and Delivery	

In addition to shell scripts, packer lets you use all the popular configuration man-
agement tools as provisioning steps. Call out to Puppet, Chef, Ansible, or Salt to
provision your images in a more structured and scalable manner.

Finally, we can add an image-building stage to our Jenkinsfile:

stage('Build image') {
 steps {
 sh 'packer build pipeline/packer/ulsahgo.json > packer.txt'
 sh 'grep ID: packer.txt | grep -E -o \'[0-9]{8}\' > do_image.txt'
 }
}

The first step invokes packer and saves the output to packer.txt in the build’s work-
ing directory. The tail end of that output includes an ID for the new image:

==> digitalocean: Gracefully shutting down droplet...
==> digitalocean: Creating snapshot: ulsahgo-latest
==> digitalocean: Waiting for snapshot to complete...
==> digitalocean: Destroying droplet...
==> digitalocean: Deleting temporary ssh key...
Build 'digitalocean' finished.
==> Builds finished. The artifacts of successful builds are:
--> digitalocean: A snapshot was created: (ID: 23838540)

The second step greps the ID from packer.txt and saves it to a new file in the build
context. Because the image is the deployment artifact, we will need to refer to its
ID from later stages of the pipeline.

Provisioning a single system for testing
At this point we have a process for continuously running unit tests, building the
application, and creating a virtual machine image as a build artifact. The remain-
ing build stages focus on deploying the artifact and testing it in the wild. Exhibit D
picks up where Exhibit C on page 965 leaves off.

Exhibit D	 Demonstration pipeline (part two)

Error

Create single
DigitalOcean

droplet

Run tests
against
droplet

Create
load balanced
environment

Run tests
against load

balancer

Con�guration fails

Droplet
creation

fails
Tests

fail
Tests

fail

Jenkins Pipeline

DO
image
ready

	 CI/CD in practice	 973

Co
nt

in
uo

us

We’ve chosen to use terraform, another gem from HashiCorp, to create and man-
age the UlsahGo infrastructure. terraform reads its configuration from “plans,”
JSON-like configuration files that describe a desired infrastructure configuration.
It then creates the cloud resources described in the plan by making an appropri-
ate series of API calls. terraform supports dozens of cloud providers and a wide
variety of services.

The following terraform configuration, ulsahgo.tf, requisitions a single Digita-
lOcean droplet running the image we created in the previous stage of the pipeline:

variable "do_token" {}
variable "ssh_fingerprint" {}
variable "do_image" {}

provider "digitalocean" {
 token = "${var.do_token}"
}

resource "digitalocean_droplet" "ulsahgo-latest" {
 image = "${var.do_image}"
 name = "ulsahgo-latest"
 region = "sfo2"
 size = "512mb"
 ssh_keys = ["${var.ssh_fingerprint}"]
}

Most of this is self-explanatory: use DigitalOcean as the provider, and authenticate
with the provided token. Create the droplet in the sfo2 region from the specified
image ID.

In the Packer template on page 971, we directly embedded parameters such as the
API token in the builder configuration. One (big!) problem with that approach is
that the API key is saved in the source code repository even though it’s supposedly
secret. The key gives access to the cloud provider’s API and hence would be danger-
ous in the wrong hands. Keeping secrets in revision control is a security antipattern
for reasons we describe in more detail on page 239.

 In this example, we instead read the parameters as variables. The three variables are

•	 The DigitalOcean API token

•	 The fingerprint of an SSH key that will be permitted to access the droplet

•	 The ID of the image to use for the new system, which we captured during
the previous stage of the pipeline.

Jenkins can store secrets such as the API token in its “credential store,” an encrypt-
ed area that’s intended for exactly this kind of sensitive data. The pipeline can read
values from the credential store and save them as environment variables. The val-
ues then become accessible throughout the pipeline without being saved in the
version control system.

974	 Chapter 26	 Continuous Integration and Delivery	

Here’s how we set this up in the Jenkinsfile:

pipeline {
 environment {
 DO_TOKEN = credentials('do-token')
 SSH_FINGERPRINT = credentials('ssh-fingerprint')
 }
...

Recall that we saved the ID of the DigitalOcean machine image to a file within the
build area, do_image.txt. We need that ID in our new pipeline stage, which cre-
ates the actual DigitalOcean droplet. The code for the new stage just runs a script
from the project repository:

stage('Create droplet') {
 steps {
 sh 'bash pipeline/testing/tf_testing.sh'
 }
}

It’s easier and more maintainable to separate the code of complex scripts from the
rest of the pipeline, as we’ve done here. tf_testing.sh contains the following lines:

cp do_image.txt pipeline/testing
cd pipeline/testing
terraform apply \
 -var do_image="$(<do_image.txt)" \
 -var do_token="${DO_TOKEN}" \
 -var ssh_fingerprint="${SSH_FINGERPRINT}"
terraform show terraform.tfstate \
 | grep ipv4_address | awk "{print $3}" > ../../do_ip.txt

This script copies the saved image ID to a temporary directory, pipeline/testing,
then runs terraform from that directory. terraform looks for files in the current
directory that have .tf extensions, so we don’t have to explicitly name the plan file.
(It’s the same ulsahgo.tf file that we looked at on page 973.)

A few explanations:

•	 The DO_TOKEN and SSH_FINGERPRINT environment variables are
available to any shell commands in the pipeline. The environment clause
shown above can appear either at the level of the overall pipeline or within
a particular stage, depending on the scope you want.

•	 $(<do_image.txt) reads the contents of the saved DigitalOcean image
ID from the text file saved in the previous stage.

•	 The final line of the tf_testing.sh script inspects the terraform-created
droplet, obtains its IP address, and saves the address to a text file for use
in the next stage. The terraform.tfstate file is terraform’s snapshot of the
system state. It’s how terraform keeps track of resources.

	 CI/CD in practice	 975

Co
nt

in
uo

us

Like packer, terraform sends useful output to the Jenkins console output page.
Here are the relevant bits from the terraform apply command:

[Pipeline] { (Create droplet)
[Pipeline] sh
[UlsahGo] Running shell script
digitalocean_droplet.ulsahgo-latest: Creating...
 disk: "" => "<computed>"
 image: "" => "23888047"
 ipv4_address: "" => "<computed>"
 ipv4_address_private: "" => "<computed>"
 name: "" => "ulsahgo-latest"
 region: "" => "sfo2"
 resize_disk: "" => "true"
 size: "" => "512mb"
 ssh_keys.#: "" => "1"
 ssh_keys.0: "" => "****"
 status: "" => "<computed>"
digitalocean_droplet.ulsahgo-latest: Still creating... (10s elapsed)
digitalocean_droplet.ulsahgo-latest: Still creating... (20s elapsed)
digitalocean_droplet.ulsahgo-latest: Still creating... (30s elapsed)
digitalocean_droplet.ulsahgo-latest: Creation complete (ID: 44486631)
Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

When this stage completes, the droplet is up and running with UlsahGo.

Testing the droplet
We have some confidence that the code is functional because it passed the unit
testing step. However, we also need to make sure that it runs successfully as part
of a DigitalOcean droplet. Testing at this level is considered a form of integration
test. We want the integration tests to run each time a new image is created, so we
add a new stage to the Jenkinsfile:

stage('Test and destroy the droplet') {
 steps {
 sh '''#!/bin/bash -l
 curl -D - -v \$(<do_ip.txt):8000/?edition=5 | grep "HTTP/1.1 200"
 curl -D - -v \$(<do_ip.txt):8000/?edition=6 | grep "HTTP/1.1 404"
 terraform destroy -force
 '''
 }
}

Sometimes a blunt, heavy object is the right tool for the job. This pair of curl com-
mands queries ulsahgo on the remote droplet’s port 8000, where ulsahgo runs
by default. We check that a query for the fifth edition returns an HTTP code 200
(success) and that a query for the sixth edition returns an HTTP 404 (failure). We
know to expect these specific status codes only because of our familiarity with the
application.

976	 Chapter 26	 Continuous Integration and Delivery	

At the conclusion of the tests, we destroy the droplet because it’s no longer needed.
The droplet is created, tested, and destroyed each time the pipeline runs.

Deploying UlsahGo to a pair of droplets and a load balancer
The final pipeline task is to deploy to our (mock) production environment, which
consists of two DigitalOcean droplets and a load balancer. Once again, Terraform
is up to the task.

We can reuse some of the configuration from the single-droplet terraform plan
file. We still need the same variables and the droplet resource. This time, we add a
second droplet resource:

resource "digitalocean_droplet" "ulsahgo-b" {
 name = "ulsahgo-b"
 size = "512mb"
 image = "${var.do_image}"
 ssh_keys = ["${var.ssh_fingerprint}"]
 region = "sfo2"
}

We also add a load balancer resource:

resource "digitalocean_loadbalancer" "public"
{
 name = "ulsahgo-lb"
 region = "sfo2"

 forwarding_rule {
 entry_port = 80
 entry_protocol = "http"
 target_port = 8000
 target_protocol = "http"
 }

 healthcheck {
 port = 8000
 protocol = "http"
 path = "/healthy"
 }

 droplet_ids = [
 "${digitalocean_droplet.ulsahgo-a.id}",
 "${digitalocean_droplet.ulsahgo-b.id}"
]
}

The load balancer listens on port 80 and forwards requests to each of the droplets on
port 8000, where ulsahgo is listening. We tell the load balancer to use the /healthy
endpoint to confirm that each copy of the service is running. The load balancer adds
a droplet to the rotation if it receives a 200 status code when it queries this endpoint.

	 CI/CD in practice	 977

Co
nt

in
uo

us

Now we can add the production configuration as a new stage in the pipeline:

stage('Create LB') {
 steps {
 sh 'bash pipeline/production/tf_prod.sh'
 }
}

The load balancer stage is more or less identical to the single instance stage. Even
the external script is pretty much the same, so we omit its contents here. We could
easily refactor these scripts so that a single version could handle both environments,
but for now, we’ve kept the scripts separate.

We can add a testing stage as well, this time running against the load balancer’s IP
address:

stage('Test load balancer') {
 steps {
 sh '''#!/bin/bash -l
 curl -D - -v -s \$(<do_lb_ip.txt)/?edition=5 | grep "HTTP/1.1 200"
 curl -D - -v -s \$(<do_lb_ip.txt)/?edition=6 | grep "HTTP/1.1 404"
 '''
 }
}

The curl commands are similar to the previous set, but they target port 80, where
the load balancer listens.

Concluding the demonstration pipeline
This demonstration CI/CD implementation captures several of the key elements
of a real-world pipeline:

•	 The first two stages (unit testing and building) demonstrate continuous
integration. Each time a developer commits code, Jenkins runs unit tests
and tries to build the project.

•	 The third stage (creating a DigitalOcean image as a build artifact) is the
beginning of continuous delivery. We can use the same image when de-
ploying to each environment.

•	 Deployment to a single droplet is considered a “development” or “testing”
environment.

•	 The final stage deploys ulsahgo to a high-availability, production-like en-
vironment, thereby closing the loop on a continuous deployment pipeline.

•	 If any stage in the pipeline fails, the subsequent stages are skipped. In that
case, console output is available to help debug the problem.

978	 Chapter 26	 Continuous Integration and Delivery	

This pipeline relies on open source tools throughout. All the deployment code is
captured in just a few text files that are kept in the same repository as the applica-
tion’s source code.

Astute readers will think of a host of improvements that could be made to these
steps. To name just a few:

•	 A blue/green deployment to ensure no downtime in the production stage
•	 Status notifications to email or chat rooms for each stage
•	 Hooks to help monitoring systems note that a new deployment has occurred
•	 A better method of propagating data, such as the image ID, between stages

Continuous improvement is integral to CI/CD (and to system administration in
general). Over time, a chain of incremental improvements results in a highly effi-
cient and automated software delivery system.

26.5	 Containers and CI/CD
Most software relies on outside dependencies such as third party libraries, a partic-
ular filesystem layout, the availability of certain environment variables, and other
localizations. Conflicts among required dependencies often make it hard to run
multiple applications on a single virtual machine.

To further complicate matters, building an application requires resources different
from those running it. For example, the build process might require a compiler and
a test suite, but these extras are not needed at run time.

Containers offer an elegant solution to these problems. From an operations view-
point, the environment needs only the capability to run containers. You can acti-
vate any given container on any container-compatible system without further con-
figuration effort because all dependencies and localizations for an app are housed
within its container. Multiple containers can run on the same system simultane-
ously without conflict.

You can use containers to simplify your CI/CD environment in several ways:

•	 By running the CI/CD system itself within a container
•	 By building applications inside containers
•	 By using container images as build artifacts for deployment

The first point is rather obvious: you can run your CI/CD software (including both
the master and any agents) in containers, thereby avoiding the overhead of having
to dedicate systems to the CI/CD infrastructure.

The other two scenarios require a bit more explication. We look at them in more
detail in the next sections.

See Chapter 25 for
more information
about containers.

	 Containers and CI/CD	 979

Co
nt

in
uo

us

Containers as a build environment
The exact environment needed to build an application is project-specific and some-
times quite complex. Rather than installing all the necessary tools, build software,
and dependencies directly on your CI/CD agent systems, you can build your soft-
ware within containers and leave the CI/CD agents in a clean and generic state. The
build process then becomes portable and independent of the specific CI/CD agent.

Consider a typical application that depends on a PostgreSQL database and a Redis
key/value store. To build and test the application in a traditional setting, you’d need
separate servers for each component: the application itself, the Redis daemon, and
PostgreSQL. In a pinch, you might run all these components on one system, but
you probably wouldn’t use that same server to build and test another service that
had different dependencies.

Instead, you can use short-lived containers for each component. One container can
build and run the application. It can connect to separate containers (on the same
host or a different host) for PostgreSQL and Redis. Once the build process is com-
plete, the containers can be stopped and discarded. You can use the same CI/CD
agent to build, with no risk of conflicts, applications that have other dependencies.

The container image used to build software should be distinct from the container
image that runs it. The build image is normally larger than the run-time image be-
cause it includes extra components such as compilers and testing tools.

Most current CI/CD tools include native support for containers. Jenkins has a Docker
plug-in that integrates nicely with the pipeline. Also check out Drone (try.drone.io),
a CI/CD platform designed around containers.

Container images as build artifacts
The product of a build can be a container image deployable through a contain-
er orchestration system. Containers are lightweight and highly portable. Moving
container images among systems by way of an image registry is easy and fast. Any
CI/CD tool can adopt the strategy of producing containers.

The basic workflow becomes:

1.	 Build your application inside a build-specific container.
2.	 Create a container image that includes the application and its dependencies.
3.	 Push the image to a registry.
4.	 Deploy that image to a container-ready execution environment.

It’s generally best to use a container management platform such as Docker Swarm,
Mesos/Marathon, Kubernetes, or AWS EC2 Container Service to deploy images into
production. Your pipeline’s deployment stage can call the appropriate APIs and let
the platform handle the specifics. Exhibit E on the next page illustrates the procedure.

http://try.drone.io

980	 Chapter 26	 Continuous Integration and Delivery	

Exhibit E	 Container-based deployment process

Build
container

image
Push

to registry
Trigger

deployment
Master

Node

Node

Node

CI/CD server Kubernetes

We’ve found containers to be an excellent match for mature CI/CD pipelines. Their
extremely fast cycle time makes it easy both to deploy new code and to revert to a
previous version in the event of a problem. Both virtual machines and configura-
tion management systems are an order of magnitude slower.

26.6	 Recommended reading
Beck, Kent, et al. Manifesto for Agile Software Development. agilemanifesto.org

Duvall, Paul M., Steve Matyas, and Andrew Glover. Continuous Integra-
tion: Improving Software Quality and Reducing Risk. Upper Saddle River, NJ: Ad-
dison-Wesley, 2007.

Farcic, Viktor. The DevOps 2.0 Toolkit: Automating the Continuous Deployment
Pipeline with Containerized Microservices. Seattle, WA: Amazon Digital Services
LLC, 2016.

Fowler, Martin. Continuous Integration. goo.gl/Y2lisI (martinfowler.com)

Humble, Jez, and David Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Upper Saddle River, NJ: Addi-
son-Wesley, 2010.

Morris, Kief. Infrastructure as Code: Managing Servers in the Cloud. Sebastopol,
CA: O’Reilly Media, 2016.

jenkinsci-docs@googlegroups.com. Jenkins User Handbook. jenkins.io/doc/book

http://agilemanifesto.org
http://goo.gl/Y2lisI
http://martinfowler.com
mailto:2016.jenkinsci-docs@googlegroups.com
mailto:2016.jenkinsci-docs@googlegroups.com
http://jenkins.io/doc/book

Se
cu

rit
y

			 981

Computer security is in a sorry state. In contrast to the progress seen in virtually
every other area of computing, security flaws have become increasingly dire and
the consequences of inadequate security more severe. Computer security issues
directly influence and threaten societies around the world.

If you’re tempted to skip over this chapter, permit us to pique your curiosity by
reminding you of a few computer security events that have occurred since the last
edition of this book:

•	 The sophisticated Stuxnet worm, discovered in 2010, attacked Iran’s nu-
clear program by damaging centrifuges at a uranium enrichment plant.

•	 In 2013, Edward Snowden exposed the massive NSA surveillance machine,
revealing that some major Internet companies were complicit in allowing
the government to spy on U.S. citizens.

•	 Around 2013, a new type of attack known as ransomware came to promi-
nence. Attackers compromise a target system and encrypt its data, holding
it hostage. Victims must pay a ransom for recovery. They often do.

27 Security

982	 Chapter 27	 Security	

•	 In 2015, the U.S. Office of Personnel Management was breached, com-
promising the sensitive and private details of more than 21 million U.S.
citizens, many of whom had security clearances.

•	 In 2016, Russian state-sponsored hackers allegedly mounted a campaign
to influence the outcome of the U.S. presidential election.

•	 In 2017, a ransomware attack of unprecedented scale took over Windows
systems in more than 150 countries. The attack used an exploit developed
by the NSA.

The stakes have never been higher. We think it will get worse before it gets better.

Part of the challenge is that security problems are not purely technical. You cannot
solve them by buying a particular product or service from a third party. Achieving
an acceptable level of security requires patience, vigilance, knowledge, and per-
sistence—not just from you and other sysadmins, but from your entire user and
management communities.

As a system administrator you bear a heavy burden. You must push an agenda that
secures your organization’s systems and networks, ensures that they are vigilantly
monitored, and properly educates your users and your staff. Familiarize yourself
with current security technology and work with experts to identify and resolve
vulnerabilities at your site. Security considerations should be part of every decision.

Strike a balance between security and usability. Remember that

	 Security = 1
(1.072)(Convenience)

The more security measures you introduce, the more constrained you and your
users will be. Implement the security measures suggested in this chapter only after
carefully considering the implications for your users.

Is UNIX secure? Of course not. UNIX and Linux are not secure, nor is any other
operating system that communicates on a network. If you must have absolute, total,
unbreachable security, then you need a measurable air gap between your computer
and any other device.1 Some people argue that you also need to enclose your com-
puter in a special room that blocks electromagnetic radiation (look up “Faraday
cage”). How fun is that?

This chapter examines the complex field of computer security: the sources of at-
tacks, the basic ways to secure systems, the tools of the trade, and sources of addi-
tional information.

	 1.	 Sometimes even an air gap isn’t enough. In a 2014 paper, Genkin, Shamir, and Tromer described a
technique to extract RSA encryption keys from laptops by analyzing the high-pitched frequencies
they emit when decrypting a file.

	 Elements of security	 983

Se
cu

rit
y

27.1	 Elements of security
The field of information security is quite broad, but it is often best described by the

“CIA triad.” This acronym stands for

•	 Confidentiality
•	 Integrity
•	 Availability

Confidentiality concerns the privacy of data. Access to information should be lim-
ited to those who are authorized to have it. Authentication, access control, and en-
cryption are a few of the subcomponents of confidentiality. If a hacker breaks into
a system and steals a database of customer contact information, a compromise of
confidentiality has occurred.

Integrity relates to the authenticity of information. Data integrity technology en-
sures that information is valid and has not been altered in unauthorized ways. It
also addresses the trustworthiness of information sources. When a secure web site
presents a signed TLS certificate, it is proving to the user not only that the infor-
mation it is sending is encrypted but also that a trusted certificate authority (such
as VeriSign or Equifax) has verified the identity of the source. Technologies such
as PGP also offer some assurance of data integrity.

Availability expresses the idea that information must be accessible to authorized
users when they need it. Otherwise, the data has no value. Outages not caused by
intruders (e.g., those caused by administrative errors or power outages) also fall
into the category of availability problems. Unfortunately, availability is often ignored
until something goes wrong.

Consider the CIA principles as you design, implement, and maintain systems and
networks. As the old security adage goes, “security is a process.”

27.2	 How security is compromised
In this section we take a general look at how real-world security problems tend to
occur. Most security lapses fit into one of the following categories.

Social engineering
Human users (and administrators) of a computer system are the weakest links in
the chain of security. Even in today’s world of heightened security awareness, un-
suspecting users with good intentions are easily convinced to give away sensitive
information. No amount of technology can protect against the user element—you
must ensure that your user community has a high awareness of security threats so
that they can be part of the defense.

984	 Chapter 27	 Security	

This problem manifests itself in many forms. Attackers cold-call their victims and
pose as legitimately confused users in an attempt to get help accessing the system.
Someone unintentionally posts sensitive information on a public forum while
troubleshooting problems. Physical compromises occur when seemingly legitimate
maintenance personnel show up to rewire the network closet.

The term “phishing” describes attempts to collect information from users or to coax
them to into doing something foolish, such as installing malware. Phishing begins
with deceptive emails, instant messages, text messages, or social media contacts.
Targeted attacks (so called “spear phishing”) can be especially hard to defend against
because the communication often includes victim-specific information that lends
an appearance of authenticity.

Social engineering is a powerful hacking technique and is one of the most difficult
threats to neutralize. Your site security policy should include training for new em-
ployees. Regular, organization-wide communications are an effective way to inform
staff about social media threats, physical security, email phishing, multifactor au-
thentication, and good password selection.

To gauge your organization’s resistance to social engineering, you might find it
informative to attempt some social engineering attacks of your own. Be sure you
have explicit permission to do this from your own managers, however. These ex-
ploits look very suspicious if they are performed without a clear mandate! They’re
also a form of internal spying, so they have the potential to generate resentment if
they’re not handled forthrightly.

Many organizations find it useful to communicate to users that administrators will
never request their passwords. Tell users to report any such password requests to
the IT department immediately.

Software vulnerabilities
Over the years, countless security-sapping bugs have been discovered in computer
software. By exploiting subtle programming errors or context dependencies, hack-
ers have been able to manipulate systems into a variety of compromising positions.

Buffer overflows are an example of a programming error with complex security im-
plications. Developers often allocate a predetermined amount of temporary mem-
ory space, called a buffer, to store a particular piece of information. If the code isn’t
careful about checking the size of the data against the size of the container that’s
supposed to hold it, the memory adjacent to the allocated space is at risk of being
overwritten. Crafty hackers can input carefully composed data that crashes the
program or, in the worst case, executes arbitrary code.

Buffer overflows are a subcategory of a larger class of software security bugs known
as input validation vulnerabilities. Nearly all programs accept some type of input
from users (e.g., command-line arguments, parameters for an HTTP request). If

	 How security is compromised	 985

Se
cu

rit
y

the code processes such data without rigorously checking it for appropriate format
and content, bad things can happen.

In some ways, open source operating systems have a leg up on security. The source
code for Linux and FreeBSD is available to everyone, and thousands of people can
(and do) scrutinize each line of code for possible security threats. This arrange-
ment is widely believed to result in better security than that of closed operating
systems, where a limited number of people have the opportunity to examine the
code for weaknesses.

What can you as an administrator do to prevent this type of attack? It depends on
the application, but one obvious approach is to reduce the privileges that your ap-
plications run with to minimize the impact of security bugs. A process running as
an unprivileged user can do less damage than one that runs as root. For the para-
noid, this approach can include a mandatory access control system such as SELinux.
Containers with limited capabilities can also play a role here.

Over time, the open source community has developed a standard process for ad-
dressing software vulnerabilities. Initial reports should go directly to the software
developers so that patches to address the issue can be developed and released be-
fore hackers formulate methods to exploit it. Later, details of the security issue are
released publicly so that administrators become aware of it and so that the issue and
the patches can receive public scrutiny. For this reason, keeping up with patches
and security bulletins is an important part of most administrators’ job. Fortunate-
ly, modern operating systems strive to make software updates straightforward and
easy to automate.

Distributed denial-of-service attacks (DDoS)
A DDoS attack aims to interrupt a service or adversely impact its performance,
making the service unavailable to users. It’s usually achieved by flooding a site with
network traffic, thereby consuming all the site’s available bandwidth or system re-
sources. DDoS attacks can be financially motivated (in which case the attacker holds
the site for ransom), or they can be either political or retaliatory.

To conduct an attack, attackers plant malicious code on unprotected devices out-
side the victim’s network. This code lets the attackers remotely command these in-
termediary systems, forming a “botnet.” In the most common DDoS scenario, the
minions of the botnet are instructed to pelt the victim with network traffic.

In recent years, botnets have been assembled from Internet-connected devices such
as IP cameras, printers, and even baby monitors. These devices have essentially
no security, and the owners usually remain unaware that their devices have been
compromised. Sophisticated command-and-control tools for managing botnets
are available on the dark web for anyone to purchase. Some of them even include
free customer service!

See Chapter 25 for
more information
about containers.

986	 Chapter 27	 Security	

In the fall of 2016, the Mirai botnet targeted security researcher and blogger Brian
Krebs, slamming his site with 620 Gb/s of traffic from tens of thousands of source
IP addresses. Naturally, his hosting provider asked him to kindly move somewhere
else. The Mirai botnet code has since been open sourced.

Most of the responsibility for preventing and mitigating DDoS attacks falls to the
network management layer. Software and hardware are available to detect attacks
and shut them down while keeping legitimate services on-line. Public cloud pro-
viders and some co-location facilities are equipped with this technology. However,
the mitigations aren’t perfect and the threats are constantly shifting.

Insider abuse
Employees, contractors, and consultants are trusted agents of an organization and
are granted special privileges. Sometimes these privileges are abused. Insiders can
steal or reveal data, disrupt systems for financial gain, or create havoc for political
reasons.

This type of attack is often the hardest of all to detect. Most security measures guard
against external threats, so they aren’t effective against users who have been granted
access. Insiders are typically not under suspicion in the first place; only the most
rigorous organizations systematically monitor their own employees.

System administrators must never knowingly install back doors in the environment
for their own use. Such facilities are too easily misinterpreted or exploited by others.

Network, system, or application configuration errors
Software can be configured securely or not-so-securely. Software is developed to be
useful instead of annoying, hence not-so-securely is too often the default. Hackers
frequently gain access by exploiting features that would be considered helpful and
convenient in less treacherous circumstances: accounts without passwords, firewalls
with overly relaxed rules, and unprotected databases, to name a few.

A typical example of a host configuration vulnerability is the standard practice of
allowing Linux systems to boot without requiring a boot loader password. GRUB
can be configured at installation to require a password, but administrators almost
never activate this option. This omission leaves the system open to physical attack.

However, it’s also a perfect example of the need to balance security against usability.
Requiring a password means that if the system were unintentionally rebooted (e.g.,
after a power outage), an administrator would have to be physically present to get
the machine running again.

One of the most important steps in securing a system is simply making sure that
you haven’t inadvertently put out a welcome mat for hackers. Problems in this cate-
gory are the easiest to find and fix, although there are potentially a lot of them, and

	 Basic security measures	 987

Se
cu

rit
y

it’s not always obvious what to check for. The port and vulnerability scanning tools
covered later in this chapter can help a motivated administrator identify problems
before they’re exploited.

27.3	 Basic security measures
Most systems do not come secured out of the box. Customizations made during
and after installation change the security profile for new systems. Administrators
should take steps to harden new systems, integrate them into the local environment,
and plan for their long-term security maintenance.

When the auditors come knocking, it’s useful to be able to prove that you have
followed some kind of standard procedure, especially if that procedure conforms
to external recommendations and best practices for your industry. Refer to Sourc-
es of security information on page 1034 for recommendations on selecting a sys-
tem-hardening standard.

At the highest level, you can improve your site’s security by keeping in mind a few
rules of thumb:

•	 Apply the principle of least privilege by allocating only the minimum
privileges needed by each entity, person, or role. This principle applies to
firewall rules, user permissions, file permissions, and any other situation
where access controls are used.

•	 Layer security measures to achieve defense in depth. For example, don’t
rely solely on your external firewall for network protection. Otherwise,
you are simply building a structure like a Tootsie Pop: a hard, crunchy
outside and a soft, chewy center.

•	 Minimize the attack surface. The fewer interfaces, exposed systems, un-
necessary services, and unused or underused systems, the lower the po-
tential for vulnerabilities and security weaknesses.

Automation is a close ally in the security war. Use configuration management and
scripting to create repeatably secure systems and applications. The more security
steps you automate, the less room is available for human error.

Software updates
Keeping systems updated with the latest patches is an administrator’s highest-val-
ue security chore. Most systems are preconfigured to point at the vendor’s package
repository, which makes applying patches as simple as running a few commands.
Larger sites can use a local repository that mirrors that of the vendor, thus saving
external bandwidth and speeding updates.

988	 Chapter 27	 Security	

A reasonable approach to patching should include the following elements:

•	 A regular schedule for installing routine patches that is followed diligently.
Consider the impact of patches on users when designing this schedule.
Monthly updates are usually sufficient, but be prepared to apply critical
patches on short notice.

•	 A change plan that documents the impact of each set of patches, outlines
post-installation testing steps, and describes how to back out the changes in
the event of problems. Communicate this change plan to all relevant parties.

•	 An understanding of which patches pertain to the environment. Admin-
istrators should subscribe to vendor-specific security mailing lists and
blogs, as well as to generalized security discussion forums such as Bugtraq.

•	 An accurate inventory of applications and operating systems used in your
environment. This census helps ensure complete coverage. Use reporting
software to keep track of your installed base.

Software patches sometimes introduce novel security problems and weaknesses
of their own. However, most exploits target older vulnerabilities that are widely
known. Statistically speaking, you are much better off with systems that are regu-
larly updated. Make sure it’s done methodically and consistently.

Unnecessary services
Stock systems come with lots of services running by default. Disable (and possibly
remove) those that are unnecessary, especially if they are network daemons. One
way to see which services are using the network is to use the netstat command.
Here’s partial output from a FreeBSD system:

freebsd$ netstat -an | grep LISTEN
tcp6 0 0 *.22 *.* LISTEN
tcp6 0 0 *.2049 *.* LISTEN
tcp6 0 0 *.989 *.* LISTEN
tcp6 0 0 *.111 *.* LISTEN

Linux is transitioning to the ss command for this purpose, but netstat still works
there, too.

A variety of commands can help pinpoint the service that’s using a port. For exam-
ple, you can use lsof:

freebsd$ sudo lsof -i:22
COMMAND PID USER FD TYPE SIZE/OFF NODE NAME
sshd 701 root 3u IPv6 0t0 TCP *:ssh (LISTEN)
sshd 701 root 4u IPv4 0t0 TCP *:ssh (LISTEN)
sshd 815 root 3u IPv4 0t0 TCP 10.0.2.15:ssh->10.0.2.2:54834

(ESTABLISHED)
sshd 817 vagrant 3u IPv4 0t0 TCP 10.0.2.15:ssh->10.0.2.2:54834

(ESTABLISHED)

	 Basic security measures	 989

Se
cu

rit
y

Once you have the PIDs, you can then use ps to identify specific processes. If a ser-
vice is unneeded, stop it and make sure that it won’t be restarted at boot time. You
can also use the tools fuser or netstat -p if lsof is not available.

Limit your systems’ overall footprint. The fewer packages, the less vulnerable software.
The industry as a whole is beginning to address this issue by reducing the number
of packages included in a default installation. Some specialized distributions such
as CoreOS take this to the extreme and force nearly everything to run in a container.

Remote event logging
The syslog service forwards log information to files, lists of users, or other hosts on
your network. Consider setting up a secure host to act as a central logging machine
that parses forwarded events and responds appropriately. A single centralized log
aggregator can capture logs from a variety of devices and alert administrators when-
ever meaningful events occur. Remote logging also prevents hackers from covering
their tracks by rewriting or erasing log files on systems that have been compromised.

Most systems come configured to use syslog by default, but you will need to cus-
tomize the configuration to set up remote logging.

Backups
Regular, tested system backups are an essential part of any site security plan. They
fall into the “availability” bucket of the CIA triad. Make sure that all filesystems
are regularly replicated and that you store some backups off-site. If a significant
security incident occurs, you’ll then have an uncontaminated checkpoint from
which to restore.

However, backups can also be a security hazard. Protect your backups by limiting
(and monitoring) access and by encrypting backup files.

Viruses and worms
UNIX and Linux have been mostly immune from viruses. Only a handful exist
(most of which are academic in nature), and none have wreaked the kind of cost-
ly havoc that has become commonplace in the Windows world. Nonetheless, this
fact hasn’t stopped certain antivirus vendors from predicting the demise of the
platform from malware—unless you purchase their antivirus product at a special
low price, of course.

The exact reason for the lack of malicious software is unclear. Some claim that UNIX
simply has less market share than its desktop competitors and is therefore not an
interesting target for virus authors. Others insist that UNIX’s access-controlled en-
vironment limits the damage from self-propagating worms and viruses.

The latter argument has some validity. Because UNIX restricts write access to system
executables at the filesystem level, unprivileged user accounts cannot infect the rest
of the environment. Unless virus code is being run by root, the scope of infection

See Chapter 2 for
more about starting
processes at boot time.

See Chapter 10
for more informa-
tion about logging.

990	 Chapter 27	 Security	

is significantly limited. The moral, then, is not to use the root account for day-to-
day activities. See page 69 for more comments on this issue.

Perhaps counterintuitively, one valid reason to run antivirus software on UNIX
servers is to protect your site’s Windows systems from Windows-specific viruses.
A mail server can scan incoming email attachments for viruses, and a file server
can scan shared files for infection.

ClamAV by Tomasz Kojm is a popular, free antivirus product for UNIX and Linux.
This widely used GPL tool is a complete antivirus tool kit that includes signatures
for thousands of viruses. You can download the latest version from clamav.net.

Of course, one school of thought argues that antivirus software is itself counterpro-
ductive. Its detection and prevention rates are mediocre, and the cost of licensing
and management are burdensome. All too frequently, antivirus software breaks
other aspects of a system, resulting in a variety of tech support problems. Some
compromises have even resulted from attacks on the antivirus infrastructure itself.

Recent versions of Microsoft Windows include a basic antivirus tool called Windows
Defender. It’s not the quickest to detect new forms of malware, but it’s effective and
relatively unlikely to interfere with other aspects of the system.

Root kits
The craftiest hackers try to cover their tracks and avoid detection. Often, they hope
to continue using your system to distribute software illegally, probe other networks,
or launch attacks against other systems. They often use “root kits” to help them re-
main undetected. Sony is notorious for having included root-kit-like capabilities
in the copy protection software included on millions of music CDs.

Root kits are programs and patches that hide important system information such
as process, disk, or network activity. They come in many flavors and vary in sophis-
tication from simple application replacements (such as hacked versions of ls and
ps) to kernel modules that are nearly impossible to detect.

Host-based intrusion detection software such as OSSEC is an effective way to monitor
systems for the presence of root kits. File integrity monitoring tools, such as AIDE
for Linux, can alert you to files that have changed unexpectedly. Root-kit-finding
scripts (such as chkrootkit, chkrootkit.org) can identify known kits.

Although programs are available to help administrators remove root kits from a
compromised system, the time it takes to perform a thorough cleaning would prob-
ably be better spent saving data and wiping the system. The most advanced root
kits are aware of common removal programs and make attempts to subvert them.

See Chapter 18
for more informa-
tion about email
content scanning.

http://clamav.net
http://chkrootkit.org

	 Basic security measures	 991

Se
cu

rit
y

Packet filtering
If you’re connecting a system to a network that has Internet access, you must in-
stall a packet-filtering router or firewall between the system and the outside world.
The packet filter should pass only traffic for services that you specifically want to
offer from that system. Limiting the public exposure of your systems is a first-line
defense. Many systems do not need to be directly accessible to the public Internet.

In addition to firewalling systems at the Internet gateway, you can double up with
host-based packet filters such as ipfw for FreeBSD and iptables (or ufw) on Linux.
Determine which services run on the host, and open ports only for those services.
In some cases, you can also limit which source addresses are allowed to connect to
each port. Many systems need only one or two ports to be accessible.

If your systems are in the cloud, you can use security groups rather than physical
firewalls. When designing security group rules, be as granular as possible. Consider
adding outbound rules as well, to limit an attacker’s ability to make outbound con-
nections from your hosts. See the platform-specific sections in Cloud networking
starting on page 448 for additional discussion of this topic.

Passwords and multifactor authentication
We’re simple people with simple rules. Here’s one: every account must have a pass-
word, and it needs to be something that can’t easily be guessed. Password complexity
rules may be a hassle, but they exist for a reason. Guessable passwords are one of
the leading sources of compromise.

One of our favorite trends from recent years is the proliferation of support for
multifactor authentication (MFA) systems. These schemes validate your identity
both through something you know (a password or passphrase) and something you
have, such as a physical device, commonly a phone. Almost any interface can be
protected with MFA, from UNIX shell accounts to bank accounts. Enabling MFA
is an easy and powerful security win.

For a variety of reasons, MFA is now an absolute minimum requirement for any
Internet-facing portal that gives access to administrative privileges. That includes
VPNs, SSH access, and administrative interfaces to web applications. An argument
can be made that single-factor (password-only) authentication is not acceptable for
any user authentication, but you must secure at least all administrative interfaces
with MFA. Fortunately, excellent cloud-based MFA services are available, such as
Google Authenticator and Duo (duo.com).

Vigilance
To ensure the security of your system, regularly monitor its health, network connec-
tions, process table, and overall status (usually, daily). Do regular self-assessments
with the power tools discussed later in this chapter. Security compromises tend to

http://duo.com

992	 Chapter 27	 Security	

start with a small foothold and expand, so the earlier you identify an anomaly, the
better off you’ll be. This is much easier said than done.

You might find it beneficial to work with an external firm to perform a comprehen-
sive vulnerability analysis. These projects can draw your attention to issues that you
hadn’t previously considered. At a minimum, they establish a baseline understand-
ing of the areas in which you’re most exposed. Such engagements often reveal that
hackers have already been nesting in the client’s network.

Application penetration testing
Applications that are exposed to the Internet need their own security precautions
in addition to general system and network hygiene. Because of the widespread
proliferation of vulnerability data and exploit tools, it’s a good idea to have all ap-
plications penetration tested to verify that they’ve been designed with security in
mind and have appropriate controls in place.

Security is only as strong as the weakest link in the chain. If you have a secure net-
work and system infrastructure, but an application running on that infrastructure
allows access to sensitive data without a password (for example), you have won the
battle but lost the war.

Penetration testing is a poorly defined discipline. Many companies that tout their
penetration testing services focus mostly on smoke and mirrors. The Hollywood
scenes of adolescent kids in windowless basements filled with 1980s-era terminals
aren’t entirely inaccurate. Buyer beware.

Fortunately, the Open Web Application Security Project (OWASP) publishes infor-
mation about common application vulnerabilities and methods for probing appli-
cations for these issues. Our recommendation is that you have a professional third
party (who specializes in application penetration testing) perform a penetration
test at launch and periodically throughout the life of an application. Make sure they
adhere to the OWASP methodology.

27.4	 Passwords and user accounts
In addition to securing all Internet-facing privileged access through multifactor au-
thentication, it’s important to select and manage passwords securely. In the world of
sudo, administrators’ personal passwords are just as important as root passwords.
More so, in fact: the more frequently a password is used, the more opportunities there
are for it to be compromised through methods other than brute-force decryption.

From a narrowly technical perspective, the most secure password of a given length
consists of a random sequence of letters, punctuation, and digits. Years of propagan-
da and picky web site password forms have convinced most people that this is the
sort of password they ought to be using. But of course, they never do, unless they
use a password vault to remember passwords on their behalf. Random passwords

See page 1000 for more
information about
password cracking.

	 Passwords and user accounts	 993

Se
cu

rit
y

are simply impractical to commit to memory at the lengths needed to withstand
brute-force attacks (12 characters or longer).

Because password security increases exponentially with length, your best bet is to
use a very long password (a “passphrase”) that is unlikely to appear elsewhere but
is easy to remember. You can throw in a misspelling or modified character for extra
credit, but the general idea is to let the length do the heavy lifting for you.

For example, “six guests drank Evi’s poisoned wine” is an excellent passphrase. (Or
at least, it was until it appeared in this book.) That’s true despite the fact that it con-
sists mostly of common, lowercase, dictionary words, and despite the fact that the
words are logically related and grammatically ordered.

The other core concept that all administrators and users must keep in mind is that
a given passphrase should never be used for more than one purpose. It is all too
common that a large breach occurs and usernames with passwords are exposed. If
those usernames and passwords were used elsewhere, all those accounts are com-
promised now, too. Never use the same password across administrative boundaries
(e.g., your personal banking site vs. social media).

Password changes
Change root and administrator passwords

•	 At least every six months
•	 Every time someone who had access to them leaves your site
•	 Whenever you wonder whether security might have been compromised

In the past, the conventional wisdom has been that passwords should be changed
frequently to guard against the possibility of undetected compromises. However,
password updates have their own risks, and they disrupt life for administrators.
Competent hackers install backup access mechanisms as soon as they penetrate a
site, so password changes are less helpful than they might initially seem.

It’s still advisable to make regularly scheduled changes, but don’t go overboard. If you
really want to increase security, you’re better off obsessing about password quality.

Password vaults and password escrow
It’s often said that passwords “should never be written down,” but it’s perhaps more
accurate to say that they should never be left accessible to the wrong people. As se-
curity maven Bruce Schneier has noted, a scrap of paper in an administrator’s wal-
let is relatively secure in comparison to most forms of Internet-connected storage.

A password vault is a piece of software (or a combination of software and hardware)
that stores passwords for your organization in a more secure fashion than “Would
you like Windows to remember this password for you?”

994	 Chapter 27	 Security	

Several developments have made a password vault almost a necessity:

•	 The proliferation of passwords needed not just to log in to computers, but
also to access web pages, configure routers and firewalls, and administer
remote services

•	 The increasing need for strong passwords as computers get so fast that
weak passwords are easily broken

•	 Regulations that require access to certain data to be traceable to a single
person—no shared logins such as root

Password management systems became more popular in the wake of U.S. legisla-
tion that imposed additional requirements on sectors such as government, finance,
and health care. In some cases, this legislation requires multifactor authentication.

Password vaults are also a great boon for sysadmin support companies who must
securely and traceably manage passwords not only for their own machines but also
for their customers’ machines.

Password vaults encrypt the passwords they store. Typically, every user has a sepa-
rate vault password. (Just when you thought your password travails were over, now
you have even more passwords to manage and worry about!)

Many password vault implementations are available. Free ones for individuals (e.g.,
KeePass) store passwords locally, give all-or-nothing access to the password data-
base, and do no logging. Appliances suitable for huge enterprises (e.g., CyberArk)
can cost tens of thousands of dollars. Many of the commercial offerings charge ei-
ther by the user or by the number of passwords they remember.

The vault system we particularly like is 1Password from AgileBits (1password.com).
1Password comes from the mass-market world, so it includes polished, cross-plat-
form UIs and integration with common web browsers. 1Password has a “teams”
layer that extends this foundation of personal password management into the do-
main of organizational secrets.

Another system worth evaluating is Secret Server from Thycotic (thycotic.com). This
system is browser-based and was designed from the ground up to serve the needs
of organizations. It includes extensive management and auditing features along
with role-based access control (see page 85) and fine-grained permission options.

One useful feature to look for in a password management system is a “break the glass”
option, so named in honor of the hotel fire alarm stations that tell you to break the
glass and pull the big red lever in the event of an emergency. In this case, “breaking
the glass” means obtaining a password that you wouldn’t normally have access to,
with loud alarms being forwarded to other administrators. It’s a nice compromise
between parsimonious password sharing (a normal best practice) and the realities
of emergency fire fighting.

http://1password.com
http://thycotic.com

	 Passwords and user accounts	 995

Se
cu

rit
y

Poor password management is a common security weakness. By default, the contents
of the /etc/passwd and /etc/shadow files (or on FreeBSD, the /etc/master.passwd
file) determine who can log in, so these files are the system’s first line of defense
against intruders. They must be scrupulously maintained and free of errors, secu-
rity hazards, and historical baggage.

UNIX allows users to choose their own passwords, and although this is a great con-
venience, it leads to many security problems. The comments in the section Passwords
and user accounts on page 992 apply equally to user passwords.

It is important to regularly verify (preferably daily) that every login has a password.
Entries in the /etc/shadow file that describe pseudo-users such as “daemon” who
own files but never log in should have a star or an exclamation point in their en-
crypted password fields. These do not match any password and thus prevent use
of the account.

At sites that use a centralized authentication scheme such as LDAP or Active Direc-
tory, the same logic applies. Enforce password complexity requirements and lock
out accounts after a few failed login attempts.

Password aging
Most systems that have shadow passwords also let you compel users to change their
passwords periodically, a facility known as password aging. This feature may seem
appealing at first glance, but it has several problems. Users often resent having to
change their passwords, and since they don’t want to forget the new password, they
choose something simple that is easy to type and remember. Many users switch
between two passwords each time they are forced to change, or increment a digit
in the password, defeating the purpose of password aging. PAM modules (see page
590) can help enforce strong passwords to avoid this pitfall.

On Linux systems, the chage program controls password aging. Using chage, ad-
ministrators can enforce minimum and maximum times between password changes,
password expiration dates, the number of days to warn users before their passwords
expire, the number of days of inactivity that are permissible before accounts are au-
tomatically locked, and more. The following command sets the minimum number
of days between password changes to 2, sets the maximum number to 90, sets the
expiration date to July 31, 2017, and warns the user for 14 days that the expiration
date is approaching:

linux$ sudo chage -m 2 -M 90 -E 2017-07-31 -W 14 ben

Under FreeBSD, the pw command manages password aging parameters. This ex-
ample sets the password validity period to 90 days and sets the expiration date to
September 25, 2017.

freebsd$ sudo pw user mod trent -p 2017-09-25 -e 90

See page 245 for
more information
about the passwd file.

996	 Chapter 27	 Security	

Group logins and shared logins
Any login that is used by more than one person is bad news. Group logins (e.g.,
“guest” or “demo”) are sure terrain for hackers to homestead and are prohibited in
many contexts by federal regulations such as HIPAA. Don’t allow them at your site.
However, technical controls can’t prevent users from sharing passwords, so educa-
tion is the best enforcement tactic.

User shells
In theory, you can set the shell for a user account to be just about any program, in-
cluding a custom script. In practice, the use of shells other than standards such as
bash and tcsh is a dangerous practice. If you find yourself tempted to create such
a login, you might consider a passphrase-less SSH key pair instead.

Rootly entries
The only distinguishing feature of the root login is its UID of zero. Since there can
be more than one entry in the /etc/passwd file that uses this UID, there can be
more than one way to log in as root.

A common way for a hacker to install a back door after having obtained a root shell
is to edit new root logins into /etc/passwd. Programs such as who and w refer to the
name stored in utmp rather than the UID that owns the login shell, so they cannot
expose hackers that appear to be innocent users but are really logged in as UID 0.

Don’t allow root to log in remotely, even through the standard root account. Un-
der OpenSSH, you can set the PermitRootLogin configuration option to No in the
/etc/ssh/sshd_config file to enforce this restriction.

Because of sudo (see page 70), it’s rare that you’ll ever need to log in as root, even
on the system console.

27.5	 Security power tools
Some of the time-consuming chores mentioned in the previous sections can be au-
tomated with freely available tools. Here are a few of the tools you’ll want to look at.

Nmap: network port scanner
Nmap’s main function is to check a set of target hosts to see which TCP and UDP
ports have servers listening on them.2 Since most network services are associated
with “well known” port numbers, this information tells you quite a lot about the
software a machine is running.

	 2.	 As described on page 385, a port is a numbered communication channel. An IP address identifies an
entire machine, and an IP address + port number identifies a specific server or network conversation
on that machine.

	 Security power tools	 997

Se
cu

rit
y

Running Nmap is a great way to find out what a system looks like to someone on
the outside who is trying to break in. For example, here’s a report from a produc-
tion Ubuntu system:

ubuntu$ nmap -sT ubuntu.booklab.atrust.com

Starting Nmap 7.40 (http://insecure.org) at 2017-03-01 12:31 MST
Interesting ports on ubuntu.booklab.atrust.com (192.168.20.25):
Not shown: 1691 closed ports
PORT STATE SERVICE
25/tcp open smtp
80/tcp open http
111/tcp open rpcbind
139/tcp open netbios-ssn
445/tcp open microsoft-ds
3306/tcp open mysql

Nmap finished: 1 IP address (1 host up) scanned in 0.186 seconds

By default, nmap includes the -sT argument to try to connect to each TCP port on
the target host in the normal way.3 Once a connection has been established, nmap
immediately disconnects, which is impolite but not harmful to a properly written
network server.

From the example above, we can see that the host ubuntu is running two services
that are likely to be unused and that have historically been associated with secu-
rity problems: portmap (rpcbind) and an email server (smtp). An attacker would
most likely probe those ports for more information as a next step in the informa-
tion-gathering process.

The STATE column in nmap’s output shows open for ports that have servers listen-
ing, closed for ports with no server, unfiltered for ports in an unknown state, and
filtered for ports that cannot be probed because of an intervening packet filter.
nmap does not classify ports as unfiltered unless it is running an ACK scan. Here
are results from a more secure server, secure.booklab.atrust.com:

ubuntu$ nmap -sT secure.booklab.atrust.com

Starting Nmap 7.40 (http://insecure.org) at 2017-03-01 12:42 MST
Interesting ports on secure.booklab.atrust.com (192.168.20.35):
Not shown: 1691 closed ports
PORT STATE SERVICE
25/tcp open smtp
80/tcp open http

Nmap finished: 1 IP address (1 host up) scanned in 0.143 seconds

In this case, it’s clear that the host is set up to allow SMTP (email) and an HTTP
server. A firewall blocks access to other ports.

	 3.	 Actually, only privileged ports (those with port numbers under 1,024) and other well-known ports
are checked by default. Use the -p option to explicitly specify a range of ports to scan.

http://secure.booklab.atrust.com:

998	 Chapter 27	 Security	

In addition to straightforward TCP and UDP probes, nmap also has a repertoire of
sneaky ways to probe ports without initiating an actual connection. In most cases,
nmap probes with packets that look like they come from the middle of a TCP con-
versation (rather than the beginning) and waits for diagnostic packets to be sent
back. These stealth probes may be effective at getting past a firewall or at avoiding
detection by a network security monitor on the lookout for port scanners. If your
site uses a firewall (see Firewalls on page 1027), it’s a good idea to probe it with
these alternative scanning modes to see what they turn up.

nmap has the magical and useful ability to guess what operating system a remote
system is running by looking at the particulars of its implementation of TCP/IP. It
can sometimes even identify the software that’s running on an open port. The -O
and -sV options, respectively, turn on this behavior. For example:

ubuntu$ sudo nmap -sV -O secure.booklab.atrust.com

Starting Nmap 7.40 (http://insecure.org) at 2017-03-01 12:44 MST
Interesting ports on secure.booklab.atrust.com (192.168.20.35):
Not shown: 1691 closed ports
PORT STATE SERVICE VERSION
25/tcp open smtp Postfix smtpd
80/tcp open http lighttpd 1.4.13
Device type: general purpose
Running: Linux 2.4.X|2.5.X|2.6.X
OS details: Linux 2.6.16 - 2.6.24

Nmap finished: 1 IP address (1 host up) scanned in 8.095 seconds

This feature can be useful for taking an inventory of a local network. Unfortunately,
it is also useful to hackers, who can base their attacks on known weaknesses of the
target OSes and servers.

Keep in mind that most administrators don’t appreciate your efforts to scan their
network and point out its vulnerabilities, however well-intentioned your motive.
Do not run nmap on someone else’s network without permission from one of that
network’s administrators.

Nessus: next-generation network scanner
Nessus, originally released by Renaud Deraison in 1998, is a powerful and useful
software vulnerability scanner. At this point, it uses more than 31,000 plug-ins to
check for both local and remote security flaws. Although it is now a closed source,
proprietary product, it is still freely available, and new plug-ins are released regu-
larly. It is the most widely accepted and complete vulnerability scanner available.

Nessus prides itself on being the security scanner that takes nothing for granted.
Instead of assuming that all web servers run on port 80, for instance, it scans for
web servers running on any port and checks them for vulnerabilities. Instead of
relying on the version numbers reported by the service it has connected to, Nes-
sus can attempt to exploit known vulnerabilities to see if the service is susceptible.

	 Security power tools	 999

Se
cu

rit
y

Although a substantial amount of setup time is required to get Nessus running (it
requires several packages that aren’t installed on a typical system), it’s well worth
the effort. The Nessus system includes a client and a server. The server acts as a
database and the client handles the GUI presentation. Nessus servers and clients
exist for both Windows and UNIX platforms.

One of the great advantages of Nessus is the system’s modular design, which makes
it easy for third parties to add new security checks. Thanks to an active user com-
munity, Nessus is likely to be a useful tool for years to come.

Metasploit: penetration testing software
Penetration testing is the act of breaking into a computer network with the owner’s
permission for the purpose of discovering security weaknesses. Metasploit is an
open source software package written in Ruby that automates this process.

Metasploit is controlled by the U.S.-based security company Rapid7, but its GitHub
project has hundreds of contributors. Metasploit includes a database of hundreds of
ready-made exploits for known software vulnerabilities. For those that have the de-
sire and the skill, it’s possible to write custom exploit plug-ins to add to the database.

Metasploit uses the following basic workflow:

1.	 Scan remote systems to discover information about them.

2.	 Select and execute exploits according to the information found.

3.	 If a target is penetrated, use included tools to pivot from the compro-
mised system to other hosts on the remote network.

4.	 Run reports to document the results.

5.	 Clean up and revert all changes to the remote system.

Metasploit has several interfaces: a command line, a web interface, and a full GUI
client. Choose the format that you like the best; they have equivalent functionality.
Learn more at metasploit.com.

Lynis: on-box security auditing
If you were faced with finding holes in the walls of an old wooden barn, you might
first walk around the outside of the barn and look for the large, gaping holes. Net-
work-based vulnerability scanning tools like Nessus give you this view of a system’s
security profile. Walking inside the barn on a sunny day highlights the pinpoint-sized
holes in walls. To get this same level of inspection of a system, you need a tool like
Lynis that runs on the system itself.

Although unfortunately named, this security power tool performs both one-time
and scheduled audits of a system’s configuration, patching, and hardening state. This
open source tool runs on Linux and FreeBSD systems and performs hundreds of
automated compliance checks. Download it from cisofy.com/lynis.

http://metasploit.com
http://cisofy.com/lynis

1000	 Chapter 27	 Security	

John the Ripper: finder of insecure passwords
One way to thwart poor password choices is to try to break the passwords yourself
and to force users to change passwords that you have broken. John the Ripper is a
sophisticated tool by Solar Designer that implements various password-cracking
algorithms in a single tool. It replaces the tool crack, which was covered in previ-
ous editions of this book.

Even though most systems use a shadow password file to hide encrypted passwords
from public view, it’s still wise to verify that your users’ passwords are crack resis-
tant.4 Knowing a user’s password can be useful because people tend to use the same
password over and over again. A single password might grant access to another
system, decrypt files stored in a user’s home directory, and allow access to financial
accounts on the web. (Needless to say, it’s not security-smart to reuse a password
this way. But nobody wants to remember hundreds of passwords.)

Considering its internal complexity, John the Ripper is an extremely simple pro-
gram to use. Direct john to the file to be cracked, most often /etc/shadow, and
watch the magic happen:

$ sudo ./john /etc/shadow
Loaded 25 password hashes with 25 different salts (FreeBSD MD5 [32/32])
password (jsmith)
badpass (tjones)

In this example, 25 unique passwords were read from the shadow file. As passwords
are cracked, john prints them to the screen and saves them to a file called john.pot.
The output contains the password in the left column with the login in parentheses
in the right column. To reprint passwords after john has completed, run the same
command with the -show argument.

As of this writing, the most recent stable version of John the Ripper is 1.8.0. It’s
available from openwall.com/john. Since John the Ripper’s output contains the
passwords it has broken, carefully protect this output and delete it as soon as you
are done checking to see which users’ passwords are insecure.

As with most security monitoring techniques, it’s important to obtain explicit man-
agement approval before cracking passwords with John the Ripper.

Bro: the programmable network intrusion detection system
Bro is an open source network intrusion detection system (NIDS) that monitors
network traffic and looks for suspicious activity. It was originally written by Vern
Paxson and is available from bro.org.

Bro inspects all traffic flowing into and out of a network. It can operate in passive
mode, in which it generates alerts for suspicious activity, or in active mode, in which
it injects traffic to disrupt malicious activity. Both modes likely require modification
of your site’s network configuration.

	 4.	 Especially the passwords of system administrators who have sudo privileges.

http://openwall.com/john
http://bro.org

	 Security power tools	 1001

Se
cu

rit
y

Unlike other NIDSs, Bro monitors traffic flows rather than just matching patterns
inside individual packets. This method of operation means that Bro can detect
suspicious activity by observing who talks to whom, even without matching any
particular string or pattern. For example, Bro can

•	 Detect systems used as “stepping stones” by correlating inbound and
outbound traffic

•	 Detect a server that has a back door installed by watching for unexpected
outbound connections immediately after an inbound one

•	 Detect protocols running on nonstandard ports

•	 Report correctly guessed passwords

Some of these features require substantial system resources, but Bro includes clus-
tering support to help you manage a group of sensor machines.

The configuration language for Bro is complex and requires significant coding ex-
perience to use. Unfortunately, there is no simple default configuration for a novice
to install. Most sites require a moderate level of customization.

Bro is supported to some extent by the Networking Research Group of the Interna-
tional Computer Science Institute (ICSI), but it’s mostly maintained by the community
of Bro users. If you are looking for a turnkey commercial NIDS, you will probably
be disappointed by Bro. However, Bro can do things that no commercial NIDS can
do, and it can either supplement or replace a commercial solution in your network.

Snort: the popular network intrusion detection system
Snort (snort.org) is an open source network intrusion prevention and detection
system originally written by Marty Roesch and now maintained by Cisco, a com-
mercial entity. It has become the de facto standard for home-grown NIDS deploy-
ments and is also the basis of many commercial and “managed services” NIDS
implementations.

Snort itself is distributed for free as an open source package. However, Cisco charges
a subscription fee for access to the most recent set of detection rules.

A number of third party platforms incorporate or extend Snort, and some of those
projects are open source. One excellent example is Aanval (aanval.com), which
aggregates data from multiple Snort sensors in a web console.

Snort captures raw packets off the network wire and compares them with a set of
rules, aka signatures. When Snort detects an event that’s been defined as interest-
ing, it can alert a system administrator or contact a network device to block the
undesired traffic, among other actions.

Although Bro is a much more powerful system, Snort is a lot simpler and easier to
configure, attributes that make it a good choice as a “starter” NIDS platform.

http://snort.org
http://aanval.com

1002	 Chapter 27	 Security	

OSSEC: host-based intrusion detection
OSSEC is free software and is available as source code under the GNU General
Public License. OSSEC serves up the following:

•	 Root kit detection
•	 Filesystem integrity checks
•	 Log file analysis
•	 Time-based alerting
•	 Active responses

OSSEC runs on the systems of interest and monitors their activity. It can send alerts
or take action according to a set of rules that you configure. For example, OSSEC
can monitor systems for the addition of unauthorized files and send email notifi-
cations like this one:

Subject: OSSEC Notification - courtesy - Alert level 7
Date: Fri, 03 Feb 2017 14:53:04 -0700
From: OSSEC HIDS <ossecm@courtesy.atrust.com>
To: <courtesy-admin@atrust.com>

OSSEC HIDS Notification.
2017 Feb 03 14:52:52

Received From: courtesy->syscheck
Rule: 554 fired (level 7) -> "File added to the system."
Portion of the log(s):

New file
'/courtesy/httpd/barkingseal.com/html/wp-content/uploads/2017/02/hbird.

jpg'
added to the file system.

 --END OF NOTIFICATION

In this way, OSSEC acts as your 24/7 eyes and ears on the system. We recommend
running OSSEC on every production system.

OSSEC basic concepts
OSSEC has two primary components: the manager (server) and the agents (clients).
You need one manager on your network, and you should install that component
first. The manager stores the file-integrity-checking databases, logs, events, rules,
decoders, major configuration options, and system auditing entries for the entire
network. A manager can connect to any OSSEC agent, regardless of its operating
system. The manager can also monitor certain devices that do not have a dedicat-
ed OSSEC agent.

	 Security power tools	 1003

Se
cu

rit
y

Agents run on the systems you want to monitor and report back to the manager.
By design, they have a small footprint and operate with a minimal set of privileges.
Most of the agent’s configuration is obtained from the manager. Communication
between the server and the agent is encrypted and authenticated. You need to cre-
ate an authentication key for each agent on the manager.

OSSEC classifies alerts by severity at levels 0 to 15; 15 is the highest severity.

OSSEC installation
OSSEC packages for most distributions are available at ossec.github.io.

Install the server on the system you want to be your OSSEC manager and then in-
stall the agent on that and all other systems you want to monitor. The install script
asks some additional questions, such as to what email address alerts should be sent
and which monitoring modules should be enabled.

Once the installation has finished, start OSSEC with

server$ sudo /var/ossec/bin/ossec-control start

Next, register each agent with the manager. On the server, run

server$ sudo /var/ossec/bin/manage_agents

You’ll see a menu that looks something like this:

**
* OSSEC HIDS v2.8 Agent manager.
* The following options are available:
**
	 (A)dd an agent (A).
	 (E)xtract key for an agent (E).
	 (L)ist already added agents (L).
	 (R)emove an agent (R).
	 (Q)uit.
Choose your action: A,E,L,R or Q:

Select option A to add an agent, and then type in the name and IP address of the
agent. Next, select option E to extract the agent’s key. Here’s what that looks like:

Available agents:
	 ID: 001, Name: linuxclient1, IP: 192.168.74.3
Provide the ID of the agent to extract the key (or '\q' to quit): 001
Agent key information for '001' is:
MDAyIGxpbnV4Y2xpZW50MSAxOTIuMTY4Ljc0LjMgZjk4YjMyYzlkMjg5MWJlMT
...

Finally, log in to the agent system and run manage_agents there:

agent$ sudo /var/ossec/bin/manage_agents

http://ossec.github.io

1004	 Chapter 27	 Security	

On the client, you will see that the menu has somewhat different options.

**
* OSSEC HIDS v2.8 Agent manager.
* The following options are available:
**
	 (I)mport key from the server (I).
	 (Q)uit.
Choose your action: I or Q:

Select option I and then cut and paste the key you extracted above. After you have
added an agent, you must restart the OSSEC server. Repeat the process of key gen-
eration, extraction, and installation for each agent you want to connect.

OSSEC configuration
Once OSSEC is installed and running, you’ll want to tweak it so that it gives you
just enough information, but not too much. The majority of the configuration is
stored on the server in the /var/ossec/etc/ossec.conf file. This XML-style file is well
commented and fairly intuitive, but it contains dozens of options.

A common item you might want to configure is the list of files to ignore when check-
ing file integrity. For example, if you have a custom application that writes its log
file to /var/log/customapp.log, you can add the following line to the <syscheck>
section of the file:

<syscheck>
	 <ignore>/var/log/customapp.log</ignore>
</syscheck>

After you’ve made this change and restarted the OSSEC server, OSSEC will stop
alerting you every time the log file changes. The many OSSEC configuration options
are documented at ossec.net/main/manual/configuration-options.

It takes time and effort to get any HIDS system running and tuned. But after a few
weeks, you’ll have filtered out the noise, and the system will start to generate valu-
able information about changing conditions in your environment.

Fail2Ban: brute-force attack response system
Fail2Ban is a Python script that monitors log files such as /var/log/auth.log and
/var/log/apache2/error.log. It looks for suspicious occurrences such as multiple
failed login attempts or queries to unusually long URLs. Fail2Ban then takes ac-
tion to address the threat. For example, it might temporarily block network traffic
from a particular IP address or send email to an incident response team. Learn
more at fail2ban.org.

http://ossec.net/main/manual/configuration-options
http://fail2ban.org

	 Cryptography primer	 1005

Se
cu

rit
y

27.6	 Cryptography primer
Most software is designed with security in mind, and that implies a strong dose of
cryptography. Security standards and regulations are opinionated about the selec-
tion of cryptographic algorithms and the type of data that must be protected with
cryptography. Nearly all network protocols in modern use rely on cryptography
for security. In short, cryptography is a pillar of computer security and sysadmins
encounter it every day. It’s well worth your time to understand the basics.

Cryptography applies mathematics to the problem of securing communications.
A cryptographic algorithm, called a cipher, is the set of mathematical steps taken
to secure a message. Such algorithms are designed by committees of experts who
represent academic, government, and research interests from around the world. Ac-
ceptance of a new algorithm is a lengthy and tedious process. By the time it makes
its way to the masses, it has been thoroughly vetted.

Encryption is the process of using a cipher to convert plain text messages to unread-
able ciphertext. Decryption is the reverse of that process. Cryptographic messages
(ciphertext) exhibit several advantageous properties:5

•	 Confidentiality: messages are impossible to read for everyone except the
intended recipients.

•	 Integrity: it is impossible to modify the contents without detection.
•	 Non-repudiation: the authenticity of the message can be validated.

In other words, cryptography lets you communicate secretly over unsecured chan-
nels with the added benefit of being able to prove the correctness of the message
and the identity of sender. Very valuable indeed.

Mathematics shows that strong cryptographic algorithms are reliably secure. However,
software that implements the algorithms might have weaknesses, and the security
of systems that guard cryptographic secrets might also be vulnerable, rendering the
algorithms impotent. Protecting your secrets and choosing well-designed, easily
updated cryptography software is therefore paramount.

Cryptographers have traditional names for three subjects who participate in a simple
message exchange: Alice and Bob, who wish to communicate privately, and Mallory,
a bad actor who wants to compromise their secrets, disrupt their communication,
or impersonate one of the other principals. We’ve adopted this convention.

The upcoming subsections introduce several cryptographic primitives, the associ-
ated ciphers, and some common use cases for each.

Symmetric key cryptography
Symmetric key cryptography is sometimes called “conventional” or “classic” cryp-
tography because the ideas behind it have been around for a long time. It’s simple:

	 5.	 Some ciphers offer only a subset of these. Often, multiple ciphers are used together to create the full
set, thus forming a hybrid cryptosystem.

1006	 Chapter 27	 Security	

Alice and Bob share a secret key that they use to encrypt and decrypt messages. They
must find a way to exchange the shared secret privately. Once they both know the
key, they can reuse it as long as they wish. Mallory can only inspect (or interfere
with) messages if she also has the key.

Symmetric keys are relatively efficient in terms of CPU usage and the size of the
encrypted payloads. As a result, symmetric cryptography is often used in applica-
tions where efficient encryption and decryption are necessary. However, the need
to distribute the shared key in advance is a serious impediment to many use cases.

AES, the Advanced Encryption Standard from the United States National Institute
of Standards and Technology (NIST), is perhaps the most widely used symmetric
key algorithm. Twofish and its predecessor, Blowfish, designed by cryptographer
and security expert Bruce Schneier, are also options. These algorithms play a role
in the security of every network protocol you can shake your fist at, including SSH,
TLS, IPsec VPNs, PGP, and many others.

Public key cryptography
A limitation of symmetric keys is the need to securely exchange the secret key in
advance. The only way to do so with complete security is to meet in person without
interference, a major inconvenience. For centuries, this requirement limited the
practical utility of cryptography. The invention of public key cryptography, which
addresses this problem, was therefore an extraordinary breakthrough when it oc-
curred in the 1970s.

The scheme works as follows. Alice generates a pair of keys. The private key re-
mains a secret, but the public key can be widely known. Bob similarly generates
a key pair and publishes his public key. When Alice wants to send Bob a message,
she encrypts it with Bob’s public key. Bob, who holds the private key, is the only
one who can decrypt the message.

Exhibit A	 Sending a ciphertext message with public key cryptography

Plaintext
message

Plaintext
message

Alice Bob

Encrypt
with Bob’s
public key

Decrypt
with Bob’s

private keyCiphertext
message

Alice can also sign the message with her private key. Bob can use Alice’s signature and
her public key to validate its authenticity. This process (simplified here for clarity)
is known as a digital signature. It proves that Alice, not Mallory, sent the message.

	 Cryptography primer	 1007

Se
cu

rit
y

The Diffie-Hellman-Merkle key exchange method was the first publicly available
public key cryptosystem. Shortly thereafter, the RSA public key cryptosystem was
circulated by the now-famous team of Ron Rivest, Adi Shamir, and Leonard Adle-
man. These techniques are the foundation of modern network security.

Public key ciphers, also called asymmetric ciphers, rely on the mathematical con-
cept of trapdoor functions, in which a value is easy to compute, and yet it is difficult
and expensive to derive the steps that produced that value. The performance char-
acteristics of asymmetric ciphers generally render them impractical for encrypting
large quantities of data. They are often paired with symmetric ciphers to realize the
benefits of both: public keys establish a session and share a symmetric key, and the
symmetric key encrypts the ongoing conversation.

Public key infrastructure
Organizing a trustworthy and reliable way to record and distribute public keys is
a messy business. If Alice wants to send Bob a private message, she must trust that
the public key she has for Bob is in fact his and not Mallory’s. Validating the au-
thenticity of public keys at Internet scale is a formidable challenge.

One solution, adopted by PGP, is a so-called web of trust. It boils down to a net-
work of entities who trust each other to varying degrees. By following indirect
chains of trust outside your personal network, you can establish that a public key
is trustworthy with a reasonable degree of confidence. Unfortunately, the gener-
al public’s interest in attending key-signing parties and cultivating a network of
cryptofriends has been, shall we say, less than enthusiastic, as evidenced by PGP’s
continuing obscurity.

The Public Key Infrastructure, used to implement TLS on the web, addresses this
problem by trusting a third party known as a Certificate Authority (CA) to vouch
for public keys. Alice and Bob may not know each other, but they both trust the CA
and know the CA’s public key. The CA signs certificates for Alice and Bob’s public
keys with its own private key. Alice and Bob can then check the CA’s endorsements
to be sure the keys are legitimate.

The certificates of major CAs such as GeoTrust and VeriSign are bundled with op-
erating system distributions. When a client begins an encrypted session, it will see
that the peer’s certificate has been signed by an authority already listed in the client’s
local trust store. Hence the client can trust the CA’s signature and can trust that
the peer’s public key is valid. The scheme is depicted in Exhibit B on the next page.

Certificate authorities charge a fee for signing services, the price of which is set
according to the reputation of the CA, market conditions, and various features of
the certificate. Some variations, such as so-called wild card certificates for entire
subdomains or “extended validation certificates” with a more rigorous background
check for the requesting entity, are more expensive.

1008	 Chapter 27	 Security	

Exhibit B	 Public key infrastructure process for the web

Sysadmin

Web server

User

Certi�cate Authority
1. Administrator
sends certi�cate
signing request

3. Administrator installs
signed certi�cate and private

key on servers
4. Client requests
public certi�cate

5. Server replies with
public certi�cate

6. Client checks
signature against
local trust store

2. CA returns
signed certi�cate

CA

The CA is implicitly trusted in this system. Initially, there were only a few trusted
CAs, but many more have been added over time. Modern desktop and mobile op-
erating systems trust hundreds of certificate authorities by default. The CAs them-
selves are therefore high-value targets for attackers, who would like to use the CA’s
private key to sign certificates of their own devising.

When an authority is hacked, the entire system of trust is broken. Several CAs are
known to have been compromised by attackers, and in other widely discussed inci-
dents, CAs are known to have conspired with governments. We encourage readers
to choose issuing CAs carefully when purchasing signing services.

In 2016, Let’s Encrypt was launched as a free service (sponsored by organizations
such as the Electronic Frontier Foundation, the Mozilla Foundation, Cisco Systems,
Stanford Law School, and the Linux Foundation) that issues certificates through
an automated system. By the end of 2016, this service had issued over 24 million
certificates. Given the well-publicized operational issues at some of the commercial
CAs, we recommend Let’s Encrypt as a “probably just as secure” free alternative.

It’s also easy to act as your own certificate authority. You can create a CA with
OpenSSL, import the CA’s certificate to the trust store throughout your site, and
then issue certificates against that authority. This is a common practice for secur-
ing services on an intranet where the organization has full control over the trusted
certificate store. See page 1009 for more details.

Organizations should be careful when deciding to implement their own trusted
authority on company-issued machines. Unless you have the same rigorous and
audited security in place that the professional CAs do, you might just be creating
a gaping vulnerability in your environment. As a corollary, if you work for an or-
ganization that installs its own certificate in your computers’ trusted store, suspect
that your own security may be compromised and act accordingly.

	 Cryptography primer	 1009

Se
cu

rit
y

Transport Layer Security
Transport Layer Security (TLS) uses public key cryptography and PKI to secure
messages between nodes on a network. It is the successor to SSL, the Secure Sock-
ets Layer, and you’ll commonly see the acronyms SSL and TLS used interchange-
ably even though the old SSL is obsolete and deprecated. TLS paired with HTTP
is known as HTTPS.

TLS runs as a separate layer that wraps TCP connections. It supplies only the se-
curity for the connection and does not involve itself in the HTTP transaction. Be-
cause of this hygienic architecture, TLS can secure not only HTTP but also other
protocols such as SMTP.

Once a client and server have established a TLS connection, the contents of the
exchange, including the URL and all headers, are protected by encryption. Only
the host and port can be determined by an attacker since those details are visible
through the encapsulating TCP connection. In the OSI model, TLS lies somewhere
between layers 4 and 7.

Although the typical use case is one-way TLS encryption, in which the client vali-
dates the server, it is possible and increasingly common to use two-way TLS, some-
times known as mutual authentication. In this scheme, the client must present to
the server a certificate that proves its own identity. This is, for example, how Net-
flix clients (set-top boxes and anything else that streams video from Netflix) are
authenticated to the Netflix API.

The latest revision of TLS is 1.2. Disable all versions of SSL, along with TLS version
1.0, because of known weaknesses. TLS 1.3 is under active development and intro-
duces major changes that will have significant implications for some industries.6

Cryptographic hash functions
A hash function accepts input data of any length and generates a small, fixed-length
value that is somehow derived from that data. The output value is variously referred
to as a hash value, hash, summary, digest, checksum, or fingerprint. Hash functions
are deterministic, so if you run a particular hash function on a particular input, you
will always generate the same hash value.

Because hashes have a fixed length, only a finite number of possible output values
exist. For example, an 8-bit hash has only 28 (that is, 256) possible outputs. There-
fore, some inputs necessarily generate the same hash value, an event known as
a collision. Longer hash values reduce the frequency of collisions but can never
eliminate them entirely.

	 6.	 A representative from the financial services industry attempted to influence a technical decision on
the TLS development mailing list, but he was about two years too late. The concern was summarily
rejected in an entertaining email thread. See the thread at goo.gl/uAEwPN.

http://goo.gl/uAEwPN

1010	 Chapter 27	 Security	

Hundreds of different hash functions are used in software, but the subset known
as cryptographic hash functions are of particular interest to sysadmins and mathe-
maticians. In this context, “cryptographic” means “real good.” These hash functions
are designed to have pretty much every desirable property you could want from a
hash function, including the following:

•	 Entanglement: every bit of the hash value depends on every bit of the in-
put data. On average, changing one bit of input should cause 50% of the
hash bits to change.

•	 Pseudo-randomness: hash values should be indistinguishable from ran-
dom data. Of course, hash values are not random; they are generated
deterministically and reproducibly from input data. But they should still
look like random data: they should have no detectable internal structure,
should have no apparent relationship to the input data, and should pass
all known statistical tests of randomness.

•	 Nonreversibility: given a hash value, it should be computationally infeasible
to discover another input that generates the same hash value.

With a sufficiently high-quality hashing algorithm and a sufficiently long hash val-
ue length, we can make the leap of faith of assuming that two inputs that generate
the same hash value are in fact the same input. Of course, that can’t ever be theo-
retically certain, because all hashes have collisions. However, it can be made likely
to any desired level of statistical proof by increasing the length of the hash value.

Cryptographic hashes verify the integrity of things. They can certify that a given
configuration file or command binary has not been tampered with, or that a message
signed by an email correspondent has not been modified in transit. For example, to
verify that a FreeBSD system and a Linux system are using identical sshd_config
files, we can use the following commands:

freebsd$ sha256 /etc/ssh/sshd_config
SHA256 (/etc/ssh/sshd_config) = 3ef2d95099363d...8c14f63c5b9f741ea8d5

linux$ sha256sum /etc/ssh/sshd_config
3ef2d95099363d...8c14f63c5b9f741ea8d5 /etc/ssh/sshd_config

We’ve elided part of the hash values for simplicity. As is typical for most use cases,
the output values are shown here in hexadecimal notation. But keep in mind that
the actual hash values are just bags of binary data and that this data can be repre-
sented in multiple ways.

Many cryptographic hash algorithms exist, but the only ones recommended for gen-
eral use at this point are the SHA-2 and SHA-3 (Secure Hash Algorithm) families,
which were selected through an extensive review process by NIST.7

Each of these algorithms exists in a range of variants with different hash value
lengths. For example, SHA3-512 is the SHA-3 algorithm configured to generate

	 7.	 SHA-1 has been compromised and should no longer be used.

	 Cryptography primer	 1011

Se
cu

rit
y

a 512-bit hash value. A SHA algorithm without a version number, e.g., SHA-256,
always refers to a member of the SHA-2 family.

Another common cryptographic hash algorithm, MD5, remains widely support-
ed by cryptographic software. However, it’s known to be vulnerable to engineered
collisions, in which multiple inputs yield the same hash value. Although MD5 is no
longer considered safe for use in cryptography, it’s still a well-behaved hash func-
tion and is theoretically OK to use for low-security applications. But why bother?
Just use SHA.

Open source software projects often publish hashes of the files they release to the
community. The OpenSSH project, for example, distributes PGP signatures (which
rely on cryptographic hash functions) of its tarballs for verification. To verify the
authenticity and integrity of a download, you calculate the hash value of the file you
actually downloaded and compare it to the published hash value, thus ensuring that
you’ve received a complete and unmolested copy with no bit errors.

Hash functions are also used as a component of message authentication codes, aka
MACs. The hash value inside a MAC is signed with a private key. The process of
validating the MAC checks both the authenticity of the MAC itself (by decrypting
it with the corresponding public key) and the integrity of the content (by checking
it against the content hash). MAC schemes often play an important role in web
application security.

Random number generation
Cryptographic systems need a source of random numbers from which to generate
keys. But algorithms aren’t known for their random and unpredictable behavior.
What to do?

The gold standard for randomness is data from physically random processes such
as radioactive decay and RF noise from the galactic core. These sources do exist: see
random.org for access to some actual random data and an explanation of how it’s de-
rived. Interesting, but unfortunately not directly helpful for day-to-day cryptography.

Traditional “pseudo-random” number generators use methods similar to those of
hash functions to generate sequences of random-looking data. However, the process
is deterministic. Once you know the internal state of the random number generator,
you can reproduce the output sequence exactly. Ergo, this is usually a poor option
for cryptography. When you generate a random 2048-bit key, you want 2048 bits’
worth of randomness, not 128 bits of number generator state that’s been algorith-
mically massaged into occupying 2048 bits.

Fortunately, kernel developers have put considerable effort into recording subtle
variations in system behavior and using these as sources of randomness. Sources
include everything from the timing of packets seen on a network to the timing of
hardware interrupts to the vagaries of communication with hardware devices such

http://random.org

1012	 Chapter 27	 Security	

as disk drives. Even on virtual and cloud servers, there’s still enough entropy avail-
able in the environment to generate reasonably random numbers.

All these sources feed forward into a secondary pseudo-random number generator
that ensures the output stream of random data will have reasonable statistical prop-
erties. That data stream is then made available through a device driver. In Linux
and FreeBSD, it’s presented as /dev/random and /dev/urandom.

Two main things to know about random numbers:

•	 Nothing that runs in user space can compete with the quality of the ker-
nel’s random number generator. Never allow cryptographic software to
generate its own random data; always make sure it uses random data
from /dev/random or /dev/urandom. Most software does this by default.

•	 The choice of /dev/random vs. /dev/urandom is a matter of dispute,
and unfortunately, the arguments are too subtle and mathematical to
summarize here. The short version is that /dev/random on Linux is not
guaranteed to generate data at all if the kernel feels that the system has
not been accumulating enough entropy. Either get educated and pick one
side or the other, or just use /dev/urandom and don’t worry your pretty
little head about this issue. Most experts seem to recommend the latter
approach. FreeBSD users are excused from battle, as /dev/random and
/dev/urandom on the BSD kernel are identical.

Cryptographic software selection
There is good reason to be highly suspicious of all security software, and the packages
that provide cryptographic services most of all. Major international governments
are rumored to have attempted to influence the design phases of cryptographic
protocols and algorithms. It seems safe to assume that several well-funded groups
are eager to compromise any cryptographic project that is not fully nailed down.

That said, we trust open source software more than closed. Projects such as OpenSSL
have a history of serious vulnerabilities, but those problems are disclosed, mitigated,
and released in a transparent, open forum. The project history and source code are
examined by thousands of people.

Never rely on home-grown cryptography of any sort. It is difficult enough just to
use libraries correctly! Bespoke cryptosystems are doomed to vulnerability.

The openssl command
openssl is an administrator’s TLS multitool. You can use it to generate public/private
key pairs, encrypt and decrypt files, examine the cryptographic properties of re-
mote systems, create certificate authorities, convert among file formats, and myriad
other cryptographic operations.

	 Cryptography primer	 1013

Se
cu

rit
y

Preparing keys and certificates
One of the most common administrative functions of openssl is to prepare certif-
icates for signing by a CA. Start by creating a 2048-bit private key:

$ openssl genrsa -out admin.com.key 2048

Use the private key to create a certificate signing request. openssl prompts for
metadata known as the Distinguished Name (DN) to include with the request. It’s
also possible to present this information in an answers file instead of in-line, as
shown below.

$ openssl req -new -sha256 -key admin.com.key -out admin.com.csr
Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Oregon
Locality Name (eg, city) []:Portland
Organization Name (eg, company) [Internet Widgits Pty Ltd]:ULSAH5E
Organizational Unit Name (eg, section) []:Crypto division
Common Name (e.g. server FQDN or YOUR name) []:server.admin.com

Submit the contents of admin.com.csr to the CA. The CA will perform a valida-
tion process to confirm that you are associated with the domain for which you’re
obtaining a certificate (usually by sending email to an address within that domain),
and will subsequently return a signed certificate. You can then use admin.com.key
and the CA-signed certificate in your web server configuration.

Most of these fields are fairly arbitrary, but the Common Name is important. It must
match the name of the subdomain you want to serve. If, for instance, you want to
serve TLS for www.admin.com, make that your Common Name. You can request
multiple names for a single certificate or a wild card that matches all the names in
a subdomain; for example, *.admin.com.

Once you have the certificate, you can examine its properties. Here are some of the
details of a wild card certificate for *.google.com:

$ openssl x509 -noout -text -in google.com.pem
depth=2 /C=US/O=GeoTrust Inc./CN=GeoTrust Global CA
...
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, O=Google Inc, CN=Google Internet Authority G2
 Validity
 Not Before: Dec 15 13:48:27 2016 GMT
 Not After : Mar 9 13:35:00 2017 GMT
 Subject: C=US, ST=California, L=Mountain View, O=Google Inc,

CN=*.google.com

The validity period is from Dec 15, 2016 through March 9, 2017. Clients who con-
nect outside of this window will see error messages that the certificate is no longer
valid. Tracking and managing certificate expiration dates is a common sysadmin
responsibility.

http://admin.com.key
http://admin.com.key
http://admin.com.csr
http://server.admin.com
http://admin.com.csr
http://admin.com.key
http://www.admin.com
http://*.admin.com
http://*.google.com:
http://google.com.pem
http://*.google.com

1014	 Chapter 27	 Security	

Debugging TLS servers
Use openssl s_client to examine the TLS details of a remote server. This informa-
tion can be quite useful when you are debugging web servers having certificate
problems. For example, to examine the TLS properties of google.com (output
truncated for brevity):

$ openssl s_client -connect google.com:443

New, TLSv1/SSLv3, Cipher is AES128-SHA
Server public key is 2048 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
SSL-Session:
 Protocol : TLSv1
 Cipher : AES128-SHA
 Session-ID: 4F72DC56EE4E80568F7E0EF9F59C8D7855C87F366B49BF1D9808...
 Session-ID-ctx:
 Master-Key: 095C6D8AF9B6B81E3E16BA05C0C9ACFACD72EF3335A32B86F3D3...
 Key-Arg : None
 Start Time: 1484163220
 Timeout : 300 (sec)
 Verify return code: 0 (ok)

You can use openssl s_client to check which versions of the TLS protocol a server
supports. See also openssl s_server, which starts a generic TLS server. That can be
handy for testing and debugging clients.

PGP: Pretty Good Privacy
Phil Zimmermann’s PGP package provides a tool chest of bread-and-butter cryp-
tographic utilities focused primarily on email security. It can encrypt data, generate
signatures, and verify the origin of files and messages.

PGP has an interesting history that includes lawsuits, criminal prosecutions, and
the privatization of portions of the original PGP suite. Recently, PGP has been heav-
ily criticized for exposing too much metadata in its most common usage modes.
Exposed message length, recipients, and clear-text draft storage (among other
things) are weaknesses that could potentially be exploited by attackers, especial-
ly nation-state actors with generous resources. That said, PGP is still significantly
better than sending information in plain text.

PGP’s file formats and protocols are being standardized by the IETF under the
name OpenPGP, and multiple implementations of the proposed standard exist. The
GNU project provides an excellent, free, and widely used implementation known
as GnuPG at gnupg.org. For clarity, we refer to the systems collectively as PGP even
though individual implementations have their own names.

See page 607 for
more information
about email privacy.

http://google.com
http://google.com:443
http://gnupg.org

	 Cryptography primer	 1015

Se
cu

rit
y

Unfortunately, the UNIX and Linux versions are nuts-and-bolts enough that you
have to understand a fair amount of cryptographic background to use them. Al-
though you may find PGP useful in your own work, we don’t recommend that you
support it for users because it has been known to spark many puzzled questions.
We have found the Windows version to be considerably easier to use than the gpg
command with its dozens of different operating modes.

Software packages on the Internet are often distributed with a PGP signature file
that purports to guarantee the origin and purity of the software. However, it is dif-
ficult or impossible for people who are not die-hard PGP users to validate these
signatures. Users must have collected a library of public keys from people whose
identities they have personally verified. Downloading a single public key along with
a signature file and software distribution is approximately as secure as download-
ing the distribution alone.

Some email clients add on a simple GUI for encrypted incoming and outgoing
messages. Google Chrome users can install the “end to end” extension to incorpo-
rate PGP support for Gmail.

Kerberos: a unified approach to network security
The Kerberos system, designed at MIT, attempts to address some of the issues of
network security in a consistent and extensible way. Kerberos is an authentication
system, a facility that “guarantees” that users and services are in fact who they claim
to be. It does not afford any additional security or encryption beyond that.

Kerberos uses symmetric and asymmetric cryptography to construct nested sets
of credentials called “tickets.” Tickets are passed around the network to certify
your identity and to give you access to network services. Each Kerberos site must
maintain at least one physically secure machine (called the authentication server)
on which to run the Kerberos daemon. This daemon issues tickets to users or ser-
vices that present credentials (such as passwords) when they request authentication.

In essence, Kerberos improves on traditional password security in only two ways: it
never transmits unencrypted passwords on the network, and it relieves users from
having to type passwords repeatedly, making password protection of network ser-
vices somewhat more palatable.

The Kerberos community boasts one of the most lucid and enjoyable documents ever
written about a cryptosystem, Bill Bryant’s “Designing an Authentication System:
a Dialogue in Four Scenes.” Despite its age it remains required reading for anyone
interested in cryptography and is available at

	 web.mit.edu/kerberos/www/dialogue.html

Kerberos offers a better network security model than does the “ignoring network
security entirely” model, but it is neither perfectly secure nor painless to install and
run. It does not supersede the other security measures described in this chapter.

1016	 Chapter 27	 Security	

Unfortunately (and perhaps predictably), the Kerberos system distributed as part
of Windows’ Active Directory uses proprietary, undocumented extensions to the
protocols. As a result, it does not interoperate well with distributions based on the
MIT code. Fortunately, the sssd daemon lets UNIX and Linux systems interact
with Active Directory’s version of Kerberos. See the sections starting on page 586
for more information.

27.7	 SSH, the Secure SHell
The SSH system, invented by Tatu Ylönen, is a protocol for remote logins and for
securing network services on an insecure network. SSH’s capabilities include remote
command execution, shell access, file transfer, port forwarding, network proxy ser-
vices, and even VPN tunneling. It is an indispensable tool, a veritable Swiss Army
knife for system administrators.

SSH is a client/server protocol that uses cryptography for authentication, confiden-
tiality, and integrity of communications between two hosts. It is designed for algo-
rithmic flexibility, allowing the underlying cryptographic protocols to be updated
and deprecated as the industry evolves. SSH is documented as a group of related
protocols in RFCs 4250 through 4256.

In this section we discuss OpenSSH, the open source SSH implementation that is
included and enabled by default on nearly every version of UNIX and Linux. We
also mention a few alternative solutions for the adventurous and open-minded.

OpenSSH essentials
OpenSSH was developed by the OpenBSD project in 1999 and has since been
maintained by that organization. The software suite consists of several commands:

•	 ssh, the client
•	 sshd, the server daemon
•	 ssh-keygen, for generating public/private key pairs
•	 ssh-add and ssh-agent, tools for managing authentication keys
•	 ssh-keyscan, for retrieving public keys from servers
•	 sftp-server, the server process for file transfer over SFTP
•	 sftp and scp, file transfer client utilities

In the most common and basic usage, a client establishes a connection to the server,
authenticates itself, and subsequently opens a shell to execute commands. Authen-
tication methods are negotiated according to mutual support and the preferences
of the client and server. Many users can log in simultaneously. A pseudo-terminal
is allocated for each, connecting their input and output to the remote system.

To initiate this process, a user invokes ssh with the remote host as the first argument:

$ ssh server.admin.com

http://server.admin.com

	 SSH, the Secure SHell	 1017

Se
cu

rit
y

ssh attempts a TCP connection on port 22, the standard SSH port assigned by IANA.
When the connection is established, the server sends its public key for verification.
If the server isn’t already known and trusted, ssh prompts the user to confirm the
server by presenting a hash of the server’s public key called the key fingerprint:

The authenticity of host 'server.admin.com' can't be established.
ECDSA key fingerprint is SHA256:quLdFoXBI6OpU6HwnUy/K50cR9UuU.
Are you sure you want to continue connecting (yes/no)?

The intent is that a server administrator can communicate the host key to users in
advance. Users can then compare the information they received from the adminis-
trator to the server’s proffered fingerprint when they first connect. If the two match,
the host’s identity is proved.

Once the user accepts the key, the fingerprint is added to ~/.ssh/known_hosts for
future use. ssh won’t mention the server’s key again unless the key changes, in which
case ssh displays a nasty warning message that the server’s identity has changed.

In practice, this server verification dance is routinely ignored. Administrators rarely
send the host key to users, and users blindly accept the host key without verifica-
tion. This rubber-stamping of new host keys subjects users to man-in-the-middle
attacks. Fortunately, the process can be automated and streamlined. We discuss this
issue in Host key verification with SSHFP on page 1026.

Once the host key has been accepted, the server lists the authentication methods
it supports. OpenSSH implements all the methods described by the SSH RFCs, in-
cluding simple UNIX password authentication, trusted hosts, public keys, GSSAPI
for integration with Kerberos, and a flexible challenge/response scheme to support
PAM and one-time passwords. Of these, public key authentication is the most
commonly used and is the method we recommend for most sites. It offers the best
balance of strong security and convenience. We discuss the use of public keys with
SSH in more detail in Public key authentication starting on page 1019.

ssh and sshd can be tuned for varying needs and security types. Configuration is
found in the /etc/ssh directory, an uncharacteristically standard location among all
flavors of UNIX and Linux. Table 27.1 enumerates the files found in that directory.

Table 27.1	 Configuration files found in /etc/ssh

File Permissions Contents

ssh_config 0644 Site-wide client configuration
sshd_config 0644 Server configuration
moduli 0644 Prime numbers and generators for the DH key exchange
*_key 0600 Private keys for every algorithm supported by the server
*_key.pub 0644 A public key to match each private key

http://'server.admin.com'

1018	 Chapter 27	 Security	

In addition to /etc/ssh, OpenSSH uses ~/.ssh for storing public and private keys, for
per-user client configuration overrides, and for a few other purposes. The ~/.ssh
directory is ignored unless its permissions are set to 0700.

OpenSSH has a respectable though not impeccable track record for security vulner-
abilities. According to the CVE database (cve.mitre.org), several critical vulnerabil-
ities were discovered in early versions. The last of these was documented in 2006.
Occasional denial-of-service and bypass vulnerabilities continue to be announced,
but most of them are considered relatively low risk. Still, it’s wise to update the
OpenSSH packages as part of your regular patching schedule.

The ssh client
Getting started with ssh is straightforward, but its power and versatility lie in its
many options. Through configuration you can choose cryptographic algorithms
and ciphers, create convenient host aliases, set up port forwarding, and much more.

The basic syntax is

ssh [ options ] [ username@ ]host [ command ]

For example, to check the disk space of /var/log:

$ ssh server.admin.com "df -h /var/log"

If you specify a command, ssh authenticates itself to the host, runs the command,
and exits without opening an interactive shell. If you do not specify a username,
ssh uses your local username on the remote host.

ssh reads configuration settings from the site-wide file /etc/ssh/ssh_config and
processes additional options and overrides on a per-user basis from ~/.ssh/config.
Table 27.2 lists some of the more interesting options that you can tune in these files.
We discuss some of these options in more detail later in this chapter.

When ssh assembles a final configuration, command-line arguments take precedence
over entries in ~/.ssh/config. The global configuration set in /etc/ssh/ssh_config
is the lowest-priority source of configuration options.

ssh sends the current username as the login name if another value is not specified.
You can supply a different username with the -l flag or the @ syntax:

$ ssh -l hsolo server.admin.com
$ ssh hsolo@server.admin.com

Client options that are not available as direct arguments to ssh can still be set on
the command line with the -o flag. For example, you could disable host checks for
a server:

$ ssh -o StrictHostKeyChecking=no server.admin.com

The -v option prints debug messages. Specify it multiple times (maximum of three)
to increase verbosity. You’ll find this flag to be invaluable when debugging authen-
tication problems.

 	

  

  

	
	

http://cve.mitre.org
http://server.admin.com
http://server.admin.com
mailto:hsolo@server.admin.com
http://server.admin.com

	 SSH, the Secure SHell	 1019

Se
cu

rit
y

For convenience, ssh returns the exit status of the remote command. Use this be-
havior to check for error conditions when invoking ssh from scripts.

Consult man ssh and man ssh_config to familiarize yourself with available options
and features. Run ssh -h for a succinct summary.

Public key authentication
OpenSSH (and the SSH protocol generally) can use public key cryptography to au-
thenticate users to remote systems. As a user, you start by creating a public/private
key pair. You give the public key to the server administrator, who adds it to the
server in the file ~/.ssh/authorized_keys. You can then log in to the remote server
by running ssh with the remote username and matching private key.

$ ssh -i ~/.ssh/id_ecdsa hsolo@server.admin.dom

Use ssh-keygen to generate a key pair. You can specify which cryptographic algo-
rithm to use, as well as bit length and other characteristics. For example, to generate
an ECDSA key pair with a 384-bit elliptic curve size:

$ ssh-keygen -t ecdsa -b 384
Generating public/private ecdsa key pair.
Enter file in which to save the key (/home/ben/.ssh/id_ecdsa): <return>
Enter passphrase (empty for no passphrase): <return>
Enter same passphrase again: <return>
Your identification has been saved in /home/ben/.ssh/id_ecdsa.
Your public key has been saved in /home/ben/.ssh/id_ecdsa.pub.
The key fingerprint is:
SHA256:VRh6raUfpn3YdtMm7GURbIoyfcp/npbwhsmvsdrlhK4 ben

            

Table 27.2	 Useful SSH client configuration options

Option Meaning Default

AddKeysToAgent Automatically add keys to ssh-agent no
ConnectTimeout Connection timeout in seconds varies a

ControlMaster Allow connection multiplexing no
DynamicForward Set up a SOCKS4 or SOCKS5 proxy –
ForwardAgent Enable ssh-agent forwarding no
Host Marker for a new host alias –
IdentityFile Path to an authentication private key ~/.ssh/id_rsa b

Port Port to connect on 22
RequestTTY Specify whether a TTY is needed auto
ServerAliveInterval Pings for connections to the server 0 (disabled)
StrictHostKeyChecking Require (yes) or ignore (no) host keys ask

a.	 The default is determined by the kernel’s TCP defaults, which vary widely.
b.	 The precise name depends on the authentication algorithm. By default, all keys begin with id_.

1020	 Chapter 27	 Security	

The public key (~/.ssh/id_ecdsa.pub) and private key (~/.ssh/id_ecdsa) files are
base64-encoded ASCII files. Never share the private key! ssh-keygen sets the per-
missions on the public and private key correctly as 0644 and 0600, respectively. This
example uses ECDSA, but it’s also fine to use -t rsa with 2048 or 4096 bits.

ssh-keygen prompts for an optional passphrase to encrypt the private key. If you
use a passphrase, you must type it to decrypt the key before ssh can read it. A pass-
phrase improves security because the authentication process gains an additional
verification step: you must both have the key file and know the passphrase that
decrypts it before you can authenticate.

We suggest setting a passphrase on all privileged accounts (that is, those with sudo
privileges). If you need to use a key without a passphrase to enable an automated
process, limit the corresponding server account’s permissions.

If you’re the server administrator and you need to add a public key for a new user,
follow these steps:

1.	 Ensure that the user has an active account with a valid shell.

2.	 Get a copy of the user’s public key from the user.

3.	 Create the user’s .ssh directory with permissions 0700.

4.	 Add the public key to ~user/.ssh/authorized_keys and set the permis-
sions of that file to 0600.

For example, if user hsolo’s public key were saved in /tmp/hsolo.pub, the process
would look like this:

$ grep hsolo /etc/passwd
hsolo:x:503:503:Han Solo:/home/hsolo:/bin/bash
$ mkdir -p ~hsolo/.ssh && chmod 0700 ~hsolo/.ssh
$ cat /tmp/hsolo.pub >> ~hsolo/.ssh/authorized_keys
$ chmod 0600 ~hsolo/.ssh/authorized_keys

If you do this more than once you’ll almost certainly find it prudent to script the
procedure. Configuration management systems like Ansible and Chef handle this
task cleanly.

The ssh-agent
The ssh-agent daemon caches decrypted private keys. You load your private keys
into the agent, and ssh then automatically offers those keys when it connects to
new servers, simplifying the process of connecting.

Use the ssh-add command to load a new key. If the key requires a passphrase,
you’ll be prompted to enter it. To list the currently loaded keys, type ssh-agent -l:

$ ssh-add ~/.ssh/id_ecdsa
Enter passphrase for ~/.ssh/id_ecdsa: <passphrase>
Identity added: ~/.ssh/id_ecdsa (~/.ssh/id_ecdsa)

	 SSH, the Secure SHell	 1021

Se
cu

rit
y

$ ssh-add -l
384 SHA256:VRbIoyfcp/npbwhsmvsdrlhK4 ~/.ssh/id_ecdsa (ECDSA)

You can have many keys active at once. Remove a key with ssh-add -d path, or purge
all loaded keys with ssh-add -D.

Oddly, to remove the private key from the agent, the public key must be in the same
directory and have the same filename but with a .pub extension. If the public key is
not available, you might receive a confusing error message that the key does not exist:

$ ssh-add -d ~/.ssh/id_ecdsa
Bad key file /home/ben/.ssh/id_ecdsa: No such file or directory

You can easily fix this problem by extracting the public key with ssh-keygen and
saving it to the expected filename. (This extraction is possible because the private
key file contains a copy of the public key as well as the private key.)

$ key=/home/ben/.ssh/id_ecdsa
$ ssh-keygen -yf $key > $key.pub
Enter passphrase: <passphrase>

ssh-agent is even more useful when you leverage its key forwarding feature, which
makes the loaded keys available to remote hosts while you are logged in to them
through ssh. You can use this feature to jump from one server to another without
copying your private key to remote systems. See Exhibit C.

Exhibit C	 ssh-agent forwarding

Client Jump server Private servers

aka bastion host

Connect from here
to private servers

without copying the key

SSH connection with
agent forwarding

Runs ssh-agent

To enable agent forwarding, either add ForwardAgent yes to your ~/.ssh.config
file or use ssh -A.

Use key forwarding only on servers that you trust. Anyone in control of the server
you’ve forwarded to can assume your identity and access remote systems. They can-
not read your private keys directly, but they can use any that are available through
the forwarding agent.

1022	 Chapter 27	 Security	

Host aliases in ~/.ssh/config
You’ll undoubtedly encounter many different SSH configurations if you interact with
or administer a large number of servers. To simplify your life, the ~/.ssh/config file
lets you set up aliases and overrides for individual hosts.

For example, consider two systems. The first is a web server with IP address
54.84.253.153 where sshd listens on port 2222. Your username on that server is
han and you have a private key for authentication. The other is debian.admin.com,
where your username is hsolo. You’d prefer to disable password authentication en-
tirely, but the Debian server requires it.

To connect to these servers from the command line you could use option-larded
commands such as these:

$ ssh -l han -p 2222 -i /home/han/.ssh/id_ecdsa 54.84.253.153
$ ssh -l hsolo debian.admin.com

Your client in this case must leave password authentication enabled (the default)
because it’s a hassle to type -o PasswordAuthentication=no all the time.

The following ~/.ssh/config sets up aliases for these hosts and has the added benefit
of disabling password authentication by default:

PasswordAuthentication no
Host web
 HostName 54.84.253.153
 User han
 IdentityFile /home/han/.ssh/id_ecdsa
 ForwardAgent yes
 Port 2222
Host debian
 Hostname debian.admin.com
 User hsolo
 PasswordAuthentication yes

 Now you can use the much simpler commands ssh web and ssh debian to reach
these hosts. The client reads the aliases and sets options automatically for each system.

ssh also understands some basic patterns for matching hosts. For example:

Host *
 ServerAliveInterval 30m
 ServerAliveCountMax 1
Host 172.20.*
 User luke

This example tells ssh to keep idle connections open for 30 minutes on all servers.
It also sets username “luke” when connecting to hosts on the 172.20/16 network.

Host aliases become more powerful than you can possibly imagine when combined
with other tricks of the OpenSSH trade.

http://debian.admin.com
http://debian.admin.com
http://debian.admin.com

	 SSH, the Secure SHell	 1023

Se
cu

rit
y

Connection multiplexing
ControlMaster is a nifty ssh feature that enables connection multiplexing, thus
considerably improving SSH performance over WAN links. When enabled, the first
connection to a host creates a socket that can be reused. Subsequent connections
share the socket but require separate authentication.

Turn on multiplexing with the ControlMaster, ControlPath, and ControlPersist
options in a Host alias:

Host web
 HostName 54.84.253.153
 User han
 Port 2222
 ControlMaster auto
 ControlPath ~/.ssh/cm_socket/%r@%h:%p
 ControlPersist 30m

ControlMaster auto enables the feature. ControlPath creates a socket at the des-
ignated location. See man ssh_config for the substitutions that can be used in the
ControlPath filename. In this case, the file is named according to the remote login
username, host IP address, and port. Connecting to this host results in a socket
like this one:

$ ls -l ~/.ssh/cm_socket/
srw------- 1 ben ben 0 Jan 2 15:22 han@54.84.253.153:22

Such a pattern guarantees a unique filename for each socket. ControlPersist saves
the socket for the specified period of time even if the first connection (the “mas-
ter”) disconnects.

Spend the 30 seconds it takes to set this up, then make a donation to the OpenBSD
foundation to thank them for implementing multiplexing and saving you time.

Port forwarding
Another useful ancillary feature of SSH is its ability to tunnel TCP connections se-
curely through an encrypted channel, thereby allowing connectivity to insecure or
firewalled services at remote sites. Exhibit D on the next page shows a typical use
of an SSH tunnel and should help clarify how it works.

In this scenario, a remote user—let’s call her Alice—wants to establish an HTTP
connection to a web server on an enterprise network. Access to that host or to port
80 is blocked by the firewall, but having SSH access, Alice can route the connection
through the SSH server.

To set this up, Alice logs in to the remote SSH server with ssh. On the ssh com-
mand line, she specifies an arbitrary (but specific; in this case, 8000) local port that
ssh should forward through the secure tunnel to the remote web server’s port 80.

$ ssh -L 8000:webserver:80 server.admin.com

http://server.admin.com

1024	 Chapter 27	 Security	

Exhibit D	 An SSH tunnel for HTTP

FI
R
EW

AL
L

External system

ssh

Chrome

random
port

random
port

port
8000

port 22

port 80

random
port

SSH server

sshd

Web server

httpd
Enterprise
side

Internet
side

All source ports in this example are marked as random since programs choose an
arbitrary port from which to initiate connections.

To access the web server, Alice can now connect to port 8000 on her own machine.
The local ssh receives the connection and tunnels Alice’s traffic over the existing
SSH connection to the remote sshd. In turn, sshd forwards the connection to the
web server on port 80.

Of course, tunnels such as these can be intentional or unintentional back doors as
well. Use tunnels with caution and also watch for unauthorized use of this facility
by users. You can disable port forwarding in sshd with the AllowTCPForwarding
no configuration option.

sshd: the OpenSSH server
The OpenSSH server daemon, sshd, listens on port 22 (by default) for connections
from clients. Its configuration file, /etc/ssh/sshd_config, boasts myriad options,
some of which may need to be tuned for your site.

sshd runs as root. It forks an unprivileged child process for each connected cli-
ent with the same permissions as the connecting user. If you make changes to the
sshd_config file, you can force sshd to reload by sending a HUP signal to the par-
ent process.

$ sudo kill -HUP $(sudo cat /var/run/sshd.pid)

In Linux, you can also run sudo systemctl reload sshd. The changes take effect
for new connections. Existing connections are preserved without interruption but
continue to use their previous settings.

	 SSH, the Secure SHell	 1025

Se
cu

rit
y

The following example sshd_config includes some commonly adjusted options
configured to balance server security with users’ convenience:

Set to inet for IPv4-only or inet6 for IPv6-only
AddressFamily any

Allows only the named users and groups to log in
Somewhat draconian. Adding/removing users requires reload
AllowUsers foo bar hsolo
AllowGroups admins

TCP forwarding is convenient but can be abused
AllowTcpForwarding yes

Display a message before users authenticate
Important for inane legal reasons and compliance requirements
Banner /etc/banner

We prefer to allow public key authentication only
ChallengeResponseAuthentication no
PasswordAuthentication no
RSAAuthentication no
GSSAPIAuthentication no
HostbasedAuthentication no
PubkeyAuthentication yes

Disconnect inactive clients after 5 minutes
ClientAliveInterval 300
ClientAliveCountMax 1

Allow compression at all times
Compression yes

Do not allow remote hosts to use forwarded ports
GatewayPorts no

Record failed login attempts
LogLevel VERBOSE

Reduced from the default of 6
MaxAuthTries 3

Do not allow root to log in (encourages use of sudo)
PermitRootLogin no

Prevent users from setting their environment in an authorized_keys file
PermitUserEnvironment no

Use the "auth" facility for syslog messages
SyslogFacility AUTH

Kill the session if a TCP connection is lost
TCPKeepAlive no

Do not allow X forwarding if your site does not use X
X11Forwarding no

1026	 Chapter 27	 Security	

We encourage you to list the acceptable ciphers and key exchange algorithms ex-
plicitly. We don’t include the details here because the names are quite long and are
a moving target anyway. Follow Mozilla’s OpenSSH configuration guidelines, which
can be found at goo.gl/Xxgx7H (deep link into wiki.mozilla.org).

Host key verification with SSHFP
Recall from earlier in this section that SSH server host keys are routinely ignored
by server administrators and users alike. Cloud instances exacerbate the problem
because even the administrator has no knowledge of the host key before logging in.

Fortunately, a DNS record known as SSHFP has been developed to address this
issue. The premise is that the server’s key is stored as a DNS record. When a cli-
ent connects to an unknown system, SSH looks up the SSHFP record to verify the
server’s key rather than asking the user to verify it.

The sshfp utility, available from github.com/xelerance/sshfp, generates SSHFP DNS
resource records either by scanning a remote server (the -s flag) or by parsing a pre-
viously accepted key from a known_hosts file (the -k flag; this is also the default).
Of course, either choice assumes that the source of the key is known to be correct.

For example, the following command generates a BIND-compatible SSHFP record
for server.admin.com:

$ sshfp server.admin.com
server.admin.com	IN SSHFP 1 1 94a26278ee713a37f6a78110f1ad9bd...
server.admin.com	IN SSHFP 2 1 7cf72d02e3d3fa947712bc56fd0e0a3i...

Add these records to the domain’s zone file (be mindful of the names and the
$ORIGIN), reload the domain, and use dig to verify the key:

$ dig server.admin.com. IN SSHFP | grep SSHFP
; <<>> DiG 9.5.1-P2 <<>> server.admin.com. IN SSHFP
; server.admin.com. IN SSHFP
server.admin.com.	 38400	 IN SSHFP 1 1 94a26278ee713a37f6a78110f...
server.admin.com.	 38400	 IN SSHFP 2 1 7cf72d02e3d3fa947712bc56f...

ssh does not consult SSHFP records by default. Add the VerifyHostKeyDNS option
to /etc/ssh/ssh_config to enable checking. As with most SSH client options, you
can also pass -o VerifyHostKeyDNS=yes on the ssh command line when you first
access a new system.

You can automate this process by generating the SSHFP record in the server’s ini-
tialization scripts. Use dynamic DNS or your favorite DNS provider’s API to create
the record.

http://goo.gl/Xxgx7H
http://wiki.mozilla.org
http://github.com/xelerance/sshfp
http://server.admin.com:
http://server.admin.com
http://server.admin.com
http://.server.admin.com
http://.server.admin.com
http://server.admin.com
http://server.admin.com
http://server.admin.com
http://server.admin.com
http://.server.admin.com
http://.server.admin.com

	 Firewalls	 1027

Se
cu

rit
y

File transfers
OpenSSH has two utilities for transferring files: scp and sftp. On the server side,
sshd runs a separate process called sftp-server to handle file transfers. SFTP has
no relationship to the older and insecure File Transfer Protocol, FTP.

You can use scp to copy files from your system to a remote host, from a remote host
to your system, or between remote hosts. The syntax mirrors that of cp with some
extra decorations to designate hosts and usernames.

$ scp ./file server.admin.com:
$ scp server.admin.com:file ./file
$ scp server1.admin.com:file server2.admincom:file

sftp is an interactive experience similar to a traditional FTP client. You can also
find graphical SFTP interfaces for most desktop operating systems.

Alternatives for secure logins
Most systems and sites rely on OpenSSH for secure remote access, but it is not the
only choice.

Dropbear is an SSH implementation with a focus on maintaining a compact footprint.
It compiles to a statically linked 110KiB binary, perfect for consumer-grade routers
and other embedded devices. It includes some of the same features as OpenSSH,
such as public key authentication and agent forwarding.

Gravitational’s Teleport is another alternative SSH server that offers several ad-
vantages. Its authentication model relies on expiring certificates, which eliminates
the problem of distributing and configuring users’ public keys. Among Teleport’s
impressive features are an optional audit trail for each connection and a nifty col-
laboration system that lets multiple users share a session. Compared to OpenSSH,
Teleport is relatively new and unproven, but to date there have been no reported
vulnerabilities. We expect Gravitational to continue their rapid pace of development.

Mosh, developed by a brilliant team at MIT, is a replacement for SSH. Unlike SSH,
Mosh operates on encrypted and authenticated UDP datagrams. It is designed for
better performance over WAN connections and for roaming. For example, you
can resume connections if you move from one IP address to another or if your
connection drops. First released in 2012, Mosh has a much shorter history than
OpenSSH, but in its first few years it has had no reported security vulnerabilities.
Like Dropbear, it has a much smaller footprint than OpenSSH.

27.8	 Firewalls
In addition to protecting individual machines, you can also implement security
precautions at the network level. The basic tool of network security is the firewall,
a device or piece of software that prevents unwanted packets from accessing net-
works and systems. Firewalls are ubiquitous today and are found in devices ranging

http://server.admin.com:
http://server.admin.com:file
http://server1.admin.com:file

1028	 Chapter 27	 Security	

from desktop systems and servers to consumer routers and enterprise-grade net-
work appliances.

Packet-filtering firewalls
A packet-filtering firewall limits the types of traffic that can pass through your In-
ternet gateway (or through an internal gateway that separates domains within your
organization) according to information in the packet header. It’s much like driving
your car through a customs checkpoint at an international border crossing. You
specify which destination addresses, port numbers, and protocol types are accept-
able, and the gateway simply discards (and in some cases, logs) packets that don’t
meet the profile.

Packet-filtering software is included in Linux systems in the form of iptables (and
its easier-to-use front end, ufw) and on FreeBSD as ipfw. See the details beginning
on page 440 for more information.

Although these tools are capable of sophisticated filtering and bring a welcome ex-
tra dose of security, we generally discourage the use of UNIX and Linux systems as
network routers and, most especially, as enterprise firewall routers. The complex-
ity of general-purpose operating systems makes them inherently less secure and
less reliable than task-specific devices. Dedicated firewall appliances such as those
made by Check Point and Cisco are a better option for site-wide network protection.

Filtering of services
Most well-known services are associated with a network port in the /etc/services
file or its vendor-specific equivalent. The daemons responsible for these services
bind to the appropriate ports and wait for connections from remote sites. Most of
the well-known service ports are “privileged,” meaning that their port numbers
are in the range 1 to 1023. These ports can be used only by a process running as
root (or with an appropriate Linux capability). Port numbers 1024 and higher are
referred to as nonprivileged ports.

Service-specific filtering is predicated on the assumption that the client (the ma-
chine that initiates a TCP or UDP conversation) uses a non-privileged port to
contact a privileged port on the server. For example, if you wanted to allow only
inbound HTTP connections to a machine with the address 192.108.21.200, you
would install a filter that allowed TCP packets destined for port 80 at that address
and that permitted outbound TCP packets from that address to anywhere.8 The
exact way that such a filter is installed depends on the kind of router or filtering
system you are using.

Modern security-conscious sites use a two-stage filtering scheme. One filter is a
gateway to the Internet, and a second filter lies between the outer gateway and the
rest of the local network. The idea is to terminate all inbound Internet connections

	 8.	 Port 80 is the standard HTTP port as defined in /etc/services.

	 Firewalls	 1029

Se
cu

rit
y

on systems that lie between these two filters. If these systems are administratively
separate from the rest of the network, they can handle a variety of services for the
Internet with reduced risk. The partially secured network is usually called the de-
militarized zone or DMZ.

The most secure way to use a packet filter is to start with a configuration that allows
no inbound connections. You can then liberalize the filter bit by bit as you discover
useful things that don’t work and, hopefully, move any Internet-accessible services
onto systems in the DMZ.

Stateful inspection firewalls
The theory behind stateful inspection firewalls is that if you could carefully listen
to and understand all the conversations (in all languages) that were taking place in
a crowded airport, you could make sure that someone wasn’t planning to bomb a
plane later that day. Stateful inspection firewalls are designed to inspect the traffic
that flows through them and compare the actual network activity to what “should”
be happening.

For example, if the packets exchanged in an H.323 video sequence name a port to
be used later for a data connection, the firewall should expect a data connection to
occur only on that port. Attempts by the remote site to connect to other ports are
presumably bogus and should be dropped.

So what are vendors really selling when they claim to deliver stateful inspection?
Their products either monitor a limited number of connections or protocols or they
search for a particular set of “bad” situations. Not that there’s anything wrong with
that; clearly, some benefit is derived from any technology that can detect traffic
anomalies. In this particular case, however, remember that the claims are mostly
marketing hype.

Firewalls: safe?
A firewall should not be your only means of defense against intruders. It’s only one
component of what ought to be a carefully considered, multilayered security strat-
egy. Firewalls often confer a false sense of security. If a firewall lulls you into relax-
ing other safeguards, it will have had a negative effect on the security of your site.

Every host within your organization should be individually patched, hardened, and
monitored with tools such as Bro, Snort, Nmap, Nessus, and OSSEC. Likewise, your
entire user community needs to be educated about basic security hygiene.

Ideally, local users should be able to connect to any Internet service they like, but
machines on the Internet should only be able to connect to a limited set of local
services hosted within your DMZ. For example, you might want to allow SFTP ac-
cess to a local archive server and allow SMTP connections to a server that receives
incoming email.

1030	 Chapter 27	 Security	

To maximize the value of your Internet connection, we recommend that you em-
phasize convenience and accessibility when deciding how to set up your network.
At the end of the day, it’s the system administrator’s vigilance that makes a network
secure, not a fancy piece of firewall hardware.

27.9	 Virtual private networks (VPNs)
In its simplest form, a VPN is a connection that makes a remote network appear as if
it were directly connected, even if it is physically thousands of miles and many router
hops away. For increased security, the connection is not only authenticated in some
way (usually with a “shared secret” such as a passphrase), but the end-to-end traffic
is also encrypted. Such an arrangement is usually referred to as a “secure tunnel.”

Here’s a good example of the kind of situation in which a VPN is handy. Suppose
that a company has offices in Chicago, Boulder, and Miami. If each office has a
connection to a local ISP, the company can use VPNs to transparently (and, for the
most part, securely) connect the offices across the untrusted Internet. The company
could achieve a similar result by leasing dedicated lines to connect the three offices,
but that would be considerably more expensive.

Another good example is a company whose employees telecommute from their
homes. VPNs let those users reap the benefits of their high-speed and inexpensive
cable modem service while making it appear that they are directly connected to
the corporate network.

Because of the convenience and popularity of this functionality, everybody is offer-
ing some type of VPN solution. You can buy it from your router vendor as a plug-
in for your operating system or even as a dedicated VPN device for your network.
Depending on your budget and scalability needs, you may want to consider one of
the many commercial VPN solutions.

If you’re without a budget and looking for a quick fix, SSH can do secure tunneling
for you. See Port forwarding starting on page 1023.

IPsec tunnels
If you’re a fan of IETF standards (or of saving money) and need a real VPN solution,
take a look at IPsec (Internet Protocol security). IPsec was originally developed for
IPv6, but it has also been widely implemented for IPv4. IPsec is an IETF-approved,
end-to-end authentication and encryption system. Almost all serious VPN vendors
ship a product that has at least an IPsec compatibility mode. Linux and FreeBSD
include native kernel support for IPsec.

IPsec uses strong cryptography to implement both authentication and encryption
services. Authentication ensures that packets are from the right sender and have
not been altered in transit, and encryption prevents the unauthorized examination
of packet contents.

	 Certifications and standards	 1031

Se
cu

rit
y

In tunnel mode, IPsec encrypts the transport layer header, which includes the source
and destination port numbers. Unfortunately, this scheme conflicts with most fire-
walls. For this reason, most modern implementations default to transport mode,
in which only the payloads of packets (the data being transported) are encrypted.

There’s a gotcha involving IPsec tunnels and MTU size. You must ensure that once
a packet has been encrypted by IPsec, nothing fragments it along the network path
the tunnel traverses. To achieve this feat, you might have to lower the MTU on the
devices in front of the tunnel. (In the real world, 1,400 bytes usually works.) See
page 382 in the TCP chapter for more information about MTU size.

All I need is a VPN, right?
Sadly, there’s a downside to VPNs. Although they do build a (mostly) secure tun-
nel across the untrusted network between the two endpoints, they don’t usually
address the security of the endpoints themselves. For example, if you set up a VPN
between your corporate backbone and your CEO’s home, you may inadvertently
be creating a path for your CEO’s 15-year-old daughter to have direct access to ev-
erything on your network.

Bottom line: you need to treat connections from VPN tunnels as external connec-
tions and grant them additional privileges only as necessary and only after careful
consideration. Think about adding a special section to your site security policy to
cover the rules applying to VPN connections.

27.10	 Certifications and standards
If the subject matter of this chapter seems daunting to you, don’t fret. Computer
security is a complicated and vast topic, as countless books, web sites, and maga-
zines can attest. Fortunately, much has been done to help quantify and organize the
available information. Dozens of standards and certifications exist, and mindful
system administrators should reflect on their guidance.

Certifications
Large corporations often employ many full-time employees whose job is guarding
information. To gain credibility in the field and keep their knowledge current, these
professionals attend training courses and obtain certifications. Prepare yourself for
acronym-fu as we work through a few of the most popular certifications.

One of the most widely recognized security certifications is the CISSP, or Certi-
fied Information Systems Security Professional. It is administered by (ISC)2, the
International Information Systems Security Certification Consortium (say that ten
times fast!). One of the primary draws of the CISSP is (ISC)2’s notion of a “common
body of knowledge” (CBK), essentially an industry-wide best practices guide for
information security. The CBK covers law, cryptography, authentication, physical
security, and much more. It’s an incredible reference for security folks.

1032	 Chapter 27	 Security	

One criticism of the CISSP has been its concentration on breadth and consequent
lack of depth. So many topics in the CBK, and so little time! To address this, (ISC)2
has issued CISSP concentration programs that focus on architecture, engineering,
and management. These specialized certifications add depth to the more general
CISSP certification.

The SANS Institute created the Global Information Assurance Certification (GIAC)
suite of certifications in 1999. Three dozen separate exams cover the realm of infor-
mation security with tests divided into five categories. The certifications range in
difficulty from the moderate two-exam GISF to the 23-hour, expert-level GSE. The
GSE is notorious as one of the most difficult certifications in the industry. Many of
the exams focus on technical specifics and require quite a bit of experience.

Finally, the Certified Information Systems Auditor (CISA) credential is an audit
and process certification. It focuses on business continuity, procedures, monitoring,
and other management content. Some consider the CISA an intermediate certifi-
cation that is appropriate for an organization’s security officer role. One of its most
attractive aspects is that it involves only a single exam.

Although certifications are a personal endeavor, their application to business is un-
deniable. More and more companies now recognize certifications as the mark of an
expert. Many businesses offer higher pay and promotions to certified employees. If
you decide to pursue a certification, work closely with your organization to have it
help pay for the associated costs.

Security standards
Because of the ever-increasing reliance on data systems, laws and regulations have
been created to govern the management of sensitive, business-critical informa-
tion. Major pieces of U.S. legislation such as HIPAA, FISMA, NERC CIP, and the
Sarbanes-Oxley Act (SOX) have all included sections on IT security. Although the
requirements are sometimes expensive to implement, they have helped give the
appropriate level of focus to a once-ignored aspect of technology.

Unfortunately, the regulations are filled with legalese and can be difficult to inter-
pret. Most do not contain specifics on how to achieve their requirements. As a re-
sult, standards have been developed to help administrators reach the lofty legisla-
tive requirements. These standards are not regulation-specific, but following them
usually ensures compliance. It can be intimidating to confront the requirements
of all the various standards at once, so it’s usually best to first work through one
standard in its entirety.

ISO 27001:2013
The ISO/IEC 27001 (formerly ISO 17799) standard is probably the most widely
accepted in the world. First introduced in 1995 as a British standard, it is 34 pag-
es long and is divided into 11 sections that run the gamut from policy through
physical security to access control. Objectives within each section define specific

For a broader discus-
sion of industry and
legal standards that
affect IT environ-
ments, see page 1127.

	 Certifications and standards	 1033

Se
cu

rit
y

requirements, and controls under each objective describe the suggested best prac-
tice solutions. The document costs about $200.

The requirements are nontechnical and can be fulfilled by any organization in a
way that best fits its needs. On the downside, the general wording of the standard
leaves the reader with a sense of broad flexibility. Critics complain that the lack of
specifics leaves organizations open to attack.

Nonetheless, this standard is one of the most valuable documents available to the
information security industry. It bridges an often tangible gap between management
and engineering and helps focus both parties on minimizing risk.

PCI DSS
The Payment Card Industry Data Security Standard (PCI DSS) is a different beast
entirely. It arose from the perceived need to improve security in the credit card
processing industry following a series of dramatic exposures. For example, in 2013,
the U.S. government revealed the exposure of 160 million credit card numbers by
various Visa licensees, including JCPenney. This is the largest cybercrime case in
U.S. history; it’s estimated that more than $300 million was lost.

The PCI DSS standard is the result of a joint effort between Visa and MasterCard,
though it is currently maintained by Visa. Unlike ISO 27001, it is freely available
for anyone to download. It focuses entirely on protecting cardholder data systems
and has 12 sections that define requirements for protection.

Because PCI DSS is focused on card processors, it is not generally appropriate for
businesses that don’t deal with credit card data. However, for those that do, strict
compliance is necessary to avoid hefty fines and possible criminal prosecution. You
can find the document at pcisecuritystandards.org.

NIST 800 series
The fine folks at NIST have created the Special Publication (SP) 800 series of doc-
uments to report on their research, guidelines, and outreach efforts in computer
security. These documents are most often used in connection with measuring
FISMA9 compliance for those organizations that handle data for the U.S. federal
government. More generally, they are publicly available standards with excellent
content and have been widely adopted by industry.

The SP 800 series includes more than 100 documents. All of them are available from
csrc.nist.gov/publications/PubsSPs.html. Table 27.3 on the next page lists a few that
you might want to consider starting with.

	 9.	 The Federal Information Security Management Act of 2002

http://pcisecuritystandards.org
http://csrc.nist.gov/publications/PubsSPs.html

1034	 Chapter 27	 Security	

Table 27.3	 Recommended publications in the NIST SP 800 series

Pub Title

800-12 An Introduction to Computer Security: The NIST Handbook
800-14 Generally Accepted Principles and Practices for Securing IT Systems
800-34 R1 Contingency Planning Guide for Information Technology Systems
800-39 Managing Risk from Information Systems: An Organizational Perspective
800-53 R4 Recommended Security Controls for Federal IT and Organizations
800-123 Guide to General Server Security

The Common Criteria
The Common Criteria for Information Technology Security Evaluation (com-
monly known as the “Common Criteria”) is a standard for evaluating the security
level of IT products. These guidelines were established by an international com-
mittee consisting of members from various manufacturers and industries. See
commoncriteriaportal.org to learn more about the standard.

OWASP: the Open Web Application Security Project
OWASP is a nonprofit world-wide organization focused on improving the security
of application software. It is best known for its “top 10” list of web application secu-
rity risks, which helps remind all of us where to focus our energies when securing
applications. Find the current list and a bunch of other great material at owasp.org.

CIS: the Center for Internet Security
CIS has excellent resources for administrators. Perhaps the most valuable are the
CIS benchmarks, a collection of technical configuration recommendations for se-
curing operating systems. You can find benchmarks for each of our example UNIX
and Linux systems. CIS also has benchmarks for cloud providers, mobile devices,
desktop software, network devices, and more. Learn more at cisecurity.org.

27.11	 Sources of security information
Half the battle of keeping your systems secure consists of staying abreast of
security-related developments in the world at large. If your site is broken into, the
break-in probably won’t happen through the use of a novel technique. More likely,
the chink in your armor will turn out to have been a known vulnerability that has
been widely discussed in vendor knowledge bases, on security-related newsgroups,
and on mailing lists.

http://commoncriteriaportal.org
http://owasp.org
http://cisecurity.org

	 Sources of security information	 1035

Se
cu

rit
y

SecurityFocus.com, the BugTraq mailing list, and the OSS mailing list
SecurityFocus.com specializes in security-related news and information. The news
includes current articles on general issues and on specific problems. The site also
includes an extensive technical library of useful papers, nicely sorted by topic.

SecurityFocus’s archive of security tools contains software for a variety of operat-
ing systems along with blurbs and user ratings. It is the most comprehensive and
detailed source of tools that we are aware of.

The BugTraq list is a moderated forum for the discussion of security vulnerabilities
and their fixes. To subscribe, visit securityfocus.com/archive. Traffic on this list can
be fairly heavy, however, and the signal-to-noise ratio is poor. A database of Bug-
Traq vulnerability reports is also available from the web site.

The oss-security mailing list (openwall.com/lists/oss-security) is an excellent source
of security tidbits from the open source community.

Schneier on Security
Bruce Schneier’s blog is a valuable and sometimes entertaining source of informa-
tion about computer security, cryptography, and squid. Schneier is the author of
the well-respected books Applied Cryptography and Secrets and Lies, among oth-
ers. Information from the blog is also captured in the form of a monthly newsletter
known as the Crypto-Gram. Learn more at schneier.com/crypto-gram.html.

The Verizon Data Breach Investigations Report
Released annually, this report is packed with statistics about the causes and sources
of data breaches, and it’s an entertaining read to boot. The 2016 edition suggests,
based on an analysis of 3,141 incidents, that around 80% of data breaches are finan-
cially motivated. Espionage comes in a distant second. This publication includes a
useful breakdown of the types of attacks being seen in the wild.

The SANS Institute
The SANS (SysAdmin, Audit, Network, Security) Institute is a professional orga-
nization that sponsors security-related conferences and training programs, as well
as publishing a variety of security information. Their web site, sans.org, is a useful
resource that occupies something of a middle ground between SecurityFocus and
CERT. It’s neither as frenetic as the former nor as stodgy as the latter.

SANS offers several weekly and monthly email bulletins that you can sign up for
on their web site. The weekly NewsBites are nourishing, but the monthly summa-
ries seem to contain a lot of boilerplate. Neither is a great source of late-breaking
security news.

http://SecurityFocus.com
http://securityfocus.com/archive
http://openwall.com/lists/oss-security
http://schneier.com/crypto-gram.html
http://sans.org

1036	 Chapter 27	 Security	

Distribution-specific security resources
Because security problems have the potential to generate a lot of bad publicity,
vendors are usually eager to help customers keep their systems secure. Most large
vendors have an official mailing list to which security-related bulletins are posted,
and many maintain a web site about security issues as well. It’s common for securi-
ty-related software patches to be distributed for free, even by vendors that normally
charge for software support.

Security portals on the web, such as SecurityFocus.com, contain vendor-specific
information and links to the latest official vendor dogma.

Ubuntu maintains a security mailing list at

	 https://lists.ubuntu.com/mailman/listinfo/ubuntu-security-announce

For Red Hat security information, subscribe to the “enterprise watch” list to get
announcements about the security of Red Hat’s product line. Find it at

	 https://redhat.com/mailman/listinfo/enterprise-watch-list

Although CentOS advisories typically (always?) mirror Red Hat security advisories,
it’s probably worthwhile to subscribe to the CentOS list at

	 https://lists.centos.org/pipermail/centos-announce/

FreeBSD has an active security group with a mailing list at

	 https://lists.freebsd.org/mailman/listinfo/freebsd-security

Other mailing lists and web sites
The contacts listed above are just a few of the many security resources available on
the net. Given the volume of information that’s now available and the rapidity with
which resources come and go, we thought it would be most helpful to point you
toward some metaresources.

One good starting point is linuxsecurity.com, which logs several posts each day
on pertinent Linux security issues. It also maintains a running collection of Linux
security advisories, upcoming events, and user groups.

(IN)SECURE magazine is a free bimonthly magazine that includes news about cur-
rent security trends, product announcements, and interviews with notable security
professionals. Some of the articles should be read with a vial of salt nearby, and al-
ways check the bylines. In many cases, authors are just pimping their own products.

The Linux Weekly News is a tasty treat that includes regular updates about the ker-
nel, security, distributions, and other topics. LWN’s security section can be found
at lwn.net/security.

RHEL

http://SecurityFocus.com
https://lists.ubuntu.com/mailman/listinfo/ubuntu-security-announce
https://redhat.com/mailman/listinfo/enterprise-watch-list
https://lists.centos.org/pipermail/centos-announce/
https://lists.freebsd.org/mailman/listinfo/freebsd-security
http://linuxsecurity.com
http://lwn.net/security

	 When your site has been attacked	 1037

Se
cu

rit
y

27.12	 When your site has been attacked
The key to handling an attack is simple: don’t panic. It’s very likely that by the time
you discover an intrusion, most of the damage has already been done. In fact, it has
probably been going on for weeks or months. The chance that you’ve discovered a
break-in that just happened an hour ago is slim to none.

In that light, the wise owl says to take a deep breath and begin developing a care-
fully thought out strategy for dealing with the break-in. You need to avoid tipping
off the intruder by announcing the break-in or performing any other activity that
would seem abnormal to someone who may have been watching your site’s oper-
ations for many weeks. Hint: performing a system backup is usually a good idea
at this point and (hopefully!) will appear to be a normal activity to the intruder.10

This is also a good time to remind yourself that some studies have shown that 60%
of security incidents involve an insider. Be very careful with whom you discuss the
incident until you’re sure you have all the facts.

Here’s a quick 9-step plan that may assist you in your time of crisis:

1.	 Don’t panic. In many cases, a problem isn’t noticed until hours or days
after it took place. Another few hours or days won’t affect the outcome.
The difference between a panicky response and a rational response will.
Many recovery situations are exacerbated by the destruction of import-
ant log, state, and tracking information during an initial panic.

2.	 Decide on an appropriate level of response. No one benefits from an
overhyped security incident. Proceed calmly. Identify the staff and re-
sources that must participate, and leave others to assist with the post-
mortem after it’s all over.

3.	 Hoard all available tracking information. Check accounting files and
logs. Try to determine where the original breach occurred. Back up all
your systems. Make sure that you physically write-protect removable
media if you connect them to a live system.

4.	 Assess your degree of exposure. Determine what crucial information
(if any) has “left” the company, and devise an appropriate mitigation
strategy. Determine the level of future risk.

5.	 Pull the plug. If necessary and appropriate, disconnect compromised
machines from the network. Close known holes and stop the bleeding.
CERT recommends steps for analyzing an intrusion. The document can
be found at cert.org/tech_tips/win-UNIX-system_compromise.html.

6.	 Devise a recovery plan. With a creative colleague, draw up a recovery
plan on nearby whiteboard. This procedure is most effective when per-
formed away from a keyboard. Focus on putting out the fire and min-

	 10.	 If system backups are not a “normal” activity at your site, you have much bigger problems than the
security intrusion.

http://cert.org/tech_tips/win-UNIX-system_compromise.html

1038	 Chapter 27	 Security	

imizing the damage. Avoid assigning blame or creating excitement. In
your plan, don’t forget to address the psychological fallout your user
community may experience. Users inherently trust others, and blatant
violations of trust make many folks uneasy.

7.	 Communicate the recovery plan. Educate users and management about
the effects of the break-in, the potential for future problems, and your
preliminary recovery strategy. Be open and honest. Security incidents are
part of life in a modern networked environment. They are not a reflec-
tion on your ability as a system administrator or on anything else worth
being embarrassed about. Openly admitting that you have a problem is
90% of the battle, as long as you can demonstrate that you have a plan
to remedy the situation.

8.	 Implement the recovery plan. You know your systems and networks
better than anyone. Follow your plan and your instincts. Speak with a
colleague at a similar institution (preferably one who knows you well)
to keep yourself on the right track.

9.	 Report the incident to authorities. If the incident involved outside
parties, report the matter to CERT. They have a hotline at (412) 268-
5800 and can be reached by email at cert@cert.org. Include as much
information as you can.

A standard form is available from cert.org to help jog your memory. Here are some
of the more useful pieces of information you might include:

•	 The names, hardware, and OS versions of the compromised machines
•	 The list of patches that had been applied at the time of the incident
•	 A list of accounts that are known to have been compromised
•	 The names and IP addresses of any remote hosts that were involved
•	 Contact information (if known) for the administrators of remote sites
•	 Relevant log entries or audit information

If you believe that a previously undocumented software problem may have been
involved, report the incident to the software vendor as well.

27.13	 Recommended reading
Dykstra, Josiah. Essential Cybersecurity Science: Build, Test, and Evaluate Secure
Systems. Sebastopol, CA: O’Reilly Media, 2016.

Fraser, B., Editor. RFC2196: Site Security Handbook. rfc-editor.org, 1997.

Garfinkel, Simson, Gene Spafford, and Alan Schwartz. Practical UNIX and
Internet Security (3rd Edition). Sebastopol, CA: O’Reilly Media, 2003.

Kerby, Fred, et al. “SANS Intrusion Detection and Response FAQ.” SANS. 2009.
sans.org/resources/idfaq

mailto:cert@cert.org
http://cert.org
http://rfc-editor.org
http://sans.org/resources/idfaq

	 Recommended reading	 1039

Se
cu

rit
y

Lyon, Gordon “Fyodor”. Nmap Network Scanning: The Official Nmap Project
Guide to Network Discovery and Security Scanning. Nmap Project, 2009. How to
use nmap, from the author of nmap.

Ristić, Ivan. Bulletproof SSL and TLS: Understanding and Deploying SSL/TLS and
PKI to Secure Servers and Web Applications. London, UK: Feisty Duck, 2014.

Schneier, Bruce. Liars and Outliers: Enabling the Trust that Society Needs to Thrive.
New York, NY: Wiley, 2012.

Thompson, Ken. “Reflections on Trusting Trust.” in ACM Turing Award Lectures:
The First Twenty Years 1966-1985. Reading, MA: ACM Press (Addison-Wesley), 1987.

1040

A commitment to monitoring is the distinguishing characteristic of a professional
system administrator. Inexperienced sysadmins often leave systems unmonitored
and allow failures to be “detected” when a frustrated, angry user calls the help desk
because they’re unable to complete an intended task. Slightly more clued-in admin-
istrative groups set up a monitoring platform but disable after-hours notifications
because they are too bothersome. In either case, fire fighting and hilarity ensue.
These approaches adversely affect the enterprise, complicate recovery efforts, and
give the sysadmin team a bad reputation.

Professional sysadmins adopt monitoring as their religion. Every system is added
to the monitoring platform before it goes live, and the battery of checks is regular-
ly tested and tuned. Metrics and trends are evaluated proactively so that problems
can be spotted before they affect users or put data at risk.

A major on-line video streaming service you may have heard of values their telemetry
system so much that they’d rather have a service outage than a monitoring outage.
Without monitoring, they’d have no idea what was happening anyway.

A monitoring-first philosophy (along with its associated tools) makes you a sys-
admin superhero. You develop a better understanding of your software and ap-
plications, fix small problems before they snowball into catastrophic failures, and

28 Monitoring

	 An overview of monitoring	 1041

M
on

ito
rin

g

become more effective at finding error conditions, debugging problems, and un-
derstanding the performance of complex systems. Monitoring also improves your
quality of life by letting you fix most issues at your convenience rather than at 3:00
a.m. on Thanksgiving Day.

28.1	 An overview of monitoring
The goals of monitoring are to ensure that the IT infrastructure as a whole operates
as expected and to compile, in an accessible and easily digested form, data that are
useful for management and planning. Simple, right? But this high-level description
covers a potentially vast territory.

Real-world monitoring systems vary in every possible dimension, but they all share
this same basic structure:

•	 Raw data is harvested from systems and devices of interest.

•	 The monitoring platform reviews the data and determines what actions
are appropriate, usually by applying administratively set rules.

•	 The raw data and any actions decided on by the monitoring system flow
through to back ends that take appropriate action.

Real-world monitoring systems range from trivially simple to arbitrarily complex.
For example, the following Perl script includes all the elements listed above:

#!/usr/bin/env perl

$loadavg = (split /[\s,]+/, `uptime`)[10];

If load is greater than 5, notify sysadmin
if ($loadavg > 5.0) {
 system 'mail -s "Server load is too high" dan@admin.com < /dev/null'
}

The script runs the uptime command to obtain the system’s load averages. If the
one-minute load average is larger than 5.0, it sends mail to an administrator. Data,
evaluation, reaction.

Once upon a time, a “fancy” monitoring setup involved collections of scripts like
this that ran from cron and commandeered a modem to send messages to sys-
admins’ pagers. Today, you have multiple options available at every stage of the
monitoring pipeline.

Of course, you can still write individual monitoring scripts and run them from cron.
If this is really all you need, by all means keep things simple. But unless you are re-
sponsible for only one or two servers, this ad hoc approach is normally not sufficient.

The following sections review the stages of the pipeline in a bit more detail.

mailto:dan@admin.com

1042	 Chapter 28	 Monitoring	

Instrumentation
A wide range of data that may prove useful to your organization includes perfor-
mance figures (response time, utilization, transfer rate), availability figures (reach-
ability and uptime), capacity, state changes, log entries, and even business metrics
such as average shopping cart value or click conversion rate.

Because anything one might do on a computer is potentially of monitoring interest,
monitoring systems are usually data-source agnostic. They often come with built-
in support for a variety of inputs. Even data sources that lack direct support can
normally be brought in with a few lines of adapter code or a separate data gateway
such as StatsD (see page 1052).

With so much data out there begging to be collected, the hard part of designing a
collection system can be knowing what to ignore. Avoid collecting data that does
not have a clear and actionable purpose. Data overcollection loads down both the
monitoring system and the entities being monitored. It also tends to obscure the
values that are truly important, drowning them in a sea of noise.

Unfortunately, it’s often not easy to distinguish useful data from dross. You must
continually reevaluate what is monitored and rethink how that data will be acted
on throughout a system’s life.

Data types
At the highest level, monitoring data can be grouped into three general categories:

•	 Real-time metrics, which characterize the operational state of the envi-
ronment. These are typically numbers or Boolean values. In general, it’s
the responsibility of the monitoring system to test these metrics against
expectations and generate an alert if a current value exceeds a predefined
range or threshold.

•	 Events, which often take the form of log file entries or “push” notifications
from subsystems. These events, sometimes known as pattern-based met-
rics, can indicate that a state change, alarm condition, or other action has
occurred. Events can be processed to form numeric metrics (e.g., a total
or a rate), or they can trigger monitoring responses directly.1

•	Aggregated and summarized historic trends, which are often time-series
collections of real-time metrics. They allow for analysis and visualization
of changes over time.

	 1.	 Many of the data points collected by application monitoring software fall into the “event” category;
sometimes they have quantitative data attached as well. Interrelationships among events (e.g., “the
user looked at the Settings page but then canceled without changing anything”) are often helpful to
investigate. General-purpose monitoring platforms tend not to be very good at this sort of cross-ref-
erencing, which is one reason that application monitoring is a category of its own.

	 An overview of monitoring	 1043

M
on

ito
rin

g

Intake and processing
Most monitoring systems revolve around a central monitoring platform that ab-
sorbs data from monitored systems, performs appropriate processing, and applies
administrative rules to determine what should happen in response.

First-generation platforms such as Nagios and Icinga focused on detecting and re-
sponding to problems as they occurred. These systems were revolutionary for their
day and led us into the modern world of monitoring. Nevertheless, they have been
eclipsed over time by the industry’s gradual realization that all monitoring data is
time-series data. If values didn’t vary, you wouldn’t be monitoring them.

Clearly, a more data-oriented approach was needed. However, monitoring data is
usually so voluminous that you can’t simply dump it all into a traditional database and
allow it to accumulate. That’s a recipe for poor performance and overflowing disks.

The modern approach is to organize monitoring around a data store that’s special-
ized for handling time-series data. All data is stored for an initial period, but as
the data ages, the store applies increasingly high levels of summarization to limit
storage requirements. For example, the store might keep an hour’s worth of data
at one-second resolution, a week’s worth of data at one-minute resolution, and a
year’s worth of data at one-hour resolution.

Historical data is useful not only for dashboard presentations, but also as a base-
line for comparison. Is the current network error rate 25% or more above its his-
torical average?

Notifications
Once you have a monitoring framework in place, put careful thought into what to
do with the monitoring results. The first priority is usually to notify administrators
and developers about a problem that needs attention.

Notifications must be actionable. Structure your monitoring system so that every-
one who receives a given notification must potentially do something in response,
even if the action is something as general as “check later to be sure this was taken
care of.” Notifications that are purely informational train staff to ignore notifications.

In most cases, notifications need to extend beyond email to be optimally effective.
For critical issues, SMS notifications (that is, text messages) to administrators’ cell
phones are easy and efficient. Recipients can set their ring tones and phone volume
so that they’ll be awakened in the middle of the night if desired.

Notifications should also be integrated with your team’s ChatOps implementation.
Less critical notifications (such as job statuses, login failures, and informational no-
tices) can be sent to one or more chat rooms so that interested parties can actively
receive subsets of alerts in which they might be interested.

Beyond these basic channels, the possibilities are endless. An LED lighting system
that changes colors according to system status can be useful for at-a-glance status

See page 1108 for more
comments on ChatOps.

1044	 Chapter 28	 Monitoring	

indication in a data center or network operations center, for example. Other options
for responding to situations identified by the monitoring systems include

•	 Automated actions, such as dumping a database or rotating logs
•	 Calling an administrator on the phone
•	 Sending data to a wall board for public display
•	 Storing data in a time-series database for later analysis
•	 Doing nothing, and allowing later review through the system itself

Dashboards and UIs
Beyond alerting for clearly exceptional circumstances, one of the main goals of
monitoring is to present the state of the environment in a manner that’s more
structured and easier to assimilate than a bunch of raw data. Such displays are ge-
nerically termed “dashboards.”

Dashboards are designed by administrators or by other stakeholders with an inter-
est in particular aspects of the environment. They use several different techniques
to transform raw data into infographic gold.

First, they’re selective in what they present. They concentrate on the most import-
ant metrics for a given domain, the ones that indicate general states of health or
performance. Second, they give context clues to the significance and import of the
data that’s shown. For example, problematic numbers and states are typically shown
in red, and primary metrics are depicted in larger font sizes. Relationships among
values are shown through grouping. Third, dashboards display data series as charts,
making them easy to assess at a glance.

Of course, most data that’s collected never shows up on a dashboard. It’s helpful if
your monitoring system also has a generalized UI that facilitates investigation and
modification of the data schema, allows you to make arbitrary database queries,
and charts arbitrarily defined sequences of data on the fly.

28.2	 The monitoring culture
This chapter is mostly about tools, but culture is at least as important. When you
embark on a monitoring journey, embrace the following tenets:

•	 If someone cares about or depends on a system or service, it must be
monitored. Full stop. Nothing in the environment that a service or user
depends on can remain unmonitored.

•	 If a production device, system, or service exposes monitorable attributes,
those attributes should be monitored. Don’t let a server with a fancy “lights
out” hardware management interface spend weeks futilely trying to notify
you that a fan has failed.

	 The monitoring platforms	 1045

M
on

ito
rin

g

•	 All high-availability constructs must be monitored. It would be unfortu-
nate to learn that a primary server had failed only after the backup server
failed, too.

•	 Monitoring is not optional. The work plans of every sysadmin, developer,
ops staff member, manager, and project manager should include provi-
sions for monitoring.

•	 Monitoring data (especially historical data) is useful to everyone. Make
data easily accessible and visible so that everyone can use it to help with
root cause analysis, planning, life cycle management, and architectural
improvement opportunities. Put effort and resources into creating and
promoting monitoring dashboards.

•	 Everyone should respond to alerts. Monitoring is not just an ops prob-
lem. All technical roles should receive notifications and work together to
resolve issues. This approach encourages bona fide root cause analysis by
whichever individuals are most suited to fix the underlying issue.

•	 Properly implemented, monitoring impacts quality of life in a positive
way. A solid monitoring regimen frees you from the burden of worrying
about what state your systems are in and empowers others to support you.
Without monitoring and appropriate documentation, you are essentially
on call 24 × 7 × 365.

•	 Train responders to fix alerts, not just suppress them. Evaluate false-positive
or noisy alerts and tune them so that they no longer trigger inappropriate-
ly. Spurious alerts encourage everyone to ignore the monitoring system.

28.3	 The monitoring platforms
If you plan to monitor multiple systems and more than a few metrics, it’s worth in-
vesting some time into the deployment of a full-service monitoring platform. These
are general-purpose systems that collect data from multiple sources, facilitate the
display and summarization of status information, and establish a standard way to
define actions and alerts.

The good news is that there are a variety of choices. The not-as-good news is that
no single, perfect platform as yet exists. When selecting from among the available
options, consider the following issues:

•	 Data-gathering flexibility. All platforms can absorb data from a variety of
sources. However, that doesn’t mean that all platforms are equivalent in
this regard. Consider the data sources you want to actually use. Will you
need to read data from an SQL database? From DNS records? From an
HTTP connection?

1046	 Chapter 28	 Monitoring	

•	 User interface quality. Many systems offer customizable GUIs or web inter-
faces. Most well-marketed packages today tout their ability to understand
JSON templates for data presentation. A UI is not just marketing hype;
you need an interface that relays information clearly, simply, and com-
prehensibly. Will you need different user interfaces for different groups
within your organization?

•	 Cost. Some commercial management packages come at a stiff price. Many
corporations find value in being able to say that their site is managed by a
high-end commercial system. If that isn’t so important to your organiza-
tion, look at free options such as Zabbix, Sensu, Cacti, and Icinga.

•	Automated discovery. Many systems offer to “discover” your network.
Through a combination of broadcast pings, SNMP requests, ARP table
lookups, and DNS queries, they identify all your local hosts and devices.
All the discovery implementations we have seen work pretty well, but ac-
curacy is lower on complex or heavily firewalled networks.

•	 Reporting features. Many products can send alert email, integrate with
ChatOps, send text messages, and automatically generate tickets for pop-
ular trouble-tracking systems. Make sure that the platform you choose
accommodates flexible reporting. Who knows what electronic devices
you’ll be dealing with in a few years?

Open source real-time platforms
Although the platforms in this section—Nagios, Icinga, and Sensu Core—do a little
bit of everything, they’re known for their strength in handling instantaneous (or
threshold-based) metrics.

These systems have their proponents, but as first-generation monitoring tools,
they’re gradually losing favor to time-series systems, which we describe starting
on page 1047. Most sites starting from scratch would be better advised to opt for
a time-series system.

Nagios and Icinga
Nagios and Icinga specialize in real-time notification of error conditions. Although
they do not help you determine how much your bandwidth utilization has increased
over the last month, they can track you down when your web server goes off-line.

Nagios and Icinga were originally forks of a single source tree, but modern-day
Icinga 2 has been completely rewritten. However, it remains compatible with Nag-
ios in most respects.

Both systems include scores of scripts for monitoring services of all shapes and sizes,
along with extensive SNMP monitoring capabilities. Perhaps their greatest strength
is their modular and heavily customizable configuration system, which allows you
to write custom scripts to monitor any conceivable metric.

	 The monitoring platforms	 1047

M
on

ito
rin

g

You can whip up new monitors in Perl, PHP, Python, or even C if you’re feeling am-
bitious and masochistic. Many standard notification methods are built in—email,
web reports, text messages, etc. And as with monitoring plug-ins, it’s easy to roll
your own notification and action scripts.

Nagios and Icinga both work well for networks of fewer than a thousand hosts and
devices. They are easy to customize and extend, and include powerful features such
as redundancy, remote monitoring, and notification escalation.

If you are deploying new monitoring infrastructure from scratch, we recommend
Icinga 2 over Nagios. Its code base is generally cleaner, and it has been rapidly ac-
creting fans and community support. From a functional perspective, its UI is cleaner
and faster, and it’s able to autobuild service dependencies, which can be essential
in complex environments.

Sensu
Sensu is a full-stack monitoring framework that’s available both as an open source
edition (Sensu Core) and with paid, commercially supported add-ons. It has an ul-
tramodern UI and can run any legacy Nagios, Icinga, or Zabbix monitoring plug-in.
It was designed as a replacement for Nagios, so plug-in compatibility is one of its
most attractive features. Sensu allows for easy integration with Logstash and Slack
notifications, and its installation process is particularly easy.

Open source time-series platforms
Detecting and responding to current problems is just one aspect of monitoring. It’s
often equally important to know how values are changing over time and how they
relate to other values. Four popular time-series platforms aim to scratch this itch:
Graphite, Prometheus, InfluxDB, and Munin.

These systems put the database front and center within the monitoring ecosystem.
They vary in their degree of completeness as stand-alone monitoring systems, and
in general are designed for a more modular world than traditional systems such as
Icinga. You may need to supply some additional components to build a complete
monitoring platform.

Graphite
Graphite was arguably the vanguard of the new generation of time-series monitor-
ing platforms. At its core is a flexible time-series database with an easy-to-use que-
ry language. The reason for the #monitoringlove movement and for the enormous
influence that Graphite has had on front-end UIs is the way that it aggregates and
summarizes metrics. It started the move away from per-minute monitoring and
toward sub-second monitoring.

As you might guess from the name, Graphite includes graphing features for web
visualization. However, this aspect of the package has been somewhat eclipsed by

1048	 Chapter 28	 Monitoring	

Grafana. Graphite is better known these days for its other components, Carbon and
Whisper, which form the core of the data management system.

Graphite can be combined with other tools to create a scalable, distributed, clus-
tered, monitoring environment that is capable of absorbing and reporting on hun-
dreds of thousands of metrics. Exhibit A shows an architectural diagram of such
an implementation.

Exhibit A	 Clustered Graphite architecture

carbon-relay

Whisper

carbon-webapp

carbon-relay

Whisper

carbon-webapp

carbon-relay

Whisper

carbon-webapp

SQLite Apache httpd

carbon-relay
(Graphite)

Load balancer

collectd collectd collectd collectd collectd

UNIX and Linux servers

Graphite Graphite Graphite

Grafana Web connections from
users and administrators

Metrics

...

Prometheus
Our favorite time-series platform today is Prometheus. It’s a comprehensive plat-
form that includes integrated collection, trending, and alerting components. The
components are both sysadmin- and developer-friendly, which makes it a great

	 The monitoring platforms	 1049

M
on

ito
rin

g

choice for a DevOps shop. It does not allow for clustering, however, which may
mean that it’s not the right fit for sites that require high availability.

InfluxDB
InfluxDB is an extraordinarily developer-friendly time-series monitoring plat-
form that supports a broad array of programming languages. Much like Graphite,
InfluxDB is really just a time-series database engine. You’ll need to complete the
package with external components such as Grafana to form a complete monitoring
system that includes features like alerting.

The data management features of InfluxDB are much richer than those of the al-
ternatives listed above. However, InfluxDB’s additional features also add some un-
welcome complexity for typical installations.

InfluxDB has had a somewhat troubled history of bugs and incompatibilities.
However, the current version appears to be stable and is probably the best current
alternative to Graphite if you are seeking a stand-alone data management system.

Munin
Munin has historically been quite popular, especially in Scandinavia. It’s built on
a clever architecture in which the data collection plug-ins not only provide data
but also tell the system how the data should be presented. Although Munin is still
perfectly usable, modern alternatives such as Prometheus should be considered for
new deployments. Munin is still a useful tool for application-specific monitoring
in some cases; see page 1060.

Open source charting platforms
The two main choices for creating dashboards and charts are the graphing features
built into Graphite and a newer package, Grafana.

Graphite can draw data from stores other than Whisper (the native data-storage
component of the Graphite package), but this isn’t necessarily a well-trodden path.

As a database-agnostic package, Grafana does quite well at accommodating foreign
data stores, including all those listed in the previous section. At last count, more than
30 back ends were supported. Grafana originally started out as an attempt to im-
prove graphing for Graphite, so it’s quite comfortable in a Graphite environment, too.

Both Graphite and Grafana present a dashboard-like graphing interface that can
generate insight-provoking and management-pleasing visualizations. You can use
them to display anything from low-level system metrics to business-level indicators.
Bake-offs usually give the nod to Grafana for its superior UI and prettier graphs.

Exhibit C on the next page shows a simple Grafana dashboard.

1050	 Chapter 28	 Monitoring	

Exhibit B	 Grafana dashboard example

Commercial monitoring platforms
Hundreds of companies sell monitoring software, and new competitors enter the
market every week. If you are looking for a commercial solution, you should at least
consider the options listed in Table 28.1.

Table 28.1	 Popular commercial monitoring platforms

Platform URL Comments

Datadog datadoghq.com Cloud-based application monitoring platform
Huge list of supported systems, apps, and services

Librato librato.com Plug and Play with existing open source plugins
Monitus monitus.net E-commerce platform monitoring
Pingdom pingdom.com SaaS-based monitoring platform a

SignalFx signalfx.com SaaS platform with long list of cloud integrations
SolarWinds solarwinds.com Network monitoring stalwart
Sysdig Cloud sysdig.com Specialty: Docker monitoring and alerting

Easy to correlate events across services
Zenoss zenoss.com Incredibly complex alternative to Icinga

a.	 No software install required. Good fit for web apps only.

Whether their systems reside in the cloud, on a data center hypervisor, or in a closet,
most businesses should not be building their own monitoring stack. Outsourcing

	 Data collection	 1051

M
on

ito
rin

g

is cheaper and more reliable. Hence, consider Datadog, Librato, SignalFx, or Sysdig
Cloud if you need a monitoring stack for a common set of applications or servers.

When investigating commercial monitoring platforms, you often first consider price.
But don’t forget to research the operational details as well:

•	 How easy is it to integrate into your configuration management system?

•	 How does the system deploy new plug-ins or checks to your hosts? Are
they pushed or pulled?

•	 Does it integrate well with your existing notification platform if you have one?

•	 Does your environment allow the type of external connectivity needed
to facilitate a cloud-based monitoring solution?

These are just a few of the questions you should be asking when researching plat-
forms. In the end, the best platform for your site is one that is easily configurable,
meets your budget, and is easily adopted by your users.

Hosted monitoring platforms
If you’re not interested in setting up and maintaining your own network monitoring
tools, you might want to consider a hosted (cloud) solution. Many free and com-
mercial options exist, but a popular one is StatusCake, statuscake.com. An external
provider’s ability to see the internal details of your network is limited, but hosted
options work well for validating the health of public-facing services and web sites.

A hosted monitoring provider can also liberate you from the constraints of your
organization’s normal Internet connection. If you rely on your upstream network
to transport notifications from an internal monitoring system—as most sites ulti-
mately do—you may want to ensure that your upstream network is itself monitored
and instrumented so that staff can be marshaled in the event of trouble.

28.4	 Data collection
The previous sections reviewed a variety of packages that can serve as a site’s central
monitoring engine. However, selecting and deploying one of these systems is only
the first part of the setup process. You must now make sure that the data and events
you’re interested in monitoring make their way into the central monitoring platform.

The details of this instrumentation process depend on the systems you want to mon-
itor and the philosophy of your monitoring platform. In many cases, you’ll need to
write some simple glue scripts to convert status information into a form that your
monitoring platform can understand. Some platforms, such as Icinga, come with a
wide variety of plug-ins that harvest standard metrics from commonly monitored
systems. Others, such as Graphite and InfluxDB, make no real provision for data
input at all and must be supplemented by a front end that handles this role.

http://statuscake.com

1052	 Chapter 28	 Monitoring	

In the following sections, we first look at StatsD, a general-purpose data collection
front end, then review some tools and techniques for instrumenting some com-
monly monitored systems.

StatsD: generic data submission protocol
StatsD was written by engineers at Etsy as a way to track anything and everything
within their own environment. It’s a UDP-based front-end proxy that dumps any
data you throw at it into a monitoring platform for consumption, calculation, and
display. StatsD’s superpower is its ability to ingest and perform calculations on ar-
bitrary statistics.

Etsy’s StatsD daemon was written in Node.js. But these days, “StatsD” refers more
to the protocol than to any one of the many software packages that implement it.
(Truth be told, even Etsy’s version is not the original; it was inspired by a similarly
named project at Flickr.) Implementations have been written in many different
languages, but we focus on the Etsy release here.

StatsD depends on Node.js, so make sure that package has been installed and
configured appropriately before you move on to installing StatsD. The Etsy imple-
mentation isn’t included in most OS vendors’ package repositories, though other
versions of StatsD often are; make sure you don’t confuse them. It’s easiest to clone
the Etsy version directly from GitHub:

$ git clone https://github.com/etsy/statsd

StatsD is incredibly modular and can feed the incoming data to a variety of back
ends and clients. Let’s look at a simple example that uses Graphite as the back end.

To ensure that Graphite and StatsD communicate correctly, you must modify Car-
bon, Graphite’s storage component. Edit /etc/carbon/storage-schemas.conf and
add a stanza similar to the following:

[stats]
pattern = ^stats.*
retentions = 10s:12h,1min:7d,10min:1y

This configuration tells Carbon to keep 12 hours of data at 10-second intervals.
Carbon summarizes expiring data at 1-minute intervals and keeps that summary
information for an additional 7 days. Similarly, data at 10-minute granularity is
maintained for a full year. There’s nothing magic about these choices; you’ll need
to determine what’s appropriate for your organization’s retention needs and the
data being collected.

The exact definition of what it means to “summarize” time-series data varies accord-
ing to the type of data. If you’re counting network errors, for example, you probably
want to summarize by adding up values. If you’re looking at metrics that represent
load or utilization, you probably want an average. You might also need to specify
appropriate ways of handling missing data.

	 Data collection	 1053

M
on

ito
rin

g

These policies are specified in the file /etc/carbon/storage-aggregation.conf. If
you don’t already have a working Graphite installation, you might find Graphite’s
sample configuration useful as a starting point:

/usr/share/doc/graphite-carbon/examples/storage-aggregation.conf.example

Below are some reasonable defaults to include in the storage-aggregation.conf file.

[min]
pattern = \.lower$
xFilesFactor = 0.1
aggregationMethod = min

[max]
pattern = \.upper(_\d+)?$
xFilesFactor = 0.1
aggregationMethod = max

[sum]
pattern = \.sum$
xFilesFactor = 0
aggregationMethod = sum

[count]
pattern = \.count$
xFilesFactor = 0
aggregationMethod = sum

[count_legacy]
pattern = ^stats_counts.*
xFilesFactor = 0
aggregationMethod = sum

[default_average]
pattern = .*
xFilesFactor = 0.3
aggregationMethod = average

Note that every configuration block has a regular expression pattern that attempts
to match the names of data series. Blocks are read in order, and the first matching
block becomes the controlling specification for each data series. For example, a
series named sample.count would match the pattern for the [count] block. The
values would be rolled up by adding up data points (aggregationMethod = sum).

The xFilesFactor setting determines the minimum number of samples needed
to meaningfully downsample your metric. It’s expressed as a number between 0
and 1 that represents the percentage of non-null values that must exist at the more
granular layer in order for the rollup layer to have a non-null value. For example,
the xFilesFactor setting for [min] and [max] above is 10%, so even a single data
value will satisfy this criterion, given our settings in the storage-schema.conf file.
The default is 50%. If the numbers aren’t thoughtfully set, you’ll get inaccurate or
missing data!

1054	 Chapter 28	 Monitoring	

We can send some test data to StatsD with netcat (nc):

$ echo "sample.count:1|c" | nc -u -w0 statsd.admin.com 8125

This command submits a value of 1 as a count metric (as indicated by the c) to the
sample.count data set. The packet goes to port 8125 on statsd.admin.com; this is
the port on which statsd listens by default. If this datum shows up in your Graphite
dashboard, you’re ready to collect all kinds of monitoring data through one of the
many StatsD clients. See the StatsD GitHub wiki page (github.com/etsy/statsd/wiki)
for a list of some of the clients that can communicate with StatsD. Or write your
own! The protocol is simple and the possibilities are endless.

Data harvesting from command output
If you can investigate something from the command line, you can track it in your
monitoring platform. All you need is a few lines of scripting glue to extract the data
nuggets you’re interested in, which you then massage into a format your monitor-
ing platform can accept.

For example, uptime shows the length of time that the system has been up, the
number of logged-in users, and the load averages over the last 1, 5, and 15 minutes.

$ uptime
07:11:50 up 22 days, 10:13, 2 users, load average: 1.20, 1.41, 1.88

As a human, you can parse the output at a glance and see that the current load av-
erage is 1.20. If you want to write a script to check that value regularly or to feed it
to another monitoring process, you can use text manipulation commands to iso-
late the desired value:

$ uptime | perl -anF'[\s,]+' -e 'print $F[10]'
1.20

Here, we use Perl to split the output wherever there’s a sequence of spaces and com-
mas and to print the contents of the tenth field (the 1-minute load average). Voilà!

Although Perl has been eclipsed by modern languages like Python and Ruby in
most domains, it remains the king of quick-and-dirty text wrangling. It’s probably
not worth learning Perl solely for this use, but Perl’s ability to phrase sophisticated
text transformations as one-line commands does come in handy.

We can easily expand this one-liner into a short script that determines the load
average and submits it to StatsD:

#!/usr/bin/env perl

use Net::Statsd;
use Sys::Hostname;

$Net::Statsd::HOST = 'statsd.admin.com';

$loadavg = (split /[\s,]+/, `uptime`)[10];
Net::Statsd::gauge(hostname . '.loadAverage' => $loadavg);

http://statsd.admin.com
http://statsd.admin.com
http://github.com/etsy/statsd/wiki
http://'statsd.admin.com'

	 Network monitoring	 1055

M
on

ito
rin

g

Compare this script with our one-line StatsD test command from page 1054 and
our one-line parsing of uptime output above. Here, Perl has to run the uptime
command and process its output as a string, so that portion looks somewhat dif-
ferent from its one-liner equivalent. (The one-liner relies on Perl’s autosplit mode.)

Instead of using nc to handle the network transmission of data to StatsD, we use a
simple StatsD wrapper that we downloaded from the CPAN2 archive. That’s gen-
erally the preferred approach; libraries are less brittle than hacks, and they clarify
the code’s intent.

Many commands can generate more than one output format. Check the man page
for the command to see what options are available before you attempt to parse its
output. Some formats are much easier to deal with than others.

A few commands support an output format that specifically facilitates parsing.
Others have configurable output systems in which you ask for only the fields that
you really want. Yet another common option is a flag that suppresses descriptive
header lines in the output.

28.5	 Network monitoring
Network status monitoring has traditionally been many sites’ first foray into the
wider world of monitoring and dashboards, so it’s the first of several types of mon-
itoring that we look at in a bit more depth. In subsequent sections, we also look at
OS-level monitoring, application and service monitoring, and security monitoring.

The basic unit of network monitoring is the network ping, also known as an ICMP
Echo Request packet. We discuss the technical details more thoroughly starting on
page 429, along with the ping and ping6 commands, which initiate pings from
the command line.

The concept is simple: you send an echo request packet to another host on the net-
work, and that host’s IP implementation returns a packet to you in response. If you
receive a response to your probe, you know that all the network gateways and devic-
es that lie between you and the target host are operational. You also know that the
target host is powered on and that its kernel is up and running. However, because
pings are handled within the TCP/IP protocol stack, they don’t guarantee anything
about the state of higher-level software that might be running on the target host.

Pings don’t impose much overhead on the network, so it’s OK to send them fre-
quently; say, every ten seconds. Design your pinging strategy thoughtfully, so that
it covers all important gateways and networks. Keep in mind that if a ping can’t get
through a gateway, neither can monitoring data that reports the failure of pings.
You’ll want at least one set of pings to originate on the central monitoring host itself.

Network gateways aren’t required to answer ping packets, so pings might be dropped
by a busy gateway. Even a properly functioning network loses a packet now and

	 2.	 The Comprehensive Perl Archive Network, cpan.org

http://cpan.org

1056	 Chapter 28	 Monitoring	

then. Ergo, don’t set off alarms at the first sign of trouble. It makes sense to collect
ping data as binary event records (got through/didn’t get through) and roll it up
into aggregate measures of percentage packet loss over longer terms.

You might also find it interesting to measure throughput between two points on
the network. That can be done with iPerf; see page 437 for details.

Most network devices support the Simple Network Management Protocol (SNMP),
an industry-standard way of naming and collecting operational data. Although
SNMP has metastasized far beyond its networking roots, we consider it obsolete
for purposes other than basic network monitoring.

SNMP is a rather large topic of its own, so we defer further discussion of it until
later in this chapter. See SNMP: the Simple Network Management Protocol starting
on page 1063 for details.

28.6	 Systems monitoring
Since the kernel controls a system’s CPU, memory, I/O, and devices, most of the
interesting system-level state information you might want to monitor lives some-
where inside the kernel. Whether you’re investigating a particular system by hand
or setting up an automated monitoring platform, you need the right tools to extract
and expose this state information. Most kernels define formal channels through
which such information is exported.

Unfortunately, kernels are like other types of software; error checking, instrumen-
tation, and debugging features are often something of an afterthought. Although
recent years have brought improvements in transparency, identifying and under-
standing the exact parameter you might want to monitor can be challenging and
sometimes impossible.

A particular value can often be obtained in more than one way. In the case of load
averages, for example, you can read the values directly from /proc/loadavg on Li-
nux systems or with sysctl -n vm.loadavg on FreeBSD. Load averages are also in-
cluded in the output of the uptime, w, sar, and top commands (though top would
be a poor choice for noninteractive use). It’s generally easiest and most efficient to
access values directly from the kernel (through sysctl or /proc) if you can.

Monitoring platforms such as Nagios and Icinga include a rich set of communi-
ty-developed monitoring plug-ins that you can use to get your hands on commonly
monitored elements. They, too, are often simply scripts that run commands and
parse the resulting output, but they come already tested and debugged, and they
often work on multiple platforms. If you can’t find a plug-in that yields the value
you’re interested in, you can write your own.

See page 339 for more
information about
the /proc filesystem.

	 Systems monitoring	 1057

M
on

ito
rin

g

Commands for systems monitoring
Table 28.2 lists some command that are commonly used in monitoring. Many of
these commands yield wildly different output depending on the command-line
options you supply, so check the man pages for details.

Table 28.2	 Commands that yield commonly monitored parameters

Command Available information

df Free and used disk space and inodes
du Directory sizes
free Free, used, and swap (virtual) memory
iostat Disk performance and throughput
lsof Open files and network ports
mpstat Per-processor utilization on multiprocessor systems
vmstat Process, CPU, and memory statistics

The Swiss Army knife of command-line data extraction is sar (short for “system
activity report”). This command has a sordid history, having originally been intro-
duced in System V UNIX in the 1980s.3 The primary attraction of this command is
that it has been implemented on a wide variety of systems, so it enhances the por-
tability of both scripts and sysadmins. Sadly, the BSD port is no longer maintained.

The example below requests reports every two seconds for a period of one minute
(i.e., 30 reports). The DEV argument is a literal keyword, not a placeholder for a
device or interface name.

$ sar -n DEV 2 30
17:50:43 IFACE rxpck/s txpck/s rxbyt/s txbyt/s rxcmp/s txcmp/s rxmcst/s
17:50:45 lo 3.61 3.61 263.40 263.40 0.00 0.00 0.00
17:50:45 eth0 18.56 11.86 1364.43 1494.33 0.00 0.00 0.52
17:50:45 eth1 0.00 0.00 0.00 0.00 0.00 0.00 0.00

This example is from a Linux machine with two network interfaces. The output in-
cludes both instantaneous and average readings of interface utilization in units of
both bytes and packets. The second interface (eth1) is clearly not in use.

collectd: generalized system data harvester
As the work of system administration has evolved from wrangling individual sys-
tems to managing fleets of virtualized instances, simple command-line tools have
started to create a lot of friction in the monitoring world. Although writing scripts
to collect and analyze parameters is a utilitarian and flexible approach, maintaining
the consistency of that code base across multiple systems quickly becomes cum-
bersome. Modern tools such as collectd, sysdig, and dtrace offer a more scalable
approach to collecting this type of data.

	 3.	 Old-school sysadmins are often identifiable by their fluency in sar.

1058	 Chapter 28	 Monitoring	

Collection of system statistics should be a continuous process, and the UNIX solu-
tion to an ongoing task is to create a daemon to handle it. Enter collectd, the system
statistics collection daemon.

This popular and mature tool runs on both Linux and FreeBSD. Typically, collectd
runs on the local system, collects metrics at specified intervals, and stores the re-
sulting values. You can also configure collectd to run in client/server mode, where
one or more collectd instances aggregate data from a group of other servers.

Specification of the metrics to be collected and the destinations to which they are
saved is flexible; over 100 plug-ins are available to suit your exact needs. Once
collectd is running, it can be queried by a platform such as Icinga or Nagios for
instantaneous monitoring or can forward data to a platform such as Graphite or
InfluxDB for time-series analysis.

An example collectd configuration file is shown below.

/etc/collectd/collectd.conf

Hostname client1.admin.com
FQDNLookup false
Interval 30
LoadPlugin syslog
<Plugin syslog>
	 LogLevel info
</Plugin>

LoadPlugin cpu
LoadPlugin df
LoadPlugin disk
LoadPlugin interface
LoadPlugin load
LoadPlugin memory
LoadPlugin processes
LoadPlugin rrdtool

<Plugin rrdtool>
	 DataDir "/var/lib/collectd/rrd"
</Plugin>

This basic configuration collects a variety of interesting system statistics every 30
seconds and writes RRDtool-compatible data files in /var/lib/collectd/rrd.

sysdig and dtrace: execution tracers
sysdig (Linux) and dtrace (BSD) comprehensively instrument both kernel and user
process activity. They include components that are inserted into the kernel itself,
exposing not only deep kernel parameters but also per-process system calls and
other performance statistics. These tools are sometimes described as “Wireshark
for the kernel and processes.”

See page 434 for
more information
about Wireshark.

	 Application monitoring	 1059

M
on

ito
rin

g

Both of these tools are complex. However, they are well worth tackling. A weekend
spent learning either one will give you amazing new superpowers and ensure your
status as an A-list guest on the sysadmin cocktail circuit.

sysdig is container-aware, so it confers extraordinary visibility into environments
where tools such as Docker and LXC are in use. sysdig is distributed as open source,
and you can integrate it with other monitoring tools such as Nagios or Icinga. The
developers also offer a commercial monitoring service (Sysdig Cloud) that has full
monitoring and alerting capability.

28.7	 Application monitoring
At the top of the software ziggurat, we find the holy grail: application monitoring.
This type of monitoring is rather vaguely defined, but the general idea is that it at-
tempts to validate the status and performance of particular pieces of software rather
than systems or networks as a whole. In many cases, application monitoring can
reach into those systems and profile their internal operations.

To make sure you’re monitoring the right things, you need business units and
developers to join the party and tell you more about their interests and concerns.
If you have a web site that runs on the LAMP stack, for example, you’ll probably
want to make sure you’re monitoring page load times, flagging critical PHP errors,
keeping tabs on the MySQL database, and monitoring for specific issues such as
excessive connection attempts.

Although monitoring for this layer can be complex, this domain is also where moni-
toring gets sexy. Imagine monitoring (and pulling into your beautiful Grafana dash-
board) the number of widgets you’ve sold in the past hour or the average length of
time that an item stays in a shopping cart. If you show your application developers
and process owners that level of functionality, you usually get immediate buy-in
to add more monitoring and may even get some help implementing it. Eventually,
this layer of monitoring becomes invaluable to the business, and you start to be
viewed as the champion of monitoring, metrics, and data analysis.

Application-level monitoring can yield additional insight into other events within
your environment. For example, if widget sales decrease quickly, that might be an
indication that one of your advertisement networks is down.

Log monitoring
In its most basic form, log monitoring involves grepping through log files to find
interesting data you’d like to monitor, pulling out that data, and processing it into
a form that’s usable for analysis, display, and alerting. Since log messages consist
of free-form text, implementation of this pipeline can range in complexity from
trivial to challenging.

See Chapter 25
for more informa-
tion about Docker
and containers.

1060	 Chapter 28	 Monitoring	

Logs are typically best managed with a comprehensive aggregation system designed
for that purpose. We address such systems in the section Management of logs at scale,
which starts on page 321. Although these systems focus primarily on centralizing
log data and making it easy to search and review, most aggregation systems also
support threshold, alarm, and reporting functionality.

If you need automated log review for a few specific purposes and are reluctant to
commit to a more general log management solution, we recommend a couple of
smaller-scale tools: logwatch and OSSEC.

logwatch is a flexible, batch-oriented log summarizer. Its primary use is to create
daily summaries of events reported in the logs. You can run logwatch more often
than once a day, but it isn’t designed for real-time monitoring. For that, you would
probably want to take a look at OSSEC, which we discuss on page 1002. OSSEC is
promoted as a security tool, but its architecture is general enough that it’s useful
for other kinds of monitoring as well.

Supervisor + Munin: a simple option for limited domains
An all-singing, all-dancing platform such as Icinga or Prometheus might be overkill
for your needs or your environment. What if you’re only interested in monitoring
one particular application process and don’t want the headache of a full-fledged
monitoring platform? Consider combining Munin and Supervisor. They’re easy to
install, require little configuration, and work well together.

Supervisor and its server process supervisord help you monitor processes and gener-
ate events or notifications when the processes exit or throw an exception. The system
is similar in spirit to Upstart or to the process-management portions of systemd.

As mentioned on page 1049, Munin is a general monitoring platform with particular
strengths in application monitoring. It’s written in Perl and requires an agent known
as a Munin Node to be running on all the systems you want to monitor. Setting up
a new Node is easy: just install the munin-node package, edit munin-node.conf
to point to the master machine, and you’re good to go.

Munin defaults to creating RRDtool graphs with the data that it collects, so it’s a
nice way to get some graphical feedback without much configuration. More than
300 plug-ins are distributed with Munin, and nearly 200 others are available as con-
tributed libraries. It’s likely that you can find an existing plug-in that meets your
needs. If not, it’s easy to write a new script for munin-node to execute.

Commercial application monitoring tools
If you search Google for “application monitoring tool,” you’ll discover many pages
of commercial offerings to evaluate. For gold-star due diligence, you’ll also need
to scrub through layers of recent discussions regarding application performance
monitoring (APM).

	 Security monitoring	 1061

M
on

ito
rin

g

You’ll see many references to DevOps in these venues, and for good reason: appli-
cation monitoring and APM are key tenets of DevOps. They supply quantitative
metrics that teams can use to decide which areas of the stack would most benefit
from efforts to improve performance and stability.

We think New Relic (newrelic.com) and AppDynamics (appdynamics.com) are
standouts in this area. These systems’ capabilities overlap in many ways, but Ap-
pDynamics typically targets more a “full stack” monitoring solution, whereas New
Relic deals more with profiling behavior inside the application layer itself.

Regardless of how you monitor your applications, it’s crucial to keep the develop-
ment team involved in the process. They’ll help ensure that all important metrics
are being monitored. Close cooperation on monitoring fosters the relationship
between teams and limits duplication of effort.

28.8	 Security monitoring
Security monitoring is a universe of its own. This area of operational practice is
sometimes known as security operations or SecOps.

Dozens of open source and commercial tools and services can be enlisted to help
monitor an environment’s security. Third parties, sometimes called managed security
service providers (MSSPs), render outsourced services.4 Despite all these options,
security breaches remain common and often go undetected for months or years.

Perhaps the most important thing to know about security monitoring is that no
automated tool or service is enough. You must implement a comprehensive secu-
rity program that includes standards for user behavior, data storage, and incident
response procedures, just to name a few elements. Chapter 27, Security, covers
these basics.

Two core security functions should be integrated with your automated, continuous
monitoring strategy: system integrity verification and intrusion detection.

System integrity verification
System integrity verification (often called file integrity monitoring or FIM) is the
validation of the current state of the system against a known-good baseline. Most
often, this validation compares the contents of the system files (kernel, executable
commands, config files) with a cryptographically sound checksum such as SHA-512.5
If the checksum value of the file in the running system is different from that of the
baseline version, a sysadmin is notified. Of course, regular maintenance activities

	 4.	 It always sounds attractive to outsource security operations; then it becomes someone else’s problem
to make sure your environment is secure. But think of it this way: would you be comfortable paying
someone to watch your cash-filled wallet sit on a table with 10,000 other wallets in a busy train sta-
tion? If so, an MSSP might be a good fit for you!

	 5.	 Acceptable hashing algorithms change over time. For example, MD5 is no longer considered cryp-
tographically secure and should no longer be used.

See page 1106 for
more information
about DevOps.

http://newrelic.com
http://appdynamics.com

1062	 Chapter 28	 Monitoring	

such as planned changes, updates, and patches must be taken into account; not all
changes are suspicious.

The most commonly deployed FIM platforms are Tripwire and OSSEC; the latter
is described in more detail starting on page 1002. The Linux version of AIDE also
includes file integrity monitoring, but unfortunately, the FreeBSD version lacks
this component.

Simpler is often better. A great bare-bones FIM option is mtree, which is native to
FreeBSD and has recently been ported to Linux. mtree is an easy way to monitor
file state and content changes, and it’s easily integrated into your monitoring scripts.
Here’s an example of a quick script that uses mtree:

#!/bin/bash
if [$# -eq 0]; then
	 echo "mtree-check.sh [-bv]"
	 echo "-b = create baseline"
	 echo "-v = verify against baseline"
	 exit
fi

seed
KEY=93948764681464

baseline directory
DIR=/usr/local/lib/mtree-check

if [$1 = "-b"]; then
	 rm -rf $DIR/mtree_*
	 cd $DIR
	 mtree-c -K sha512 -s $KEY -p /sbin > mtree_sbin
fi

if [$1 = "-v"]; then
	 cd $DIR
	 mtree -s $KEY -p /sbin < mtree_sbin | \
		 mail -s "`hostname` mtree integrity check" dan@admin.com
fi

With the -b flag, this script creates and stores the baseline. When run again with
the -v flag, it validates the current contents of /sbin against the baseline.

As with so many aspects of system administration, setting up a FIM platform and
operating it over time are wildly different propositions. You’ll need a defined process
in place to maintain the FIM data and respond to FIM alerts. We suggest feeding
information from your FIM platform into your monitoring and alerting infrastruc-
ture so that it is not sidelined or ignored.

Intrusion detection monitoring
Two common forms of intrusion detection systems (IDSs) are in use: host-based
(HIDS) and network-based (NIDS). NIDS systems examine the traffic transiting the

mailto:dan@admin.com

	 SNMP: the Simple Network Management Protocol	 1063

M
on

ito
rin

g

network and attempt to identify unexpected or suspicious patterns. The most com-
mon NIDS system is based on Snort and is covered in detail starting on page 1001.

HIDS systems run as a set of processes on each system. They typically keep tabs
on a variety of things, including network connections, file modification times and
checksums, daemon and applications logs, use of elevated privileges, and other
clues that may signal the operation of tools designed to facilitate unauthorized ac-
cess (“root kits”). A HIDS is not a one-stop solution for security, but it’s a valuable
component of a comprehensive approach.

The two most popular open source HIDS platforms are OSSEC (Open Source SE-
Curity) and AIDE (the Advanced Intrusion Detection Environment). In our ex-
perience, OSSEC is hands-down the better choice. Although AIDE is a nice FIM
platform on Linux, OSSEC includes a broader array of functions. It can even be
used in a client/server mode that supports non-UNIX clients such as Microsoft
Windows and a variety of network infrastructure devices.

Much like FIM alerts, HIDS data is only as useful as the attention that’s paid to it.
HIDS is not a “set it and forget it” subsystem, and you will need to integrate HIDS
alerts with your overall monitoring system. The most effective strategy we’ve found
for addressing this issue is to auto-open tickets for HIDS alerts in your trouble tick-
eting system. You can then add a monitoring check that alerts on any unresolved
HIDS tickets.

28.9	 SNMP: the Simple Network Management Protocol
Years ago, the networking industry decided it would be helpful to create a standard
protocol for the collection of monitoring data. Hence, the Simple Network Man-
agement Protocol, aka SNMP.

Despite its name, SNMP is actually quite complex. It defines a hierarchical name-
space of management data and methods for reading and writing that data on each
network device. SNMP also defines a way for managed servers and devices (“agents”)
to send event notification messages (“traps”) to management stations.

Before we delve into the arcana of SNMP, we should note that the terminology as-
sociated with it is some of the most wretched technobabble to be found in the net-
working arena. In many cases, the standard names for SNMP concepts and objects
actively lead you away from an understanding of what’s going on.

That said, the protocol itself is simple; most of SNMP’s complexity lies above the
protocol layer in the conventions for constructing the namespace and in the un-
necessarily baroque vocabulary that surrounds SNMP like a protective shell. As
long as you don’t think too hard about its internal mechanics, SNMP is easy to use.

SNMP was designed to be implementable by dedicated network hardware such as
routers, in which context it remains a plausible option. SNMP was later extended
to include monitoring of servers and desktop systems, but its fitness for this pur-

1064	 Chapter 28	 Monitoring	

pose has always been questionable. Today, much better alternatives (e.g., collectd;
see page 1057) are available.

We suggest that you approach SNMP as a low-level data collection protocol for use
with special-purpose devices that don’t support anything else. Get data out of the
SNMP world as quickly as possible and turn it over to a general-purpose monitor-
ing platform for storage and processing. SNMP can be an interesting neighborhood
to visit, but you wouldn’t want to live there!

SNMP organization
SNMP data is arranged in a standardized hierarchy. The naming hierarchy is made
up of “Management Information Bases” (MIBs), structured text files that describe the
data accessible through SNMP. MIBs contain descriptions of specific data variables,
which are referred to with names known as object identifiers, or OIDs.6 All current
SNMP-capable devices support the structure for MIB-II defined in RFC1213. But
each vendor can and does extend that MIB further to add more data and metrics.

OIDs exist within a hierarchical namespace where the nodes are numbered rath-
er than named. However, for ease of reference, nodes also have conventional text
names. The separator for pathname components is a dot. For example, the OID
that refers to the uptime of a device is 1.3.6.1.2.1.1.3. This OID is also known by
the human-readable (though not necessarily “human-understandable without ad-
ditional documentation”) name

	 iso.org.dod.internet.mgmt.mib-2.system.sysUpTime

Table 28.3 presents a sampling of OID nodes that might be interesting to monitor
for assessing network availability.

In addition to the universally supported MIB-II, there are MIBs for various kinds
of hardware interfaces and protocols, MIBs for individual vendors, MIBs for dif-
ferent snmpd server implementations, and MIBs for particular hardware products.

A MIB is only a schema for naming management data. To be useful, a MIB must
be backed up with agent-side code that maps between the SNMP namespace and
the device’s actual state.

SNMP agents that run on UNIX, Linux, or Windows come with built-in support
for MIB-II. Most can be extended to support supplemental MIBs and to interface
with scripts that do the actual work of fetching and storing these MIBs’ associat-
ed data. You’ll see lots of software like this that’s left over from a bygone era when
SNMP was the new hotness. But it’s all smoke and no fire; you shouldn’t be running
an SNMP agent on a UNIX system at all these days, except perhaps to answer the
most basic queries about network configuration.

	 6.	 An OID is just a fancy way of naming a specific managed piece of information.

 	
 

	

http://iso.org.dod.internet.mgmt.mib-

	 SNMP: the Simple Network Management Protocol	 1065

M
on

ito
rin

g

	

	 	

Table 28.3	 Selected OIDs from MIB-II

OID a Type Contents

system.sysDescr string System info: vendor, model, OS type, etc.
interfaces.ifNumber int Number of network interfaces present
interfaces.ifTable table Table of infobits about each interface
ip.ipForwarding int 1 if system is a gateway; otherwise, 2
ip.ipAddrTable table Table of IP addressing data (masks, etc.)
icmp.icmpInRedirects int Number of ICMP redirects received
icmp.icmpInEchos int Number of pings received
tcp.tcpInErrs int Number of TCP errors received

a.	 Relative to iso.org.dod.internet.mgmt.mib-2.

SNMP protocol operations
Only four basic SNMP operations exist: get, get-next, set, and trap.

Get and set are the basic operations for reading and writing data to the node iden-
tified by a specific OID. Get-next steps through a MIB hierarchy and can read the
contents of tables as well.

A trap is an unsolicited, asynchronous notification from server (agent) to client
(manager) that reports the occurrence of an interesting event or condition. Several
standard traps are defined, including “I’ve just come up” notifications, reports of
failure or recovery of a network link, and announcements of various routing and
authentication problems. The mechanism by which the destinations of trap mes-
sages are specified depends on the implementation of the agent.

Since SNMP messages can potentially modify configuration information, some
security mechanism is needed. The simplest version of SNMP security uses the
concept of an SNMP “community string,” which is really just a horribly obfuscat-
ed way of saying “password.” There’s usually one community string for read-only
access and another that allows writing.7 These days it makes a lot more sense to set
up the SNMPv3 management framework, which allows for more security including
authorization and access control for individual users.

Net-SNMP: tools for servers
On Linux and FreeBSD, the most common package that implements SNMP is called
Net-SNMP. It includes an agent (snmpd), some command-line tools, a server for
receiving traps, and even a library for developing SNMP-aware applications.

These days, Net-SNMP is primarily of interest because of its commands and libraries
rather than its agent. It has been ported to many different UNIX-like systems, so it

	 7.	 Many systems come with the default community string set to “public”. Never leave this default in
place; set real passwords for both the read-only and read/write community strings.

http://iso.org.dod.internet.mgmt.mib-

1066	 Chapter 28	 Monitoring	

acts as a consistent platform on top of which you can write scripts. So, most distri-
butions just separate out the Net-SNMP agent into a package of its own, making it
easier to install only the commands.

On Debian and Ubuntu, the Net-SNMP packages are called snmp and snmpd. In-
stall only the commands with apt-get install snmp.

On Red Hat and CentOS, the analogous packages are net-snmp and net-snmp-tools.
Install the commands with yum install net-snmp-tools.

On Linux, configuration information goes in /etc/snmp; take note of the snmpd.conf
file and snmp.d directory in that location. Run systemctl start snmpd to start up
the agent daemon.

On FreeBSD, everything is included in one package: pkg install net-snmp. Con-
figuration information goes in /usr/local/etc/snmp, which you’ll have to create by
hand. You can start the agent by hand with service snmpd start, or put

snmpd_enable="YES"

in /etc/rc.conf to start it at boot time.

On all systems where you need to run the SNMP agent, you’ll need to ensure that
UDP port 162 is not blocked by a firewall.

The commands that come with Net-SNMP can familiarize you with SNMP, and
they’re also great for one-off checks of specific OIDs. Table 28.4 lists the most
commonly used tools.

Table 28.4	 Command-line tools in the Net-SNMP package

Command Function

snmpdelta Monitors changes in SNMP variables over time
snmpdf Monitors disk space on a remote host through SNMP
snmpget Gets the value of an SNMP variable from an agent
snmpgetnext Gets the next variable in sequence
snmpset Sets an SNMP variable on an agent
snmptable Gets a table of SNMP variables
snmptranslate Searches for and describes OIDs in the MIB hierarchy
snmptrap Generates a trap alert
snmpwalk Traverses a MIB starting at a particular OID

Basic SNMP checks generally use some combination of snmpget and snmpdelta.
Other programs are helpful when you want to identify new OIDs to monitor from
your fancy enterprise management tool. For example, snmpwalk starts at a spec-
ified OID (or at the beginning of the MIB, by default), and repeatedly makes “get

RHEL

	 SNMP: the Simple Network Management Protocol	 1067

M
on

ito
rin

g

next” calls to the agent. This process dumps a complete list of available OIDs and
their associated values.

For example, here’s a truncated sample snmpwalk of the host tuva, a Linux system. The
community string is “secret813community,” and -v1 specifies simple authentication.

$ snmpwalk -c secret813community -v1 tuva
SNMPv2-MIB::sysDescr.0 = STRING: Linux tuva.atrust.com 2.6.9-11.ELsmp #1
SNMPv2-MIB::sysUpTime.0 = Timeticks: (1442) 0:00:14.42
SNMPv2-MIB::sysName.0 = STRING: tuva.atrust.com
IF-MIB::ifDescr.1 = STRING: lo
IF-MIB::ifDescr.2 = STRING: eth0
IF-MIB::ifDescr.3 = STRING: eth1
IF-MIB::ifType.1 = INTEGER: softwareLoopback(24)
IF-MIB::ifType.2 = INTEGER: ethernetCsmacd(6)
IF-MIB::ifType.3 = INTEGER: ethernetCsmacd(6)
IF-MIB::ifPhysAddress.1 = STRING:
IF-MIB::ifPhysAddress.2 = STRING: 0:11:43:d9:1e:f5
IF-MIB::ifPhysAddress.3 = STRING: 0:11:43:d9:1e:f6
IF-MIB::ifInOctets.1 = Counter32: 2605613514
IF-MIB::ifInOctets.2 = Counter32: 1543105654
IF-MIB::ifInOctets.3 = Counter32: 46312345
IF-MIB::ifInUcastPkts.1 = Counter32: 389536156
IF-MIB::ifInUcastPkts.2 = Counter32: 892959265
IF-MIB::ifInUcastPkts.3 = Counter32: 7712325
...

In this example, general information about the system is followed by statistics
about the host’s network interfaces: lo0, eth0, and eth1. Depending on the MIBs
supported by the agent you are managing, a complete dump can run to hundreds
of lines. In fact, a full install on an Ubuntu system configured to serve every MIB
spits out over 12,000 lines!

If you looked up the MIBs8 for the latest version of Net-SNMP on an Ubuntu system,
you would see that the five-minute load average OID is 1.3.6.1.4.1.2021.10.1.3.2. If
you were interested in seeing the five-minute load average for the local host (con-
figured with a community string of “public”), you would run:

$ snmpget -v 2c -c public localhost .1.3.6.1.4.1.2021.10.1.3.2
iso.3.6.1.4.1.2021.10.1.3.2 = STRING: "0.08"

Many useful SNMP-related Perl, Ruby, and Python modules are available from
these languages’ respective module repositories. Although you can write scripts in
terms of Net-SNMP commands, it’s usually easier and cleaner to make use of native
modules that are customized for your language of choice.

	 8.	 Check out mibdepot.com or install the snmp-mibs-downloader package.

http://tuva.atrust.com
http://tuva.atrust.com
http://mibdepot.com

1068	 Chapter 28	 Monitoring	

28.10	 Tips and tricks for monitoring
Over the years, we’ve picked up a few tips on how to maximize the effectiveness of
monitoring. These are the main ideas:

•	 Avoid monitoring burn-out. Ensure that sysadmins who receive notifica-
tions outside of regular work hours get regular breaks. This goal is best
achieved with a rotation system in which teams of two or more individuals
are on call for a day or a week, then the next team takes over. Failure to
heed this advice results in crabby sysadmins who hate their jobs.

•	 Define what circumstances really require 24 × 7 attention, and make sure
this information is clearly communicated to your monitoring team, your
on-call teams, and the customers or business units you support. The mere
fact that you’re monitoring something doesn’t mean that administrators
should be mustered at 3:30 a.m. when the value goes out of bounds. Many
issues should be addressed during normal business hours.

•	 Eliminate monitoring noise. If false positives or notifications for noncritical
services are being generated, make time to stop and fix them. Otherwise,
like the boy who cried wolf, all notifications will eventually fail to receive
the necessary attention.

•	 Create run books for everything. Any common restart, reset, or corrective
procedure should be documented in a form that allows a responder who
is not intimately familiar with the system in question to take appropriate
action. The costs of not having such documentation are that problems
will not be fixed quickly, mistakes will be made, and additional staff will
be rousted to handle emergencies. Wikis are great for maintaining this
type of documentation.

•	 Monitor the monitoring platform. This one will seem obvious once you’ve
missed a critical outage because the monitoring platform was also down.
Learn from our mistakes and make sure something is watching your
watchful eyes.

•	 Miss an outage because of something that wasn’t monitored? Make sure
it gets added so you catch the problem next time.

•	 Finally, and perhaps most importantly: no server or service goes into pro-
duction without first being added to the monitoring system. No exceptions.

	 Recommended reading	 1069

M
on

ito
rin

g

28.11	 Recommended reading
Hecht, James. Rethinking Monitoring for Container Operations. Great details on
strategy and philosophy for monitoring containers. Find it at

	 http://thenewstack.io/monitoring-reset-containers/

Turnbull, James. The Art of Monitoring. Seattle, WA: Amazon Digital Services, 2016.

Dixon, Jason. Monitoring with Graphite: Tracking Dynamic Host and Application
Metrics at Scale. Sebastopol, CA: O’Reilly Media, 2017.

http://thenewstack.io/monitoring-reset-containers/

1070

Performance analysis and tuning are often treated as a form of system administra-
tion witchcraft. They’re not really witchcraft, but they do qualify as both science
and art. The “science” part involves making careful quantitative measurements and
applying the scientific method. The “art” part relates to the need to balance resourc-
es in a practical, level-headed way, since optimizing for one application or user can
result in other applications or users suffering. As with so many things in life, you
will often find that it’s impossible to make everyone happy.

Folks often assert that today’s performance problems are somehow wildly differ-
ent from those of previous decades. That claim is inaccurate. It’s true that systems
have become more complex, but the baseline determinants of performance and the
high-level abstractions for measuring and managing it remain the same as always.
Unfortunately, improvements in system performance correlate strongly with the
community’s ability to create new applications that suck up all available resources.

An added complexity of recent years is the many layers of abstraction that often sit
between your servers and the physical infrastructure of the cloud. It’s often impossi-
ble to know exactly what hardware is providing storage or CPU cycles to your server.

29 Performance Analysis

	 Performance tuning philosophy	 1071

Pe
rf

or
m

an
ce

The magic and the challenge of the cloud are two aspects of the same form. Despite
popular belief, you do not get to ignore performance considerations just because
your servers are virtual. In fact, the billing models used by cloud providers create
an even more direct link between operational efficiency and server costs. Knowing
how to measure and evaluate performance has become more important than ever.

This chapter focuses on the performance of systems that are used as servers. Desktop
systems (and laptops) typically do not experience the same types of performance
issues that servers do. The answer to the question of how to improve performance
on a desktop machine is almost always, “Upgrade the hardware.” Users like this
answer because it means they get fancy new systems more often.

29.1	 Performance tuning philosophy
One way that UNIX and Linux differ from other mainstream operating systems
is that copious data are available to characterize their inner workings. Detailed
information is generated by every level of the system, and administrators control
a variety of tunable parameters. Source code is usually available for review if you
have trouble identifying the cause of a performance problem despite the available
instrumentation. For these reasons, UNIX and Linux are typically the operating
systems of choice at performance-conscious sites.

Even so, performance tuning isn’t easy. Users and administrators alike often think
that if they only knew the right “magic,” their systems would be twice as fast. But
that’s rarely true.

One common fantasy involves tweaking the kernel variables that control the paging
system and the buffer pools. These days, kernels are pretuned to achieve reasonable
(though admittedly, not optimal) performance under a variety of load conditions.
If you try to optimize the system on the basis of one particular measure of perfor-
mance (e.g., buffer utilization), the chances are high that you will distort the system’s
behavior relative to other performance metrics and load conditions.

The most serious performance issues often lie within applications and have little to
do with the underlying operating system. This chapter discusses system-level per-
formance tuning and mostly leaves application-level tuning to others. As a system
administrator, you need to be mindful that application developers are people, too.
How many times have you said, or thought, that “It must be a network problem”?
In a similar way, application developers often initially assume that any issues must
originate in a subsystem that is someone else’s responsibility.

Given the complexity of modern applications, some problems can only be resolved
through collaboration among application developers, system administrators, server
engineers, DBAs, storage administrators, and network architects. In this chapter,

1072	 Chapter 29	 Performance Analysis	

we help you determine what data and information to take back to these other folks
to help them solve a performance problem—if, indeed, the problem lies in their
area. This approach is far more productive than just saying, “Everything looks fine;
it’s not my problem.”

In all cases, take everything you read on the Internet with a tablespoon of salt. In
the area of system performance, you will see superficially convincing arguments on
all sorts of topics. However, most of the proponents of these theories do not have
the knowledge, discipline, and time required to design valid experiments. Popular
support means very little; for every hare-brained proposal, you can expect to see a
Greek chorus of “I increased the size of my buffer cache by a factor of ten just like
Joe said, and the system feels much, much faster!!!” Right.

Here are some rules to keep in mind:

•	 	Collect and review historical information about your system. If the sys-
tem was performing fine a week ago, an examination of the aspects of
the system that have changed may well lead you to a smoking gun. Keep
baselines and trends in your hip pocket to pull out in an emergency. As
a first step, review log files to see if an underlying hardware problem has
developed.

•	 Familiarize yourself with the trend collection and analysis tools discussed
in Chapter 28, Monitoring. These tools are critical for performance
assessment.

•	 Tune your system in a way that lets you compare the current results to
the system’s previous baseline.

•	 Don’t intentionally overload your systems or your network. The kernel
gives each process the illusion of infinite resources. But once 100% of the
system’s resources are in use, the kernel has to work hard to maintain
that illusion, delaying processes and often consuming a sizable fraction
of the resources itself.

•	 As in particle physics, the more information you collect with system mon-
itoring utilities, the more you affect the system you are observing. It is best
to rely on something simple and lightweight that runs in the background
(e.g., sar or vmstat) for routine observation. If those feelers show some-
thing significant, you can investigate further with other tools.

•	 When making changes, change only one thing at a time, and document
each change that you make. Observe, record, and ponder the results be-
fore changing anything else.

•	 Always make sure you have a rollback plan in case your magic fix actually
makes things worse.

	 Ways to improve performance	 1073

Pe
rf

or
m

an
ce

29.2	 Ways to improve performance
Here are some specific things you can do to improve performance:

•	 Ensure that the system has enough memory. As we see in the next section,
memory size has a major influence on performance. If you’re running a
system in the cloud, the amount of memory allocated to an instance is
usually easy to adjust (though it’s often bundled with other resource allo-
cations into a full-system profile).

•	 Eliminate storage resources’ dependence on mechanical operations where
possible. Solid state disk drives (SSDs) are widely available and can yield
big performance boosts because they don’t require the physical movement
of a disk or armature to read bits. SSDs are easily installed (or, in the case
of cloud environments, chosen) in place of existing old-school disk drives.

•	 If you are using UNIX or Linux as a web server or as some other type of
network application server, you may want to spread traffic among sever-
al systems with a (physical or virtual) load balancer. Such an appliance
balances the load according to one of several user-selectable algorithms
such as “most responsive server” or “round robin.”

	 These load balancers also add useful redundancy should a server go down.
They’re really quite necessary if your site must handle unexpected traffic
spikes.

•	 Double-check the configuration of the system and of individual applica-
tions. Many applications can be tuned to yield tremendous performance
improvements (e.g., by spreading data across disks, by not performing
DNS lookups on the fly, or by running multiple instances of a server).

•	 Correct problems of usage, both those caused by “real work” (too many
services running at once, inefficient programming practices, batch jobs
run at excessive priority, and large jobs run at inappropriate times of day)
and those caused by the system (such as unwanted daemons).

•	 Organize hard disks and filesystems so that load is evenly balanced, max-
imizing I/O throughput. For specific applications such as databases, you
can use a fancy multidisk technology such as striped RAID to optimize
data transfers. Consult your database vendor for recommendations. For
Linux systems, ensure that you’ve selected the appropriate Linux I/O
scheduler for your disk (see page 1086 for details).

	 Remember that different types of applications and databases respond
differently to being spread across multiple disks. RAID comes in many
forms; take time to determine which form (if any) is appropriate for your
particular application.

1074	 Chapter 29	 Performance Analysis	

•	 Monitor your network to be sure that it is not saturated with traffic and
that the error rate is low. A wealth of network information is available
through the netstat (FreeBSD) and ss (Linux) commands.

•	 Identify cases where the system is fundamentally inadequate to satisfy the
demands being made of it. You cannot tune your way out of these situations.

These steps are listed in rough order of effectiveness. Adding memory, converting
to SSDs, and balancing traffic across multiple servers can often make a huge dif-
ference in performance. The effectiveness of the other measures ranges from no-
ticeable to none.

Analysis and optimization of software data structures and algorithms almost always
lead to significant performance gains. But unless you have a substantial base of local
software, this level of design is usually out of your control.

29.3	 Factors that affect performance
Perceived performance is determined by the basic capacities of the system’s resourc-
es and by the efficiency with which those resources are allocated and shared. The
exact definition of a “resource” is rather vague. It can include such items as cached
contexts on the CPU chip and entries in the address table of the memory control-
ler. However, to a first approximation, only the following four resources have much
effect on performance:

•	 CPU utilization (and stolen cycles, see below)
•	 Memory
•	 Storage I/O
•	 Network I/O

If resources are still left after active processes have taken what they want, the sys-
tem’s performance is about as good as it can be.

If there are not enough resources to go around, processes must take turns. A process
that does not have immediate access to the resources it needs has to wait around
doing nothing. The amount of time spent waiting is one of the basic measures of
performance degradation.

Historically, CPU utilization was one of the easiest resources to measure because a
constant amount of processing power was always available. Nowadays, some virtu-
alized or cloud environments may allocate CPU more dynamically. A process that’s
using more than 90% of the allocated CPU is entirely CPU bound and is consuming
essentially all of the system’s available computing power.

Many people assume that CPU resources are the most important factor affecting
a system’s overall performance. Given infinite amounts of all other resources or
certain types of applications (e.g., numerical simulations), a faster CPU (or more

	 Stolen CPU cycles	 1075

Pe
rf

or
m

an
ce

CPU cores) does make a dramatic difference. But in the everyday world, CPU is
actually relatively unimportant.

Disk bandwidth is a common performance bottleneck. Because traditional hard
disks are mechanical systems, it takes many milliseconds to locate a disk block, fetch
its contents, and wake up the process that’s waiting for it. Delays of this magnitude
overshadow every other source of performance degradation. Each disk access caus-
es a stall worth millions of CPU instructions. Solid state drives (SSDs) are one tool
you can use to address this problem.

Because of virtual memory, disk bandwidth and memory can be directly related
if the demand for physical memory is greater than the supply. Situations in which
physical memory becomes scarce often result in memory pages being written to disk
so that they can be reclaimed and reused for another purpose. In these situations,
using memory is just as expensive as using the disk. Avoid this trap when perfor-
mance is important; make sure that every system has adequate physical memory.

Network bandwidth resembles disk bandwidth in many ways because of the laten-
cies involved in network communication. However, networks are atypical in that
they involve entire communities rather than individual computers. They are also
particularly susceptible to hardware problems and overloaded servers.

29.4	 Stolen CPU cycles
The promise of the cloud (and of virtualization more generally) is that your server
always has the resources it needs. In reality, much of this bounty is created with
smoke and mirrors. Even in a large-scale virtualization environment, resource con-
tention can have a noticeable effect on a virtual server’s performance.

CPU is the resource most commonly affected. There are two ways by which CPU
cycles can be stolen from your virtual machine:

•	 The hypervisor running your VM enforces a CPU quota based on how
much CPU power you have contracted for. Shortfalls can be addressed by
allocation of more resources at the hypervisor level or by your purchasing
a larger instance size from the cloud provider.

•	 The physical hardware is oversubscribed, and there are not enough physical
CPU cycles available to meet the current needs of all VM instances, even
though these instances may all be under their CPU quotas. On a cloud
provider, fixing this issue may be as simple as restarting your instance so
that it gets reassigned to new physical hardware. In a data center of your
own, the solution may require upgrading your virtualization environment
with more resources.

Although CPU stealing can happen to any operating system running on a virtual-
ized platform, Linux gives you some visibility into this phenomenon with the st
metric (“stolen”) in top, vmstat, and mpstat.

1076	 Chapter 29	 Performance Analysis	

Here’s an example from top:

top - 18:36:42 up 3 days, 18:03, 1 user, load average: 3.40, 2.25, 2.08
Tasks: 218 total, 4 running, 217 sleeping, 0 stopped, 0 zombie
%Cpu: 41.6 us, 42.2 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 16.2 st

In this example, 16.2% of the time, the system is ready to do work but is unable
to run because CPU is being diverted away from the VM by the hypervisor. This
time spent waiting translates directly to reduced throughput. Monitor this metric
carefully on virtual servers to ensure that your workloads aren’t being unintention-
ally starved of CPU.

29.5	 Analysis of performance problems
It can be difficult to isolate performance problems in a complex system. As a sys-
admin, you often receive anecdotal problem reports that suggest a particular cause
or fix (e.g., “The web server has gotten painfully sluggish because of all those damn
AJAX calls…”). Take note of this information, but don’t assume that it’s accurate or
reliable; do your own investigation.

Rigorous, transparent application of the scientific method helps you reach conclu-
sions that you and others in your organization can rely on. Such an approach lets
others evaluate your results, increases your credibility, and raises the likelihood
that your suggested changes will actually fix the problem.

“Being scientific” doesn’t mean that you have to gather all the relevant data yourself.
External information usually helps a lot. Don’t spend hours doing experiments re-
lated to issues that can just as easily be looked up in a FAQ.

We suggest the following five steps:

1.	 Formulate the question. Pose a specific question in a defined functional
area, or state a tentative conclusion or recommendation that you are
considering. Be specific about the type of technology, the components
involved, the alternatives you are considering, and the outcomes of interest.

2.	 Gather and classify evidence. Conduct a systematic search of documen-
tation, knowledge bases, known issues, blogs, white papers, forums, and
other resources to locate external evidence related to your question. On
your own systems, capture telemetry data and, where necessary or pos-
sible, instrument specific system and application areas of interest.

3.	 Critically appraise the data. Review each data source for relevance and
critique it for validity. Abstract key information and note the quality of
the sources.

4.	 Summarize the evidence both narratively and graphically. Combine findings
from multiple sources into a narrative précis and, if possible, a graphic
representation. Data that appears equivocal in numeric form can often
become decisive once charted.

	 System performance checkup	 1077

Pe
rf

or
m

an
ce

5.	 Develop a conclusion statement. State your conclusions (i.e., the answer to
your question) concisely. Assign a grade to indicate the overall strength
or weakness of the evidence that supports your conclusions.

29.6	 System performance checkup
Enough generalities—let’s look at some specific tools and areas of interest. Before
you take measurements, you need to know what you’re looking at.

Taking stock of your equipment
Start your inquiry with an inventory of your (physical or virtual) hardware, especially
CPU and memory resources. This inventory can help you interpret the information
presented by other tools and can help you set realistic expectations regarding the
upper bounds on performance.

On Linux systems, the /proc filesystem is the place to find an overview of the hard-
ware your operating system thinks you have. (More detailed hardware information
can be found in /sys; see page 332.) Table 29.1 shows some of the key files. See
page 104 for general information about /proc.

Table 29.1	 Sources of hardware information on Linux

File Contents

/proc/cpuinfo CPU type and description
/proc/meminfo Memory size and usage
/proc/diskstats Disk devices and usage statistics

Four lines in /proc/cpuinfo help you identify the system’s exact CPU: vendor_id,
cpu family, model, and model name. Some of the values are cryptic; it’s best to
look up the decoding on-line.

The exact info contained in /proc/cpuinfo varies by system and processor, but here’s
a representative example:

$ cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 15
model name : Intel(R) Xeon(R) CPU E5310 @ 1.60GHz
stepping : 11
cpu MHz : 1600.003
cache size : 4096 KB
physical id : 0
cpu cores : 2
siblings : 2
...

1078	 Chapter 29	 Performance Analysis	

The file contains one entry for each processor core seen by the OS. The data vary
slightly by kernel version. The processor value uniquely identifies each core. physical
id values are unique per CPU socket, and core id values (not shown above) are
unique per core within a CPU socket. Cores that support hyperthreading (duplication
of CPU contexts without duplication of other processing features) are identified by
an ht in the flags field (not shown above). If hyperthreading is actually in use, the
siblings field for each core shows how many contexts are available on a given core.

Another command to run for information on both FreeBSD and Linux is dmidecode.
It dumps the system’s Desktop Management Interface (DMI, aka SMBIOS) data.
The most useful option is -t type; Table 29.2 shows the valid types.

Table 29.2	 Type values for dmidecode -t

Value Description

1 System information
2 Base board Information
3 Chassis information
4 Processor information
7 Cache information
8 Port connector information
9 System slot information

11 OEM strings
12 System configuration options
13 BIOS language information
16 Physical memory array
17 Memory device
19 Memory array mapped address
32 System boot information
38 IPMI device information

The example below shows typical information:

$ sudo dmidecode -t 4
dmidecode 2.11
SMBIOS 2.2 present.

Handle 0x0004, DMI type 4, 32 bytes.
Processor Information
	 Socket Designation: PGA 370
	 Type: Central Processor
	 Family: Celeron
	 Manufacturer: GenuineIntel
	 ID: 65 06 00 00 FF F9 83 01
	 Signature: Type 0, Family 6, Model 6, Stepping 5
...

	 System performance checkup	 1079

Pe
rf

or
m

an
ce

Bits of network configuration information are scattered about the system. ifconfig
-a (FreeBSD) and ip a (Linux) are the best sources of IP and MAC information for
each configured interface.

Gathering performance data
Most performance analysis tools tell you what’s going on at a particular point. How-
ever, the number and character of loads probably change throughout the day. Be
sure to gather a cross-section of data before taking action. The best information
on system performance often becomes clear only after a long period (a month or
more) of data collection. It is particularly important to collect data during periods
of peak use. Resource limitations and system misconfigurations are often visible
only when the machine is under heavy load. See Chapter 28, Monitoring, for
more information about collecting and analyzing data.

Analyzing CPU usage
You will probably want to gather three kinds of CPU data: overall utilization, load
averages, and per-process CPU consumption. Overall utilization can help identify
systems on which the CPU’s speed is itself the bottleneck. Load averages profile
overall system performance. Per-process CPU consumption data can identify spe-
cific processes that are hogging resources.

You can obtain summary information with the vmstat command. vmstat takes
two arguments: the number of seconds to monitor the system for each line of out-
put and the number of reports to print. If you don’t specify the number of reports,
vmstat runs until you press <Control-C>. For example:

$ vmstat 5 5
procs ----------memory---------- -swap- ---io-- -system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
 1 0 820 2606356 428776 487092 0 0 4741 65 1063 4857 25 1 73 0
 1 0 820 2570324 428812 510196 0 0 4613 11 1054 4732 25 1 74 0
 1 0 820 2539028 428852 535636 0 0 5099 13 1057 5219 90 1 9 0
 1 0 820 2472340 428920 581588 0 0 4536 10 1056 4686 87 3 10 0
 3 0 820 2440276 428960 605728 0 0 4818 21 1060 4943 20 3 77 0

Although exact columns vary among systems, CPU utilization statistics are fairly
consistent across platforms. User time, system (kernel) time, idle time, and time
waiting for I/O are shown in the us, sy, id, and wa columns on the far right. CPU
numbers that are heavy on user time generally indicate computation, and high
system numbers indicate that processes are making a lot of system calls or are per-
forming lots of I/O.

A rule of thumb for general-purpose compute servers that has served us well over
the years is this: the system should spend approximately 50% of its non-idle time in
user space and 50% in system space; the overall idle percentage should be nonzero.

1080	 Chapter 29	 Performance Analysis	

If you are dedicating a server to a single, CPU-intensive application, the majority
of time should be spent in user space.

The cs column shows context switches per interval (that is, the number of times that
the kernel changed which process was running). The number of interrupts per inter-
val (usually generated by hardware devices or components of the kernel) is shown
in the in column. Extremely high cs or in values typically indicate a misbehaving
or misconfigured hardware device. The other columns are useful for memory and
disk analysis, which we discuss later in this chapter.

Long-term averages of the CPU statistics let you determine whether there is fun-
damentally enough CPU power to go around. If the CPU usually spends part of
its time in the idle state, there are cycles to spare. Upgrading to a faster CPU won’t
do much to improve the overall throughput of the system, although it may speed
up individual operations.

As you can see from this example, the CPU generally flip-flops back and forth be-
tween heavy use and idleness. Therefore, be sure to observe these numbers as an
average over time. The smaller the monitoring interval, the less consistent the results.

On multiprocessor machines, most tools present an average of processor statistics
across all processors. On Linux, the mpstat command generates vmstat-like output
for each individual processor. The -P flag lets you specify a specific processor to
report on. mpstat is useful for debugging software that supports symmetric multi-
processing—it’s also enlightening to see how (in)efficiently your system uses mul-
tiple processors. Here’s an example that shows the status of each of four processors:

linux$ mpstat -P ALL
08:13:38 PM CPU %user %nice %sys %iowait %irq %soft %idle intr/s
08:13:38 PM 0 1.02 0.00 0.49 1.29 0.04 0.38 96.79 473.93
08:13:38 PM 1 0.28 0.00 0.22 0.71 0.00 0.01 98.76 232.86
08:13:38 PM 2 0.42 0.00 0.36 1.32 0.00 0.05 97.84 293.85
08:13:38 PM 3 0.38 0.00 0.30 0.94 0.01 0.05 98.32 295.02

On a workstation with only one user, the CPU generally spends most of its time
idle. Then when you render a web page or switch windows, the CPU is used heav-
ily for a short period. In this situation, information about long-term average CPU
usage is not meaningful.

The second CPU statistic that’s useful for characterizing the burden on your system
is the “load average,” which represents the average number of runnable processes.
It gives you a good idea of how many pieces the CPU pie is being divided into. The
load average is obtained with the uptime command:

$ uptime
11:10am up 34 days, 18:42, 5 users, load average: 0.95, 0.38, 0.31

Three values are given, corresponding to the 1, 5, and 15-minute averages. In general,
the higher the load average, the more important the system’s aggregate performance
becomes. If there is only one runnable process, that process is usually bound by a

	 System performance checkup	 1081

Pe
rf

or
m

an
ce

single resource (commonly disk bandwidth or CPU). The peak demand for that
one resource becomes the determining factor in performance.

When more processes share the system, loads may or may not be more evenly dis-
tributed. If the processes on the system all consume a mixture of CPU, disk, and
memory, the performance of the system is less likely to be dominated by constraints
on a single resource. In this situation, it becomes most important to look at average
measures of consumption, such as total CPU utilization.

The system load average is an excellent metric to track as part of a system baseline.
If you know your system’s load average on a normal day and it is in that same range
on a bad day, this is a hint that you should look elsewhere (such as the network)
for performance problems. A load average above the expected norm suggests that
you should look at the processes running on the system itself.

Another way to view CPU usage is to run the ps ‑aux command to see how much
of the CPU each process is using. On a busy system, at least 70% of the CPU is
often consumed by just one or two processes. Deferring the execution of the CPU
hogs or reducing their priority makes the CPU more available to other processes.

An excellent alternative to ps is a program called top. It presents about the same
information as ps, but in a live, regularly updated format that shows the status of
the system over time.1

Understanding how the system manages memory
The kernel manages memory in units called pages that are usually 4KiB or larger.
It allocates virtual pages to processes as they request memory. Each virtual page
is mapped to real storage, either to RAM or to “backing store” on disk. The kernel
uses a “page table” to keep track of the mappings between these made-up virtual
pages and real pages of memory.

The kernel can effectively allocate as much memory as processes ask for by augment-
ing real RAM with swap space. Since processes expect their virtual pages to map to
real memory, the kernel may have to constantly shuffle pages between RAM and
swap as different pages are accessed. This activity is known as paging.2

The kernel tries to manage the system’s memory so pages that have been recent-
ly accessed are kept in memory and less active pages are paged out to disk. This
scheme is known as an LRU system since the least recently used pages are the ones
that get shunted to disk.

It would be inefficient for the kernel to keep track of all memory references, so it
uses a cache-like algorithm to decide which pages to keep in memory. The exact
algorithm varies by system, but the concept is similar across platforms. This system
is cheaper than a true LRU system and produces comparable results.

	 1.	 Refreshing top’s output too rapidly can itself be quite a CPU hog, so be judicious in your use of top.
	 2.	 Ages ago, a second process known as “swapping” could occur in which all of a process’s pages were

pushed out to disk at the same time. Today, demand paging is used in all cases.

See page 93 for
more information
about priorities.

See page 101 for more
information about top.

1082	 Chapter 29	 Performance Analysis	

When memory is low, the kernel tries to guess which pages on the inactive list were
least recently used. If those pages have been modified by a process, they are con-
sidered “dirty” and must be paged out to disk before the memory can be reused.
Pages that have been laundered in this fashion (or that were never dirty to begin
with) are “clean” and can be recycled for use elsewhere.

When a process refers to a page on the inactive list, the kernel returns the page’s
memory mapping to the page table, resets the page’s age, and transfers the page
from the inactive list to the active list. Pages that have been written to disk must be
paged in before they can be reactivated if the page in memory has been remapped.
A “soft fault” occurs when a process references an in-memory inactive page, and
a “hard fault” results from a reference to a nonresident (paged-out) page. In other
words, a hard fault requires a page to be read from disk and a soft fault does not.

The kernel tries to stay ahead of the system’s demand for memory, so there is not
necessarily a one-to-one correspondence between page-out events and page allo-
cations by running processes. The goal of the system is to keep enough free mem-
ory handy that processes don’t have to actually wait for a page-out each time they
make a new allocation. If paging increases dramatically when the system is busy, it
would probably benefit from more RAM.

You can tune the kernel’s “swappiness” parameter (/proc/sys/vm/swappiness) to tell
the kernel how to balance between reclaiming swap-backed and file-backed pages.
Setting swappiness to zero focuses reclamations entirely on file-backed pages; a
swappiness of 100 makes an equal balance between the two. By default, the swap-
piness parameter has a value of 60. (If you find yourself tempted to modify this
parameter, it’s probably time to buy more RAM for the system.)

If the kernel is unable to reclaim pages, Linux uses an “out-of-memory killer” to
handle this condition. The killer function selects and kills a process to free up mem-
ory. Although the kernel attempts to kill off the least important user process on
your system, running out of memory is always something to avoid. In this situation,
it’s likely that a substantial portion of the system’s resources are being devoted to
memory housekeeping rather than to useful work.

Analyzing memory usage
Two numbers summarize memory activity: the total amount of active virtual mem-
ory and the current paging rate. The first number tells you the total demand for
memory, and the second suggests the proportion of that memory that is actively
used. Your goal is to reduce activity or increase memory until paging remains at an
acceptable level. Occasional paging is inevitable; don’t try to eliminate it completely.

Run swapon -s to determine the amount of paging (swap) space that’s currently in use:

linux$ swapon -s
Filename Type Size Used Priority
/dev/hdb1 partition 4096532 0 -1
/dev/hda2 partition 4096564 0 -2

	 System performance checkup	 1083

Pe
rf

or
m

an
ce

swapon reports usage in kilobytes. The sizes quoted by these programs do not in-
clude the contents of core memory, so you have to compute the total amount of
virtual memory yourself:

	 VM = size of real memory + amount of swap space used

On FreeBSD systems, paging statistics obtained with vmstat look like this:

freebsd$ vmstat 5 5
procs memory page disks faults
r b w avm fre flt re pi po fr sr da0 cd0 in sy
0 0 0 412M 1.8G 97 0 1 0 200 6 0 0 51 359
2 0 0 412M 1.8G 1 0 0 0 0 7 0 0 5 27
2 0 0 412M 1.8G 0 0 0 0 0 7 0 0 4 25
1 0 0 412M 1.8G 0 0 0 0 0 6 0 0 4 25
0 0 0 412M 1.8G 0 0 0 0 0 7 0 0 6 26

CPU information has been removed from this example. Under the procs heading
are shown the number of processes that are immediately runnable, blocked on
I/O, and runnable but swapped. If the value in the w column is ever nonzero, it is
likely that the system’s memory is pitifully inadequate relative to the current load.

Under the memory heading, you can see both the active virtual memory (avm) and
free virtual memory (fre). The columns under the page heading give information
about paging activity. All columns represent average values per second. Table 29.3
shows their meanings.

Table 29.3	 Decoding guide for FreeBSD vmstat paging statistics

Column Meaning

flt Total number of page faults
re Number of pages reclaimed (rescued from the free list)
pi Number of kilobytes paged in
po Number of kilobytes paged out
fr Number of kilobytes placed on the free list
sr Number of pages scanned by the clock algorithm

On Linux systems, paging statistics obtained with vmstat look like this:

linux$ vmstat 5 5
procs ---------memory-------- -swap- ---io-- -system- -----cpu------
 r b swpd free buff cache si so bi bo in cs us sy id wa st
 5 0 0 66488 40328 597972 0 0 252 45 1042 278 3 4 93 1 0
 0 0 0 66364 40336 597972 0 0 0 37 1009 264 0 1 98 0 0
 0 0 0 66364 40344 597972 0 0 0 5 1011 252 1 1 98 0 0
 0 0 0 66364 40352 597972 0 0 0 3 1020 311 1 1 98 0 0
 0 0 0 66364 40360 597972 0 0 0 21 1067 507 1 3 96 0 0

1084	 Chapter 29	 Performance Analysis	

As in the FreeBSD output, the number of processes that are immediately runnable
and that are blocked on I/O are shown under the procs heading. Paging statistics
are condensed to two columns, si and so, which represent pages swapped in and
out, respectively.

Any apparent inconsistencies among the memory-related columns are for the most
part illusory. Some columns count pages and others count kilobytes. All values are
rounded averages. Furthermore, some are averages of scalar quantities and others
are average deltas.

Use the si and so fields to evaluate the system’s swapping behavior. A page-in (si)
represents a page being recovered from the swap area. A page-out (so) represents
data being written to the swap area after being forcibly ejected by the kernel.

If your system has a constant stream of page-outs, it’s likely that you would benefit
from more physical memory. But if paging happens only occasionally and does not
produce annoying hiccups or user complaints, you can ignore it. If your system
falls somewhere in the middle, further analysis should depend on whether you are
trying to optimize for interactive performance (e.g., a workstation) or for a more
server-like workload.

Analyzing disk I/O
You can monitor disk performance with the iostat command. Like vmstat, it accepts
optional arguments to specify an interval in seconds and a repetition count, and its
first line of output is a summary since boot. iostat output on Linux looks like this:

linux$ iostat
...
Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn
sda 0.41 8.20 1.39 810865 137476
dm-0 0.39 7.87 1.27 778168 125776
dm-1 0.02 0.03 0.04 3220 3964
dm-2 0.01 0.23 0.06 22828 5652

Each hard disk has the columns tps, kB_read/s, kB_wrtn/s, kB_read, and kB_wrtn,
indicating transfers per second, kilobytes read per second, kilobytes written per
second, total kilobytes read, and total kilobytes written.

The cost of seeking is the most important factor affecting mechanical disk drive per-
formance. To a first approximation, the rotational speed of the disk and the speed
of the bus to which the disk is connected have relatively little impact. Modern me-
chanical disks can transfer hundreds of megabytes of data per second if they are
read from contiguous sectors, but they can only perform about 100 to 300 seeks
per second. If you transfer one sector per seek, you can easily realize less than 5%
of the drive’s peak throughput. SSD disks have a significant advantage over their
mechanical predecessors because their performance is not tied to platter rotation
or head movement.

	 System performance checkup	 1085

Pe
rf

or
m

an
ce

Whether you’re using mechanical or SSD disks, you should put filesystems that
are used together on separate disks to maximize performance. Although bus ar-
chitectures and device drivers influence efficiency, most computers can manage
multiple disks independently, thereby increasing throughput. For example, it’s of-
ten worthwhile to segregate frequently accessed web server data and web server
logs onto different disks.

It’s especially important to split the paging (swap) area among several disks if possi-
ble, since paging tends to slow down the entire system. Many systems can use both
dedicated swap partitions and swap files on a formatted filesystem.

The lsof command, which lists open files, and the fuser command, which shows the
processes that are using a filesystem, can be helpful for isolating disk I/O perfor-
mance issues. These commands show interactions between processes and filesystems,
some of which may be unintended. For example, if an application is writing its log
to the same device used for database logs, a disk bottleneck may result.

fio: testing storage subsystem performance
fio (github.com/axboe/fio) is available for both Linux and FreeBSD. Use it to test the
performance of the storage subsystem. It’s particularly helpful in large environments
where shared storage resources (such as a Storage Area Network) are deployed. If
you find yourself in a situation where storage performance is a concern, it’s often
valuable to determine quantitative values for the following:

•	 Throughput in I/O operations per second (IOPS) (read, write, and mixed)
•	 Average latency (read and write)
•	 Maximum latency (peak read or write latency)

As part of the fio distribution, config (.fio) files for common tests such as these are
included in the examples subdirectory. Here’s an example of a simple read/write test:

$ fio read-write.fio
ReadWriteTest: (g=0): rw=rw, bs=4K-4K/4K-4K/4K-4K, eng=posixaio, depth=1
fio-2.18
Starting 1 thread
Jobs: 1 (f=1): [M] [100.0% done] [110.3MB/112.1MB/0KB /s]

[22.1K/28.4K/0 iops] [eta 00m:00s]
 read : io=1024.7MB, bw=91326KB/s, iops=20601, runt= 9213msec
 slat (usec): min=0, max=73, avg= 2.30, stdev= 0.23
 clat (usec): min=0, max=2214, avg=20.30, stdev=101.20
 lat (usec): min=5, max=2116, avg=22.21, stdev=101.21
 clat percentiles (usec):
 | 1.00th=[4], 5.00th=[6], 10.00th=[7], 20.00th=[7],
 | 30.00th=[6], 40.00th=[7], 50.00th=[7], 60.00th=[7],
 | 70.00th=[8], 80.00th=[8], 90.00th=[8], 95.00th=[10],
 | 99.00th=[668], 99.50th=[1096], 99.90th=[1208], 99.95th=[1208],
 | 99.99th=[1256]
...

See page 124 for
more information
about lsof and fuser.

http://github.com/axboe/fio

1086	 Chapter 29	 Performance Analysis	

 READ: io=1024.7MB, aggrb=91326KB/s, minb=91326B/s, maxb=91326KB/s,
mint=10671msec, maxt=10671msec

 WRITE: io=1023.4MB, aggrb=98202KB/s, minb=98202KB/s, maxb=98202KB/s,
mint=10671msec, maxt=10671msec

As with so many performance-related metrics, there is no universally correct val-
ue for any of these measures. It’s best to establish a benchmark, make adjustments,
and remeasure.

sar: collecting and reporting statistics over time
The sar command is a performance monitoring tool that has lingered through mul-
tiple UNIX and Linux epochs despite its somewhat obscure command-line syntax.
The original command had its roots in early AT&T UNIX.

At first glance, sar seems to display much the same information as vmstat and
iostat. However, there’s one important difference: sar can report on historical as
well as current data.

Without options, the sar command reports CPU utilization for the day at 10-minute
intervals since midnight, as shown below. This historical data collection is made
possible by the sal script, which is part of the sar toolset and must be set up to
run from cron at periodic intervals. sar stores the data it collects underneath the
/var/log directory in a binary format.

linux$ sar
Linux 4.4.0-66-generic (nuerbull) 03/19/17 _x86_64_ (4 CPU)
19:10:01 CPU %user %nice %system %iowait %steal %idle
19:12:01 all 0.02 0.00 0.01 0.00 0.00 99.97
19:14:01 all 0.01 0.00 0.01 0.00 0.00 99.98

In addition to CPU information, sar can also report on metrics such as disk and
network activity. Use sar -d for a summary of this day’s disk activity or sar -n DEV
for network interface statistics. sar -A reports all available information.

sar has some limitations, but it’s a good bet for quick-and-dirty historical infor-
mation. If you’re serious about making a long-term commitment to performance
monitoring, we suggest that you set up a data collection and graphing platform
such as Grafana.

Choosing a Linux I/O scheduler
Linux systems use an I/O scheduling algorithm to mediate among processes com-
peting to perform disk I/O. The I/O scheduler massages the order and timing of
disk requests to achieve the best possible overall I/O performance for a given ap-
plication or situation.

The Linux package
that contains sar
is called sysstat.

See page 1049 for
more information
about Grafana.

	 System performance checkup	 1087

Pe
rf

or
m

an
ce

Three different scheduling algorithms are available in current Linux kernels:

•	 Completely Fair Queuing: This is the default algorithm and is usually the
best choice for mechanical hard disks on general-purpose servers. It tries
to evenly distribute access to I/O bandwidth. (If nothing else, the algo-
rithm surely deserves an award for marketing: who could ever say no to
a completely fair scheduler?)

•	 Deadline: This algorithm tries to minimize the latency for each request.
It reorders requests to increase performance.

•	 NOOP: This algorithm implements a simple FIFO queue. It assumes that
I/O requests have already been optimized or reordered by the driver, or
that they will be optimized or reordered by the device (as might be done
by an intelligent controller). This option may be the best choice in some
SAN environments and is the best choice for SSD drives (because SSD
drives don’t have variable retrieval latencies).

You can view or set the algorithm in use for any particular device through the file
/sys/block/disk/queue/scheduler. The active scheduler is enclosed in brackets.

$ cat /sys/block/sda/queue/scheduler
noop deadline [cfq]
$ sudo sh -c "echo noop > /sys/block/sda/queue/scheduler"
$ cat /sys/block/sda/queue/scheduler
[noop] deadline cfq

By determining which scheduling algorithm is most appropriate for your environ-
ment (you may need to run trials with each scheduler) you may be able to improve
I/O performance.

Unfortunately, the scheduling algorithm does not persist across reboots when set in
this manner. You can set it for all devices at boot time with the elevator=algorithm
kernel argument. That configuration is usually set in the GRUB boot loader’s con-
figuration file, grub.conf.

perf: profiling Linux systems in detail
Linux kernel versions 2.6 and higher include a perf_events interface that affords
user-level access to the kernel’s performance metric event stream. The perf com-
mand is a powerful, integrated system profiler that reads and analyzes information
from this stream. All components of a system can be profiled: hardware, kernel
modules, the kernel itself, shared libraries, and applications.

To get started with perf, you’ll need to get a full set of the linux-tools packages:

$ sudo apt-get install linux-tools-common linux-tools-generic
linux-tools-`uname -r`

See page 35 for
more information
about GRUB.

1088	 Chapter 29	 Performance Analysis	

Once you’ve installed the software, check out the tutorial at goo.gl/f88mt for exam-
ples and use cases. (This is a deep link into perf.wiki.kernel.org.)

The TL;DR path to getting started is to try perf top, which is a top-like display of
system-wide CPU use. Of course, the simple example below only scratches the
surface of perf’s capabilities.

$ sudo perf top
Samples: 161K of event 'cpu-clock', Event count (approx.): 21695432426
Overhead Shared Object Symbol
 4.63% [kernel] [k] 0x00007fff8183d3b5
 2.15% [kernel] [k] finish_task_switch
 2.04% [kernel] [k] entry_SYSCALL_64_after_swapgs
 2.03% [kernel] [k] str2hashbuf_signed
 2.00% [kernel] [k] half_md4_transform
 1.44% find [.] 0x0000000000016a01
 1.41% [kernel] [k] ext4_htree_store_dirent
 1.21% libc-2.23.so [.] strlen
 1.19% [kernel] [k] __d_lookup_rcu
 1.14% find [.] 0x00000000000169f0
 1.12% [kernel] [k] copy_user_generic_unrolled
 1.06% [kernel] [k] kfree
 1.06% [kernel] [k] _raw_spin_lock
 1.03% find [.] 0x00000000000169fa
 1.01% find [.] 0x0000000000016a05
 0.86% find [.] fts_read
 0.73% [kernel] [k] __kmalloc
 0.71% [kernel] [k] ext4_readdir
 0.69% libc-2.23.so [.] malloc
 0.65% libc-2.23.so [.] fcntl
 0.64% [kernel] [k] __ext4_check_dir_entry

The Overhead column shows the percentage of the time the CPU was in the corre-
sponding function when it was sampled. The Shared Object column is the com-
ponent (e.g., the kernel), shared library, or process in which the function resides,
and the Symbol column is the name of the function (in cases where symbol infor-
mation hasn’t been stripped).

29.7	 Help! My server just got really slow!
In previous sections, we’ve talked mostly about issues that relate to the average
performance of a system. Solutions to these long-term concerns generally take the
form of configuration adjustments or upgrades.

However, you will find that even properly configured systems are sometimes more
sluggish than usual. Luckily, transient problems are often easy to diagnose. Most
of the time, they are caused by a greedy process that is simply consuming so much
CPU power, disk, or network bandwidth that other processes are affected. On oc-

http://goo.gl/f88mt
http://perf.wiki.kernel.org

	 Help! My server just got really slow!	 1089

Pe
rf

or
m

an
ce

casion, malicious processes hog available resources to intentionally slow a system
or network, a scheme known as a “denial of service” (DOS) attack.

The first step in diagnosis is to run ps auxww or top to look for obvious runaway
processes. Any process that’s using more than 50% of the CPU is likely to be at
fault. If no single process is getting an inordinate share of the CPU, check to see
how many processes are getting at least 10%. If you snag more than two or three
(don’t count ps itself), the load average is likely to be quite high. This is, in itself, a
cause of poor performance. Check the load average with uptime, and use vmstat
or top to check whether the CPU is ever idle.

If no CPU contention is evident, run vmstat to see how much paging is going on.
All disk activity is interesting: a lot of page-outs may indicate contention for memory,
and disk traffic in the absence of paging may mean that a process is monopolizing
the disk by constantly reading or writing files.

There’s no direct way to tie disk operations to processes, but ps can narrow down
the possible suspects for you. Any process that is generating disk traffic must be
using some amount of CPU time. You can usually make an educated guess about
which of the active processes is the true culprit.3 Use kill -STOP to suspend the
process and test your theory.

Suppose you do find that a particular process is at fault—what should you do? Usu-
ally, nothing. Some operations just require a lot of resources and are bound to slow
down the system. It doesn’t necessarily mean that they’re illegitimate. It is sometimes
useful, however, to renice an obtrusive process that is CPU-bound.

Sometimes, application tuning can dramatically reduce a program’s demand for
CPU resources; this effect is especially visible with custom network server software
such as web applications.

Processes that are disk or memory hogs often can’t be dealt with so easily. renice
generally does not help. You do have the option of killing or stopping such processes,
but we recommend against this if the situation does not constitute an emergency.
As with CPU pigs, you can use the low-tech solution of asking the owner to run
the process later.

Linux has a handy option for dealing with processes that consume excessive disk
bandwidth in the form of the ionice command. This command sets a process’s I/O
scheduling class; at least one of the available classes supports numeric I/O priorities
(which can be set through ionice as well). The most useful invocation to remem-
ber is ionice -c 3 -p pid, which allows the named process to perform I/O only if no
other processes wants to.

	 3.	 A large virtual address space or resident set used to be a suspicious sign, but shared libraries have
made these numbers less useful. ps is not very smart about separating system-wide shared library
overhead from the address spaces of individual processes. Many processes wrongly appear to have
tens or hundreds of megabytes of active memory.

1090	 Chapter 29	 Performance Analysis	

The kernel allows a process to restrict its own use of physical memory by calling the
setrlimit system call.4 This facility is also available in the shell through the built-in
ulimit command (limits on FreeBSD). For example, the command

$ ulimit -m 32000000

causes all subsequent commands that the user runs to have their use of physical
memory limited to 32MB. This feature is roughly equivalent to renice for memo-
ry-bound processes.

If a runaway process doesn’t seem to be the source of poor performance, investigate
two other possible causes. The first is an overloaded network. Many programs are
so intimately bound up with the network that it’s hard to tell where system perfor-
mance ends and network performance begins.

Some network overloading problems are hard to diagnose because they come and
go very quickly. For example, if every machine on the network runs a network-re-
lated program out of cron at a particular time each day, there will often be a brief
but dramatic glitch. Every machine on the net will hang for five seconds, and then
the problem will disappear as quickly as it came.

Server-related delays are another possible cause of performance crises. UNIX and
Linux systems are constantly consulting remote servers for NFS, Kerberos, DNS, and
any of a dozen other facilities. If a server is dead or some other problem makes the
server expensive to communicate with, the effects ripple back through client systems.

For example, on a busy system, some process may use the gethostent library rou-
tine every few seconds or so. If a DNS glitch makes this routine take two seconds
to complete, you will likely perceive a difference in overall performance. DNS for-
ward and reverse lookup configuration problems are responsible for a surprising
number of server performance issues.

29.8	 Recommended reading
Drepper, Ulrich. What Every Programmer Should Know about Memory. You can
find this article on-line at lwn.net/Articles/250967.

Ezolt, Phillip G. Optimizing Linux Performance. Upper Saddle River, NJ: Pren-
tice Hall PTR, 2005.

Gregg, Brendan. Systems Performance: Enterprise and the Cloud. Upper Saddle
River, NJ: Prentice Hall PTR, 2013.

Koziol, Prabhat, and Quincey Koziol. High Performance Parallel I/O. London:
CRC Press, 2014.

	 4.	 More granular resource management can be achieved through the Class-based Kernel Resource Man-
agement functionality; see ckrm.sourceforge.net.

http://lwn.net/Articles/250967
http://ckrm.sourceforge.net

D
at

a
Ce

nt
er

			 1091

A service is only as reliable as the data center that houses it.1 For those with hands-
on experience, that’s just common sense.

Proponents of cloud computing sometimes seem to imply that the cloud can magi-
cally break the chains that join the physical and virtual worlds. But although cloud
providers offer a variety of services that help boost resilience and availability, every
cloud resource ultimately lives somewhere in mundane reality.

Understanding where your data actually lives is an important part of being a system
administrator. If you are involved in selecting third party cloud providers, evaluate
vendors and their facilities quantitatively. You might also find yourself in positions
where security, data sovereignty, or political concerns dictate that you build and
maintain your own data center.

A data center is composed of

•	 A physically safe and secure space
•	 Racks that hold computer, networking, and storage devices
•	 Electric power (and standby power) sufficient to operate the installed devices

	 1.	 At least, to a first approximation. Of course, it’s possible to distribute a service among multiple data
centers, thereby limiting the impact of a failure in any one center.

30 Data Center Basics

1092	 Chapter 30	 Data Center Basics	

•	 Cooling, to keep the devices within their operating temperature ranges
•	 Network connectivity throughout the data center, and to places beyond

(enterprise network, partners, vendors, Internet)
•	 On-site operational staff to support the equipment and infrastructure

Certain aspects of data centers—such as their physical layout, power, and cooling—
were traditionally designed and maintained by “facilities” or “physical plant” staff.
However, the fast-moving pace of IT technology and the increasingly low tolerance
for downtime have forced a shotgun marriage of IT and facilities staff as partners
in the planning and operation of data centers.

30.1	 Racks
The days of the traditional raised-floor data center—in which power, cooling, net-
work connections, and telecommunications lines are all hidden underneath the
floor—are over. Have you ever tried to trace a cable that runs under the floor of
one of these labyrinths? Our experience is that although it looks nice through glass,
a “classic” raised-floor machine room is really just a hidden rat’s nest. Today, you
should use a raised floor to hide electrical power feeds, to distribute cooled air, and
for nothing else. Network cabling (both copper and fiber) should be routed through
overhead raceways designed specifically for this purpose.2

In a dedicated data center, storing equipment in racks (as opposed to, say, setting
it on tables or on the floor) is the only maintainable, professional choice. The best
storage schemes use racks that are interconnected with an overhead track system
through which cables can be routed. This approach confers that irresistible high-
tech feel without sacrificing organization or maintainability.

The best overhead track system that we know of is manufactured by Chatsworth
Products. You can construct homes for both shelf-mounted and rack-mounted
servers from standard 19” single-rail telco racks. Two back-to-back 19” telco racks
make a high-tech-looking “traditional” rack for situations in which you need to at-
tach rack hardware both in front of and in back of equipment. Chatsworth provides
the racks, cable races, and cable management doodads, as well as all the hardware
necessary to mount them in your building. Since the cables lie in visible tracks, they
are easy to trace and you will naturally be motivated to keep them tidy.

30.2	 Power
Several strategies may be needed to provide a data center with clean, stable, fault-tol-
erant power. Common options include

•	 Uninterruptible power supplies (UPSs) – UPSs provide power when
the normal long-term power source (e.g., the commercial power grid)
becomes unavailable. Depending on size and capacity, a UPS can provide

	 2.	 Electrical feeds are often overhead these days, too.

	 Power	 1093

D
at

a
Ce

nt
er

anywhere from a few minutes to a couple of hours of power. UPSs alone
cannot support a site in the event of a long-term outage.

•	 On-site power generation – If the commercial grid is unavailable, on-site
standby generators can provide long-term power. Generators are usually
fueled by diesel, LP gas, or natural gas and can support the site as long as
fuel is available. It is customary to store at least 72 hours of fuel on-site
and to arrange to buy fuel from multiple providers.

•	 Redundant power feeds – In some locations, it may be possible to obtain
more than one power feed from the commercial power grid (possibly from
different power generators).

In all cases, servers and network infrastructure equipment should at least be put
on uninterruptible power supplies. Good UPSs have an Ethernet or USB interface
that can be attached either to the machine to which they supply power or to a cen-
tralized monitoring infrastructure that can elicit a higher-level response. Such con-
nections let the UPS warn computers or operators that power has failed and that a
clean shutdown should be performed before the batteries run out.

UPSs are available in various sizes and capacities, but even the largest ones cannot
provide long-term backup power. If your facility must operate on standby power
for longer than a UPS can handle, you need a local generator in addition to a UPS.

A large selection of standby power generators is available, ranging in capacity from
5 kW to more than 2,500 kW. The gold standard is the family of generators made
by Cummins Onan (power.cummins.com). Most organizations select diesel as
their fuel type. If you’re in a cold climate, make sure you fill the tank with “winter
mix diesel” or substitute Jet A-1 aircraft fuel to prevent gelling. Diesel is chemically
stable but can grow algae, so consider adding an algicide to diesel that you plan to
store for an extended period.

Generators and the infrastructure to support them are expensive, but they can
save money in some ways, too. If you install a standby generator, your UPSs need
only be large enough to cover the short gap between the power going out and your
generator coming on-line.

If UPSs or generators are part of your power strategy, it is extremely important to
have a periodic test plan in place. We recommend that you test all components
of your standby power system at least every 6 months. In addition, you (or your
vendor) should perform preventive maintenance on standby power components
at least annually.

Rack power requirements
Planning the power for a data center is a difficult challenge. Typically, the opportu-
nity to build a new data center (or to significantly remodel an existing one) comes
up only every decade or so. So it’s important to look far down the road when plan-
ning power systems.

See page 59 for more
information about
shutdown procedures.

http://power.cummins.com

1094	 Chapter 30	 Data Center Basics	

Most architects are biased toward calculating the amount of power needed in a data
center by multiplying the center’s square footage by a magic number. This approach
proves to be ineffective in most real-world cases because the size of the data center
alone tells you little about the types of equipment it might eventually house. Our
recommendation is to use a per-rack power consumption model and to ignore the
amount of floor space.

Historically, data centers have been designed to provide between 1.5 kW and 3 kW
to each rack. But now that server manufacturers have started squeezing servers into
1U of rack space and building blade server chassis that hold 20 or more blades, the
power needed to support a full rack of modern gear has skyrocketed.

One approach to solving the power density problem is to put only a handful of 1U
servers in each rack, leaving the rest of the rack empty. Although this technique
eliminates the need to provide more power to the rack, it’s a prodigious waste of
space. A better strategy is to develop a realistic projection of the power that might
be needed by each rack and to provision power accordingly.

Equipment varies in its power requirements, and it’s hard to predict exactly what
the future will hold. A good approach is to create a system of power consumption
tiers that allocates the same amount of power to all racks in a particular tier. This
scheme is useful not only for meeting current equipment needs but also for plan-
ning future use. Table 30.1 outlines some basic starting points for tier definitions.

Table 30.1	 Power-tier estimates for racks in a data center

Power tier Watts/rack

Insanely high density or ”custom”    40 kW
Ultra high density    25 kW
Very high density (e.g., blade servers)    20 kW
High density (e.g., 1U servers)    16 kW
Storage equipment    12 kW
Network switching equipment     8 kW
Normal density     6 kW

Once you’ve defined your power tiers, estimate your need for racks in each tier. On
the floor plan, put racks from the same tier together. Such zoning concentrates the
high-power racks and lets you plan cooling resources accordingly.

kVA vs. kW
One of the many common disconnects between IT folks, facilities folks, and UPS
engineers is that each of these groups uses different units for power. The amount of
power a UPS can provide is typically labeled in kVA (kilovolt-amperes). But com-
puter equipment and the electrical engineers that support your data center usually

	 Power	 1095

D
at

a
Ce

nt
er

express power in watts (W) or kilowatts (kW). You might remember from fourth
grade science class that watts = volts × amps. Unfortunately, your fourth grade
teacher probably failed to mention that watts is a vector value, which for AC power
includes a “power factor” (pf) in addition to volts and amps.

If you are designing a bottle-filling line at a brewery that involves lots of large mo-
tors and other heavy equipment, ignore this section and hire a qualified engineer
to determine the correct power factor for use in your calculations. But for mod-
ern-day computer equipment, you can cheat and use a constant for a “probably
good enough” conversion between kVA and kW:

	 kVA = kW / 0.85

A final point to note is that when estimating the amount of power you need in a data
center (or to size a UPS), you should measure devices’ actual power consumption
rather than relying on manufacturers’ stated values as shown on equipment labels.
Label values typically represent the maximum possible power consumption and
are therefore misleading.

Energy efficiency
Energy efficiency has become a popular operational metric for evaluating data cen-
ters. The industry has standardized on a simple ratio known as the power usage
effectiveness (PUE) as a way of expressing a plant’s overall efficiency:

A hypothetically perfect data center would have a PUE of 1.0; that is, it would con-
sume exactly the amount of power needed by IT gear, with no overhead. Of course,
this goal is unreachable in practical terms. Equipment generates heat that must be
removed, human operators need lighting and other environmental accommoda-
tions, etc. The higher the PUE value, the less energy efficient (and more expensive)
a data center is to operate.

Modern-day data centers that are reasonably energy efficient generally have a PUE
ratio of 1.4 or less. For reference, data centers from a decade ago typically had PUE
ratios in the 2.0–3.0 range. Google, which has made energy efficiency a focus, reg-
ularly publishes its PUE ratios and as of 2016 has achieved an average PUE of 1.12
across its data centers.

Metering
You get what you measure. If you are serious about energy efficiency, it’s important
to understand which devices are actually consuming the most energy. Although
the PUE ratio gives you a general impression of the amount of energy consumed as
non-IT overhead, it says very little about the power efficiency of the actual servers.

See page 1097 for
some additional
tips on measuring
power consumption.

Total power consumed by facility
Total power consumed by IT equipmentPUE =

1096	 Chapter 30	 Data Center Basics	

(In fact, replacing servers with more power-efficient models will increase the PUE
rather than decreasing it.)

It’s up to the data center administrator to select components that use the minimum
amount of energy. One obvious enabling technology is power consumption me-
tering at the aisle, rack, and device level. Select or build data centers that can easily
provide this critical usage data.

Cost
Once upon a time, the cost of power was more or less the same across data centers
in different locations. These days, the hyperscale cloud industry (Amazon, Google,
Microsoft, and others) sends data center designers hunting for potential cost effi-
ciencies in every corner of the world. One successful strategy has been to locate large
data centers near sources of inexpensive power such as hydroelectric power plants.

When deciding whether to operate your own data center, be sure to factor the cost
of power into your assessment. Chances are that the big guys have a built-in cost
advantage in this aspect of operations (and others). Widespread fiber and band-
width availability have largely rendered obsolete the traditional advice to locate
your data center near your team.

Remote control
You might occasionally find yourself needing to regularly power-cycle a server be-
cause of a kernel or hardware glitch. (Or, perhaps you have non-Linux servers in
your data center that are more prone to this type of problem.) In either case, you
can consider installing a system that lets you power-cycle problem servers by re-
mote control.

A reasonable family of solutions is manufactured by American Power Conversion
(APC). Their remotely manageable products are conceptually similar to power
strips, except that they can be controlled by a web browser that reaches the power
distribution unit through a built-in Ethernet port.

30.3	 Cooling and environment
Just like humans, computers work better and live longer if they’re happy in their
environment. Maintenance of a safe operating temperature is a prerequisite for
this happiness.

The American Society of Heating, Refrigerating and Air-conditioning Engineers
(ASHRAE) traditionally recommended data center temperatures (measured at server
inlets) in the range of 68° to 77°F (20° to 25°C). To support organizations’ attempts
to reduce energy consumption, ASHRAE released guidance in 2012 that suggests
a more lenient temperature range to 64.4° to 80.6°F (18° to 27°C). Although this

	 Cooling and environment	 1097

D
at

a
Ce

nt
er

range seems unhelpfully broad, it does suggest that today’s hardware can flourish
in a wide range of environments.

Cooling load estimation
Temperature maintenance starts with an accurate estimate of your cooling load.
Traditional textbook models for data center cooling (even those from the 2000s)
can be off from the realities of today’s high-density blade server chassis by up to
an order of magnitude. Hence, we have found that it’s a good idea to double-check
the cooling load estimates produced by your HVAC folks.

You need to determine the heat load contributed by the following components:

•	 Roof, walls, and windows
•	 Electronic gear
•	 Light fixtures
•	 Operators (people)

Of these, only the first should be left to your HVAC folks. The other components
can be assessed by the HVAC team, but you should do your own calculations as
well. Make sure that any discrepancies between your results and those of the HVAC
team are fully explained before construction starts.

Roof, walls, and windows
Your roof, walls, and windows (don’t forget solar load) contribute to your environ-
ment’s cooling load. HVAC engineers usually have a lot of experience with these
elements and should be able to give you good estimates.

Electronic gear
You can estimate the heat load produced by your servers (and other electronic gear)
by determining their power consumption. In practical terms, all electric power that
is consumed eventually ends up as heat.

As when planning for power-handling capacity, direct measurement of power con-
sumption is by far the best way to obtain this information. Your friendly neigh-
borhood electrician can help, or you can purchase an inexpensive meter and do it
yourself. The Kill A Watt meter made by P3 is a popular choice at around $20, but
it’s limited to small loads (15 amps) that plug in to a standard wall outlet. For larger
loads or nonstandard connectors, use a clamp-on ammeter such as the Fluke 902
(also known as a “current clamp”) to make these measurements.

Most equipment is labeled with its maximum power consumption in watts. However,
typical consumption tends to be significantly less than the maximum.

You can convert power consumption to the standard heat unit, BTUH (British ther-
mal units per hour), by multiplying by 3.413 BTUH/watt. For example, if you wanted

1098	 Chapter 30	 Data Center Basics	

to build a data center that would house 25 servers rated at 450 watts each, the cal-
culation would be

Light fixtures
As with electronic gear, you can estimate light fixture heat load from power con-
sumption. Typical office light fixtures contain four 40-watt fluorescent tubes. If your
new data center had six of these fixtures, the calculation would be

Operators
At one time or another, humans will need to enter the data center to service some-
thing. Allow 300 BTUH for each occupant. To allow for four humans in the data
center at the same time:

Total heat load
Once you have calculated the heat load for each component, sum the results to de-
termine your total heat load. For this example, let’s assume that our HVAC engineer
estimated the load from the roof, walls, and windows to be 20,000 BTUH.

Cooling system capacity is typically expressed in tons. You can convert BTUH to
tons by dividing by 12,000 BTUH/ton. You should also allow at least a 50% slop
factor to account for errors and future growth.

See how your estimate matches up with the one from your HVAC folks.

Hot aisles and cold aisles
You can dramatically reduce your data center’s cooling difficulties by putting some
thought into its physical layout. The most common and effective strategy is to al-
ternate hot and cold aisles.

= 38,385 BTUH25 servers 450 watts
server

3.412 BTUH
watt

= 3,276 BTUH6 �xtures 160 watts
�xture

3.412 BTUH
watt

= 1,200 BTUH4 humans 300 BTUH
human

 20,000 BTUH for roof, walls, and windows
 38,385 BTUH for servers and other electronic gear
 3,276 BTUH for light �xtures
 1,200 BTUH for operators

 62,861 BTUH total

= 7.86 tons of cooling required62,681 BTUH
1 ton

1.512,000 BTUH

	 Cooling and environment	 1099

D
at

a
Ce

nt
er

Facilities that have a raised floor and are cooled by a traditional CRAC (computer
room air conditioner) unit are often set up so that cool air enters the space under
the floor, rises up through holes in the perforated floor tiles, cools the equipment,
and then rises to the top of the room as warm air, where it is sucked into return air
ducts. Traditionally, racks and perforated tiles have been placed “randomly” about
the data center, a configuration that results in relatively even temperature distri-
bution. The result is an environment that is comfortable for humans but not really
optimized for computers.

A better strategy is to lay out alternating hot and cold aisles between racks. Cold
aisles have perforated cooling tiles and hot aisles do not. Racks are arranged so
that equipment draws in air from a cold aisle and exhausts it to a hot aisle; the ex-
haust sides of two adjacent racks are therefore back to back. Exhibit A illustrates
this basic concept.

Exhibit A	 Hot and cold aisles, raised floor

Hot
aisle Cold

aisle
Cold
aisle

Hot
aisle

This arrangement optimizes the flow of cooling so that air inlets always breathe cool
air rather than another server’s hot exhaust. Properly implemented, the alternat-
ing row strategy results in aisles that are noticeably cold and hot. You can measure
your cooling success with an infrared thermometer such as the Fluke 62, which is
an indispensable tool of the modern system administrator. This point-and-shoot
$100 device instantly measures the temperature of anything you aim it at, up to six
feet away. Don’t take it out to the bars.

If you must run cabling under the floor, run power under cold aisles and network
cabling under hot aisles.

Facilities without a raised floor can use in-row cooling units such as those manu-
factured by APC (apc.com). These units are skinny and sit between racks. Exhibit
B on the next page shows how this system works.

http://apc.com

1100	 Chapter 30	 Data Center Basics	

Exhibit B	 Hot and cold aisles with in-row cooling (bird’s-eye view)

Hot aisle containmentHot aisle containmentHot aisle containmentHot aisle containmentHot aisle containmentHot aisle containment
CO

O
LE

R

Rack Rack Rack

CO
O

LE
R

Rack Rack Rack

CO
O

LE
R

CO
O

LE
R

RackRack Rack Rack

CO
O

LE
R

Rack Rack

Both CRAC and in-row cooling units need a way to dissipate heat outside the data
center. This requirement is typically satisfied with a loop of liquid refrigerant (such
as chilled water, Puron/R410A, or R22) that carries the heat outdoors. We omitted
the refrigerant loops from Exhibit A and Exhibit B for simplicity, but most instal-
lations will require them.

Humidity
According to the 2012 ASHRAE guidelines, data center humidity should be kept
between 8% and 60%. If the humidity is too low, static electricity becomes a prob-
lem. Recent testing has shown that there is little operational difference between
8% and the previous standard of 25%, so the minimum humidity standard was
adjusted accordingly.

If humidity is too high, condensation can form on circuit boards and cause short
circuits and oxidation.

Depending on your geographic location, you might need either humidification or
dehumidification equipment to maintain a proper level of humidity.

Environmental monitoring
If you are supporting a mission-critical computing environment, it’s a good idea to
monitor the temperature (and other environmental factors, such as noise and pow-
er) in the data center even when you are not there. It can be disappointing to arrive
on Monday morning and find a pool of melted plastic on your data center floor.

Fortunately, automated data center monitors can watch the goods while you are
away. We use and recommend the Sensaphone product family. These inexpensive

	 Data center reliability tiers	 1101

D
at

a
Ce

nt
er

boxes monitor environmental variables such as temperature, noise, and power, and
they phone or text you when they detect a problem.

30.4	 Data center reliability tiers
The Uptime Institute is a commercial entity that certifies data centers. They have
developed a four-tier system for classifying the reliability of data centers, which
we summarize in Table 30.2. In this table, N means that you have just enough of
something (e.g., UPSs or generators) to meet normal needs. N+1 means that you
have one spare; 2N means that each device has its own spare.

Table 30.2	 Uptime Institute availability classification system

Tier Generators UPSs Power feeds HVAC Availability

1 None N Single N 99.671%
2 N N+1 a Single N+1 99.741%
3 N+1 N+1 a Dual, switchable N+1 99.982%
4 2N 2N Dual, simultaneous 2N 99.995%

a.	 With redundant components

Centers in the highest tier must be “compartmentalized,” which means that groups
of systems are powered and cooled in such a way that the failure of one group has
no effect on other groups.

Even 99.671% availability may look pretty good at first glance, but it works out to
nearly 29 hours of downtime per year. 99.995% availability corresponds to 26 min-
utes of downtime per year.

Of course, no amount of redundant power or cooling will keep an application
available if it’s administered poorly or is improperly architected. The data center is
a foundational building block, necessary but not sufficient to ensure overall avail-
ability from the end user’s perspective.

You can learn more about the Uptime Institute’s certification standards (which in-
clude certification of design, construction, and operational phases) from their web
site, uptimeinstitute.org. In some cases, organizations use the concept of these tiers
without paying the Uptime Institute’s hefty certification fees. The important part is
not the framed plaque but the use of a common vocabulary and assessment meth-
odology to compare data centers.

http://uptimeinstitute.org

1102	 Chapter 30	 Data Center Basics	

30.5	 Data center security
Perhaps it goes without saying, but the physical security of a data center is at least
as important as its environmental attributes. Make sure that threats of both natural
(e.g., fire, flood, earthquake) and human (e.g., competitors and criminals) origin
have been carefully considered. A layered approach to security is the best way to
ensure that a single mistake or lapse will not lead to a catastrophic outcome.

Location
Whenever possible, data centers should not be located in areas that are prone to
forest fires, tornadoes, hurricanes, earthquakes, or floods. For similar reasons, it’s
advisable to avoid man-made hazard zones such as airports, freeways, refineries,
and tank farms.

Because the data center you select (or build) will likely be your home for a long
time, it’s worthwhile to invest some time in researching the available risk data when
making a site selection. The U.S. Geological Survey (usgs.gov) publishes statistics
such as earthquake probability, and the Uptime Institute produces a composite map
of data center location risks.

Perimeter
To reduce the risk of a targeted attack, a data center should be surrounded by a
fence that is at least 25 feet from the building on all sides. Access to the inside of
the fence perimeter should be controlled by a security guard or a multifactor badge
access system. Vehicles allowed within the fence perimeter should not be permitted
within 25 feet of the building.

Continuous video monitoring must cover 100% of the external perimeter, includ-
ing all gates, access driveways, parking lots, and roofs.

Buildings should be unmarked. No signage should indicate what company the
building belongs to or mention that it houses a data center.

Facility access
Access to the data center itself should be controlled by a security guard and a mul-
tifactor badge system, possibly one that incorporates biometric factors. Ideally,
authorized parties should be enrolled in the physical access-control system before
their first visit to the data center. If this is not possible, on-site security guards
should follow a vetting process that includes confirming each individual’s identity
and authorized actions.

One of the trickiest situations in training security guards is properly handling the
appearance of “vendors” who claim they have come to fix some part of the infra-
structure, such as the air conditioning. Make no mistake: unless the guard can
confirm that someone authorized or requested this vendor visit, such visitors must
be turned away.

http://usgs.gov

	 Tools	 1103

D
at

a
Ce

nt
er

Rack access
Large data centers are often shared with other parties. This is a cost-effective ap-
proach, but it comes with the added responsibility of securing each rack (or “cage
of racks”). This is another case in which a multifactor access control system (such
as a card reader plus a fingerprint reader) is needed to ensure that only authorized
parties have access to your equipment. Each rack should also be individually mon-
itored by video.

30.6	 Tools
A well-outfitted sysadmin is an effective sysadmin. Having a dedicated tool box is
an important key to minimizing downtime in an emergency. Table 30.3 lists some
items to keep in your tool box, or at least within easy reach.

Table 30.3	 A system administrator’s tool box

General tools

Hex (Allen) wrench kit Ball-peen hammer, 4 oz.
Scissors Electrician’s knife or Swiss Army knife
Small LED flashlight Phillips-head screwdrivers: #0, #1, and #2
Socket wrench kit Pliers, both flat-needlenose and regular
Stud finder Ridgid SeeSnake micro inspection camera
Tape measure Slot-head screwdrivers: 1/8", 3/16", and 5/16"
Torx wrench kit Teensy tiny jeweler’s screwdrivers
Tweezers

Computer-related specialty items

PC screw kit Cable ties (and their Velcro cousins)
Infrared thermometer Digital multimeter (DMM)
RJ-45 end crimper Portable network analyzer/laptop
SCSI terminators Spare Category 5 and 6A RJ-45 crossover cables
Spare power cord Spare RJ-45 connectors (solid core and stranded)
Static grounding strap Wire stripper (with an integrated wire cutter)

Miscellaneous

Q-Tips Telescoping magnetic pickup wand
Cellular telephone First-aid kit, including ibuprofen and acetaminophen
Electrical tape Home phone and pager #s of on-call support staff
Can of compressed air List of emergency maintenance contacts a

Dentist’s mirror Six-pack of good microbrew beer (suggested minimum)

a.	 And maintenance contract numbers, if applicable

1104	 Chapter 30	 Data Center Basics	

30.7	 Recommended reading
ASHRAE, Inc. ASHRAE Thermal Guidelines for Data Processing Environments (3rd
edition). Atlanta, GA: ASHRAE, Inc., 2012.

Telecommunications Infrastructure Standard for Data Centers. ANSI/TIA/EIA 942.

A variety of useful information and standards related to energy efficiency can be
found at the Center of Expertise for Energy Efficiency in Data Centers web site at
datacenters.lbl.gov.

http://datacenters.lbl.gov

M
et

ho
do

lo
gy

			 1105

During the past four decades, the role of information technology in business and
daily life has changed dramatically. It’s hard to imagine a world without the instant
gratification of Internet search.

For most of this period, the predominant philosophy of IT management was to
increase stability by minimizing change. In many cases, hundreds or thousands of
users depended on a single system. If a failure occurred, hardware often had to be
express shipped for repair, or hours of downtime were needed to reinstall software
and restore state. IT teams lived in fear that something would break and that they
wouldn’t be able to fix it.

Change minimization has undesirable side effects. IT departments often became
stuck in the past and failed to keep pace with business needs. “Technical debt” ac-
cumulated in the form of systems and applications in desperate need of upgrade or
replacement that everyone was afraid to touch for fear of breaking something. IT
staff became the butt of jokes and the least popular folks everywhere from board
rooms to holiday parties.

Thankfully, those times are behind us. The advents of cloud infrastructure, virtu-
alization, automation tools, and broadband communication have greatly reduced
the need for one-off systems. Such servers have been replaced by armies of clones

31 Methodology, Policy,
and Politics

1106	 Chapter 31	 Methodology, Policy, and Politics	

that are managed as battalions. In turn, these technical factors have enabled the
evolution of a service philosophy known as DevOps which lets IT organizations
drive and encourage change rather than resisting it. The DevOps name is a port-
manteau of development and operations, the two traditional disciplines it combines.

An IT organization is more than a group of technical folks who set up Wi-Fi hot
spots and computers. From a strategic perspective, IT is a collection of people and
roles that use technology to accelerate and support the organization’s mission. Never
forget the golden rule of system administration: enterprise needs drive IT activities,
not the other way around.

In this chapter, we discuss the nontechnical aspects of running a successful IT
organization that uses DevOps as its overarching schema. Most of the topics and
ideas presented in this chapter are not specific to any particular environment. They
apply equally to a part-time system administrator or to a large group of full-time
professionals. Like green vegetables, they’re good for you no matter what size meal
you’re preparing.

31.1	 The grand unified theory: DevOps
System administration and other operational roles within IT have traditionally been
separate from domains such as application development and project management.
The theory was that app developers were specialists who would push products forward
with new features and enhancements. Meanwhile, the stolid and change-resistant
operations team would provide 24 × 7 management of the production environment.
This arrangement usually creates tremendous internal conflict and ultimately fails
to meet the needs of the business and its clients.

Exhibit A	 Courtesy of Dave Roth

	 The grand unified theory: DevOps	 1107

M
et

ho
do

lo
gy

The DevOps approach mingles developers (programmers, application analysts,
application owners, project managers) with IT operations staff (system and network
administrators, security monitors, data center staff, database administrators) in a
tightly integrated way. This philosophy is rooted in the belief that working together
as a collaborative team breaks down barriers, reduces finger pointing, and produces
better results. Exhibit B summarizes a few of the main concepts.

Exhibit B	 What is DevOps?

DevOps IS NOT DevOps IS

A philosophy

A person

A teamA job title An environment

A tool

DevOps is a relatively new development in IT management. The early 2000s brought
change to the development side of the house, which moved from “waterfall” re-
lease cycles to agile approaches that featured iterative development. This system
increased the speed at which products, features, and fixes could be created, but de-
ployment of those enhancements often stalled because the operations side wasn’t
prepared to move as quickly as the development side. Hitching up the development
and operations groups allowed everyone to accelerate down the road at the same
pace, and DevOps was born.

DevOps is CLAMS
The tenets of DevOps philosophy are most easily described with the acronym
CLAMS: Culture, Lean, Automation, Measurement, and Sharing.

Culture
People are the ultimate drivers of any successful team, so the cultural aspects of
DevOps are the most important. Although DevOps has its own canon of cultural
tips and tricks, the main goal is to get everyone working together and focused on
the overall picture.

Under DevOps, all disciplines work together to support a common business driver
(product, objective, community, etc.) through all phases of its life cycle. Achieving
this goal may ultimately require changes in reporting structure (no more isolated

1108	 Chapter 31	 Methodology, Policy, and Politics	

application development groups), seating layout, and even job responsibilities. These
days, good system administrators occasionally write code (often automation or de-
ployment scripts), and good application developers regularly examine and manage
infrastructure performance metrics.

Here are some typical features of a DevOps culture:

•	 Both developers (Dev) and operations (Ops) have 24 × 7, simultaneous
(“everyone gets paged”), on-call responsibility for the complete environ-
ment. This rule has the wonderful side effect that root causes can be ad-
dressed wherever they occur.1

•	 No application or service can launch without automated testing and mon-
itoring being in place at both the system and application level. This rule
seals in functionality and creates a contract between Dev and Ops. Like-
wise, Dev and Ops must sign off on any launch before it happens.

•	 All production environments are mirrored by identical development en-
vironments. This rule creates a runway for testing and reduces accidents
in production.

•	 Dev teams do regular code reviews to which Ops is invited. Code archi-
tecture and functionality are no longer just Dev functions. Likewise, Ops
performs regular infrastructure reviews in which Dev is involved. Dev must
be aware of—and contribute to—decisions about underlying infrastructure.

•	 Dev and Ops have regular, joint stand-up meetings. In general, meetings
should be minimized, but joint stand-ups serve as a useful stopgap to
foster communication.

•	 Dev and Ops should all sit in a common chat room dedicated to discussion
of both strategic (architecture, direction, sizing) and operational issues.
This communication channel is often known as ChatOps, and several
amazing platforms are available to support it. Check out HipChat, Slack,
MatterMost, and Zulip, to name a few.

A successful DevOps culture pushes Dev and Ops so close that their scopes inter-
penetrate, and everyone learns to be comfortable with that. The optimal level of
overlap is probably higher than most people would naturally prefer in the absence
of cultural indoctrination. Team members must learn to respond gracefully to que-
ries and feedback about their work from colleagues who may be formally trained
in other disciplines.

Lean
The easiest way to explain the lean aspect of DevOps is to note that if you schedule
a recurring weekly meeting at your organization to discuss your DevOps imple-
mentation plan, you have instantly failed.

	 1.	 The first six weeks or so of a shared on-call model is painful. Then suddenly it turns around. Trust us.

	 The grand unified theory: DevOps	 1109

M
et

ho
do

lo
gy

DevOps is about real-time interaction and communication among people, processes,
and systems. Use real-time tools (like ChatOps) to communicate wherever possible,
and focus on solving component problems one at a time. Always ask “what can
we do today” to make progress on an issue. Avoid the temptation to boil the ocean.

Automation
Automation is the most universally recognized aspect of DevOps. The two golden
rules of automation are these:

•	 If you need to perform a task more than twice, it should be automated.
•	 Don’t automate what you don’t understand.

Automation brings many advantages:

•	 It prevents staff from being trapped performing mundane tasks. Staff brain-
power and creativity can be used to solve new and more difficult challenges.

•	 It reduces the risk of human error.

•	 It captures infrastructure in the form of code, allowing versions and out-
comes to be tracked.

•	 It facilitates evolution while also reducing risk. If a change fails, automated
rollback is (well, should be) easy.

•	 It facilitates the use of virtualized or cloud resources to achieve scale and
redundancy. Need more? Spin some up. Need less? Kill them off.

Tools are instrumental in the quest for automation. Systems such as Ansible, Salt,
Puppet, and Chef (covered in Chapter 23, Configuration Management) are front
and center. Continuous integration tools such as Jenkins and Bamboo (see page
961) help manage repeatable or triggered tasks. Packaging and launch utilities such
as Packer and Terraform automate low-level infrastructure tasks.

Depending on your environment, you might need one, some, or all (!?) of these
tools. New tools and enhancements are being developed rapidly, so focus on finding
the tool that is a good fit for the particular function or process you are automating,
as opposed to picking a tool and then looking for the questions it answers. Most
importantly, reevaluate your tool set every year or two.

Your automation strategy should include at least the following elements:

•	 Automated setup of new machines: This is not just OS installation. It
also includes all the additional software and local configuration necessary
to allow a machine to enter production. It’s inevitable that your site will
need to support more than one type of configuration, so include multiple
machine types in your plans from the beginning.

•	 Automated configuration management: Configuration changes should
be entered in the configuration base and applied automatically to all ma-
chines of the same type. This rule helps keep the environment consistent.

1110	 Chapter 31	 Methodology, Policy, and Politics	

•	 Automated promotion of code: Propagation of new functionality from
the development environment to the test environment, and from the test
environment into production, should be automated. Testing itself should
be automated, with clear criteria for evaluation and promotion.

•	 Systematic patching and updating of existing machines: When you iden-
tify a problem with your setup, you need a standardized and easy way to
deploy updates to all affected machines. Because servers are not turned on
all the time (even if they are supposed to be), your update scheme must
correctly handle machines that are not on-line when an update is initiated.
You can check for updates at boot time or update on a regular schedule;
see Periodic processes starting on page 109 for more information.

Measurement
The ability to scale virtualized or cloud infrastructure (see Chapter 9, Cloud Com-
puting) has pushed the world of instrumentation and measurement to new heights.
Today’s gold standard is the collection of sub-second measurements throughout
the entire service stack (business, application, database, subsystems, servers, net-
work, and so on). Several DevOps-y tools such as Graphite, Grafana, ELK (the
Elasticsearch + Logstash + Kibana stack), plus monitoring platforms like Icinga
and Zenoss, support these efforts.

Having measurement data and doing something useful with it are two different
things, however. A mature DevOps shop ensures that metrics from the environ-
ment are visible and evangelized to all interested parties (both inside and outside of
IT). DevOps sets nominal targets for each metric and chases down any anomalies
to determine their cause.

Sharing
Collaborative work and shared development of capabilities lie at the heart of a
successful DevOps effort. Staff should be encouraged and incentivized to share
their work both internally (lunch-and-learn presentations, team show-and-tell,
wiki how-to articles) and externally (Meetups, white papers, conferences). These
efforts extend the silo-busting philosophy beyond the local workgroup and help
everyone learn and grow.

System administration in a DevOps world
System administrators have always been the jacks-and-jills-of-all-trades of the IT
world, and that remains true under the broader DevOps umbrella. The system ad-
ministrator role oversees systems and infrastructure, typically including primary
responsibility for these areas:

•	 Building, configuring, automating, and deploying system infrastructure

•	 Ensuring that the operating system and major subsystems are secure,
patched, and up to date

See Chapter 28 for
more information
about monitoring.

	 Ticketing and task management systems	 1111

M
et

ho
do

lo
gy

•	 Deploying, supporting, and evangelizing DevOps technologies for con-
tinuous integration, continuous deployment, monitoring, measurement,
containerization, virtualization, and ChatOps platforms

•	 Coaching other team members on infrastructure and security best practices

•	 Monitoring and maintaining infrastructure (physical, virtual, or cloud) to
ensure that it meets performance and availability requirements

•	 Responding to user resource or enhancement requests

•	 Fixing problems with systems and infrastructure as they occur

•	 Planning for the future expansion of systems, infrastructure, and capacity

•	 Advocating cooperative interactions among team members

•	 Managing various outside vendors (cloud, co-location, disaster recovery,
data retention, connectivity, physical plant, hardware service)

•	 Managing the life cycle of infrastructure components

•	 Maintaining an emergency stash of ibuprofen, tequila, and/or chocolate
to be shared with other team members on those not-as-fresh days

This is just a subset of the breadth covered by a successful system administrator.
The role is part drill sergeant, part mother hen, part EMT, and part glue that keeps
everything running smoothly.

Above all, remember that DevOps is founded on overcoming one’s normal terri-
torial impulses. If you find yourself at war with other team members, take a step
back and remember that you are most effective if you are seen as a hero who helps
make everyone else successful.

31.2	 Ticketing and task management systems
A ticketing and task management system lies at the heart of every functioning IT
group. As with all things DevOps, having one ticketing system that spans all IT
disciplines is critical. In particular, enhancement requests, issue management, and
software bug tracking should all be part of the same system.

A good ticketing system helps staff avoid two of the most common workflow pitfalls:

•	 Tasks that fall through the cracks because everyone thinks they are being
taken care of by someone else

•	 Resources that are wasted through duplication of effort when multiple
people or groups work on the same problem without coordination

1112	 Chapter 31	 Methodology, Policy, and Politics	

Common functions of ticketing systems
A ticket system accepts requests through various interfaces (email and web being
the most common) and tracks them from submission to solution. Managers can
assign tickets to groups or to individual staff members. Staff can query the system
to see the queue of pending tickets and perhaps resolve some of them. Users can
find out the status of requests and see who is working on them. Managers can ex-
tract high-level information such as

•	 The number of open tickets
•	 The average time to close a ticket
•	 The productivity of staff members
•	 The percentage of unresolved (rotting) tickets
•	 Workload distribution by time to solution

The request history stored in the ticket system becomes a history of the problems
with your IT infrastructure and also the solutions to those problems. If that his-
tory is easily searchable, it becomes an invaluable resource for the sysadmin staff.

Resolved tickets can be provided to novice staff members and trainees, inserted
into a FAQ system, or made searchable for later discovery. New staff members can
benefit from receiving copies of closed tickets because those tickets include not only
technical information but also examples of the tone and communication style that
are appropriate for use with customers.

Like all documents, your ticketing system’s historical data can potentially be used
against your organization in court. Follow the document retention guidelines set
up by your legal department.

Most request tracking systems automatically confirm new requests and assign them
a tracking number that submitters can use to follow up or inquire about the re-
quest’s status. The automated response message should clearly state that it is just a
confirmation. It should be followed promptly by a message from a real person that
explains the plan for dealing with the problem or request.

Ticket ownership
Work can be shared, but in our experience, responsibility is less amenable to distri-
bution. Every task should have a single, well-defined owner. That person need not
be a supervisor or manager, just someone willing to act as a coordinator—someone
willing to say, “I take responsibility for making sure this task gets done.”

An important side effect of this approach is that it is implicitly clear who imple-
mented what or who made what changes. This transparency becomes important if
you want to figure out why something was done in a certain way or why something
is suddenly working differently or not working anymore.

Being “responsible” for a task should not equate to being a scapegoat if problems
arise. If your organization defines responsibility as blameworthiness, you may find
that the number of available project owners quickly dwindles. Your goal in assign-

	 Ticketing and task management systems	 1113

M
et

ho
do

lo
gy

ing ownership is simply to remove ambiguity about who should be addressing each
problem. Don’t punish staff members for requesting help.

From a customer’s point of view, a good assignment system is one that routes prob-
lems to a person who is knowledgeable and can solve them quickly and completely.
But from a managerial perspective, assignments must occasionally be challenging to
the assignee so that staff members continue to grow and learn in the course of doing
their jobs. Your task is to balance reliance on staff members’ strengths against the
need to challenge them, all while keeping both customers and staff members happy.

Larger tasks can be anything up to and including full-blown software engineering
projects. These tasks may require the use of formal project management and soft-
ware engineering tools. We don’t describe those tools here; nevertheless, they’re
important and should not be overlooked.

Sometimes sysadmins know that a particular task needs to be done, but they don’t
do it because the task is unpleasant. A sysadmin who points out a neglected, unas-
signed, or unpopular task is likely to receive that task as an assignment. This situ-
ation creates a conflict of interest because it motivates sysadmins to remain silent
regarding such situations. Don’t let that happen at your site; give your sysadmins
an avenue for pointing out problems. You can allow them to open up tickets with-
out assigning an owner or associating themselves to the issue, or you can create an
email alias to which issues can be sent.

User acceptance of ticketing systems
Receiving a prompt response from a real person is a critical determinant of cus-
tomer satisfaction, even if the personal response contains no more information
than the automated response. For most problems, it is far more important to let
the submitter know that the ticket has been reviewed by a real person than it is to
fix the problem immediately. Users understand that administrators receive many
requests, and they’re willing to wait a fair and reasonable time for your attention.
But they’re not willing to be ignored.

The mechanism through which users submit tickets affects their perception of
the system. Make sure you understand your organization’s culture and your users’
preferences. Do they want a web interface? A custom application? An email alias?
Maybe they’re only willing to make phone calls!

It’s also important that administrators take the time to make sure they understand
what users are actually requesting. This point sounds obvious, but think back to the
last five times you emailed a customer service or tech support alias. We’d bet there
were at least a couple of cases in which the response seemed to have nothing to do
with the question—not because those companies were especially incompetent, but
because accurately parsing tickets is harder than it looks.

Once you’ve read enough of a ticket to develop an impression of what the custom-
er is asking about, the rest of the ticket starts to look like “blah blah blah.” Fight

1114	 Chapter 31	 Methodology, Policy, and Politics	

this! Clients hate waiting for a ticket to find its way to a human, only to learn that
the request has been misinterpreted and must be resubmitted or restated. Back to
square one.

Tickets are often vague or inaccurate because the submitter does not have the tech-
nical background needed to describe the problem in the way that a sysadmin would.
That doesn’t stop users from making their own guesses as to what’s wrong, however.
Sometimes these guesses are perfectly correct. Other times, you must first decode
the ticket to determine what the user thinks the problem is, then trace back along
the user’s train of thought to intuit the underlying problem.

Sample ticketing systems
The following tables summarize the characteristics of several well-known ticketing
systems. Table 31.1 shows open source systems, and Table 31.2 shows commercial
systems.

Table 31.1	 Open source ticket systems

Name Input a Lang Back end b Web site

Double Choco Latte W PHP MP github.com/gnuedcl/dcl
Mantis WE PHP M mantisbt.org
OTRS WE Perl DMOP otrs.org
RT: Request Tracker WE Perl M bestpractical.com
OSTicket WE  PHP M osticket.com
Bugzilla WE Perl MOP bugzilla.org

a.	 Input types: W = web, E = email
b.	 Back end: D = DB2, M = MySQL, O = Oracle, P = PostgreSQL

Table 31.2 shows some of the commercial alternatives for request management.
Since the web sites for commercial offerings are mostly marketing hype, details
such as the implementation language and back end are not listed.

Some of the commercial offerings are so complex that they need a person or two
dedicated to maintaining, configuring, and keeping them running. Others (such as
Jira and ServiceNow) are available as a “software as a service” product.

Ticket dispatching
In a large group, even one with an awesome ticketing system, one problem still
remains to be solved: it is inefficient for several people to divide their attention be-
tween the task they are working on right now and the request queue, especially if
requests come in by email to a personal mailbox. We have experimented with two
solutions to this problem.

 	

	 Local documentation maintenance	 1115

M
et

ho
do

lo
gy

Our first try was to assign half-day shifts of trouble queue duty to staff members
in our sysadmin group. The person on duty would try to answer as many of the in-
coming queries as possible during a shift. The problem with this approach was that
not everybody had the skills to answer all questions and fix all problems. Answers
were sometimes inappropriate because the person on duty was new and was not
familiar with the customers, their environments, or the specific support contracts
they were covered by. The result was that the more senior people had to keep an
eye on things and so were not able to concentrate on their own work. In the end,
the quality of service was worse and nothing was really gained.

After this experience, we created a “dispatcher” role that rotates monthly among a
group of senior administrators. The dispatcher checks the ticketing system for new
entries and farms out tasks to specific staff members. If necessary, the dispatcher
contacts users to extract any additional information that is necessary for prioritiz-
ing requests. The dispatcher uses a home-grown database of staff skills to decide
who on the support team has the appropriate skills and time to address a given
ticket. The dispatcher also makes sure that requests are resolved in a timely manner.

31.3	 Local documentation maintenance
Just as most people accept the health benefits of exercise and leafy green vegetables,
everyone appreciates good documentation and has a vague idea that it’s important.
Unfortunately, that doesn’t necessarily mean that they’ll write or update documen-
tation without prodding. Why should we care, really?

•	 Documentation reduces the likelihood of a single point of failure. It’s won-
derful to have tools that deploy workstations in no time and distribute
patches with a single command, but these tools are nearly worthless if no
documentation exists and the expert is on vacation or has quit.

•	 Documentation aids reproducibility. When practices and procedures are
not stored in institutional memory, they are unlikely to be followed con-
sistently. When administrators can’t find information about how to do
something, they have to wing it.

 	

      

 

	
	

Table 31.2	 Commercial ticket systems

Name Scale Web site

EMC Ionix (Infra) Huge infra-corp.com/solutions
HEAT Medium ticomix.com
Jira Any atlassian.com
Remedy (now BMC) Huge remedy.com
ServiceDesk Huge ca.com/us/service-desk.aspx
ServiceNow Any servicenow.com
Track-It! Medium trackit.com

1116	 Chapter 31	 Methodology, Policy, and Politics	

•	 Documentation saves time. It doesn’t feel like you’re saving time as you
write it, but after spending a few days re-solving a problem that has been
tackled before but whose solution has been forgotten, most administra-
tors are convinced that the time is well spent.

•	 Finally, and most importantly, documentation enhances the intelligibility
of the system and allows subsequent modifications to be made in a man-
ner that’s consistent with the way the system is supposed to work. When
modifications are made on the basis of only partial understanding, they
often don’t quite conform to the architecture. Entropy increases over time,
and even the administrators that work on the system come to see it as a
disorderly collection of hacks. The end result is often the desire to scrap
everything and start again from scratch.

Local documentation should be kept in a well-defined spot such as an internal wiki
or a third-party service such as Google Drive. Once you have convinced your ad-
ministrators to document configurations and administration practices, it’s import-
ant to protect this documentation as well. A malicious user can do a lot of damage
by tampering with your organization’s documentation. Make sure that people who
need the documentation can find it and read it (make it searchable), and that ev-
eryone who maintains the documentation can change it. But balance accessibility
with the need for protection.

Infrastructure as code
Another important form of documentation is known as “infrastructure as code.” It
can take a variety of forms, but is most commonly seen in the form of configuration
definitions (such as Puppet modules or Ansible playbooks) that can then be stored
and tracked in a version control system such as Git. The system and its changes are
well documented in the configuration files, and the environment can be built and
compared against the standard on a regular basis. This approach ensures that the
documentation and the environment always match and are up to date, solving the
most common problem of traditional documentation. See Chapter 23, Configu-
ration Management, for more information.

Documentation standards
If you must document elements manually, our experience suggests that the easiest
and most effective way to maintain documentation is to standardize on short, light-
weight documents. Instead of writing a system management handbook for your
organization, write many one-page documents, each of which covers a single topic.
Start with the big picture and then break it down into pieces that contain additional
information. If you have to go into more detail somewhere, write an additional one-
page document that focuses on steps that are particularly difficult or complicated.

	 Local documentation maintenance	 1117

M
et

ho
do

lo
gy

This approach has several advantages:

•	 Higher management is probably only interested in the general setup of
your environment. That is all that’s needed to answer questions from above
or to conduct a managerial discussion. Don’t pour on too many details or
you will just tempt your boss to interfere in them.

•	 The same holds true for customers.

•	 A new employee or someone taking on new duties within your organi-
zation needs an overview of the infrastructure to become productive. It’s
not helpful to bury such people in information.

•	 It’s more efficient to use the right document than to browse through a
large document.

•	 You can index pages to make them easy to find. The less time administra-
tors have to spend looking for information, the better.

•	 It’s easier to keep documentation current when you can do that by up-
dating a single page.

This last point is particularly important. Keeping documentation up to date is a huge
challenge; documentation is often is the first thing to be dropped when time is short.
We have found that a couple of specific approaches keep the documentation flowing.

First, set the expectation that documentation be concise, relevant, and unpolished.
Cut to the chase; the important thing is to get the information down. Nothing
makes the documentation sphincter snap shut faster than the prospect of writing
a dissertation on design theory. Ask for too much documentation and you might
not get any. Consider developing a simple form or template for your sysadmins to
use. A standard structure helps avoid blank-page anxiety and guides sysadmins to
record pertinent information rather than fluff.

Second, integrate documentation into processes. Comments in configuration files
are some of the best documentation of all. They’re always right where you need them,
and maintaining them takes virtually no time at all. Most standard configuration
files allow comments, and even those that aren’t particularly comment friendly can
often have some extra information sneaked into them.

Locally built tools can require documentation as part of their standard configuration
information. For example, a tool that sets up a new computer can require informa-
tion about the computer’s owner, location, support status, and billing information,
even if these facts aren’t directly relevant to the machine’s software configuration.

Documentation should not create information redundancies. For example, if you
maintain a site-wide master list of systems, there should be no other place where
this information is updated by hand. Not only is it a waste of your time to make up-
dates in multiple locations, but inconsistencies are also certain to creep in over time.
When this information is required in other contexts and configuration files, write

See page 109 for
more information
about cron.

1118	 Chapter 31	 Methodology, Policy, and Politics	

a script that obtains it from (or updates) the master configuration. If you cannot
completely eliminate redundancies, at least be clear about which source is author-
itative. And write tools to catch inconsistencies, perhaps run regularly from cron.

The advent of tools such as wikis, blogs, and other simple knowledge management
systems has made it much easier to keep track of IT documentation. Set up a sin-
gle location where all your documents can be found and updated. Don’t forget to
keep it organized, however. One wiki page with 200 child pages all in one list is
cumbersome and difficult to use. Be sure to include a search function to get the
most out of your system.

31.4	 Environment separation
Organizations that write and deploy their own software need separate development,
test, and production environments so that releases can be staged into general use
through a structured process.2 Separate, that is, but identical; make sure that when
development systems are updated, the changes propagate to the test and production
environments as well. Of course, the configuration updates themselves should be
subject to the same kind of structured release control as the code. “Configuration
changes” include everything from OS patches to application updates and admin-
istrative changes.

Historically, it has been standard practice to “protect” the production environment
by enforcing role separation throughout the promotion process. For example, the
developers who have administrative privileges in the development environment
are not the same people who have administrative and promotion privileges in oth-
er environments. The fear was that a disgruntled developer with code promotion
permissions could conceivably insert malicious code at the development stage and
then promote it through to production. By distributing approval and promotion
duties to other people, multiple people would need to collude or make mistakes
before problems could find their way into production systems.

Unfortunately, the anticipated benefits of such draconian measures are rarely re-
alized. Code promoters often don’t have the skills or time to review code changes
at a level that would actually catch intentional mischief. Instead of helping, the
system creates a false sense of protection, introduces unnecessary roadblocks, and
wastes resources.

In the DevOps era, this problem is solved in a different way. Rather than separate
roles, the preferred approach is to track all changes “as code” in a repository (such
as Git) that has an immutable audit trail. Any undesirable change is traceable back
to the human that introduced it, so strict role separation is unnecessary. Because
configuration changes are applied in an automated way across each environment,
identical changes can be evaluated in lower environments (such as dev or test) be-
fore they are promoted to production, to ensure that no unintended consequences

	 2.	 In many cases, this statement applies as well to sites that run complex off-the-shelf software such as
ERP or financial systems.

	 Disaster management	 1119

M
et

ho
do

lo
gy

manifest themselves. If problems are discovered, reversion is as easy as identifying
the problematic commit and temporarily bypassing it.

In a perfect world, neither developers nor ops staff would have administrative priv-
ileges in the production environment. Instead, all changes would be made through
an automated, tracked process that has appropriate privileges of its own. Although
this is a worthy aspirational goal, our experience has been that it is not yet realistic
for most organizations. Work toward this utopian fantasy, but don’t get trapped by it.

31.5	 Disaster management
Your organization depends on a working IT environment. Not only are you respon-
sible for day-to-day operations, but you should also have plans in place to deal with
any reasonably foreseeable eventuality. Preparation for such large-scale problems
influences both your overall game plan and the way that you define daily operations.
In this section, we look at various kinds of disasters, the data you need to recover
gracefully, and the important elements of recovery plans.

Risk assessment
Before designing a disaster recovery plan, it’s a good idea to pull together a risk
assessment to help you understand what assets you have, what risks they face, and
what mitigation steps you already have in place. The NIST 800-30 special publica-
tion details an extensive risk assessment process. You can download it from nist.gov.

Part of the risk assessment process is to make an explicit, written catalog of the po-
tential disasters you want to protect against. Disasters are not all the same, and you
may need several different plans to cover the full range of possibilities. For example,
some common threat categories are

•	 Malicious users, both external and internal3

•	 Floods
•	 Fires
•	 Earthquakes
•	 Hurricanes and tornadoes
•	 Electrical storms and power spikes
•	 Power failures, both short- and long-term
•	 Extreme heat or failure of cooling equipment
•	 ISP/Telecom/Cloud outage
•	 Device hardware failures (dead servers, fried hard disks)
•	 Terrorism
•	 Zombie apocalypse
•	 Network device failures (routers, switches, cables)
•	 Accidental user errors (deleted or damaged files and databases, lost con-

figuration information, lost passwords, etc.)
	 3.	 Historically, about half of security breaches originate with insiders. Internal misbehavior continues to

be the disaster of highest likelihood at most sites.

http://nist.gov

1120	 Chapter 31	 Methodology, Policy, and Politics	

For each potential threat, consider and write down all the possible implications
of that event.

Once you understand the threats, prioritize the services within your IT environment.
Build a table that lists your IT services and assigns a priority to each. For example,
a “software as a service” company might rate its external web site as a top-priority
service, while an office with a simple, informational external web site might not
worry about the site’s fate during a disaster.

Recovery planning
More and more, organizations are designing their critical systems to automatically
fail over to secondary servers in the case of problems. This is a great idea if you have
little or no tolerance for services being down. However, don’t fall prey to the belief
that because you are mirroring your data, you do not need off-line backups. Even
if your data centers are miles apart, it is certainly possible that you could lose both
of them.4 Make sure you include data backups in your disaster planning.

Cloud computing is often an essential element of disaster planning. Through ser-
vices such as Amazon’s EC2, you can get a remote site set up and functioning within
minutes without having to pay for dedicated hardware. You pay only for what you
use, when you use it.

A disaster recovery plan should include the following sections (derived from the
NIST disaster recovery standard, 800-34):

•	 Introduction – purpose and scope of the document

•	 Concept of operations – system description, recovery objectives, informa-
tion classification, line of succession, responsibilities

•	 Notification and activation – notification procedures, damage assessment
procedures, plan activation

•	 Recovery – the sequence of events and procedures required to recover
lost systems

•	 Return to normal operation – concurrent processing, reconstituted system
testing, return to normal operation, plan deactivation

We are accustomed to communicating and accessing documents through the net-
work. However, these facilities may be unavailable or compromised after an inci-
dent. Store all relevant contacts and procedures off-line. Know where to get recent
backups and how to make use of them without reference to on-line data.

In all disaster scenarios, you will need access to both on-line and off-line copies of
essential information. The on-line copies should, if possible, be kept in a self-suf-
ficient environment, one that has a rich complement of tools, has key sysadmins’

	 4.	 Malicious hackers and ransomware can easily destroy an organization that does not maintain
read-only, off-line backups.

Read more about
cloud computing
in Chapter 9.

	 Disaster management	 1121

M
et

ho
do

lo
gy

environments, runs its own name server, has a complete local /etc/hosts file, has
no file-sharing dependencies, and so on.

Here’s a list of handy data to keep in the disaster support environment:

•	 An outline of the recovery procedure: who to call, what to say
•	 Service contract phone numbers and customer numbers
•	 Key local phone numbers: police, fire, staff, boss
•	 Cloud vendor login information
•	 Inventory of backup media and the backup schedule that produced them
•	 Network maps
•	 Software serial numbers, licensing data, and passwords
•	 Copies of software installation media (can be kept as ISO files)
•	 Copies of your systems’ service manuals
•	 Vendor contact information
•	 Administrative passwords
•	 Data on hardware, software, and cloud environment configurations: OS

versions, patch levels, partition tables, and the like
•	 Startup instructions for systems that need to be brought back on-line in

a particular order

Staffing for a disaster
Your disaster recovery plan should document who will be in charge in the event
of a catastrophic incident. Set up a chain of command and keep the names and
phone numbers of the principals off-line. We keep a little laminated card with im-
portant names and phone numbers printed in microscopic type. Handy—and it
fits in your wallet.

The best person to put in charge may be a sysadmin from the trenches, not the IT
director (who is usually a poor choice for this role).

The person in charge must be someone who has the authority and decisiveness to
make tough decisions in the context of minimal information (e.g., a decision to
disconnect an entire department from the network). The ability to make such de-
cisions, communicate them in a sensible way, and lead the staff through the crisis
are probably more important than having theoretical insight into system and net-
work management.

An important but sometimes unspoken assumption made in most disaster plans is
that sysadmin staff will be available to deal with the situation. Unfortunately, people
get sick, go on vacation, leave for other jobs, and in stressful times may even turn
hostile. Consider what you’d do if you needed extra emergency help. (Not having
enough sysadmins around can sometimes constitute an emergency in its own right
if your systems are fragile or your users unsophisticated.)

You might try forming a sort of NATO pact with a local consulting company that
has sharable system administration talent. Of course, you must be willing to share

1122	 Chapter 31	 Methodology, Policy, and Politics	

back when your buddies have a problem. Most importantly, don’t operate close to
the wire in your daily routine. Hire enough system administrators and don’t expect
them to work 12-hour days.

Security incidents
System security is covered in detail in Chapter 27. However, it’s worth mentioning
here as well because security considerations impact the vast majority of adminis-
trative tasks. No aspect of your site’s management strategy can be designed without
due regard for security.

For the most part, Chapter 27 concentrates on ways of preventing security in-
cidents from occurring. However, thinking about how you might recover from a
security-related incident is an equally important part of security planning.

Having your web site hijacked is a particularly embarrassing type of break-in. For
the sysadmin at a web-hosting company, a hijacking can be a calamitous event, es-
pecially when it involves sites that handle credit card data. Phone calls stream in
from customers, from the media, from the company VIPs who just saw the news
of the hijacking on CNN. Who will take the calls? What should that person say?
Who is in charge? What role does each person play? If you are in a high-visibility
business, it’s definitely worth thinking through this type of scenario, coming up
with some preplanned answers, and perhaps even having a practice session to work
out the details.

Sites that accept credit card data have legal requirements to deal with after a hijack-
ing. Make sure your organization’s legal department is involved in security incident
planning, and make sure you have relevant contact names and phone numbers to
call in a time of crisis.

When CNN or Reddit announces that your web site is down, the same effect that
makes highway traffic slow down to look at an accident on the side of the road causes
your Internet traffic to increase enormously, often to the point of breaking whatever
it was that you just fixed. If your web site cannot handle an increase in traffic of 25%
or more, consider having your load-balancing device route excess connections to a
server that presents a page that simply says “Sorry, we are too busy to handle your
request right now.” Of course, forward-thinking capacity planning that includes
auto-scaling into the cloud (see Chapter 9) might avoid this situation altogether.

Develop a complete incident handling guide to take the guesswork out of managing
security problems. See page 1037 for more details on security incident management.

31.6	 IT policies and procedures
Comprehensive IT policies and procedures serve as the groundwork for a modern
IT organization. Policies set standards for users and administrators and foster con-
sistency for everyone involved. More and more, policies require acknowledgement
in the form of a signature or other proof that the user has agreed to abide by their

	 IT policies and procedures	 1123

M
et

ho
do

lo
gy

contents. Although this may seem excessive to some, it is actually a great way to
protect administrators in the long run.

The ISO/IEC 27001:2013 standard is a good basis for constructing your policy set.
It interleaves general IT policies with other important elements such as IT security
and the role of the Human Resources department. In the next few sections, we dis-
cuss the ISO/IEC 27001:2013 framework and highlight some of its most important
and useful elements.

The difference between policies and procedures
Policies and procedures are two distinct things, but they are often confused, and the
words are sometimes even used interchangeably. This sloppiness creates confusion,
however. To be safe, think of them this way:

•	 Policies are documents that define requirements or rules. The requirements
are usually specified at a relatively high level. An example of a policy might
be that incremental backups must be performed daily, with total backups
being completed each week.

•	 Procedures are documents that describe how a requirement or rule will
be met. So, the procedure associated with the policy above might say
something like “Incremental backups are performed with Backup Exec
software, which is installed on the server backups01…”

This distinction is important because your policies should not change often. You
should review them annually and maybe change one or two pieces. Procedures,
on the other hand, evolve continuously as you change your architecture, systems,
and configurations.

Some policy decisions are dictated by the software you are running or by the pol-
icies of external groups, such as ISPs. Some policies are mandatory if the privacy
of your users’ data is to be protected. We call these topics “nonnegotiable policy.”

In particular, we believe that IP addresses, hostnames, UIDs, GIDs, and usernames
should all be managed site-wide. Some sites (multinational corporations, for exam-
ple) are clearly too large to implement this policy, but if you can swing it, site-wide
management makes things a lot simpler. We know of a company that enforces site-
wide management for 35,000 users and 100,000 machines, so the threshold at which
an organization becomes too big for site-wide management must be pretty high.

Other important issues have a larger scope than just your local IT group:

•	 Handling of security break-ins
•	 Filesystem export controls
•	 Password selection criteria
•	 Removal of logins for cause
•	 Copyrighted material (e.g., MP3s and movies)
•	 Software piracy

1124	 Chapter 31	 Methodology, Policy, and Politics	

Policy best practices
Several policy frameworks are available, and they cover roughly the same territo-
ries. The following topics are examples of those that are typically included in an
IT policy set:

•	 Information security policy
•	 External party connectivity agreements
•	 Asset management policy
•	 Data classification system
•	 Human Resources security policy
•	 Physical security policy
•	 Access control policies
•	 Security standards for development, maintenance, and new systems
•	 Incident management policy
•	 Business continuity management (disaster recovery)
•	 Data retention standards
•	 Protection of user privacy
•	 Regulatory compliance policy

Procedures
Procedures in the form of checklists or recipes can codify existing practice. They
are useful both for new sysadmins and for old hands. Better yet are procedures
that include executable scripts or are captured in a configuration management
tool such as Ansible, Salt, Puppet, or Chef. Over the long term, most procedures
should be automated.

Several benefits accrue from standard procedures:

•	 Tasks are always done in the same way.
•	 Checklists reduce the likelihood of errors or forgotten steps.
•	 It’s faster for the sysadmin to work from a recipe.
•	 Changes are self-documenting.
•	 Written procedures provide a measurable standard of correctness.

Here are some common tasks for which you might want to set up procedures:

•	 Adding a host
•	 Adding a user
•	 Localizing a machine
•	 Setting up backups (and snapshots) for a new machine
•	 Securing a new machine
•	 Removing an old machine
•	 Restarting a complicated piece of software
•	 Reviving a web site that is not responding or not serving data
•	 Upgrading the operating system
•	 Patching software
•	 Installing a software package

	 Service level agreements	 1125

M
et

ho
do

lo
gy

•	 Upgrading critical software
•	 Backing up and restoring files
•	 Expiring old backups
•	 Performing emergency shutdowns

Many issues sit squarely between policy and procedure. For example:

•	 Who can have an account on your network?
•	 What happens when they leave?

The resolutions of such issues need to be written down so that you can stay con-
sistent and avoid falling prey to the well-known four-year-old’s ploy of “Mommy
said no, let’s go ask Daddy!”

31.7	 Service level agreements
For the IT organization to keep users happy and meet the needs of the enterprise,
the exact details of the service being provided must be negotiated, agreed to, and
documented in “service level agreements” or SLAs. A good SLA is a tool that sets
appropriate expectations and serves as a reference when questions arise. (But re-
member, IT provides solutions, not roadblocks!)

When something is broken, users want to know when it’s going to be fixed. That’s
it. They don’t really care which hard disk or generator broke, or why; leave that in-
formation for your managerial reports.

From a user’s perspective, no news is good news. The system either works or it
doesn’t, and if the latter, it doesn’t matter why. Our customers are happiest when
they don’t even notice that we exist! Sad, but true.

An SLA helps align end users and support staff. A well-written SLA addresses each
of the issues discussed in the following sections.

Scope and descriptions of services
This section is the foundation of the SLA because it describes what the organization
can expect from IT. Write it in terms that can be understood by nontechnical staff.
Some example services might be

•	 Email
•	 Chat
•	 Internet and web access
•	 File servers
•	 Business applications
•	 Authentication

The standards that IT will adhere to when providing these services must also be de-
fined. For example, an availability section would define the hours of operation, the
agreed-on maintenance windows, and the expectations regarding the times at which

1126	 Chapter 31	 Methodology, Policy, and Politics	

IT staff will be available to provide live support. One organization might decide
that regular support should be available from 8:00 a.m. to 6:00 p.m. on weekdays
but that emergency support must be available 24/7. Another organization might
decide that it needs standard live support available at all times.

Here is a list of issues to consider when documenting your standards:

•	 Response time
•	 Service (and response times) during weekends and off-hours
•	 House calls (support for environments at home)
•	 Weird (unique or proprietary) hardware
•	 Upgrade policy (ancient hardware, software, etc.)
•	 Supported operating systems
•	 Supported cloud platforms
•	 Standard configurations
•	 Data retention
•	 Special-purpose software

When considering service standards, keep in mind that many users will want to
customize their environments (or even their systems) if the software is not nailed
down to prevent this. The stereotypical IT response is to forbid all user modifica-
tions, but although this policy makes things easier for IT, it isn’t necessarily the best
policy for the organization.

Address this issue in your SLAs and try to standardize on a few specific configura-
tions. Otherwise, your goals of easy maintenance and scaling to grow with the orga-
nization will meet some serious impediments. Encourage your creative, OS-hacking
employees to suggest modifications that they need for their work, and be diligent
and generous in incorporating these suggestions into your standard configurations.
If you don’t, your users will work hard to subvert your rules.

Queue prioritization policies
In addition to knowing what services are provided, users must also know about
the priority scheme used to manage the work queue. Priority schemes always have
wiggle room, but try to design one that covers most situations with few or no ex-
ceptions. Some priority-related variables are listed below:

•	 The importance of the service to the overall organization
•	 The security impact of the situation (has there been a breach?)
•	 The service level the customer has paid or contracted for
•	 The number of users affected
•	 The importance of any relevant deadline
•	 The loudness of the affected users (squeaky wheels)
•	 The importance of the affected users (this is a tricky one, but let’s be honest:

some people in your organization have more pull than others)

	 Compliance: regulations and standards	 1127

M
et

ho
do

lo
gy

Although all these factors will influence your rankings, we recommend a simple
set of rules together with some common sense to deal with the exceptions. We use
the following basic priorities:

•	 Many people cannot work
•	 One person cannot work
•	 Requests for improvements

If two or more requests have top priority and the requests cannot be worked on
in parallel, we decide which problem to tackle first by assessing the severity of the
issues (e.g., email not working makes almost everybody unhappy, whereas the tem-
porary unavailability of a web service might hinder only a few people). Queues at
lower priorities are usually handled in a FIFO manner.

Conformance measurements
An SLA needs to define how the organization will measure your success at fulfill-
ing the terms of the agreement. Targets and goals allow the staff to work toward
a common outcome and can lay the groundwork for cooperation throughout the
organization. Of course, you must make sure you have tools in place to measure
the agreed-on metrics.

At a minimum, you should track the following metrics for your IT infrastructure:

•	 Percentage or number of projects completed on time and on budget
•	 Percentage or number of SLA elements fulfilled
•	 Uptime percentage by system (e.g., “email 99.92% available through Q1”)
•	 Percentage or number of tickets that were satisfactorily resolved
•	 Average time to ticket resolution
•	 Time to provision a new system
•	 Percentage or number of security incidents handled according to the doc-

umented incident handling process

31.8	 Compliance: regulations and standards
IT auditing and governance are big issues today. Regulations and quasi-standards
for specifying, measuring, and certifying compliance have spawned myriad acro-
nyms: SOX, ITIL, COBIT, and ISO 27001, just to name a few. Unfortunately, this
alphabet soup is leaving something of a bad taste in system administrators’ mouths,
and quality software to implement all the controls deemed necessary by recent leg-
islation is currently lacking.

Some of the major advisory standards, guidelines, industry frameworks, and legal
requirements that might apply to system administrators are listed below. The leg-
islative requirements are largely specific to the United States.

1128	 Chapter 31	 Methodology, Policy, and Politics	

Typically, the standard you must use is mandated by your organization type or the
data you handle. In jurisdictions outside the United States, you will need to iden-
tify the applicable regulations.

•	 The CJIS (Criminal Justice Information Systems) standard applies to
organizations that track criminal information and integrate that infor-
mation with the FBI’s databases. Its requirements can be found on-line
at fbi.gov/hq/cjisd/cjis.htm.

•	 COBIT is a voluntary framework for information management that at-
tempts to codify industry best practices. It is developed jointly by the In-
formation Systems Audit and Control Association (ISACA) and the IT
Governance Institute (ITGI); see isaca.org for details. COBIT’s mission is

“to research, develop, publicize, and promote an authoritative, up-to-date,
international set of generally accepted information technology control
objectives for day-to-day use by business managers and auditors.”

	 The first edition of the framework was published in 1996, and we are
now at version 5.0, published in 2012. This latest iteration was strongly
influenced by the requirements of the Sarbanes-Oxley Act. It includes
37 high-level processes categorized into five domains: Align, Plan, and
Organize (APO); Build, Acquire, and Implement (BAI); Deliver, Service,
and Support (DSS); Monitor, Evaluate, and Assess (MEA); and Evaluate,
Direct, and Monitor (EDM).

•	 COPPA, the Children’s Online Privacy Protection Act, regulates orga-
nizations that collect or store information about children under the age
of 13. Parental permission is required to gather certain information; see
ftc.gov for details.

•	 FERPA, the Family Educational Rights and Privacy Act, applies to all
institutions that are recipients of federal aid administered by the Secretary
of Education. This regulation protects student information and accords
students specific rights with respect to their data. For details, search for
FERPA at ed.gov.

•	 FISMA, the Federal Information Security Management Act, applies
to all government agencies and their contractors. It’s a large and rather
vague set of requirements that seek to enforce compliance with a variety
of IT security publications from NIST, the National Institute of Standards
and Technology. Whether or not your organization falls under the man-
date of FISMA, the NIST documents are worth reviewing. See nist.gov
for more information.

http://fbi.gov/hq/cjisd/cjis.htm
http://isaca.org
http://ftc.gov
http://ed.gov
http://nist.gov

	 Compliance: regulations and standards	 1129

M
et

ho
do

lo
gy

•	 The FTC’s Safe Harbor framework bridges the gap between the U.S. and
E.U. approaches to privacy legislation and defines a way for U.S. organi-
zations that interface with European companies to demonstrate their data
security. See export.gov/safeharbor.

•	 GLBA, the Gramm-Leach-Bliley Act regulates financial institutions’
use of consumers’ private information. If you’ve been wondering why
the world’s banks, credit card issuers, brokerages, and insurers have been
pelting you with privacy notices, that’s the Gramm-Leach-Bliley Act at
work. See ftc.gov for details. Currently, the best GLBA information is in
the business section of the Tips & Advice portion of the web site. The
shortcut goo.gl/vv2011 currently works as a deep link.

•	 HIPAA, the Health Insurance Portability and Accountability Act, ap-
plies to organizations that transmit or store protected health information
(aka PHI). It is a broad standard that was originally intended to combat
waste, fraud, and abuse in health care delivery and health insurance, but
it is now used to measure and improve the security of health information
as well. See hhs.gov/ocr/privacy/index.html.

•	 ISO 27001:2013 and ISO 27002:2013 are a voluntary (and informative)
collection of security-related best practices for IT organizations. See iso.org.

•	 CIP (Critical Infrastructure Protection) is a family of standards from
the North American Electric Reliability Corporation (NERC) which pro-
mote the hardening of infrastructure systems such as power, telephone,
and financial grids against risks from natural disasters and terrorism. In
a textbook demonstration of the Nietzschean concept of organization-
al “will to power,” it turns out that most of the economy falls into one of
NERC’s 17 “critical infrastructure and key resource” (CI/KR) sectors and
is therefore richly in need of CIP guidance. Organizations within these
sectors should be evaluating their systems and protecting them as appro-
priate. See nerc.com.

•	 The Payment Card Industry Data Security Standard (PCI DSS) was
created by a consortium of payment brands including American Express,
Discover, MasterCard, JCB, and Visa. It covers the management of pay-
ment card data and is relevant for any organization that accepts credit
card payments. The standard comes in two flavors: a self-assessment for
smaller organizations and a third-party audit for organizations that pro-
cess more transactions. See pcisecuritystandards.org.

http://export.gov/safeharbor
http://ftc.gov
http://goo.gl/vv2011
http://hhs.gov/ocr/privacy/index.html
http://iso.org
http://nerc.com
http://pcisecuritystandards.org

1130	 Chapter 31	 Methodology, Policy, and Politics	

•	 The FTC’s Red Flag Rules require anyone who extends credit to consum-
ers (i.e., any organization that sends out bills) to implement a formal pro-
gram to prevent and detect identity theft. The rules require credit issuers
to develop heuristics for identifying suspicious account activity; hence,

“red flag.” Search for “red flag” at ftc.gov for details.

•	 In the 1990s and early 2000s, the Information Technology Infrastruc-
ture Library (ITIL) was a de facto standard for organizations seeking a
comprehensive IT service management solution. Many large organizations
deployed a formal ITIL program complete with project managers for each
process, managers for the project managers, and reporting for managers
of the project managers. In most cases, the results were not favorable. The
heavy process focus combined with siloed functions resulted in intractable
IT constipation. This red tape created opportunities for lean startups to
steal market share from well-established companies, thus sending many
career IT practitioners out to pasture. We hope we’ve seen the last of ITIL.
Some say DevOps is the anti-ITIL methodology.

•	 Last, but certainly not least, the IT general controls (ITGC) portion of
the Sarbanes-Oxley Act (SOX) applies to all public companies and is
designed to protect shareholders from accounting errors and fraudulent
practices. See sec.gov.

Some of these standards contain good advice even for organizations that are not
required to adhere to them. It might be worth breezing through a few of them just
to see if they contain any best practices you might want to adopt. If you have no
other constraints, check out NERC CIP and NIST 800-53; they are our favorites
with regard to thoroughness and applicability to a broad range of situations.

The National Institute for Standards and Technology (NIST) publishes a host of
standards that are useful to administrators and technologists. The two most com-
monly used ones are mentioned below, but if you are ever bored and looking for
standards, you might check out their web site. You will not be disappointed.

NIST 800-53, Recommended Security Controls for Federal Information Systems and
Organizations, describes how to assess the security of information systems. If your
organization has developed an in-house application that holds sensitive informa-
tion, NIST 800-53 can help you make sure you have truly secured it. Beware, how-
ever: embarking on a NIST 800-53 compliance journey is not for the faint of heart.
You are likely to end up with a document that is close to 100 pages long and that
includes excruciating details.5

NIST 800-34, Contingency Planning Guide for Information Technology Systems, is
NIST’s disaster recovery bible. It is directed at government agencies, but any or-
ganization can benefit from it. Following the NIST 800-34 planning process takes
time, but it forces you to answer important questions such as, “Which systems are

	 5.	 If you plan to do business with a U.S. government agency, you may be required to complete a NIST
800-53 assessment whether you want to or not…

http://ftc.gov
http://sec.gov

	 Legal issues	 1131

M
et

ho
do

lo
gy

the most critical?”, “How long can we survive without these systems?”, and “How
are we going to recover if our primary data center is lost?”

31.9	 Legal issues
The U.S. federal government and several states have enacted laws regarding com-
puter crime. At the federal level, two pieces of legislation date from the early 1990s
and three are more recent:

•	 The Electronic Communications Privacy Act
•	 The Computer Fraud and Abuse Act
•	 The No Electronic Theft Act
•	 The Digital Millennium Copyright Act
•	 The Email Privacy Act
•	 The Cybersecurity Act of 2015

Some major issues in the legal arena are these: liability of sysadmins, network pro-
viders, and public clouds; peer-to-peer file-sharing networks; copyright issues; and
privacy issues. The topics in this section comment on these issues and a variety of
other legal debacles related to system administration.

Privacy
Privacy has always been difficult to safeguard, and with the rise of the Internet, it
is in more danger than ever. Medical records have been repeatedly disclosed from
poorly protected systems, stolen laptops, and misplaced backup tapes. Databases
full of credit card numbers are routinely compromised and sold on the black mar-
ket. Web sites purporting to offer antivirus software actually install spyware when
used. Fake email arrives almost daily, appearing to be from your bank and alleging
that problems with your account require you to verify your account data.6

Technical measures can never protect against these attacks because they target your
site’s most vulnerable weakness: its users. Your best defense is a well-educated user
base. To a first approximation, no legitimate email or web site will ever

•	 Suggest that you have won a prize;
•	 Request that you “verify” account information or passwords;
•	 Ask you to forward a piece of email;
•	 Ask you to install software you have not explicitly searched for; or
•	 Inform you of a virus or other security problem.

Users who have a basic understanding of these dangers are more likely to make
sensible choices when a pop-up window claims they have won a free MacBook.

	 6.	 Usually, a close inspection of the email would reveal that the data would go to a hacker in eastern Eu-
rope or Asia and not to your bank. This type of attack is called “phishing.”

1132	 Chapter 31	 Methodology, Policy, and Politics	

Policy enforcement
Log files might prove to you conclusively that person X did bad thing Y, but to a
court it is all just hearsay evidence. Protect yourself with written policies. Log files
sometimes include time stamps, which are useful but not necessarily admissible
as evidence unless you can also prove that the computer was running the Network
Time Protocol (NTP) to keep its clock synced to a reference standard.

You may need a security policy to prosecute someone for misuse. That policy should
include a statement such as this: “Unauthorized use of computing systems may in-
volve not only transgression of organizational policy but also a violation of state
and federal laws. Unauthorized use is a crime and may involve criminal and civil
penalties; it will be prosecuted to the full extent of the law.”

We advise you to display a splash screen that advises users of your snooping policy.
You might say something like: “Activity may be monitored in the event of a real or
suspected security incident.”

To ensure that users see the notification at least once, include it in the startup files
you give to new users. If you require the use of SSH to log in (and you should), you
can configure /etc/ssh/sshd_config so that SSH always shows the splash screen.

Be sure to specify that through the act of using their accounts, users acknowledge
your written policy. Explain where users can get additional copies of policy docu-
ments, and post key documents on an appropriate web page. Also include the spe-
cific penalty for noncompliance (e.g., deletion of the account).

In addition to displaying the splash screen, have users sign a policy agreement
before giving them access to your systems. Craft the acceptable use agreement in
conjunction with your legal department. If you don’t have signed agreements from
current employees, make a sweep to obtain them, then make signing the agreement
a standard part of the induction process for new hires.

You might also consider periodically offering training sessions on information se-
curity. This is a great opportunity to educate users about important issues such as
phishing scams, when it’s OK to install software and when it’s not, password secu-
rity, and any other points that affect your environment.

Control = liability
Service providers (ISP, cloud, etc.) typically have an appropriate use policy (AUP)
dictated by their upstream providers and required of their downstream customers.
This “flow down” of liability assigns responsibility for users’ actions to the users
themselves, not to the service provider or the service provider’s upstream provider.
Such policies have been used to attempt spam control and to protect service pro-
viders in cases where customers have stored illegal or copyrighted material in their
accounts. Check the laws in your area; your mileage may vary.

Your policies should explicitly state that users are not to use organizational resources
for illegal activities. However, that’s not really enough—you also need to discipline

	 Organizations, conferences, and other resources	 1133

M
et

ho
do

lo
gy

users if you find out they are misbehaving. Organizations that know about violations
but do not act on them are complicit and can be prosecuted. Unenforced or incon-
sistent policies are worse than none, from both a practical and legal point of view.

Because of the risk of being found complicit in user activities, some sites limit the
data that they log, the length of time for which log files are kept, and the amount
of log file history kept on backup tapes. Some software packages help with the im-
plementation of this policy by including levels of logging that help the sysadmin
debug problems but that do not violate users’ privacy. However, always be aware
of what kind of logging might be required by local laws or by any regulatory stan-
dards that apply to you.

Software licenses
Many sites have paid for K copies of a software package and have N copies in daily
use, where K < N. Getting caught in this situation could be damaging to the com-
pany—probably more damaging than the cost of those N-minus-K other licens-
es. Other sites have received a demo copy of an expensive software package and
hacked it (reset the date on the machine, found a license key, etc.) to make it con-
tinue working after the expiration of the demo period. How do you as a sysadmin
deal with requests to violate license agreements and make copies of software on
unlicensed machines? What do you do when you find that machines for which you
are responsible are running pirated software?

It’s a tough call. Management will often not back you up in your requests that unli-
censed copies of software be either removed or paid for. Often, it is a sysadmin who
signs the agreement to remove the demo copies after a certain date, but a manager
who makes the decision not to remove them.

We are aware of several cases in which a sysadmin’s immediate manager would not
deal with the situation and told the sysadmin not to rock the boat. The admin then
wrote a memo to the boss asking for correction of the situation and documenting
the number of copies of the software that were licensed and the number that were
in use. The admin quoted a few phrases from the license agreement and carbon
copied the president of the company and his boss’s managers. In one case, this pro-
cedure worked and the sysadmin’s manager was let go. In another case, the sysad-
min quit when even higher management refused to do the right thing. No matter
what you do in such a situation, get things in writing. Ask for a written reply; if all
you get is spoken words, write a short memo documenting your understanding of
your instructions and send it to the person in charge.

31.10	 Organizations, conferences, and other resources
Many UNIX and Linux support groups—both general and vendor-specific—help
you network with other people who are running the same software. Table 31.3

1134	 Chapter 31	 Methodology, Policy, and Politics	

briefly lists a few such organizations, but many other national and regional groups
are not listed here.

Table 31.3	 UNIX and Linux organizations of interest to system administrators

Name What it is

FSF The Free Software Foundation, sponsor of GNU
USENIX UNIX/Linux user group, quite technically oriented a

LOPSA The League of Professional System Administrators
SANS Sponsors sysadmin and security conferences
SAGE-AU Australian sysadmins who hold yearly conferences in Oz
Linux Foundation Nonprofit Linux consortium; produces LinuxCon among others
LinuxFest Northwest Grass-roots conference with great content

a.	 Well-known parent organization of the LISA special interest group, which was retired in 2016

FSF, the Free Software Foundation, sponsors the GNU Project (“GNU’s Not Unix,”
a recursive acronym). The “free” in the FSF’s name is the “free” of free speech and
not that of free beer. The FSF is also the origin of the GNU Public License, which
now exists in several versions and covers many of the free software packages used
on UNIX and Linux systems.

USENIX, an organization of users of Linux, UNIX, and other open source operat-
ing systems, holds one general conference and several specialized (smaller) con-
ferences or workshops each year. The Annual Technical Conference (ATC) is a
potpourri of in-depth UNIX and Linux topics and is a great place for networking
with the community.

The League of Professional System Administrators, LOPSA, has a fairly complex
and somewhat sordid history. It was originally associated with USENIX and was
intended to assume the mantle of USENIX’s system administration special interest
group, SAGE. Unfortunately, LOPSA and USENIX parted on less than amicable
terms and are now separate organizations.

Today, LOPSA sponsors a variety of sysadmin-related networking, mentorship, and
educational programs, including events such as System Administrator Appreciation
Day on the last Friday of July. The customary gift for this holiday is bottle of scotch.

SANS offers courses and seminars in the security space and also founded a certi-
fication program, the Global Information Assurance Certification (GIAC), which
operates somewhat independently. Certifications are available in a variety of general
and specific skill areas such as system administration, coding, incident handling,
and forensics. See giac.org for details.

Many local areas have their own regional UNIX, Linux, or open systems user groups.
Meetup.com is an excellent resource for finding relevant groups in your area. Local

http://giac.org
http://Meetup.com

	 Recommended reading 	 1135

M
et

ho
do

lo
gy

groups usually have regular meetings, workshops with local or visiting speakers,
and often, dinner together before or after the meetings. They’re a good way to net-
work with other sysadmins.

31.11	 Recommended reading
Brooks, Frederick P., Jr. The Mythical Man-Month: Essays on Software Engineer-
ing (2nd Edition). Reading, MA: Addison-Wesley, 1995.

Kim, Gene, Kevin Behr, and George Spafford. The Phoenix Project: A Novel
About IT, DevOps, and Helping Your Business Win (Revised Edition). Scottsdale, AZ:
IT Revolution Press, 2014.

Kim, Gene, et al. The DevOps Handbook: How to Create World-Class Agility, Re-
liability, and Security in Technology Organizations. Scottsdale, AZ: IT Revolution
Press, 2016.

Limoncelli, Thomas A. Time Management for System Administrators. Sebastopol,
CA: O’Reilly Media, 2005.

Machiavelli, Niccolò. The Prince. 1513. Available on-line from gutenberg.org.

Morris, Kief. Infrastructure as Code: Managing Servers in the Cloud. Sebastopol, CA:
O’Reilly Media, 2016. This book is a well-written 10,000-foot overview of DevOps
and large-scale tools for system administration in the cloud. It includes few spe-
cifics about configuration management per se, but it’s helpful for understanding
how configuration management integrates into the larger scheme of DevOps and
structured administration.

The site itl.nist.gov is the landing page for the NIST Information Technology Lab-
oratory and includes lots of information about standards.

The web site of the Electronic Frontier Foundation, eff.org, is a great place to find
commentary on the latest issues in privacy, cryptography, and legislation. Always
interesting reading.

SANS hosts a collection of security policy templates at sans.org/resources/policies.

http://gutenberg.org
http://itl.nist.gov
http://eff.org
http://sans.org/resources/policies

1136

We have alphabetized files under their last components. And in most cases, only the last
component is listed. For example, to find index entries relating to the /etc/mail/aliases file,
look under aliases. Our friendly vendors have forced our hand by hiding standard files in
new and inventive directories on each system.

Index

Symbols
. directory entry 129
.. directory entry 129
#! (“shebang”) syntax 133
1Password 994
389 Directory Server 580,

583–584
802.2* IEEE standards see IEEE

standards

A
A DNS records 499, 519
AA (Access Agent) 597, 599
AAAA DNS records 519
acceptance tests 958
accept command 369
accept_redirects parameter 401,

425
accept router, Exim 653
accept_source_route parame-

ter 425
Access Agent (AA) 597, 599
access control 65–68
access control lists see ACLs
access_db feature, sendmail 623
/etc/mail/access file 623
access points, wireless 471
accounts see user accounts

ACLs
DNS 534, 552
Exim 647–650
filesystem 140–152

Active Directory see Microsoft Ac-
tive Directory

addresses
see also IP
see also IPv6
broadcast 386
Ethernet (aka MAC) 384
loopback 387
multicast 386–387

adduser command 255, 262–263
/etc/adduser.conf file 262
Adleman, Leonard 1007
/var/adm directory 126
administrative privileges see root

account
Adobe InDesign

crash URL, frequently used
676

experiences with 1175
AES (Advanced Encryption Stan-

dard) 1006
AFR (Annual Failure Rate) 723
AfriNIC 392
AgileBits 994
AIDE (Advanced Intrusion Detec-

tion Environment) 990, 1062,
1063

air conditioning see cooling
air plenums, wiring 463
AIX 11
Akamai Technologies 690
algorithms, cryptographic 1010
alias_database parameter, Post-

fix 663
/etc/mail/aliases file 609
aliases, email 608

see also email
see also Exim
see also Postfix
see also sendmail
files, as alias source 610
files, mailing to 611
hashed database 612
loops 609
mailing lists 609
postmaster 609
programs, mailing to 611

alias_maps parameter, Post-
fix 663

Allman, Eric 302, 612
/var/cron/{allow,deny} file 113
Almquist shell 189
Alpine Linux 8
always_add_domain feature,

sendmail 623
Amazon EC2 Container Regis-

try 936
Amazon Linux 11

Index			 1137

Amazon Web Services see AWS
AMD 902
American Power Conversion

(APC) 1096
American Registry for Internet

Numbers (ARIN) 479
AMP 479
Anixter 479
Annual Failure Rate (AFR) 723
Ansible 841, 843, 850, 852–871,

1109
access options, client 869–871
in AWS 859
comments on 850
comparison to Salt 893–895
and Docker 943
example 853
groups, client 857
groups, dynamic 859
iteration 862
and Jinja 863
passwords 870
playbooks 864–866
play elements 865
pros and cons 895
recommendations, configura-

tion base 868
requirements, client 855–857
roles 866–868
securing client connections

870
security 894
setup 855–857
state parameters 862
tasks 860
templates 863–864
variables 858

ansible.cfg file 853
ansible command 852, 857
/etc/ansible directory 853
ansible-galaxy command 868
ansible-playbook command 843,

852, 866
ansible-vault command 852, 869
Anvin, H. Peter 155
anycast 386, 529
apache2.conf file 698
/var/log/apache2/* files 297
Apache Cassandra 946
apachectl command 697
Apache Directory Studio 579
Apache HTTP Server 684
Apache Software Foundation 16,

684, 946

Apache Spark 946
Apache Traffic Server 689
Apache Zookeeper 946
APC (American Power Conver-

sion) 1096
apex zone, DNS 522
APIs (Application Programming

interfaces) 692–694
APM (Application Performance

Monitoring) 1059–1061
APNIC 392
AppArmor 87–89
/etc/apparmor.d directory 88
AppDynamics 1061
appendfile transport, Exim 655
application monitoring 1059–1061
Application Programming Inter-

faces (APIs) 692–694
Appropriate Use Policy (AUP)

1132
apropos command 15
APT (Advanced Package Tool)

166–174, 167, 169–170
apt-cache command 170
apt command 169–170
/var/log/apt* file 297
apt-get command 22, 170
apt-mirror command 172
Arch Linux 8
ARIN (American Registry for In-

ternet Numbers) 392, 479
ARP (Address Resolution Proto-

col) 378, 401–402
ARPANET 376
arp command 402
Artifactory 936
as a service 323
ASHRAE temperature range 1096
ash shell 189
Assmann, Claus 638
AT&T 1168
attack surface 987
AT&T UNIX System V 1169
auditd daemon 299
auditing, user access 80
authconfig command 247
/var/log/auth.log file 297
AUTH_MECHANISMS option, send-

mail 628
~/.ssh/authorized_keys file 1020
/etc/auto.direct file 814
autofs filesystem 813
/etc/auto_master file 813
/etc/auto.master file 813

automation 1109
code promotion 1110
configuration management

1109
machine setup 1109
patching 1110
scripts 184–242
upgrades 1110

automount
automatic mounts 817
direct maps 814
executable maps 815
indirect maps 814
on Linux 813, 817
master maps 815
replicated filesystems 816–817
visibility 816

automountd daemon 813
automount utility 813
autonegotiation, Ethernet 467
/etc/auto.net file 815
autonomous system (AS) 488
autoreply transport, Exim 655
autounmountd daemon 813
availability 983
availability zones, cloud 278–279
Avatier Identity Management Suite

(AIMS) 268
AWS 26, 273, 274–275, 905

and Ansible 859
booting alternate kernel 355
CDN 690
CloudFormation 282
CloudWatch 323
CodeDeploy 960
console log 286
EBS 281, 292
EC2 274, 284–287
EC2 Container Service 947,

979
Elastic Beanstalk 277
Elastic File System (EFS) 812
emergency mode 63
event-based computing 696
firewall 286
IAM 282
instance store 771
Lambda 283
load balancing 686
NACLs 450–451
and NFS 795, 812
PaaS 695
pricing 292
quick start 283

1138	 UNIX and Linux System Administration Handbook	

AWS continued
RDS 281
Redshift 281
reserved instance 291
security groups 286, 450–451
shutting down systems 60
single-user mode 63
SQS 322
stopping instances 287
subnets 449–450
swap space 771
and Terraform 452–455
VPC 448–449
VPN 449–450

aws CLI tool 284–287

B
Backblaze 723
backing store 1081
backup, data

need for 788–790
plan 789–790
and security 989
strategy 788–790

bad blocks, disk 735
BAD_RCPT_THROTTLE feature,

sendmail 631
Bairavasundaram et al. 772
Bamboo 1109
Barracuda 606

.bash_profile file 70, 183, 194, 258

.bashrc file 70, 258
/etc/bashrc file 255
bash shell 7, 187, 189–198

see also sh shell
command editing 190
environment variables

193–194
pipes 190–192
quoting 192–193
redirection 190–192
search path 70
variables 192–193

Basic Input/Output System (BIOS)
32 see also UEFI

bc command 391
BCP (Best Current Practice) 377
BCPL (Basic Combined Program-

ming Language) 1167
beer, suggested minimum 1103
Belden Cable 479
Bell Labs 1166

Berkeley see University of Califor-
nia at Berkeley

Berkeley Fast File System 764
Berkeley Internet Name Domain

system see BIND
Berkeley Software Design, Inc.

(BSDI) 1171
BGP (Border Gateway Protocol)

486, 490
bgpd daemon 493
bhyve 904, 910
BIND 525–541

see also DNS
see also named
see also name servers
ACLs 552–553
AXFR zone transfer 548
chrooted environment 551,

554
components 525
configuration examples

543–547
debugging 568–576
delv command 566
DNSSEC 557–568
dnssec-keygen command 555,

561
dnssec-signzone command

562
doc command 576
drill command 568
example configuration 543
forwarding zone 539
forward-only server 531
IXFR zone transfer 548
named.conf file 526
nsupdate program 549
rndc command 533, 540–541,

549, 574
/etc/rndc.conf file 540
rndc-confgen command 540
/etc/rndc.key file 540
security features 552–568
TSIG/TKEY 554–556
zone signing 562
zone transfers 548

/bin directory 125, 126
~/bin directory 183
/usr/bin directory 126
BIN_DIRECTORY variable, Exim

641
BIOS (Basic Input/Output Sys-

tem) 32
see also UEFI

BitBucket 962
Black Box Corporation 479
blacklist_recipients feature,

sendmail 630
blacklists, sendmail 630
block device files 128, 130–131,

329
block size, disk 729–730
block storage 281
Blowfish hashing algorithm 248,

1006
blue/green deployment 961
/boot directory 39, 125, 126
booting

initial processes 93
logging 297, 318
and NFS filesystems 810
PXE 155

boot loader 33
GRUB 35–38
loader 39–41
password 986

/var/log/boot.log file 297
bootstrapping

drive selection 32
failures 59–60, 60–61
firmware 32
fsck and 62
process overview 30–31
single-user mode 35, 38, 41,

60, 61–63
startup scripts 57–59
tasks 30

/boot/bootx64.efi bootstrap 39
/efi/boot/bootx64.efi bootstrap

34
Bostic, Keith 1171
botnets 985
Bourne-again shell see bash
Bourne shell 187
Bourne, Stephen 187, 1167
break the glass 994
broadcast

domain 461
packets 386, 461
ping 407, 423, 425
storm 413, 466

Bro network intrusion detection
system 1000

Brouwer, Andries E. 745
Bryant, Bill 1015
BSDCan conference 20
bsdinstall utility 161–164
BSD UNIX 11, 1168–1169

Index			 1139

btrfs command 785
Btrfs filesystem 742, 756, 772–773,

783–788
and Docker 930
setup 784–786
shallow copies 788
snapshots 786–787, 787–788
subvolumes 786–787
volumes 786–787
vs. ZFS 783–784

BugTraq 1035
Bugzilla 1114
building wiring 475
Burgess, Mark 841
bus errors 95
BUS signal 95

C
cables

10*base* 460
Category* 460, 462–464
coating 463
color-coding 464
Ethernet 460
fiber 464–465
wiring standard, UTP 464

CA (Certificate Authority) 1007
cache poisoning, DNS 530
cache, web server 686, 689
caching-only name server 505
Cacti 438–440
CAIDA (Cooperative Association

for Internet Data Analysis) 394
camcontrol command 61, 736,

737, 738
Canaday, Rudd 1166
cancel command 369
Canonical, Ltd. 10, 87
canonical name (CNAME) DNS

records 522
Capistrano 842, 960
Carbon 1048, 1052
Card, Rémy 764
Carrier Pigeon Internet Protocol

(CPIP) 377
CAS 267
CBK (Common Body of Knowl-

edge) 1031
ccTLDs (country code Top Level

Domains) 503
CDN (Content Delivery Network)

689–690

Center for Internet Security 744
CentOS Linux 8, 11
Ceph 792
CERT 1038
Certificate Authority (CA) 1007
Certificate Signing Request (CSR)

1013
cfdisk command 719
CFEngine 841
chage command 247, 995
chain of trust, DNSSEC 564
channels, wireless 471
character device files 128, 130–

131, 329
ChatOps 1043, 1108
chat platforms 1108
Chatsworth Products 1092
chattr command 139
check_client_access option,

Postfix 668
Check Point 409
checksum, network 382
Chef 841, 844, 848–849, 1109

 943
chfn command 249
chgrp command 137–138
Children’s Online Privacy Protec-

tion Act (COPPA) 1128
chkrootkit command 990
chmod command 136–137, 199
chown command 137–138, 259
Christiansen, Tom 188, 189
CIA triad 983
CI/CD (Continuous Integration

and Continuous Delivery)
artifact 957
auditability 953
automation 952
blue/green deployment 961
build 952, 956–957
and containers 978–980
delivery 951
deployment 951, 959–960
environments 953–955
essential concepts 951–955
example 964–978
feature flags 955
integration 951, 952–953
pipeline 955–961, 972–978
release 956
release candidate 956
repository organization 968
and revision control 952

CI/CD continued
stages 977
testing 957–959, 975–976
zero downtime 960–962

CIDR (Classless Inter-Domain
Routing) 379, 389, 391–392

CIFS see SMB (Server Message
Block)

CIP (Critical Infrastructure Pro-
tection) 1129

CISA (Certified Information Sys-
tems Auditor) 1032

CIS (Center for Internet Securi-
ty) 1034

Cisco Adaptive Security Appli-
ance 409

Cisco IronPort 608
Cisco routers 494–496
Cisco Systems 480, 1008
CISSP (Certified Information

Systems Security Profession-
al) 1031

CJIS (Criminal Justice Information
Systems) 1128

ClamAV 990
CLAMS acronym 1107
C language 1167
cleanup daemon 660
/var/spool/clientmqueue direc-

tory 616
clone system call 93
CloudBees 961
cloud computing 270–293

access to 277–278
automation 282
availability zones 278–279
backup, data 789–790
booting alternate kernels

355–356
cost control 291–293
CPU stolen cycles 1075
and DevOps 272
foundations of 270
fundamentals 276
IaaS 276
identity and authorization 281
images 280
instances 280
management layers 276
networking 280–281, 448–457
PaaS 276
platforms 273–276
public, private, and hybrid

273–274

1140	 UNIX and Linux System Administration Handbook	

cloud computing continued
reasons for 271
regions 278–279
SaaS 276
serverless 282
storage 281
virtual private servers 279
web hosting 694–696

CloudFlare 690
CloudFront 690
cloud hosting providers 25
/var/log/cloud-init.log file 297
CNAME DNS records 522
cn LDAP attribute 582
Coarse Wavelength Division Mul-

tiplexing (CWDM) 464
Coax cable 460
Cobbler 161–162, 842
COBIT 1127, 1128
code coverage 958
code promotion 1110, 1118
collectd command 1057
etc/collectd/collectd.conf file

1058
Common Body of Knowledge

(CBK) 1031
Common Criteria 1034
common name, LDAP 582
/etc/pam.d/common-passwd

file 247
/compat directory 126
Computer Fraud and Abuse Act

1131
concentrators see Ethernet: hubs
conferences, system administra-

tion 19
confidentiality, data 983, 1005
/etc/selinux/config file 87
configuration management

architecture 843–845
best practices 895
dangers of 834
dependency management

846–848
elements of 835–841
language comparison, plat-

forms 845
overview 834
popular systems 841–852
rosetta stone 842

/usr/exim/configure file 644
CONFIGURE_FILE variable, Exim

641

confLOG_LEVEL option, sendmail
639

congestion control algorithms,
TCP 417

conncontrol feature, sendmail 631
ConnectionRateThrottle option,

sendmail 637
CONNECTION_RATE_THROTTLE op-

tion, sendmail 628
containers 904–905, 915–948

as build artifacts 979
capabilities 917
and CI/CD 978–980
clustering 942–948
control groups 917
core concepts 916–919
images 917–918, 979
management software

944–948
namespaces 917
networking 918
utility of 915–916
vs. virtualization 906

Content Delivery Network (CDN)
689–690

Continuous Integration and Deliv-
ery see CI/CD

control 1096
CONT signal 95, 96
cooling

calculating load 1097–1098
data center 1096–1101
in-row 1099–1100

COPPA (Children’s Online Privacy
Protection Act) 1128

Corbato, Fernando 1166
CoreOS Linux 8
country code domains (ccTLDs)

503
Courion 268
CPAN (Comprehensive Perl Ar-

chive Network) 1055
CPU

analyzing usage 1079–1081
stolen cycles 1075
utilization 1074

/proc/cpuinfo file 1077
CRAC (Computer Room Air Con-

ditioner) 1099
/var/crash directory 359
Critical Infrastructure Protection

(CIP) 1129

/etc/cron.{allow,deny} file 113
cron daemon 109–113, 1041

log file 297
/var/log/cron file 297
crontab command 109
crontab file 110–113
cryptography 1005–1016

Diffie-Hellman key exchange
557

DNSSEC 557
public key 1006–1007
symmetric key 1005–1006

C shell 187, 189
.cshrc file 258
csh shell 189
CSMA/CD protocol 460
CSR (Certificate Signing Request)

1013
CSRG (Computer Systems Re-

search Group) 1169
Cummins Onan 1093
CUPS (Common UNIX Printing

System) 361–365
see also printing
autoconfiguration 366
filters 364–365
instances 363
logging 369
network printing 365, 367
queue 362
restarting 369

cups-config command 369
/etc/cups/cupsd.conf file 363, 365
cupsd daemon 362
cupsdisable command 369
cupsenable command 369
curl command 24, 675, 679–680
cut command 194
CVS 962
CyberArk 994
Cybersecurity Act of 2015 1131

D
DA (Delivery Agent) 597, 599
/var/log/daemon.log file 297
daemons 41
DARPA (Defense Advanced Re-

search Project Agency) 1169
dash shell 189
DataBase Administrators (DBAs)

27

Index			 1141

data center
see also cooling
availability 1101
components 1091
cooling load 1097–1098
generators 1093
hot aisle 1098–1099
humidity 1100
in-row cooling 1099
location 1102
power 1092
rack density 1094
rack power requirements

1094–1095
racks 1092
raised floor 1092, 1099
redundant power 1093, 1101
reliability tiers 1101
security 1102
temperature range 1096
toolbox 1103
track system 1092
UPSs 1092, 1101

Datadog 1050
Data Loss Prevention (DLP) 608
DBAN (Darik’s Boot and Nuke)

738
DBAs (DataBase Administra-

tors) 27
dc LDAP attribute 582
DDoS (Distributed Denial-of-Ser-

vice attack) 985
debconf utility 159
Debian/GNU Linux 8, 10
debian-installer script 159
debt, technical 1105
/var/log/debug* files 297
debugging see troubleshooting
default route 415, 421, 426, 483,

491
DefCon conference 20
defense in depth 987
DeHaan, Michael 161
DELAY_LA option, sendmail 628,

637
deleting accounts 264
Delivery Agent (DA) 597, 599
deluser command 265
delv command 509, 566
denial of service (DOS) attack

1089
DNS 508, 514, 553
email 628, 636

Dennis, Jack 1166
Deraison, Renaud 998
DES hashing algorithm 248
/etc/devd.conf file 338
devd daemon 331, 338
/dev directory 125, 126, 130, 329
development environment 954
devfs filesystem 331, 337
device drivers 328–338

 344
device files 329–330

block vs. character 329
creation of 331
for disks 734–735
management of 330–338

device names, ephemeral 735
DevOps 26, 1106

see also CI/CD
automation 1109
ChatOps 1108
chat platforms 1108
CI/CD 949–980
CLAMS acronym 1107
and cloud computing 272
code promotion 1110
and configuration manage-

ment 833
culture 1107
environment separation 1118
infrastructure as code 1116
lean tenet 1108
measurement 1110
philosophy, paging 1108
sharing 1110
system administrator role 1110
tenets 1107

DevOpsDays conference 20
devtmpfs filesystem 332
df command 767, 1057
dhclient command 427
/etc/dhclient.conf file 427
dhcpd.conf file 404–406
dhcpd daemon 404–406
DHCP (Dynamic Host Configura-

tion Protocol) 156, 402–406
 549

dhcrelay daemon 406
Diffie-Hellman-Merkle key ex-

change 1007
dig command 509–512
Digital Millennium Copyright Act

(DMCA) 1131

DigitalOcean 26, 273, 275–277,
965, 970–972

booting alternate kernel 355
networking 456–457
quick start 289–291
recovery kernel 63

directories 122, 125–126
deleting 129
search bit 133

disaster recovery 1119–1122
in the cloud 278–279
list of data to keep handy 1121
planning 1120
risk assessment 1119
staffing 1121
standards 1120
threats 1119
who to put in charge 1121

/dev/disk directory 735, 770
diskpart command 745
disks

see also filesystems
addition of 718–721
bad block management

735–736
block size 729–730
comparison of HDD and SSD

722
device files 734–735
elevator algorithm 1086–1087
failure rate 723
filesystems 762–763, 763–771
formatting 735–736
hardware 721–730
hardware attachment 733–734
hardware interfaces 730–733
HDD 722–725
hot-pluggable 733
hybrid 728
logical volumes 748
LVM 747–753
management layers 740–742
monitoring with SMART

738–740
naming standards, device 734
partitions 742–747
performance 1084–1085,

1085–1086
physical volumes 748
RAID 753–762
reliability, HDD 723
reliability, SSD 727
resizing filesystems 751–753

1142	 UNIX and Linux System Administration Handbook	

disks continued
rewritability limit, SSD 726
scheme, partitioning 743
snapshots 750–751
speeds 722
tradeoffs of 721
types 724
usage 108
usb drive, mounting 770
volume groups 748
warranties 725

/proc/diskstats file 1077
distance-vector protocols 486
distinguished name, LDAP 582
Distributed Denial of Service at-

tack (DDoS) 985
DIX Ethernet II framing 382
DKIM (DomainKeys Identified

Mail) 607
DKIM (DomainKeys Identified

Mail) DNS records 525
DLP (Data Loss Prevention) 608
DMARC (Domain-based Message

Authentication, Reporting, and
Conformance) DNS records 525

DMCA (Digital Millennium Copy-
right Act) 1131

dmesg command 319, 335
/var/log/dmesg file 297
dmidecode command 1078
dmsetup command 742
DMZ (DeMilitarized Zone) 1029
dn LDAP attribute 582
DNS

see also BIND
see also name servers
see also resource records, DNS
see also zones, DNS
apex zone 522
architecture 499
Berkeley Internet Name Do-

main (BIND) daemon
525–541

bogus TLD 543
cache poisoning 530
caching 508–509
and CDNs 690
cloud-based 500
configuration 415–416
database 512
debugging 509–510
delv command 509
dynamic updates 549
EDNS0 protocol 532

DNS continued
efficiency 508–509
forward zones 502
in-addr.arpa zone 502, 520
ip6.arpa 521
IPv6 support 519, 521
key rollover, DNSSEC 565
KSKs (key-signing keys)

566–570
lame delegations 575
lookups 500
named.conf file 526
nameserver directive 501
name server market share 500
name servers 504
name server types 504
namespace 502
negative caching 508
NOERROR status 510
/etc/nsswitch.conf file 501
NXDOMAIN status 510, 570
open resolvers 553
primary objective 498
private addresses, queries from

541
query 499
record types 515
recursive servers 530
registering a domain name 503
/etc/resolv.conf file 500
resolver configuration 500
resource records see resource

records, DNS
reverse mapping 502, 506, 520
root server hints 539
root servers 505, 506, 539
round robin 508–509
second-level domain name 503
security 551
SERVFAIL status 510, 568, 572,

575
service providers 500
splattercast 529
split DNS 541
subdomains 503
TTL (time to live) 508
UDP packet size 532
ZSK (Zone-Signing Keys)

566–570
DNSKEY DNS records 558
dnslookup driver, Exim 653
Dnsmasq 156
DNSSEC 525, 557–568
dnssec-keygen command 561

dnssec-signzone command 562
doc command 576
Docker 905, 915, 919–937

architecture 919–921
base images 933
bridge network 928–929
client setup 921
debugging 942–944
Dockerfile 933, 933–934, 941
docker group 921
Docker Hub 922
filesystem 918–919
image building 932–936
installation 921
interactive shell 923
logging 938
logs 925
namespaces 928–929
networking 927–930
options 930–932
overlays, network 930
registries 936–937
repository, images 922–926
rules of thumb 937
running containers 924
security 939–941
storage drivers 930
subcommands 920
Swarm 947
and systemd 932
TLS 940
volume containers 927
volumes 926–927

.dockercfg file 936
docker command 919–921,

922–926
dockerd daemon 919, 930–932
/var/lib/docker directory 919
DOCKER_HOST environment vari-

able 922
Docker Hub 936
Docker, Inc. 919, 936
/var/run/docker.sock socket 932
Docker Swarm 960, 979
documentation 14–16

BCPs 377
FYIs 377
local 1115
man pages 14–16
package-specific 16
RFCs 17, 377
standards 1116
STDs 377
system-specific 16

Index			 1143

DomainKeys Identified Mail
see DKIM

DOMAIN macro, sendmail 621
“do not fragment” flag 383
DontBlameSendmail option,

sendmail 632
DONT_BLAME_SENDMAIL option,

sendmail 628
dot files 259
DOUBLE_BOUNCE_ADDRESS option,

sendmail 628
Double Choco Latte 1114
double colon notation 395
dpkg command 164, 166–167
/var/log/dpkg.log file 297
dpkg-query command 22
DR see disaster recovery
drill command 509–511, 568
drivers see device drivers
Drone 979
Dropbear 1027
DS DNS records 558
dtrace command 1058
dtrace tool 1057
du command 1057
dumpon command 359
Duo 991

E
echo command 201
EDITOR environment variable 193
editors, text 7
effective GID 67
effective UID 67
efibootmgr command 34
EFI (Extensible Firmware Inter-

face) 746
EFI System Partition (ESP) 33
EGID (Effective GID) 92
Eich, Brendan 187
EIGRP (Enhanced Interior Gate-

way Routing Protocol) 486, 490
Elastic 322
Elastic Beanstalk 695
Elastic Load Balancer (ELB) 686
Elasticsearch 321, 1110
Electronic Communications Priva-

cy Act 1131
Electronic Frontier Foundation

1008
elevator algorithm 1086–1087

ELK (Elasticsearch, Logstash, Ki-
bana) stack 321–322, 1110

.emacs file 258
email

see also aliases, email
see also Exim
see also MX DNS records
see also Postfix
see also sendmail
access agents 599
aliases 608
architecture 597–600
body 600–602
bounces 610
components 597–600
configuration 612–613
delivery agents 599
encryption 607
envelope 600
forgery 606
headers 600–602
loops 610
Maildir format 599
mailer-daemon 610
Mail Submission Agent (MSA)

598
marketshare 612
mbox format 599
message structure 600–603
MX records 521–522, 623,

626, 653
postmaster 609
privacy 607–608
spam see spam
transport agents 598–599
User Agents (UA) 597

Email Privacy Act 1131
EMC Ionix (Infra) 1114
emergency.target target 50
encryption see cryptography
environmental monitoring 1100
environment separation 1118
environment variables 193–194
ephemeral storage 281
equipment racks 1092
escrow, password 993–995
ESMTP protocol 599, 603
ESP (EFI System Partition) 33
/etc directory 125, 126
Ethernet 381, 460–469

addressing 384–385
autonegotiation 412, 422, 426,

467
broadcast domain 461

Ethernet continued
broadcast storms 466
cable characteristics 463
collisions 460
congestion 478
CSMA/CD protocol 460
framing 382
hubs 465
jumbo frames 468
loops 466
MTU 383, 469
OUIs 384
packet types 461
power over (PoE) 468
Routers 467
signaling 460
speeds 460–461
standards 460
switches 465
topology 461
trunking 467
VLANs 466

ethtool command 421
Etsy 1052
EUID (Effective UID) 92
event logging 989
example systems 9–11
exec system call 93
execute bit 133
exicyclog command 643
exigrep command 643
exilog command 643
Exim 612, 640–658

see also email
access control lists (ACLs)

647–650
aliases file 654
authentication 651
blacklists 649
command-line flags 642
configuration 643–655
configuration variables 641
content scanning 648
debugging 658

.forward file 655
global options 645–647
installation of 640
lists 646
logging 657–658
macros 647
options 645
panic log 657
retry configuration file sec-

tion 656

1144	 UNIX and Linux System Administration Handbook	

Exim continued
rewrite configuration file sec-

tion 657
routers 652–655
security 642
transports 655–656
utilities 642
virus protection 648

exim_checkaccess command 643
exim command 642
exim_dbmbuild command 643
exim_dumpdb command 643
exim_fixdb command 643
exim_lock command 643
eximon command 643
eximstats command 643
exim_tidydb command 643
EXIM_USER variable, Exim 641
exinext command 643
exipick command 643
exiqgrep command 643
exiqsumm command 643
exiwhat command 643
expect language 7
export command 193
exportfs command 802
/etc/exports file 797, 802
exports, NFS 796
EXPOSED_USER macro, sendmail

625
ext4 filesytem 763–771

F
FaaS (Functions as a Service) 282
Fabric 842, 960
Fabry, Robert 1168
Fail2Ban 1004
/var/log/faillog file 297
Family Educational Rights and Pri-

vacy Act (FERPA) 1128
FAST_SPLIT option, sendmail 628
FAT (File Allocation Table) 33
fcntl systems call 797
fdisk command 61, 719, 745
FEATURE macro, sendmail 622
Federal Information Security Man-

agement Act (FISMA) 1128
Fedora Linux 8, 10
Feigenbaum, Barry 819
FERPA (Family Educational

Rights and Privacy Act) 1128

Ferraiolo, David 85
fetch command 24
fiber, optical

color-coding 464
multimode 464
single-mode 464
standards 464
types 464

Fielding, Roy 693
file attributes 132–140

ACLs 81
change time 134
changing 136–137
color-coding 135
of device files 135
displaying with ls 134–136
encoding 136
execute bit 133
flags 139
group permission 133
inode number 135, 764
linux bonus 139
mnemonic syntax 136
NFS 148
owner permission 133
permission bits 132–133
setuid/setgid bits 68, 133
sticky bit 134

file command 126
file descriptors 190
File Integrity Monitoring (FIM)

1061
filenames

control characters in 128
globbing 128
length limitation of 122
pathnames 122
pattern matching 13
spaces in 202

files
see also device files
see also directories
see also file attributes
see also filenames
access control of 66–67
block device 128, 130–131
character device 128, 130–131
default permissions 138–139
deleting 128, 129, 133
directory 128, 129
hard link 129–130
link count 135
local domain socket 128, 131

files continued
modes see file attributes
named pipe 128, 131
regular 128, 129
renaming 133
revision control 235–240
symbolic link 128
types of 126–132

file sharing 791–818, 819–829
Filesystem Hierarchy Standard

126
filesystems 762–763, 763–771,

772–773
see also partitions, disk
ACLs 81, 140–152
automatic mounting 768–770,

812–818
Btrfs 783–788
checking and repairing 62
components of 121
copy-on-write 772
error detection 772
ext4 763–771
inodes 764
journaling 763
lazy unmounting 123
lost+found directory 767
mounting 122–124, 767
NFS 796
organization of 125–126
pathnames 122
performance 773
polymorphism 765
processes using 124
relation to other layers

740–742
replicated 816–817
resizing 751–758
root 36, 38, 41, 125
SMB 825–826
superblock 764
terminology 764–765
UFS 763–771
union 917–919
unmounting 122–124
XFS 763–771
ZFS 772–773, 773–783

filesystem UID 67
file transfer, secure 1027
FIM (File Integrity Monitoring)

1061
find command 137, 200
fio command 1085

Index			 1145

firewalls 1027–1030
packet-filtering 1028
safety of 1029
service filtering 1028
stateful inspection 1029

firmware, system 32
FISMA (Federal Information Se-

curity Management Act) 1032,
1128

flock system call 797
Fluke 474, 480
Fluke meter 1097, 1099
Fontana, Richard 774
fork system call 93
formatting, disk 735

.forward file 609
FORWARD chain, iptables 444
forwarder, DNS 504–505

.forward file 634
forward zone, DNS 502
Fowler, Martin 949
Fox, Brian 187
FQDNs (Fully Qualified Domain

Names) 502
frame, network 381
FreeBSD 11

and Active Directory 587–589
adding users 262–263
and Kerberos 587–589
anti-virus 990
autonegotiation 426
boot messages 353–355
building, kernel 345
configuration, kernel 344–346
default route 426
device management 337–339
disk addition recipe 720–721
firewall 445–448, 991, 1028
fstab file 768
idle timeout 253
installation 161–164
jails 905
kernel panics 359
loadable modules, kernel 348
location of kernel source 345
logging 302–318
logical volume management

753
log rotation 321
NAT 445–448
network hardware 426
networking 425–427
network parameters 427
paging statistics 1083

FreeBSD continued
parameters, kernel 344–345
partitioning, disk 747
printing 360–371
/proc filesystem 105
removing users 262–263
router, use as a 482
security of 982
shadow passwords 252–254
software management

175–178
tracing 1058
versions, kernel 328
virtualization 910
VPN 1030

freebsd-update command 176
free command 1057
Free Software Foundation (FSF)

1134
fsck command 123, 763, 765, 766
FSF (Free Software Foundation)

1134
/etc/fstab file 61, 123, 720, 721,

766, 812
on FreeBSD 768
on Linux 769

fully qualified domain names
(FQDNs) 502

Functions as a Service (FaaS) 282
fuser command 124, 989, 1085
FYI (For Your Information) 377

G
gcloud cli tool 288–289

.gconf file 258

.gconfpath file 258
GCP (Google Cloud Platform) 26,

273, 275
App Engine 277
BigQuery 281
booting alternate kernel 355
Cloud Functions 283
networking 455–456
pricing 292
quick start 288–289

GECOS field 245, 249, 1167
gem command 230
General Electric 1166
generators, standby 1093
generic top-level domains (gTLDs)

503
geom command 720

GeoTrust 1007
getent command 590
getfacl command 142–152
getpwnam() library call 244
getpwuid() library call 244
getty process 244
GIAC (Global Information Assur-

ance Certification) 1032
gibi- prefix 13
GIDs see group IDs
giga- prefix 13
Git 952, 962, 1116
git command 236

.gitconfig file 258
GitHub repository 24, 235, 239–

241, 962, 965
GitLab 235, 239–241, 962
Gi unit 13
GLBA (Gramm-Leach-Bliley Act)

1129
globbing 13, 128, 209
GlusterFS 792
go command 969
Go language 692, 966
Google 723, 756, 944
Google App Engine 695
Google Authenticator 991
Google Cloud Platform see GCP
Google Compute Engine (GCE)

booting failures 64
serial console 64

Google Container Registry 936
Google Deployment Manager 960
Google Gmail 596
Google G Suite 606
Google Wifi 472
gpart command 37, 720, 747, 769
gparted command 719, 746, 758
gpasswd command 254
gpg command 1015
GPG encryption 607
GPT (GUID Partition Table) 33,

719, 746, 770
Grafana 1048, 1049–1050, 1110
Gramm-Leach-Bliley Act (GLBA)

259, 1129
graphical.target target 50
Graphite 1047–1048, 1048, 1049–

1050, 1052, 1110
Gravitational 1027
Graylog 322
greet_pause feature, sendmail

631
grep command 197–198

1146	 UNIX and Linux System Administration Handbook	

groupadd command 255
groupdel command 255
/etc/group file 66–67, 254–255,

579, 590
group IDs 92, 92–93, 245, 249

see also groups
mapping names to 67
pseudo-groups 79–80
real, effective, and saved 67

groupmod command 255
group permission bits 133
groups

see also /etc/group file
see also group IDs
adding 255
docker 921
GID 254
GIDs (group IDs) 67
passwords 254
vs. RBAC 85

growfs command 752
GRUB boot loader 34, 35–38

boot password 986
command line 37
commands 38
options 38
single-user mode 62

grub.cfg config file 36, 358
grub-mkconfig utility 36
/efi/ubuntu/grubx64.efi boot-

strap 34
/etc/gshadow file 254
gTLDs (Generic Top-Level Do-

mains) 503
GUID (globally unique identifi-

er) 33
GUID Partition Table (GPT) 33
GVinum 753

H
h2i command 675
H2O HTTP server 684
halt command 59
halting the system 59
haproxy.cfg file 710
HAProxy load balancer 710–713

configuration of 710–711
health checks 711
statistics 712
sticky sessions 712–713
TLS terminaton 713–714

Hard Disk Drive (HDD) 722–725

hard links 129–130
hash, cryptographic 1009–1011
HashiCorp 282, 452, 911, 913, 965
Hazel, Philip 612, 640
HDD (Hard Disk Drive) 722–725
hdparm command 737, 738
head command 196
header, packet 381
Health Insurance Portability and

Accountability Act see HIPAA
(Health Insurance Portability
and Accountability Act)

HEAT 1114
Hein, Trent R. 1171
Heroku 277, 695, 960
HGST 725
HIDS (Host-based Intrusion De-

tection System) 1062
hier man page 126
HIPAA (Health Insurance Porta-

bility and Accountability Act)
259, 1032, 1129

HipChat 1108
history

of Linux 1171–1172
of Sun Microsystems (now Or-

acle America) 1169
of system administrators

1169–1170
of UNIX 1166–1168

Hitachi 725
/home directory 126
home directory, user 250, 744
home_mailbox option, Postfix 665
host command 509
hosting recommendations 25
hostname 385, 411–412

fully qualified 502
hostname command 411
/etc/hostname file 419
/etc/hosts file 385, 411
hot aisle cooling 1098–1099
HP-UX 11
htop command 102
htpasswd command 701

.htpasswd file 701
httpd.conf file 698
/var/log/httpd/* file 297
httpd server 684, 696–704

applications server modules
702

authentication, basic 701
configuration 698–699
log file 297

httpd server continued
logging 703
multi-processing modules 697
TLS configuration 702
virtual hosts 699

HTTP protocol 674–682
authentication, basic 676, 701
headers 678
keep-alive 680–681
load balancers 684
over TLS 681
port 697
request methods 677
responses 677
security of 676
servers 683–684
SNI (Server Name Indication)

682
versions of 675

HTTPS protocol 676, 681
port 697

hubs, Ethernet 465
humidity 1100
HUP signal 95, 96, 304, 320
HVAC see cooling
HVM (Hardware Virtual Machine

902
hybrid cloud 274
hypervisors 901–904

I
IaaS (Infrastructure as a Service)

276
IAM (Identity and Access Manage-

ment) 268–269, 282
IANA (Internet Assigned Num-

bers Authority) 503
IBM SoftLayer 273, 905
IBM T. J. Watson Research Center

612, 658
ICANN (Internet Corporation for

Assigned Names and Numbers)
376, 392, 479, 503

Icinga 1043, 1046–1047, 1110
icmp_echo_ignore_broadcasts

parameter 424, 425
ICMP (Internet Control Message

Protocol) 378
redirects 401–403, 407

id command 800
~/.ssh/id_ecdsa.pub file 1020
identity management see IAM

Index			 1147

idle timeout, FreeBSD 253
IDS (Intrusion Detection System)

1062
IEC units 13
IEEE 802.2 framing 382
IEEE standards

802.1Q 467
802.1x 470, 475
802.3 460
802.3ab 460
802.3af 468
802.3an 460
802.3ba 460
802.3bs 460
802.3bt 468
802.3u 460
802.11ac 469
802.11b 473
802.11g 469
802.11n 469

IETF (Internet Engineering Task
Force) 376

ifconfig command 387, 412, 425–
426, 470, 1079

ifdown command 417, 419, 421
ifup command 417, 419, 421
IGF (Internet Governance Fo-

rum) 376
IMAP protocol 604
IMAPS protocol 604, 608
in-addr.arpa DNS records 520
in-addr.arpa zone 502
incident handling 1037–1038,

1122
/usr/include directory 126
InfluxDB 1049
Information Systems Audit and

Control Association (ISACA)
1128

Information Technology Infra-
structure Library (ITIL) 1130

Infrastructure as a Service (IaaS)
276

infrastructure as code 911, 952,
1116

init process 30–31, 41–43, 57, 93
bootstrapping and 42
flavors of 42
modes 41
run levels 43, 50
startup scripts 57
vs. systemd 43

init scripts 31
Innotek GmbH 911

inode file attribute 135, 764
INPUT chain, iptables 444
in-row cooling 1099
(IN)SECURE magazine 1036
integration tests 958
integrity, data 983, 1005
Intel 902
/etc/network/interfaces file 419
interfaces, network see networks
International Computer Science

Institute (ICSI) 1001
International Organization for

Standardization (ISO) 462
Internet

documentation 376–379
governance of 376
history 375–378
registries 392, 503
standards 376–379

Internet Assigned Numbers Au-
thority (IANA) 503

Internet Corporation for Assigned
Names and Numbers (ICANN)
479, 503

Internet of Things (IoT) 1173
Internet Printing Protocol (IPP)

361
Internet protocol see IP
Internet Systems Consortium

(ISC) 16, 525
INT signal 95, 96
ioctl system call 330
iostat command 1057, 1084–1085
IoT (Internet of Things) 1173
IP 375–458

see also routing
address assignment 411–412
address classes 387–388
addresses 385, 387–398
allocation, address 392
anycast 386
ARP 401–402
broadcast 386, 426
broadcast ping 407, 423
broadcast storm 413
CIDR 391–392
configuration 410–416, 418
configuring 425–426
debugging 428–436
default route 415, 421, 426
DHCP 402–406
directed broadcast 407
encapsulation 381–382
faster than light (FTL) 377

IP continued
firewalls 408–409
forwarding 406
fragmentation 383
IPv4 vs. IPv6 379–381
layers 378
masquerading see NAT
MTU 383
multicast 386
netmask 413, 426
packet size 382–384
packet sniffers 434–437
packet structure 381–382
ports 385–386
private addresses 392–394
privileged ports 386
reassembly 383
redirects 407
routing 398–401
security 406–410
services 386
source routing 407
spoofing 408
stack 378
subnetting 388–389
time-to-live field (TTL) 431
transmission via avian carri-

ers 377
unicast 386
uRFP 408
VPN 409–411

TCP/IP see IP
ip6.arpa zone 521
ipcalc tool 390
ip command 387, 399, 402, 412,

414, 418, 483, 1079
iperf tool 437–438
/etc/ipf/ipf.conf file 445
IPFilter 445–448
ip_forward parameter 425
ipfw command 991, 1028
IPP (Internet Printing Protocol)

361
IPsec protocol 409, 1030
iptables command 440–445, 991,

1028
IPv4 see IP
/proc/sys/net/ipv4 directory 422
IPv6 394–399, 402–406

see also IP
addressing 394–399
address notation 395–396
automatic host numbering 397
debugging 428–436

1148	 UNIX and Linux System Administration Handbook	

IPv6 continued
DNS support 519, 521
double colon 395
fragmentation 383
link-local unicast 485
MTU 383
Neighbor Discovery (ND) 398,

401–402
penetration of 379
prefixes 396–397
scenic routing for 377
SLAAC 397
tunneling 398
vs. IPv4 379–381

/proc/sys/net/ipv6 directory 422
(ISC)2 International Information

Systems Security Certification
Consortium 1031

ISO 27001:2013 standard 1123,
1129

ISO 27002:2013 standard 1129
ISOC (Internet Society) 376
ISO (International Organization

for Standardization) 462
ISP (Internet Service Provider)

376, 392
IT Governance Institute (ITGI)

1128
ITIL (Information Technology In-

frastructure Library) 1127, 1130
iwconfig command 470
iwlist command 470

J
Jacobson, Van 435
Java language 691
JavaScript 186, 187
JavaScript Object Notation (JSON)

692, 850–852
Jenkins 961–964, 1109

build agents 963
build context 962
build master 963
build trigger 962
and code repositories 962
concepts 962–963
distributed builds 963
and Docker 961
Jenkinsfile file 964, 968, 975
job 962
Pipeline 963–965, 968–970
project 962

Jenkins Enterprise 961
Jenkinsfile file 964, 968, 975
Jinja 845, 851, 862, 863, 864, 876,

878, 879, 880
Jira 1114
Jodies, Krischan 390
John the Ripper 1000
Jolitz, Bill 1171
JOSSO 267
journalctl command 56–57, 298,

319, 335
/etc/systemd/journald.conf file

57, 300
journald process 43, 56
journaling, filesystem 763
Joy, Bill 187, 1169
jq command 693
JSON (JavaScript Object Notation)

692, 850–852
jumbo frames, Ethernet 468
Juniper Networks 480

K
k8s see Kubernetes
Kali Linux 8
Kaminsky, Dan 530
Karels, Mike 1171

.kde/ directory 258
kdestroy command 588
[kdump] process 41
KeePass 994
Kerberos 81, 267, 579, 586–589,

1015–1016
and Active Directory 587–589
and NFS 798
and NTP 588

kernel
arguments 31
booting 348
booting alternate in cloud

355–356
building, FreeBSD 345–346
building, Linux 341–343
errors 356–359
functions of 325–326
initialization of 41
loadable modules 346–348
loading 31
location of 125
options 38
panics 356–359
selection of 36, 40

kernel continued
single-user mode 35
source location, FreeBSD 345
source location, Linux 342
tuning, FreeBSD 344–345
tuning, Linux 339–341
version numbers 327–328

/boot/kernel directory 348
/var/log/kern.log file 297
kgdb command 359
Kibana 321, 1110
kibi- prefix 13
Kickstart 156
killall command 97
Kill A Watt meter 1097
kill command 97, 1089
KILL signal 95, 96
kilo- prefix 13
kinit command 588
Ki unit 13
kldload command 348
kldstat command 348
kldunload command 348
klist command 588
/dev/kmsg device 299
knife command 844

~/.ssh/known_hosts file 1017
Kolstad, Rob 1171
Korn shell 189
/etc/krb5.conf file 587–589
Krebs, Brian 986
ks.cfg file 156–159
ksh shell 189
kubectl tool 945
Kubernetes 283, 944–946, 960,

979
Kuhn, Rick 85
kVA unit conversion 1094–1095
KVM 904, 908–910

guest installation 909–910
kW unit conversion 1094–1095

L
LACNIC 392
Lambda 696
lame delegations, DNS 575
LAN (Local Area Network)

460–469
Large Installation System Ad-

ministration (LISA) conference
1171

last command 298

Index			 1149

/var/log/lastlog file 297, 298
layer 3 switches 467
LDAP 267, 580–586

alternatives to 594
attributes 581
coverting passwd and group

file 585–586
data structure 581–582
use with Exim 651
LDIF 582
querying 584–585
uses for 580–581
use with sendmail 624

/etc/openldap/ldap.conf file 583
LDAP_DEFAULT_SPEC option,

sendmail 628
LDAP (Lightweight Directory Ac-

cess Protocol) 579
ldap_routing feature, sendmail

624
ldapsearch command 584
LDIF (LDAP Data Interchange

Format) 582
League of Professional System Ad-

ministrators (LOPSA) 1134
least privilege, principle of 987
LEDE 472
Lerdorf, Rasmus 187
Let’s Encrypt 1008
/lib64 directory 125
/lib directory 125, 126
/usr/lib directory 126
libpcap format 435
Librato 1050
licenses, software 1133
Lightweight Directory Access Pro-

tocol see LDAP
limits command 1090
link layer 381
links

hard 129–130
symbolic 128, 131–132

link-state protocols 487
lint tool 697
Linux

account attributes 250–252
and Active Directory 587
adding users 261–262
anti-virus 990
as a firewall 409, 440–448
autonegotiation 422
boot messages 349–353
building, kernel 341–343
bulk account creation 263–264

Linux continued
configuration, kernel 339–344
default route 421
device driver, adding 344
device management 331–337
device mapper 742
disk addition recipe 719–720
distributions 8
errors, kernel 356–358
filesystem, creating 766
firewall 991, 1028
fstab file 769
history of 1171–1172
iptables 440
and Kerberos 587
loadable modules, kernel

346–348
location of kernel source 342
logging 295, 299–302
logical volume management

748
log rotation 319–321
LXC 905
NAT 444–445
network configuration 418
network hardware 421–422
networking 417–425
NetworkManager 417
network tuning 422–424
parameters, kernel 339–341
partitioning, disk 746
PAT 444–445
performance checkup

1077–1088
pluggable congestion control

algorithms 417
printing 360–371
profiling, performance

1087–1090
RAID 756, 758–764
reasons to choose 1071
router, use as a 482
scheduler, I/O 1086–1087
security-enhanced 83, 85
security of 982
shadow passwords 250–252
stateful firewall 445–448
swap space 771
TCP/IP options 422–424
tracing 1058
versions, kernel 327–328
vga modes 358
virtualization 905–910
and viruses 989

Linux continued
VPN 1030
and ZFS 774

LinuxCon conference 20
LinuxFest Northwest 1134
Linux Foundation 905, 1008, 1134
Linux installation

see also system administration
automating with debian-in-

staller 159–160
automating with Kickstart

156–159
CentOS 156
Debian 159
netbooting with Cobbler 161
preseeding 159–162
Red Hat 156
Ubuntu 159
via PXE 154–155

Linux Mint 8
Linux package management

164–166
APT 169–170
high-level management sys-

tems 166–174
repositories 167–169
RHN 169

Lions, John 1169
LISA conference 20
LLC (Link Layer Control) lay-

er 382
lmtp daemon 660
LMTP (Local Mail Transfer Proto-

col) 660
ln command 129, 131
loadable modules

in FreeBSD 348
in Linux 346–348

/proc/loadavg device 1056
load balancing

architecture 685
in AWS 686
equalization 685
with HAProxy 710
http 684
with NGINX 708
partitioning 685
round robin 508, 685
and security 686
servers 1073

loader bootstrap 39–40
commands 40
configuration 40

1150	 UNIX and Linux System Administration Handbook	

/boot/loader.conf configuration
file 40

/boot/defaults/loader.conf file
348

Local Area Network (LAN)
460–469

local daemon 660, 664
/usr/local directory 125, 126
/etc/mail/local-host-names file

622
local_interfaces option, Exim

646
localization, software 178–181

guidelines 178–179
limiting active releases 180
organization 179
testing 180–181
update structure 179–180

Local Mail Transfer Protocol
(LMTP) 660

locate command 21
lockd daemon 798
lockf system call 797
locking accounts 265–266
/var/log directory 126, 297
/var/spool/exim/log directory 657
log_file_path option, Exim 657
logger command 318
logging 294–324

see also syslog
architecture 296
at scale 321–323
boot-time 318
Docker 925, 938
for sudo 73
growth 298
httpd 703
kernel 318
locations 296–299
management 294–295, 319–

321, 321–323
policies 323–324
rotation of files 319–321

Loggly 323
logical volume management 748

see also Btrfs filesystem
see also LVM
see also ZFS filesystem

login command 244, 591
.login_conf file 258
/etc/login.conf file 246, 252–254
logind process 43
/etc/pam.d/login file 592

.login file 258

logins see user accounts
login shell, user 250
log monitoring 1059
logos, example system 9–10
/etc/logrotate.conf file 321
logrotate utility 296, 319, 319–321
log_selector option, Exim 658
/dev/log socket 299
Logstash 321, 1110
logwatch tool 1060
loopback address 387
LOPSA (League of Professional

System Administrators) 1134
lost+found directory 767
lpadmin command 369
lpc command 369
lp command 361, 369
lpinfo command 369
lpmove command 369
lpoption command 369
lpoptions command 368
lppasswd command 369
lpq command 361, 369
lpr command 361, 362, 369
lprm command 362, 369
lpstat command 362, 369
lsattr command 139
lsblk command 719, 734
ls command 134–136
LSM (Linux Security Modules) 83
lsmod command 346
lsof command 124, 988, 1057,

1085
lsusb command 335
lvchange command 748, 749, 752
lvcreate command 748, 750, 751
lvdisplay command 748
LVM (logical volume manage-

ment) 747–753
architecture 748
configuration phases 749–753
relation to other layers

740–742
snapshots 750–751
vs. RAID 747

lvresize command 748, 752
LWN (Linux Weekly News) 1036
LXC 917
Lynis audit tool 999

M
m4 command 613, 617–618

MAC (Mandatory Access Control)
84–85

MAC (Media Access Control) ad-
dress 384

MAC (Media Access Control) lay-
er 382

/bin/mail command 598
mail see email
mailbox_command option, Post-

fix 665
mailbox_transport option, Post-

fix 665
Maildir format, email 599
Maildrop 599
/var/spool/postfix/maildrop di-

rectory 660
MAILER macro, sendmail 622
/var/log/mail* files 297
MAIL_HUB macro, sendmail 626
mailq command 638, 642, 671
mail_spool_directory option,

Postfix 665
Mail Submission Agent (MSA)

597, 598
Mail Transport Agent (MTA) 597,

598
Mail User Agent (MUA) 597
main.cf file, Postfix 661
major numbers, device 329
make command 957, 962
makemap command 621
makewhatis command 15
malware 605–607, 984
man command 15
Mandatory Access Control (MAC)

84–85
mandb command 15
/usr/share/man directory 126
man pages 14–16

sections 14
updating keywords db 15

MANPATH environment variable 16
Mantis 1114
manualroute driver, Exim 653
/dev/mapper device 742
Marathon 946, 979
Mascheck, Sven 133
MASQUERADE_AS macro, send-

mail 625
Master Boot Record (MBR) 33
MasterCard 1033
master.cf file, postfix 661
/etc/salt/master fiile 872

Index			 1151

/etc/master.passwd file 68, 245,
252, 995

Matsumoto, Yukihiro “Matz” 187,
223

MatterMost 1108
MaxDaemonChildren option, send-

mail 637
MAX_DAEMON_CHILDREN option,

sendmail 628
MaxMessageSize option, send-

mail 637
MAX_MESSAGE_SIZE option, send-

mail 628
MAX_MIME_HEADER_LENGTH op-

tion, sendmail 628
MAX_RCPTS_PER_MESSAGE feature,

sendmail 631
MAX_RCPTS_PER_MESSAGE option,

sendmail 628
mbox format, email 599
MBR (Master Boot Record) 33,

745
McAfee SaaS Email Protection

606
McCarthy, John 270, 1166
MCI_CACHE_SIZE option, send-

mail 628
MCI_CACHE_TIMEOUT option,

sendmail 628
McIlroy, Doug 1167
McKusick, Kirk 764, 1171
MD5 hashing algorithm 246, 1011
mdadm command 758
mdadm.conf file 760–761
md RAID system 756
/proc/mdstat file 759
Mean Time Between Failures

(MTBF) 723
mebi- prefix 13
/media directory 126
mega- prefix 13
memcached daemon 281
/proc/meminfo file 1077
memory

management 1081–1082
paging 1081
usage, analyzing 1082

Mercurial 962
Mesos 283, 946, 979
/var/log/messages file 297
Metasploit 999
Metcalfe, Bob 460
MFA (MultiFactor Authentica-

tion) 991

mfsBSD project 162
MIB (Management Information

Base) 1064
microscripts 183–184
Microsoft Active Directory 579,

580
as a nameserver 500
and FreeBSD 587–589
and Linux 587–589

Microsoft Azure 273
Microsoft Office 365 596
mii-tool command 421
Miller, Todd 70
MIN_FREE_BLOCKS option, send-

mail 628
/etc/salt/minion file 874
minor numbers, device 329
MIN_QUEUE_AGE option, send-

mail 628
Mirai botnet 986
MIT 270, 579, 1166
Mi unit 13
mkdir command 129
mkfs.btrfs command 784
mkfs command 719, 765, 766
mkisofs command 162
mknod command 130, 331
mkswap command 771
/mnt directory 126
Moby project 919
mod_cache caching module, httpd

689
modified EUI-64 algorithm 397
mod_passenger module, httpd

702
mod_perl module, httpd 702
mod_php module, httpd 702
modprobe command 347, 445
/etc/modprobe.conf file 347
mod_proxy_fcgi module, httpd

702
/boot/modules directory 348
/lib/modules directory 346
mod_wsgi module, httpd 702
Monitorama conference 20
monitoring 1040–1069

application 1059–1061
burn-out 1068
charting platforms 1049–1050
command output, harvesting

1054–1056
commercial platforms

1050–1051
culture 1044–1045

monitoring continued
dashboards 1044
data collection 1051–1055
data types 1042
environmental 1100
events 1042
graphing 1047–1049
historical data 1043
historic trends 1042
instrumentation 1042
intrusion detection 1062–1064
log 1059
network 1055–1056
noise 1068
notifications 1043–1044
overview 1041–1044
platforms 1045–1051
push notifications 1042
and quality of life 1045
real-time metrics 1042
real-time platforms 1046–1047
run books 1068
security 1061–1063
SNMP 1063–1067
systems 1056–1059
temperature 1100
time-series platforms

1047–1049
tips and tricks 1068
what to monitor 1044–1045

Monitus 1050
Mosh 1027
mount command 123–124, 765,

767, 768, 807, 825
mountd daemon 802
mounting, filesystem 767
mount.ntfs command 123
mount_smbfs command 123
Mozilla Foundation 1008
MPLS (Multiprotocol Label

Switching) 381
mpstat command 1057, 1075,

1080
/var/spool/mqueue directory 616
MSA (Mail Submission Agent)

597, 598
/var/spool/exim/msglog file 658
MSSP (Managed Security Service

Provider) 1061
MTA (Mail Transport Agent) 597,

598
MTBF (Mean Time Between Fail-

ures) 723
mtree command 1062

1152	 UNIX and Linux System Administration Handbook	

mtr tool 434
MTU (Maximum Transfer Unit)

382–384, 1031
MUA (mail user agent) 597
multicast, IP 386, 461
multicast routing 490
Multics 1166
MultiFactor Authentication (MFA)

991
multimode fiber 460, 464
Multiple-Input, Multiple-Output

(MIMO) wireless 472
multiuser mode 41, 43
multi-user.target target 49, 50
Munin 1049, 1060
munin-node command 1060
munin-node.conf file 1060
Murdock, Ian 10
MX DNS records 521–522
my_local_delivery clause, Exim

656
my_remote_delivery clause, Exim

656

N
Nagios 1043, 1046–1047
named

see also BIND
see also DNS
see also name servers
$INCLUDE directive 513
$ORIGIN directive 513, 538
$TTL directive 512, 513
acl statement 534, 552–553
allow-query-cache clause

532
allow-query clause 532, 552
allow-transfer clause 532,

552
allow-update clause 532
also-notify statement 529
avoid-v4-udp-ports clause

530
avoid-v6-udp-ports clause

530
blackhole clause 532, 552
channel clause 569
clients-per-query option 533
controls statement for rndc

540
datasize option 533
debug levels 573

named continued
directory statement 528
dnssec-enable option 532
dnssec-must-be-secure op-

tion 532
dnssec-validation option

532
dynamic updates 549
edns-udp-size option 532
error messages 572
files option 533
forwarders clause 531
forward option 531
freeze 574
hostname statement 529
include statement 527
key-directory statement 529
key (TSIG) statement 534
lame-ttl option 533
localhost zone 543
logging 568–572
logging clause 536, 569
log messages 572
masters statement 535
max-acache-size option 533
max-cache-size option 530,

533
max-cache-ttl option 533
max-clients-per-query op-

tion 533
max-journal-size option 533
max-ncache-ttl option 533
max-udp-size option 532
notify statement 529
options statement 528
performance tuning 533–534
query-source clause 530
query-source-v6 clause 530
recursion option 530
recursive-clients option 530
reload 574
root.cache file 539
search directive 501
server-id statement 529
server statement 535
slave servers, configuring 538
split DNS 541
statistics-channel state-

ment 536
tcp-clients option 533
update-policy clause 551
use-v4-udp-ports clause 530
use-v6-udp-ports clause 530
version statement 529

named continued
view statement 542
zones, configuring 536
zone statement 536
zone-statistics option 533
zone transfer permissions 532
zone transfers 548

named.conf file 526
named pipes 128, 131
name servers

see also BIND
see also DNS
see also named
authoritative 504, 505
caching 504
caching-only 505
delegation 506
forwarder 504
master 504
nonauthoritative 504
nonrecursive 504, 505
primary 504
recursive 504, 505
root servers 505
secondary 504
slave 504
stub 504
switch file 501

Name Service Switch (NSS) 590
namespaces, Linux 82
namespaces, process 91
nano command 7
Napierała, Edward Tomasz 813
National Security Agency (NSA)

83, 85
NAT (Network Address Transla-

tion) 379, 392–394, 444–445,
445–448

nc command 1054
ND (Neighbor Discovery proto-

col) 398, 401–402
negative caching, DNS 508
Neighbor Discovery protocol

(ND) 398, 401–402
Nemeth, Evi xl–xli, 1170
NERC CIP 1032
NERC (North American Electric

Reliability Corporation 1129
Nessus vulnerability scanner

998–1004
netcat command 675
net command 589
Netlink sockets 330
Net-SNMP package 1065

Index			 1153

netstat command 399, 415, 482,
988, 1074

net-tools package 482
network administrators 27
network booting 154–155
networkd process 43
/etc/sysconfig/network file 420
Network File System see NFS
networking

broadcast storm 413
congestion control algorithms

417
default route 426
and Docker 927–930
packet sniffers 434–437
troubleshooting 428–436
tuning 422–424

Network Intrusion Detection Sys-
tem (NIDS) 1000–1003, 1062

NetworkManager 417
network monitoring 1055–1056
network operations center (NOC)

27
networks

see also Ethernet
see also IP
see also IPv6
see also routing
see also TCP/IP
see also wireless networks
architecture 477
congestion 478
design issues 476
documentation 478
expansion 477
firewalls 1027–1030
maintenance 478
management 478
packet contents 382
port scanning 996–998
software-defined (SDN) 473
subnetting 388–389
success factors 460
wireless 469–473

network-scripts directory 56
Network Time Protocol (NTP)

295, 1132
Neumann, Peter 1167
newaliases command 612, 642,

663
Newark Electronics 479
newfs command 720, 765, 766
newgrp command 254
New Relic 1061

newsyslog utility 321
newusers command 263
NFS 791–818

ACLs 147–152
approach 794–801
automatic mounting 812–818
and AWS 795, 812
client-side 807–810
dedicated servers 812
drawbacks of 794
exports 796
hard vs. soft mounts 809
history of 794–795
identity mapping 799–800,

810–811
and Kerberos 798
on Linux 802–804
locking, file 797–798
mounting at boot time 810
mount options 809
nobody account 800
on FreeBSD 804–806
performance 793, 801, 812
ports 799, 810
protocol versions 794–795
pseudo-filesystem 797
remote procedure calls 795
root access 800
RPC 795
security 793–794, 798–799,

810
server-side 801–807
statefulness 792, 796
statistics 811–812
transport protocols 795
vs. SMB 792, 821

nfsd daemon 802, 806–810
nfsstat command 811
nfsuserd daemon 811
nginx.conf file 706
nginx daemon 705
NGINX HTTP server 684,

704–709
configuration 705–708
installation of 704
load balancing 708
master process 704
signals 705
TLS 708
virtual hosts 705
worker process 704

nice command 102–103
niceness, process 93

NIDS (Network Intrusion Detec-
tion System) 1000–1003, 1062

NIS (Network Information Ser-
vice) 594

NIST SP 800 series standards
1033

800-34 1120, 1130
800-53 1130

NLnet Labs DNSSEC tools 566
nmap port scanner 996–998
nmbd daemon 820–821
nobody account 79, 800
NOC (network operations cen-

ter) 27
Node.js 691, 1052
No Electronic Theft Act 1131
nohup command 96
/var/run/nologin file 253
/bin/nologin shell 78
non-repudiation 1005
North American Electric Reliabili-

ty Corporation (NERC) 1129
NoSQL database 946
NSA (National Security Agency)

981, 982
NS DNS records 518
NSEC3 DNS records 558
NSEC DNS records 558
nslookup command 509
NSS (Name Service Switch) 590
nsswitch.conf file 244, 245, 501,

579, 586, 590, 614, 823
ntpd daemon 587, 881
NTP (Network Time Protocol)

295
/dev/null file 330

O
objectClass LDAP attribute 582
object stores 281
office wiring 475
OID (Object Identifier), SNMP

1064
o LDAP attribute 582
OM1 fiber 464
OM2 fiber 464
OM3 fiber 464
OpenLDAP 580
open resolvers, DNS 553
OpenSolaris 773
OpenSSH 1019–1020
openssl selection 1012–1014

1154	 UNIX and Linux System Administration Handbook	

OpenStack 273, 274, 283
openSUSE Linux 8
OpenVPN 409
Open Web Application Security

Project (OWASP) 992
OpenWrt 8, 472
/opt directory 126
optical fiber 464
/etc/network/options file 419
Oracle 911
Oracle Identity Management 268
Oracle Linux 8
Oracle VirtualBox 904
O’Reilly Media 1170
O’Reilly series (books) 17
O’Reilly, Tim 1170
organizational unit, LDAP 582
orphaned processes 94
OS1 fiber 464
OSCON conference 20
ospf6d daemon 493
ospfd daemon 493
OSPF (Open Shortest Path First)

protocol 487, 489
OSSEC (Open Source SECurity)

990, 1060, 1062, 1063
OSS mailing list 1035
OSTicket 1114
OSTYPE macro, sendmail 621
OTRS 1114
OUI (Organizationally Unique

Identifier) 384
ou LDAP attribute 582
out-of-memory killer 1082
oven, easy-bake 468
OWASP (Open Web Application

Security Project) 992, 1034
owner permission bits 133
ownership, file 137–138

P
PaaS (Platform as a Service) 276,

695
package management 21–23,

162–176
packages see software packages
Packer 911–913, 965, 970–972
packer command 913
packet encapsulation 381–382
packet filtering 991
packet-filtering firewalls 1028
packet forwarding 482–485

packets
broadcast 461
multicast 461
unicast 461

packet sniffers 434–437
Padl Software 585
[pagedaemon] process 41
page size 90
page table 1081
PAM (Pluggable Authentication

Modules) 80–81, 266, 590–593
panic, kernel 356
Papertrail 323
paravirtualization 902
parted command 719, 735, 746
partitions, disk 742–747

see also filesystems
relation to other layers

740–742
scheme 743

PARTLABEL option 770
PARTUUID option 770
passphrase 993
passwd command 68, 251, 257
/etc/passwd file 67, 244, 245–250,

579, 590, 995, 996
passwords 992–996

aging 995
alternatives to 78
break the glass 994
change interval 993
changing 68
cracking 1000
escrow 993–995
expiration 250, 252
hashes 245, 246–248
management 994
obsolescence of 991
root 78
strength 247, 993
vaults 993–995

PATH environment variable 199
path MTU discovery 383
pathnames 122
PATH shell variable 70
PAT (Port Address Translation)

393, 444
payload, packet 381
PCI DSS (Payment Card Industry

Data Security Standard) 1033,
1129

PCIe (Peripheral Component In-
terconnect Express) interface
730

PCRE (Perl-Compatible Regular
Expression) 659

Peek, Mark 282
penetration testing, application

992–993, 999
perf command 1087
perf_events interface 1087
performance 1070–1090

see also performance analysis
tools

analysis methdology
1076–1077

BIND 533
common issues 1073–1074
CPU 1074
disk 1084–1085
disk bandwidth 1075
kernel variables 1071
memory 1075, 1081–1082
network 1075
NFS 793, 801, 812
nice command 102–103
philosophy, tuning 1071–1072
resources that affect 1074
troubleshooting 1088–1090
tuning rules 1072

performance analysis tools
fio command 1085
iostat command 1084
mpstat command 1075, 1080
perf command 1087
ps command 1081, 1089
sar command 1086
top command 1075, 1089
uptime command 1089
vmstat command 1075, 1079,

1083
performance tests 958
periodic processes 109–119
Perl 186, 187
permission bits, file 132–133
permit_mynetworks option, Post-

fix 668
PGP (Pretty Good Privacy) 607,

1014
pgrep command 101
philosophy, IT management 1105,

1106
phishing 984, 1131
PHP language 186, 187, 692
phpLDAPadmin 579
physical volumes 748
pickup daemon 660
pidof command 101

Index			 1155

PID (Process ID) 91
/srv/pillar directory 872
ping6 command 429–431, 1055
ping command 429–431, 1055
Pingdom 1050
pip command 230, 853
pipe daemon 661
pkg command 22, 23, 176
pkill command 97
PKI (Public Key Infrastructure)

1007
Platform as a Service (PaaS) 276,

695
Pluggable Authentication Modules

see PAM
policy 1122–1125

appropriate use 1132
best practices 1124
enforcement 1132
standards 1123

POP3S protocol 608
portmap daemon 799, 997
portmaster command 178
portsnap utility 177
postalias command 661
postcat command 661
postconf command 661, 663
Postel, Jon xli
Postel’s Law xli
Postfix 612, 658–671

see also email
access control 667–669
aliases file 660
architecture 659
configuration 661–669
debugging 670–671
encryption 670

.forward file 665
lookup tables 663–664
null client configuration 662
programs 659
queues 660
receiving mail 659
security 661
sending mail 660
soft-bouncing 671
utilities 661
virtual domains 665–666

postfix command 661
postmap command 661
POSTROUTING chain, iptables 445
postsuper command 661
power factor 1095
poweroff.target target 50

Power over Ethernet (PoE) 468
power requirements

blade servers 1094
network equipment 1094
storage equipment 1094

PowerShell Desired State Configu-
ration 842

PPID (Parent PID) 91
Pratt, Ian 906
PREROUTING chain, iptables 444
preseed.cfg file 159
Pretty Good Privacy (PGP) en-

cryption 607
preventative maintenance 1093
printenv command 193
PRINTER environment variable

363
printf command 201
printing 360–371

see also CUPS
architecture 360–361
debugging 369–371
Internet Printing Protocol

(IPP) 361
network printers 367
service shutoff 368

privacy 1131
and sendmail 635–636

PRIVACY_FLAGS option, send-
mail 628

privacy legislation, E.U. 1129
PrivacyOption variable, send-

mail 636
private addresses 392–394
private cloud 274
privileged ports 386, 997, 1028
/proc directory 126
procedures 1122–1125
processes 90–119

components of 90–93
control terminal 93
EGID 92
EUID 92
GID 92
init see init process
life cycle 93–98
monitoring of 98–101,

101–102
namespaces 91
niceness 93, 102–103
nice value 1089
open files 124
orphaned 94
ownership 67

processes continued
periodic 109–119
PID 91
PPID 91
priorities 103
runaway 107–109, 1090
spontaneous 41
starting and stopping 93–98
states 97–109
tracing 105–107
UID 92
uninterruptible 98
zombie 98

/proc filesystem 104–105, 124,
333, 339, 770, 1077

procfs filesystem 105, 339
procmail command 599
production environment 954
/etc/profile.d directory 259
/etc/profile file 255, 259

.profile file 194, 258
Prometheus 1048
proxy cache, web server 688
proxy, HTTP 683–684
ps command 98–101, 124, 1081,

1089
pseudo-accounts 78–80
pseudo-devices 330
pseudo-groups 78–80
pseudo-random number genera-

tors 1011
PTR DNS records 520
public cloud 274
public key authentication 1019
Public Key Infrastructure (PKI)

1007
PUE (Power Usage Effectiveness)

1095
Puppet 841, 844, 849–850, 1109

and Docker 943
Purdue 1170
pvchange command 748
pvck command 748
pvcreate command 748, 749
pvdisplay command 748
PVH (ParaVirtualized Hardware)

903
PVHVM (ParaVirtualized HVM)

903
pw command 255, 257, 265, 995
pwconv utility 252
PXELINUX 156
PXE (Preboot eXecution Environ-

ment) 154–155

1156	 UNIX and Linux System Administration Handbook	

Python language 7, 187, 215–222,
691

best practices 230–231
command-line arguments

220–221
data types 218–220
dictionaries 218–220
files 218–220
indentation 217–218
input validation 220–221
lists 218–220
loops 221–222
numbers 218–220
package management 229–230
strings 218–220
tuples 218–220
variables 218–220
versions 215–216
virtual environments 232
vs. Ruby 223

Q
QCon conference 20
QEMU PC emulator 903
qmgr daemon 660
qshape command 671
quad A DNS records 519
Quagga 493
quay.io 936
QUEUE_LA option, sendmail 628,

637
QUIT signal 95, 96

R
RabbitMQ 322
rack density 1094
rack power 1093–1094
racks, equipment 1092
Rackspace 273
RAID (Redundant Array of Inex-

pensive Disks) 741, 753–762,
1073

disk failure recovery 756
levels 754–756
RAID 5 drawbacks 757–758
RAID 5 write hole 753, 758
scrubbing 758
software vs. hardware 753
vs. LVM 747

RAID-Z see ZFS filesystem

Rails web development platform
223

RainerScript 312
Rake 960
RancherOS Linux 8
/dev/random device 1012
random number generation 1011
ransomware 981–982
Rapid7 999
ratecontrol feature, sendmail 631
RBAC (Role-Based Access Con-

trol) 85, 259
/etc/defaults/rc.conf file 58
/etc/rc.conf file 426
/etc/rc.d directory 57
/etc/rc.d/rc.local script 55
/etc/rc script 57
real GID 67
realm command 587
realmd daemon 587
real UID 67
reboot command 59
reboot procedures 59
reboot.target target 50
recipient_delimiter option,

Postfix 665
Red Flag Rule 1130
Red Hat Enterprise Linux

see RHEL
Red Hat, Inc. 10
Red Hat Network (RHN) 167, 169
redirect driver, Exim 654
redirect feature, sendmail 623
Redis 281
Redundant Array of Inexpensive

Disks see RAID (Redundant Ar-
ray of Inexpensive Disks)

Reed, Darren 445
REFUSE_LA option, sendmail 628,

637
regexes see regular expressions
regions, cloud 278–279
regular expressions 209

captures 213
examples of 211–213
failure modes 213
literal characters 210
matching process 210

re:Invent conference 20
reject command 369
reject_unauth_destination op-

tion, Postfix 668
RELAY_DOMAIN feature, sendmail

630

/etc/mail/relay-domains file 629
relay_entire_domain feature,

sendmail 630
relay_hosts_only feature, send-

mail 630
etc/postfix/relaying_access file

669
release 956
release candidate 956
Remedy 1114
removing accounts 264
rendezvous addresses, multicast

490
renice command 102–103, 1089
rescue mode 60
rescue.target target 50, 61
resize2fs command 752
resizing, filesystem 751–758
/etc/resolv.conf file 415, 500
resource records, DNS 499, 506–

507, 513–525
A 519
AAAA 519
CNAME 522
DKIM 525
DMARC 525
DNSKEY 558
DS 558
MX 521
NS 518
NSEC 558
NSEC3 558
PTR 520
quad A 519
RRSIG 558
SOA 516
special characters in 514
SPF 525
SRV 523
TXT 524
types 515

REST (Representational State
Transfer) 693

/etc/postfix/restricted_recipients
file 669

reverse proxy, web server 688
reverse zone, DNS 502
revision control 235–240, 952
RFC1918 addresses 392–394, 541
RFC (Request for Comments)

17, 377
RHEL 8, 10
RHN (Red Hat Network) 167, 169
Richards, Martin 1167

Index			 1157

ripd daemon 493
RIPE DNSSEC tools 567
RIPE NCC 392
ripngd daemon 493
RIPng (Routing Information Pro-

tocol, next generation) 486, 488
RIP (Routing Information Proto-

col) 486, 488
risk assessment 1119, 1130
Ritchie, Dennis 1167
Rivest, Ron 1007
RJ-45 wiring standard 464
rm command 128
rmdir command 129
rmuser command 262–263, 265
rndc command 540–541, 549
/etc/rndc.conf file 540
rndc-confgen command 540
/etc/rndc.key file 540
Role-Based Access Control

(RBAC) 85, 259
root account 248

see also RBAC
best practices 69
disabling 78
management of 69
user ID 67

root.cache file 539
/root directory 126
root filesystem 36, 38, 743
rootkits 990
root server hints, DNS 539
root servers, DNS 506, 539
root shell 41
rotation, log file 319–321
round robin DNS 508–509
route command 414
routed daemon 492
routing, network 398–401,

481–496
adding 414
Cisco routers 494–496
configuration 414–415
cost metrics 487
daemons 485–488, 492–494
default 415, 421, 426
default routes 483, 491
deleting 414
distance-vector 486
link-state 487
multicast 490
next hop 482
protocols 485–488

routing, network continued
redirects 401–403, 485
static 400, 485, 490
strategy 490–492
table 484
tables 399–401

RPC 795
rpc.idmapd daemon 811
rpm command 21, 164
RRDtool 1058
RRSIG DNS records 558
RSA conference 20
RSA public key cryptosystem 1007
rsync command 594
/etc/rsyslog.conf file 304
rsyslog.conf file 314–317
rsyslogd daemon 303

architecture 304
configuration 305–314,

314–317
legacy configuration options

312
message properties 313
versions 304

RT: Request Tracker 1114
Ruby language 7, 187, 223–229,

691
as a filter 229
best practices 230–231
blocks 225–227
environment management

232–235
hashes 227
installation of 223
package management 229–230
regular expressions 227–229
symbols 227
vs. Python 223

runaway processes 107–109
/run directory 126
/var/run directory 126
run levels, init 43, 50
rvm environment manager

232–235

S
SaaS (Software as a Service) 276
Safari Books Online 17
Safe Harbor 1129
SAGE-AU 1134
SailPoint IdentityIQ 268

Salt 841, 844, 850, 871–893, 1109
comments on 850
comparison to Ansible

893–895
debugging 892
dependencies 880–882
and Docker 943
documentation 892–893
environments 888
formulas 887–888
functions 882–883
globbing 876
highstates 886–887
installation of 871–873
and Jinja 878–880
matching, minion 876–877
parameters 883–885
pillars 872
ports, network 873
pros and cons 896
security 873, 894
setup, minions 873

.sls files 874
state binding, minions 886
state IDs 880–882
states 872, 877–878
variables, minions 874–876

salt command 874
/srv/salt directory 872
salt-key command 874
salt-master daemon 872, 873, 874
salt-minion daemon 873
Salt Open 871
SaltStack 871
Samba 820–829

see also SMB (Server Message
Block)

and AD 820, 822–823
browsing shares 826
character sets 829
configuring shares 823–827
debugging 827–829
group permissions 824–825
installation of 821
local authentication 822
logging 828
mounting shares 825–826
security 826–827

/var/log/samba/* file 297
SAML (Security Assertion Markup

Language) 578
SANS (SysAdmin, Audit, Network,

Security) Institute 1035, 1134,
1171

1158	 UNIX and Linux System Administration Handbook	

Sarbanes-Oxley Act (SOX) 259,
1032, 1127, 1130

sar command 1057, 1072, 1086
SAS (Serial Attached SCSI) inter-

face 731–732
formatting, disk 736

SATA (serial ATA) interface 730
formatting, disk 736
secure erase 737

Satellite Server 167
savecore command 359
saved GID 67
saved UID 67
/sbin directory 125, 126
/usr/sbin directory 126
SCALE conference 20
Schneier, Bruce 993, 1006, 1035
Schroeder, Bianca 727
scientific method 1076
scp command 1016, 1027
scripting 182–242

see also bash
see also Perl
see also Python language
automation 184–185
choosing a language 186–187
error messages, useful 188
languages 7
microscripts 183–184
philosophy 183–188
style 188

SCSI (Small Computer System In-
terface) 731–732

SDN (Software-Defined Network-
ing) 473

search path 21
second-level domain name 503
SecOps 1061
Secret Server 994
/var/log/secure file 297
Secure Hash Algorithm (SHA-1,

SHA-2, SHA-3) 1010
Secure Sockets Layer (SSL) 681,

1009
security

see also cryptography
access control 65–68
aging, password 995
and Ansible 870, 894
architecture 1028
attack response 1004
attack surface 987
auditing 999

security continued
authentication, public key

1019–1020
and automation 987
AWS 450–455
and backups 989
basic measures 987–992
Blowfish hash 248
boot loader 986
botnets 985
broadcast ping 425
buffer overflows 984
certifications 1031–1034
chain of trust, DNSSEC 564
CIA triad 983
configuration errors 986–987
credit card data 1129
of credit cards see PCI DSS

(Payment Card Industry Data
Security Standard)

data loss prevention (DLP)
608

DDoS 985
defense in depth 987
deleting accounts 264
demoting data 955
DES hash 248
disk erasure 737–738
DMZ 1029
DNS 551–568
DNSSEC 557–568
and Docker 921, 939–941
elements of 983
encryption 1009, 1019–1020
event logging 989
of Exim 642
file integrity monitoring 1061
file transfer, secure 1027
firewall, Linux or UNIX as a

440–448
firewalls 1027–1030
group logins 996
handling attacks 1037–1038
hash, cryptographic

1009–1011
home directory permissions

259
and HTTP 676
ICMP redirects 425
incident handling 1037–1038
incident hotline 1038
insider abuse 986
intrusion detection 1000–1004,

1062–1064

security continued
IoT 985, 1174
IP forwarding 425
and IP networking 406–410
IPsec 1030
Kerberos 81
least privilege 987
and load balancing 686
locking accounts 78, 265–266
malware 984
MD5 hash 246
monitoring 1061–1063
multifactor authentication 991
NFS 793–794, 798–799, 810
of open source software 1012
open vs. closed operating sys-

tems 985
packet filtering 991
passphrase 993
password cracking 1000
password expiration 250, 252
password hashes 245, 246–248
passwords 992–996
passwords, obsolescence of

991
password strength 247, 993
patching schedule 988
penetration testing 992, 999
phishing 984, 1131
port scanning 996–998
of Postfix 661
power tools 996–1004
privileged ports 386, 997, 1028
and random numbers 1011
removing accounts 264
root account 248, 996
root account, disabling 78
rootkits 990
and Salt 873, 894
and Samba 826–827
of search paths 70
self-assessments 991
SELinux 83, 85
of sendmail 632–638
SHA-512 hash 246
shell, secure (ssh) 1016–1027
and SNMP 1065
social engineering 983–984
source routing 425
sources of compromise

983–987
sources of information on

1034–1036
spear phishing 984

Index			 1159

security continued
standards 1031–1034, 1123
sudo command 70
of syslog messages 317
system accounts, non-root

78–80
of TCP/IP 482, 485
TrustedBSD 83
unnecessary services 988
updates, software 987
vigilance 991–992
viruses 989–990
VPN 409–411, 1030
vs. convenience 982
vulnerabilities, software

984–985
vulnerability scanning

998–999
of wireless networks 473
worms 989–990

Security Assertion Markup Lan-
guage (SAML) 578

SecurityFocus 1035
security incidents 1122
SecuritySpace 612
Seeley, Donn 1171
segmentation violation 95
segment, TCP 381
SEGV signal 95
Selenium 958
/etc/selinux directory 87
SELinux (Security-Enhanced Li-

nux) 83, 85
Sender ID 606
Sender Policy Framework (SPF)

601, 606
sendmail 612, 613–640

see also aliases, email
see also email
see also spam
blacklists 630
and chroot 636
command line flags 615
configuration 617–624
daemon mode 615
databases 620–621
directory locations 614
and LDAP 624
load average limit 628
logging 639–640
m4 and 613–614
masquerading 625–626
open relay 628, 629
permissions 634–635

sendmail continued
privacy 628, 635–636
queue monitoring 638
queue processing 615
queues 616
rate and connection limits 628
sample configuration 619
security 632–638
and the service switch file 614
starting 615
testing and debugging

638–640
sendmail.cf file 616, 617
Sensu 1047
Server Fault 19
serverless, cloud 282
server mode 41
ServiceDesk 1114
Service Level Agreement (SLA)

1125–1127
ServiceNow 1114
/etc/services file 386, 1028
setfacl command 142–152
setgid bit 249
setgid execution 68
setrlimit system call 1090
setuid execution 68, 92
setuid/setgid bits 68–69, 133
sfdisk command 719
sftp command 1016, 1027
sftp-server command 1016
sg_format command 736
SHA-1, SHA-2, SHA-3 (Secure

Hash Algorithm) 1010
SHA-512 hashing algorithm 246
/etc/shadow file 68, 245, 250–252,

995
shadow passwords 251–252,

252–254
Shamir, Adi 1007
Shapiro, Greg 638
/usr/share directory 126
shares, NFS 796
sharing a filesystem see NFS
shell, root 41
shell scripting 189–198
Shibboleth 267
showmount command 807
shred command 737
sh shell 186

see also bash
arithmetic 209–210
command-line arguments

203–205

sh shell continued
comparison operators 205
control flow 205–206
execution of 198–199
file evaluation 206
functions 203–205
globbing 13, 209
I/O 201–202
loops 207–208
scripting 198–209

shutdown command 59, 61
shutdown procedures 59
Shuttleworth, Mark 10
Siemon 479, 480
SignalFx 1050
signals 94–96

BUS 95
caught, blocked, or ignored 95
CONT 95, 96
HUP 95, 96
INT 95, 96
KILL 95, 96
list of important 95
QUIT 95, 96
SEGV 95
sending 97
STOP 95, 96
TERM 95, 96
tracing 105–107
TSTP 95, 96
USR1 95
USR2 95
WINCH 95

Silicon Graphics, Inc. 764
Simple Mail Transport Protocol

see SMTP
single-mode fiber 464
single-user mode 38, 41, 60,

61–63
cloud instances 62–63
FreeBSD 62
Linux 61–63
remounting the root filesys-

tem 61
Site Reliability Engineer (SRE) 27
/etc/skel directory 258, 261
SLAAC (StateLess Address Auto-

Configuration) 397
Slack 1108
Slackware Linux 8
/etc/openldap/slapd.conf file 583
slapd daemon 583
SLA (Service Level Agreement)

1125–1127

1160	 UNIX and Linux System Administration Handbook	

slices see partitions, disk
slurpd daemon 583
smartctl command 739
smartd daemon 739
SMART_HOST macro sendmail 626
SMART (self-monitoring, analy-

sis, and reporting technology)
738–740

/usr/local/etc/smb4.conf file 821
smbclient command 826
/etc/samba/smb.conf file 821
smbd daemon 820–821
smbpasswd command 822
SMB (Server Message Block)

819–829
history of 819–820
vs. NFS 792, 821

smbstatus command 827
S/MIME email encryption 607
SmokePing 437
smrsh command 634
SMS notifications 1043
SMTP 603

authentication 604
commands 603
debugging 604
error codes 604
status messages 604

smtpd daemon 659
smtpd_recipient_restrictions

option, Postfix 669, 670
smtpd_*_restrictions options,

Postfix 668
smtpd_sasl_auth_enable option,

Postfix 670
smtpd_tls_* options, Postfix 670
smtp transport, Exim 656
smurf attacks 407, 424
snapshots, volume 750–751
SNI (Server Name Indication) 682
snmpd.conf file 1066
snmpd daemon 1064, 1065–1069
snmpdelta command 1066
snmpdf command 1066
/etc/snmp directory 1066
snmpget command 1066
snmpgetnext command 1066
snmpset command 1066
SNMP (Simple Network Man-

agement Protocol) 1056,
1063–1067

agents 1064
community string 1065

SNMP continued
graphing 439–440
MIB 1064
organization 1064
protocol operations 1065
traps 1065

snmptable command 1066
snmptranslate command 1066
snmptrap command 1066
snmpwalk command 1066
Snort network intrusion detection

system 1001
Snowden, Edward 981
SOAP (Simple Object Access Pro-

tocol) 693
SOA (Start of Authority) DNS re-

cords 516
social coding 239–241
sockets, local domain 128, 131
socket system call 131
soft_bounce option, Postfix 671
software

see also software packages
installation from source code

23–24
installing from a web script 24
package management 21–23

Software as a Service (SaaS) 276
Software-Defined Networking

(SDN) 473
software delivery 5
software packages

see also software
localization 178–181
management 162–164

Solaris 11
SolarWinds 1050
Sony 990
sort command 194
/etc/apt/sources.list file 171
SOX (Sarbanes-Oxley Act) 1130
spam

see also email
blacklists 630
cloud-based services 606
open relay 628, 629
Sender ID 606
and sendmail 628–632
SPF (Sender Policy Frame-

work) 601
spear phishing 984
spectrum allocation, wireless 471

SPF (Sender Policy Framework)
601, 606

SPF (Sender Policy Framework)
DNS records 525

splattercast 529
split DNS 541
/var/spool directory 126
SPOOL_DIRECTORY variable, Exim

641
Spotify 692
Squid caching server 689
/usr/src directory 126
SRE (Site Reliability Engineer) 27
/srv directory 126
SRV DNS records 523
ss command 418, 988, 1074
SSD (Solid State Disk) 717, 721–

722, 725–728, 1073, 1084
SSH 1016–1027

agent 1020–1021
aliases, host 1022
client 1018–1019
connection multiplexing 1023
essentials 1016–1018
file transfer 1027
keys 1019–1020
password authentication, dis-

abling 1022
port 1022
port forwarding 1023
server 1024–1026
SSHFP verification 1026

ssh-add command 870, 1016,
1020

ssh-agent command 870, 1016
ssh-agent daemon 1020
ssh command 1016–1027,

1018–1019
ssh_config file 1017
sshd_config file 996, 1010, 1017,

1025–1026
sshd daemon 843, 1016,

1024–1026
/etc/ssh directory 1017

~/.ssh directory 1018
SSHD (solid state hybrid drive)

728
SSHFP DNS record 1026
SSHFP host key verification 1026
ssh-keygen command 1016, 1019
ssh-keyscan command 1016
SSIDs, wireless 471
SSL (Secure Sockets Layer) 681,

1009

Index			 1161

SSO (Single Sign-On) 578–595
see also LDAP
account management 266–269
for applications 267
concepts 578
elements of 579
and Kerberos 586–589
LDAP 580–586
PAM 579
and SaaS 578
SAML 578

sssd.conf file 589
sssd daemon 579, 587–589, 589,

823
Stack Overflow 19
staging environment 954
standard error 190
standard input 190
standard output 190
standards

see also IEEE standards
CJIS (Criminal Justice Infor-

mation Systems) 1128
COBIT 1128
Common Criteria 1034
contingency planning 1130
Critical Infrastructure Protec-

tion (CIP) 1129
Family Educational Rights and

Privacy Act (FERPA) 1128
Federal Information Security

Management Act (FISMA)
1128

FISMA 1032
Gramm-Leach-Bliley Act

(GLBA) 1129
Health Insurance Portability

and Accountability Act (HI-
PAA) 1032, 1129

IEEE 802.1* 460, 467, 468,
469, 470

Information Technology In-
frastructure Library (ITIL)
1130

ISO 27001:2013 1032, 1123,
1129

ISO 27002:2013 1129
NERC CIP 1032
NIST SP 800-34 1120, 1130
NIST SP 800-53 1130
NIST SP 800 series 1033
OWASP 1034

standards continued
Payment Card Industry Data

Security Standard (PCI DSS)
1129

PCI DSS 1033
Red Flag Rule 1130
RJ-45 wiring 463
Safe Harbor 1129
Sarbanes-Oxley Act (SOX)

1130
security 1031–1034
TIA/EIA-568A 463
TIA/EIA-606-B 476
wireless 469
wiring 475

standard services 386
Stanford Law School 1008
STARTTLS extension, sendmail

637
startup scripts 57
statd daemon 798
stateful inspection firewalls 1029
State University of New York

(SUNY) Buffalo 1170
static code analysis 958
static routes 400, 490
StatsD 1042, 1052–1054, 1054
StatusCake 1051
STDERR file descriptor 190
STDIN file descriptor 190
STDOUT file descriptor 190
STD (Standard) 378
sticky bit 134
STOP signal 95, 96
storage

block 281
ephemeral 281
layers of 740
object 281

storage management see disks
/etc/carbon/storage-schemas.

conf file 1052
strace command 105–107
Stuxnet worm 981
subdomains, DNS 503
submit.cf file 617
subnetting 388–389
Subversion 962
su command 70
sudo command xli, 70–77, 992

configuration, example 71
configuration, site-wide 76
pros and cons 72

sudo command continued
using with Ansible 854
using without password 75
using with Salt 877
vs. advanced access control 73
without a control terminal 76

/etc/sudoers file 71–73
Sumo Logic 323
Sun Microsystems 911
superblock, filesystem 764
superuser see root account
Supervisor 1060
supervisord daemon 1060
SUSE Linux 8
swapctl command 771
swapon command 768, 771, 1082
/proc/sys/vm/swappiness param-

eter 1082
swap space 770–771, 1081
Swarm 947
Sweet, Michael 361
switches, Ethernet 465
symbolic links 128, 131–132
sync system call 765
/etc/sysconfig directory 55,

419–421
sysctl command 339, 344, 357,

427, 1056
/etc/sysctl.conf file 339, 344, 424,

427
Sysdig Cloud 1050, 1059
sysdig tool 1057, 1058
/sys directory 126, 332
/usr/src/sys directory 345
sysfs filesystem 332
syslog 302–318

see also log files
see also logging
actions 310
and DNS logging 568–574
facility names 309
messages 303–304
security 317
severity levels 309
and systemd journal 301

/etc/syslog.conf file 307–311
syslogd daemon 303
/var/log/syslog* file 297
system administration

adjacent disciplines 26–28
conferences 19
essential tasks 4–7
GUI tools 7

1162	 UNIX and Linux System Administration Handbook	

system administration continued
keeping current 18
metrics 1127
prioritization 1126–1127
resources for reading about 18
service descriptions

1125–1135
system administrator

and CI/CD 950
common tasks 1124
distinguishing characteristics

1040
history 1169–1170
localization guidelines

178–179
professional attributes of 1040
responsibilities 1110
role in DevOps 1110
roles 1115
tool box 1103

SYSTEM_ALIASES_FILE variable,
Exim 641

system calls, tracing 105
system-config-kickstart tool 156
systemctl command 46–47, 61
systemd daemon 30–31, 43, 44–

57, 93, 971
and init scripts 55
caveats 54
dependencies 50–51
and Docker 932
execution order 51
journal 295, 298–299, 299–302
logging 56
management of 46–47
targets 49–50, 50
timers 113–117
unit files 45
unit statuses 47–49
vs. init 43

systemd-journald daemon 299–
302, 319

systemd-journal-remote tool 301
System V UNIX 1169

T
tail command 196
tape, magnetic 789–790
targets, systemd 50
task management 1111
T-BERD line analyzer 474
tcpdump tool 434–437, 675

TCP/IP 378
see also IP
see also IPv6
see also networking
connection reuse 680
Fast Open (TFO) 680

tcsh shell 189
technical debt 1105
tee command 196
Teleport 1027
telinit command 61
temperature

data center 1096
effect on hard disks 723

TERM signal 95, 96
Terraform 282, 452–455, 965,

973–975
terraform command 453
/bin/test command 205
testing

acceptance 958
infrastructure 958
integration 958
performance 958
software localization 180–181
static code analysis 958
unit 958, 966–967

testparm command 821
TFO (TCP Fast Open) 680
The Open Group 268
Thompson, Ken 1166
ThoughtWorks 949
threads 91, 97–109
threat categories, disaster 1119
Thycotic 994
TIA/EIA-568A wiring 464
ticket-granting ticket, Kerberos

587
ticketing 1111
ticketing systems 1114
time-to-live field, IP 431
TLS (Transport Layer Security)

632, 637, 681, 1009
/tmp directory 125, 126
/usr/tmp directory 126
/var/tmp directory 126
/tmp filesystem 743
token ring 381
toolbox 1103
TO_* options, sendmail 628
top command 101–102, 1075,

1089
Torvalds, Linus 18, 235, 1172
Townsend, Jennine 68

traceroute command 430,
431–434

Track-It! 1114
Transport Layer Security (TLS)

409, 632, 637, 681, 1009
Tridgell, Andrew 820
Tripwire 1062
Troan, Erik 319
Troposphere 282
troubleshooting

see also performance
Amazon Web Services (AWS)

instances 63
BIND 568–576
booting 60–61
cloud systems 62–63
DigitalOcean instances 63
DNS 568–576
Docker 942–944
Exim 658
Google Compute Engine

(GCE) instances 64
HTTP connections 675,

679–680
kernel 356–359
network 428–436, 474–475
performance 1088–1090
Postfix 670
printing 369–371
Salt 892
Samba 827–829
sendmail 638
SMTP 604
syslog 318–319
TLS servers 1014
web caching 688

Trump, Donald J. 607
trunks, Ethernet 467
truss command 105–107
TrustedBSD 83
tshark command 436
Ts’o, Theodore 764
TSTP signal 95, 96
TTL (time-to-live), DNS 508
tugboat cli tool 289, 456
tune2fs command 767
tunefs command 769
Tweedie, Stephen 764
Twofish 1006
TXT DNS records 524
typographical conventions 12–13

U

Index			 1163

UA (mail User Agent) 597
UBER (Uncorrectable Bit Error

Rate) 728
Ubiquiti 472
Ubuntu Linux 8, 10
udevadm command 331, 333, 335
/etc/udev/udev.conf file 334
udevd daemon 331, 334–337
UDP (User Datagram Protocol)

378
UEFI (Unified Extensible Firm-

ware Interface) 32, 33–35
bootstrap path 34, 39

UFS filesystem 763–771
ufw command 441, 991, 1028
UIDs see user IDs
ulimit command 1090
umask command 138
umask, default 253, 258
umount command 123–124, 768
uname command 327, 346, 923
Uncorrectable Bit Error Rate

(UBER) 728
unicast, IP 386
unicast packets 461
unicast Reverse Path Forwarding

(uRPF) 408
Uniform Resource Locators

(URLs) 675–676
uninterruptible power supplies

1092–1093
uniq command 195
United Nations 376
units 13–14
unit tests 958, 966–967
Universal Plug and Play (UPnP)

394
Universal Serial Bus (USB) inter-

face 732–733
University of California at Berke-

ley 946, 1168
University of Cambridge 612, 640,

906
University of Colorado at Boulder

xl, 1170
University of Maryland 1170
University of Utah 1170
UNIX

see also FreeBSD
as a firewall 409, 440–448
history of 1166–1168
origin of name 1167
philosophy 1168
reasons to choose 1071

UNIX continued
security of 982
and viruses 989

unlink system call 131
unshielded twisted pair see UTP

cables
unsolicited commercial email

see spam
updatedb command 21
updates, software 987–988
uptime command 1041, 1054,

1080, 1089
Uptime Institute, The 1101–1102
/dev/urandom device 330, 1012
URI (Uniform Resource Identifi-

er) 675
URLs (Uniform Resource Loca-

tors) 675–676
URN (Uniform Resource Name)

675
uRPF (unicast Reverse Path For-

warding) 408
USB drive mounting 770
USB (Universal Serial Bus) inter-

face 732–733
U.S. Department of Defense 376
use_cw_file feature, sendmail

622
USENIX Association 1134, 1171
user accounts 243–269

adding 255–260, 260–264
attributes 250–252
centralized management

266–269
defaults 253–254
deleting 260–264, 264
encrypted passwords 246
GECOS field 245, 249
GID 245, 249
home directory 250, 257–259,

259
identity management 268–269
idle timeout 253
locking 78, 265–266
login name 245–246
login shell 250
nobody 800
password algorithm 247
password expiration 251
password quality 247
passwords 992–996
password, setting 257
password strength 247
pseudo-accounts 79–80

user accounts continued
RBAC 259
removing 260–264, 264
shadow passwords 251–252
startup files 258
UID 245, 248
umask 253, 258

useradd command 255, 261–262
/etc/default/useradd file 261
userdel command 265
userdel.local script 265
user IDs 92, 244, 245, 248

mapping to names 67
real, effective, and saved 67

usermod command 251, 265
usernames see user accounts
USR1 signal 95
USR2 signal 95
/usr directory 125, 126
UTP cables 460, 462, 475
UUID 770

V
Vagrant 913
van Rossum, Guido 187
/var directory 125, 126, 743
variables, environment 193–194
Varnish caching server 689
vault, password 993–995
VAX 1169
Velocity conference 20
vendors we like 479
Venema, Wietse 612, 658
VeriSign 1007
Veritas 748
Verizon Data Breach Investigations

Report 1035
vgchange command 748
vgck command 748
vgcreate command 748, 749
vgdisplay command 748, 751
vgextend command 748
vgscan command 748
Viavi 474, 480
vi command 7
vigr command 257

.viminfo file 258

.vimrc file 258
vipw command 247, 252, 256
virsh command 909
virt-install command 907–908,

909–910

1164	 UNIX and Linux System Administration Handbook	

virt-manager package 907–908
virtual_alias_* options, Postfix

666
VirtualBox 911
virtualenv package 232
virtual hosts, web server 681–683

in httpd 681–683
in NGINX 705

virtualization 900–914
see also KVM
see also Xen
containerization 904–905
on FreeBSD 910
full 901–902
hardware-assisted 902
HVM (Hardware Virtual Ma-

chine 902
hypervisors 901–904
images 904, 911–913
on Linux 905–910
live migration 904
paravirtualization 902
provisioning 913
PVH (ParaVirtualized Hard-

ware) 903
PVHVM (ParaVirtualized

HVM) 903
QEMU 903
type 1 vs. type 2 903–904
vs. containers 906

virtual_mailbox_* options, Post-
fix 667

Virtual Private Network (VPN)
409–411, 1030

virtual private servers 279
virtusertable feature, sendmail

624
/etc/mail/virtuserable file 624
viruses 989–990
virus scanning

see also email
Visa 1033
visudo command 72
Vixie, Paul 529
VLANs 466

trunking 467
wireless 471

vmstat command 1057, 1072,
1075, 1079–1080, 1089

VMware 910
VMware ESXi 904
VMware Identity Manager 268
VMware vCloud Air 273
VMware Workstation 904

VMWorld conference 20
volume groups 748

relations to other layers
740–742

VPN (Virtual Private Network)
409–411, 1030–1031

vtysh daemon 493
vulnerabilities, software 984–985
vulnerability scanning 998–999

W
Wall, Larry 187
Watson, Robert 83
wc command 196
web hosting 682–694

APIs 692–694
architecture 683, 685
build vs. buy 694
cache 686
in the cloud 694
components 683
proxy server 688
reverse proxy 688
serverless 696
server types 682
static content 695
TCP connection reuse 680
virtual hosts 681–683

Well-Known Service (WKS) ports
1028

wget command 24
wheel group 70, 249
whereis command 21
which command 21
Whisper 1049
Wi-Fi networks 470
Wi-Fi Protected Access (WPA)

473
WINCH signal 95
Windows Defender 990
Wired Equivalent Privacy (WEP)

473
wireless networks 469–473

access points (APs) 471
channels 471
frequency spectrum 471
security 473
SSIDs 471
topology 471
VLANs 471

Wireshark 434–437
wiring, building 475

wisdom, Evi’s tenets of xli
World Wide Web Consortium 268
worms 989–990
WPA see Wi-Fi Protected Access
wpa_supplicant command 470
write hole, RAID 5 753, 758
/var/log/wtmp file 297, 298

X
X.500 directory service 580
Xen 902, 906–907

see also virtualization
components 907
dom0 906
guest installation 907–908
overhead 906
virtual block devices (VBDs)

907
/etc/xen directory 907
/var/log/xen/* files 297
XenServer 904
XFS filesystem 763–771
xfs_growfs command 752
xl tool 908
XML (Extensible Markup Lan-

guage) 692
/var/log/Xorg.n.log file 297
XORP (eXtensible Open Router

Platform) 494

Y
YAML 845, 850–852, 878–880
Ylönen, Tatu 1016
yum command 22, 164, 166, 167,

174–175
/var/log/yum.log file 297

Z
zebra daemon 493
Zenoss 1050, 1110
/dev/zero file 330
zero downtime deployment

960–961
zfs command 775, 776
ZFS filesystem 742, 756, 772–773,

773–783
clones 779–780
disk addition 775–776
and Docker 930

Index			 1165

ZFS filesystem continued
inheritance, property 777
and Linux 774
properties, filesystem 776–777
RAID 775
raw volumes 780–781
snapshots 779–780
spare disks 783
storage pool 774, 781–783
vs. Btrfs 783–784

Zimmermann, Phil 1014
Zix 608
zombie processes 98
zones, DNS 502

forward 502
forwarding 539
localhost 543, 544
master 537
reverse 502, 520, 521
signing 562
slave 538
transfers 548

zpool command 775, 776
Zulip 1108

1166

In the modern age, most folks have at least a vague idea what system administrators
do: work tirelessly to meet the needs of their users and organizations, plan and im-
plement a robust computing environment, and pull proverbial rabbits out of many
different hats. Although sysadmins are often viewed as underpaid and underap-
preciated, most users can at least identify their friendly local sysadmin—in many
cases, more quickly than they can name their boss’s boss.

It wasn’t always this way. Over the last 50 years (and the 30-year history of this
book), the role of the system administrator has evolved hand-in-hand with UNIX
and Linux. A full understanding of system administration requires an understand-
ing of how we got here and of some of the historical influences that have shaped
our landscape. Join us as we reflect on the many wonderful years.

The dawn of computing: system operators (1952–1960)
The first commercial computer, the IBM 701, was completed in 1952. Before the
701, all computers had been one-offs. In 1954, a redesigned version of the 701 was
announced as the IBM 704. It had 4,096 words of magnetic core memory and three

A Brief History of System
Administration
With Dr. Peter H. Salus, technology historian

	 A Brief History of System Administration 	 1167

index registers. It used 36-bit words (as opposed to the 701’s 18-bit words) and did
floating-point arithmetic. It executed 40,000 instructions every second.

But the 704 was more than just an update: it was incompatible with the 701. Al-
though deliveries were not to begin until late 1955, the operators of the eighteen
701s in existence (the predecessors of modern system administrators) were already
fretful. How would they survive this “upgrade,” and what pitfalls lay ahead?

IBM itself had no solution to the upgrade and compatibility problem. It had hosted a
“training class” for customers of the 701 in August 1952, but there were no textbooks.
Several people who had attended the training class continued to meet informally
and discuss their experiences with the system. IBM encouraged the operators to
meet, to discuss their problems, and to share their solutions. IBM funded the meet-
ings and made available to the members a library of 300 computer programs. This
group, known as SHARE, is still the place (60+ years later) where IBM customers
meet to exchange information.1

From single-purpose to time sharing (1961–1969)
Early computing hardware was physically large and extraordinarily expensive. These
facts encouraged buyers to think of their computer systems as tools dedicated to
some single, specific mission: whatever mission was large enough and concrete
enough to justify the expense and inconvenience of the computer.

If a computer were a single-purpose tool—let’s say, a saw—then the staff that main-
tained that computer would be the operators of the saw. Early system operators were
viewed more as “folks that cut lumber” than as “folks that provide what’s necessary
to build a house.” The transition from system operator to system administrator did
not start until computers began to be seen as multipurpose tools. The advent of
time sharing was a major reason for this change in viewpoint.

John McCarthy had begun thinking about time sharing in the mid-1950s. But it
was only at MIT (in 1961–62) that he, Jack Dennis, and Fernando Corbato talked
seriously about permitting “each user of a computer to behave as though he were
in sole control of a computer.”

In 1964, MIT, General Electric, and Bell Labs embarked on a project to build an
ambitious time-sharing system called Multics, the Multiplexed Information and
Computing Service. Five years later, Multics was over budget and far behind sched-
ule. Bell Labs pulled out of the project.

UNIX is born (1969–1973)
Bell Labs’ abandonment of the Multics project left several researchers in Murray
Hill, NJ, with nothing to work on. Three of them—Ken Thompson, Rudd Canaday,

	 1.	 Although SHARE was originally a vendor-sponsored organization, today it is independent.

1168	 UNIX and Linux System Administration Handbook	

and Dennis Ritchie—had liked certain aspects of Multics but hadn’t been happy
with the size and the complexity of the system, and they often gathered in front of
a whiteboard to delve into design philosophy. The Labs had Multics running on its
GE-645, and Thompson continued to work on it “just for fun.” Doug McIlroy, the
manager of the group, said, “When Multics began to work, the very first place it
worked was here. Three people could overload it.”

In the summer of 1969, Thompson became a temporary bachelor for a month when
his wife, Bonnie, took their year-old son to meet his relatives on the West Coast.
Thompson recalled, “I allocated a week each to the operating system, the shell, the
editor, and the assembler…it was totally rewritten in a form that looked like an
operating system, with tools that were sort of known; you know, assembler, editor,
shell—if not maintaining itself, right on the verge of maintaining itself, to totally
sever the GECOS2 connection…essentially one person for a month.”

Steve Bourne, who joined Bell Labs the next year, described the cast-off PDP-7 used
by Ritchie and Thompson: “The PDP-7 provided only an assembler and a loader.
One user at a time could use the computer…The environment was crude, and parts
of a single-user UNIX system were soon forthcoming…[The] assembler and rudi-
mentary operating system kernel were written and cross-assembled for the PDP-7
on GECOS. The term UNICS was apparently coined by Peter Neumann, an invet-
erate punster, in 1970.” The original UNIX was a single-user system, obviously an

“emasculated Multics.” But although there were aspects of UNICS/UNIX that were
influenced by Multics, there were also, as Dennis Ritchie said, “profound differences.”

“We were a bit oppressed by the big system mentality,” he said. “Ken wanted to do
something simple. Presumably, as important as anything was the fact that our means
were much smaller. We could get only small machines with none of the fancy Mul-
tics hardware. So, UNIX wasn’t quite a reaction against Multics…Multics wasn’t
there for us anymore, but we liked the feel of interactive computing that it offered.
Ken had some ideas about how to do a system that he had to work out…Multics
colored the UNIX approach, but it didn’t dominate it.”

Ken and Dennis’s “toy” system didn’t stay simple for long. By 1971, user commands
included as (the assembler), cal (a simple calendar tool), cat (catenate and print),
chdir (change working directory), chmod (change mode), chown (change owner),
cmp (compare two files), cp (copy file), date, dc (desk calculator), du (summarize
disk usage), ed (editor), and over two dozen others. Most of these commands are
still in use.

By February 1973, there were 16 UNIX installations. Two big innovations had oc-
curred. The first was a “new” programming language, C, based on B, which was
itself a “cut-down” version of Martin Richards’ BCPL (Basic Combined Program-
ming Language). The other innovation was the idea of a pipe.

A pipe is a simple concept: a standardized way of connecting the output of one
program to the input of another. The Dartmouth Time-Sharing System had com-

	 2.	 GECOS was the General Electric Comprehensive Operating System.

	 A Brief History of System Administration 	 1169

munication files, which anticipated pipes, but their use was far more specific. The
notion of pipes as a general facility was Doug McIlroy’s. The implementation was
Ken Thompson’s, at McIlroy’s insistence. (“It was one of the only places where I very
nearly exerted managerial control over UNIX,” Doug said.)

“It’s easy to say ‘cat into grep into…’ or ‘who into cat into grep’ and so on,” McIlroy
remarked. “It’s easy to say and it was clear from the start that it would be some-
thing you’d like to say. But there are all these side parameters… And from time to
time I’d say ‘How about making something like this?’ And one day I came up with
a syntax for the shell that went along with piping, and Ken said ‘I’m going to do it!’”

In an a orgy of rewriting, Thompson updated all the UNIX programs in one night.
The next morning there were one-liners. This was the real beginning of the power
of UNIX—not from the individual programs, but from the relationships among
them. UNIX now had a language of its own as well as a philosophy:

•	 Write programs that do one thing and do it well.
•	 Write programs to work together.
•	 Write programs that handle text streams as a universal interface.

A general-purpose time-sharing OS had been born, but it was trapped inside Bell
Labs. UNIX offered the promise of easily and seamlessly sharing computing re-
sources among projects, groups, and organizations. But before this multipurpose
tool could be used by the world, it had to escape and multiply. Katy bar the door!

UNIX hits the big time (1974–1990)
In October 1973, the ACM held its Symposium on Operating Systems Principles
(SOSP) in the auditorium at IBM’s new T.J. Watson Research Center in Yorktown
Heights, NY. Ken and Dennis submitted a paper, and on a beautiful autumn day,
drove up the Hudson Valley to deliver it. (Thompson made the actual presentation.)
About 200 people were in the audience, and the talk was a smash hit.

Over the next six months, the number of UNIX installations tripled. When the
paper was published in the July 1974 issue of the Communications of the ACM, the
response was overwhelming. Research labs and universities saw shared UNIX sys-
tems as a potential solution to their growing need for computing resources.

According to the terms of a 1958 antitrust settlement, the activities of AT&T (parent
of Bell Labs) were restricted to running the national telephone system and to spe-
cial projects undertaken on behalf of the federal government. Thus, AT&T could
not sell UNIX as a product and Bell Labs had to license its technology to others. In
response to requests, Ken Thompson began shipping copies of the UNIX source
code. According to legend, each package included a personal note signed “love, ken.”

One person who received a tape from Ken was Professor Robert Fabry of the Uni-
versity of California at Berkeley. By January 1974, the seed of Berkeley UNIX had
been planted.

1170	 UNIX and Linux System Administration Handbook	

Other computer scientists around the world also took an interest in UNIX. In
1976, John Lions (on the faculty of the University of New South Wales in Australia)
published a detailed commentary on a version of the kernel called V6. This effort
became the first serious documentation of the UNIX system and helped others to
understand and expand on Ken and Dennis’s work.

Students at Berkeley enhanced the version of UNIX they had received from Bell Labs
to meet their needs. The first Berkeley tape (1BSD, short for 1st Berkeley Software
Distribution) included a Pascal system and the vi editor for the PDP-11. The stu-
dent behind the release was a grad student named Bill Joy. 2BSD came the next year,
and 3BSD, the first Berkeley release for the DEC VAX, was distributed in late 1979.

In 1980, Professor Fabry struck a deal with the Defense Advanced Research Project
Agency (DARPA) to continue the development of UNIX. This arrangement led to
the formation of the Computer Systems Research Group (CSRG) at Berkeley. Late
the next year, 4BSD was released. It became quite popular, largely because it was the
only version of UNIX that ran on the DEC VAX 11/750, the commodity computing
platform of the time. Another big advancement of 4BSD was the introduction of
TCP/IP sockets, the generalized networking abstraction that spawned the Internet
and is now used by most modern operating systems. By the mid-1980s, most ma-
jor universities and research institutions were running at least one UNIX system.

In 1982, Bill Joy took the 4.2BSD tape with him to start Sun Microsystems (now part
of Oracle America) and the Sun operating system (SunOS). In 1983, the court-or-
dered divestiture of AT&T began. One unanticipated side effect of the divestiture
was that AT&T was now free to begin selling UNIX as a product. They released
AT&T UNIX System V, a well-recognized albeit awkward commercial implemen-
tation of UNIX.

Now that Berkeley, AT&T, Sun, and other UNIX distributions were available to a
wide variety of organizations, the foundation was laid for a general computing in-
frastructure built on UNIX technology. The same system that was used by the as-
tronomy department to calculate star distances could be used by the applied math
department to calculate Mandelbrot sets. And that same system was simultaneously
providing email to the entire university.

The rise of system administrators
The management of general-purpose computing systems demanded a different set of
skills than those required just two decades earlier. Gone were the days of the system
operator who focused on getting a single computer system to perform a specialized
task. System administrators came into their own in the early 1980s as people who
ran UNIX systems to meet the needs of a broad array of applications and users.

Because UNIX was popular at universities and because those environments in-
cluded lots of students who were eager to learn the latest technology, universities
were early leaders in the development of organized system administration groups.

	 A Brief History of System Administration 	 1171

Universities such as Purdue, the University of Utah, the University of Colorado,
the University of Maryland, and the State University of New York (SUNY) Buffalo
became hotbeds of system administration.

System administrators also developed an array of their own processes, standards,
best practices, and tools (such as sudo). Most of these products were built out of
necessity; without them, unstable systems and unhappy users were the result.

Evi Nemeth became known as the “mother of system administration” by recruit-
ing undergraduates to work as system administrators to support the Engineering
College at the University of Colorado. Her close ties with folks at Berkeley, the
University of Utah, and SUNY Buffalo created a system administration communi-
ty that shared tips and tools. Her crew, often called the “munchkins” or “Evi slaves”
attended USENIX and other conferences and worked as on-site staff in exchange
for the opportunity to absorb information at the conference.

It was clear early on that system administrators had to be rabid jacks of all trades.
A system administrator might start a typical day in the 1980s by using a wire-wrap
tool to fix an interrupt jumper on a VAX backplane. Mid-morning tasks might in-
clude sucking spilled toner out of a malfunctioning first-generation laser printer.
Lunch hour could be spent helping a grad student debug a new kernel driver, and
the afternoon might consist of writing backup tapes and hassling users to clean up
their home directories to make space in the filesystem. A system administrator was,
and is, a fix-everything, take-no-prisoners guardian angel.

The 1980s were also a time of unreliable hardware. Rather than living on a single
silicon chip, the CPUs of the 1980s were made up of several hundred chips, all of
them prone to failure. It was the system administrator’s job to isolate failed hard-
ware and get it replaced, quickly. Unfortunately, these were also the days before
it was common to FedEx parts on a whim, so finding the right part from a local
source was often a challenge.

In one case, our beloved VAX 11/780 was down, leaving the entire campus without
email. We knew there was a business down the street that packaged VAXes to be
shipped to the (then cold-war) Soviet Union “for research purposes.” Desperate, we
showed up at their warehouse with a huge wad of cash in our pocket, and after about
an hour of negotiation, we escaped with the necessary board. At the time, someone
remarked that it felt more comfortable to buy drugs than VAX parts in Boulder.

System administration documentation and training
As more individuals began to identify themselves as system administrators—and
as it became clear that one might make a decent living as a sysadmin—requests for
documentation and training became more common. In response, folks like Tim
O’Reilly and his team (then called O’Reilly and Associates, now O’Reilly Media)
began to publish UNIX documentation that was based on hands-on experience
and written in a straightforward way.

1172	 UNIX and Linux System Administration Handbook	

As a vehicle for in-person interaction, the USENIX Association held its first con-
ference focused on system administration in 1987. This Large Installation System
Administration (LISA) conference catered mostly to a west coast crowd. Three years
later, the SANS (SysAdmin, Audit, Network, Security) Institute was established to
meet the needs of the east coast. Today, both the LISA and SANS conferences serve
the entire U.S. region, and both are still going strong.

In 1989, we published the first edition of this book, then titled UNIX System Admin-
istration Handbook. It was quickly embraced by the community, perhaps because of
the lack of alternatives. At the time, UNIX was so unfamiliar to our publisher that
their production department replaced all instances of the string “etc” with “and so
on,” resulting in filenames such as /and so on/passwd. We took advantage of the
situation to seize total control of the bits from cover to cover, but the publisher is
admittedly much more UNIX savvy today. Our 30-year relationship with this same
publisher has yielded a few other good stories, but we’ll omit them out of fear of
souring our otherwise amicable relationship.

UNIX hugged to near death, Linux is born (1991–1995)
By late 1990, it seemed that UNIX was well on its way to world domination. It was
unquestionably the operating system of choice for research and scientific computing,
and it had been adopted by mainstream businesses such as Taco Bell and McDon-
ald’s. Berkeley’s CSRG group, then consisting of Kirk McKusick, Mike Karels, Keith
Bostic, and many others, had just released 4.3BSD-Reno, a pun on an earlier 4.3
release that added support for the CCI Power 6/32 (code named “Tahoe”) processor.

Commercial releases of UNIX such as SunOS were also thriving, their success driv-
en in part by the advent of the Internet and the first glimmers of e-commerce. PC
hardware had become a commodity. It was reasonably reliable, inexpensive, and
relatively high-performance. Although versions of UNIX that ran on PCs did exist,
all the good options were commercial and closed source. The field was ripe for an
open source PC UNIX.

In 1991, a group of developers that had worked together on the BSD releases (Donn
Seeley, Mike Karels, Bill Jolitz, and Trent R. Hein), together with a few other BSD
advocates, founded Berkeley Software Design, Inc. (BSDI). Under the leadership of
Rob Kolstad, BSDI provided binaries and source code for a fully functional com-
mercial version of BSD UNIX on the PC platform. Among other things, this proj-
ect proved that inexpensive PC hardware could be used for production computing.
BSDI fueled explosive growth in the early Internet as it became the operating system
of choice for early Internet service providers (ISPs).

In an effort to recapture the genie that had escaped from its bottle in 1973, AT&T in
1992 filed a lawsuit against BSDI and the Regents of the University of California, al-
leging code copying and theft of trade secrets. It took AT&T’s lawyers over two years
to identify the offending code. When all was said and done, the lawsuit was settled
and three files (out of more than 18,000) were removed from the BSD code base.

See Chapter 31
for more pointers to
sysadmin resources.

	 A Brief History of System Administration 	 1173

Unfortunately, this two-year period of uncertainty had a devastating effect on the
entire UNIX world, BSD and non-BSD versions alike. Many companies jumped ship
to Microsoft Windows, fearful that they would end up at the mercy of AT&T as it
hugged its child to near-death. By the time the dust cleared, BSDI and the CSRG
were both mortally wounded. The BSD era was coming to an end.

Meanwhile, Linus Torvalds, a Helsinki college student, had been playing with Minix
and began writing his own UNIX clone.3 By 1992, a variety of Linux distributions
(including SuSE and Yggdrasil Linux) had emerged. 1994 saw the establishment
of Red Hat and Linux Pro.

Multiple factors have contributed to the phenomenal success of Linux. The strong
community support enjoyed by the system and its vast catalog of software from
the GNU archive make Linux quite a powerhouse. It works well in production en-
vironments, and some folks argue that you can build a more reliable and perfor-
mant system on top of Linux than you can on top of any other operating system.
It’s also interesting to consider that part of Linux’s success may relate to the golden
opportunity created for it by AT&T’s action against BSDI and Berkeley. That ill-
timed lawsuit struck fear into the hearts of UNIX advocates right at the dawn of
e-commerce and the start of the Internet bubble.

But who cares, right? What remained constant through all these crazy changes
was the need for system administrators. A UNIX system administrator’s skill set
is directly applicable to Linux, and most system administrators guided their users
gracefully through the turbulent seas of the 1990s. That’s another important char-
acteristic of a good system administrator: calm during a storm.

A world of windows (1996–1999)
Microsoft first released Windows NT in 1993. The release of a “server” version of
Windows, which had a popular user interface, generated considerable excitement
just as AT&T was busy convincing the world that it might be out to fleece everyone
for license fees. As a result, many organizations adopted Windows as their preferred
platform for shared computing during the late 1990s. Without question, the Micro-
soft platform has come a long way, and for some organizations it is the best option.

Unfortunately, UNIX, Linux, and Windows administrators initially approached
this marketplace competition in an adversarial stance. “Less filling” vs. “tastes great”
arguments erupted in organizations around the world.4 Many UNIX and Linux
system administrators started learning Windows, convinced they’d be put out to
pasture if they didn’t. After all, Windows 2000 was on the horizon. By the close of
the millennium, the future of UNIX looked grim.

	 3.	 Minix is a PC-based UNIX clone developed by Andrew S. Tanenbaum, a professor at the Free Univer-
sity in Amsterdam.

	 4.	 Just for the record, Windows is indeed less filling.

1174	 UNIX and Linux System Administration Handbook	

UNIX and Linux thrive (2000–2009)
As the Internet bubble burst, everyone scrambled to identify what was real and
what had been only a venture-capital-fueled mirage. As the smoke drifted away, it
became clear that many organizations with successful technology strategies were
using UNIX or Linux along with Windows rather than one or the other. It wasn’t
a war anymore.

A number of evaluations showed that the total cost of ownership (TCO) of a Linux
server was significantly lower than that of a Windows server. As the impact of the
2008 economic crash hit, TCO became more important than ever. The world again
steered toward open source versions of UNIX and Linux.

UNIX and Linux in the hyperscale cloud (2010-present)
Linux and PC-based UNIX variants such as FreeBSD have continued to expand
their market share, with Linux being the only operating system whose market share
on servers is growing. Not to be left out, Apple’s current full-size operating system,
macOS, is also a variant of UNIX.5

Much of the recent growth in UNIX and Linux has occurred in the context of vir-
tualization and cloud computing. See Chapter 24, Virtualization, and Chapter
9, Cloud Computing, for more details about these technologies.

The ability to create virtual infrastructure (and entire virtual data centers) by making
API calls has fundamentally shifted the course of the river once again. Gone are the
days of managing physical servers by hand. Scaling infrastructure no longer means
slapping down a credit card and waiting for boxes to appear on the loading dock.
Thanks to services such as Google GCP, Amazon AWS, and Microsoft Azure, the
era of the hyperscale cloud has arrived. Standardization, tools, and automation are
not just novelties but intrinsic attributes of every computing environment.

Today, competent management of fleets of servers requires extensive knowledge
and skill. System administrators must be disciplined professionals. They must know
how to build and scale infrastructure, how to work collaboratively with peers in a
DevOps environment, how to code simple automation and monitoring scripts, and
how to remain calm when a thousand servers are down at once.6

UNIX and Linux tomorrow
Where are we headed next? The lean, modular paradigm that has served UNIX so
well over the last few decades is also one foundation of the up-and-coming Internet

	 5.	 Even Apple’s iPhone runs a cousin of UNIX, and Google’s Android operating system derives from the
Linux kernel.

	 6.	 One thing hasn’t changed: whiskey is still a close friend to many system administrators.

	 A Brief History of System Administration 	 1175

of Things (IoT). The Brookings Institution estimates that 50 billion small, distrib-
uted IoT devices will exist by 2020 (see brook.gs/2bNwbya).

It’s tempting to think of these devices as we thought of the non-networked con-
sumer appliances (e.g., toaster ovens or blenders) of yesteryear: plug them in, use
them for a few years, and if they break, throw them in the landfill.7 They don’t need

“management” or central administration, right?

In fact, nothing could be further from the truth. Many of these devices handle sen-
sitive data (e.g., audio streamed from a microphone in your living room) or per-
form mission-critical functions such as controlling the temperature of your house.

Some of these devices run embedded software derived from the OSS world. But
regardless of what’s inside the devices themselves, the majority report back to a
mother ship in the cloud that runs—you guessed it—UNIX or Linux. In the early
market-share land grab, many devices have already been deployed without much
thought to security or to how the ecosystem will operate in the future.

The IoT craze isn’t limited to the consumer market. Modern commercial buildings
are riddled with networked devices and sensors for lighting, HVAC, physical se-
curity, and video, just to name a few. These devices often pop up on the network
without coordination from the IT or Information Security departments. They’re
then forgotten without any plan for ongoing management, patching, or monitoring.

Size doesn’t matter when it comes to networked systems. System administrators
need to advocate for the security, performance, and availability of IoT devices (and
their supporting infrastructure) regardless of size, location, or function.

System administrators hold the world’s computing infrastructure together, solve
the hairy problems of efficiency, scalability, and automation, and provide expert
technology leadership to users and managers alike.

We are system administrators. Hear us roar!

Recommended reading
McKusick, Marshall Kirk, Keith Bostic, Michael J. Karels, and John S.
Quarterman. The Design and Implementation of the 4.4BSD Operating System
(2nd Edition). Reading, MA: Addison-Wesley, 1996.

Salus, Peter H. A Quarter Century of UNIX. Reading, MA: Addison-Wesley, 1994.

Salus, Peter H. Casting the Net: From ARPANET to Internet and Beyond. Reading,
MA: Addison-Wesley, 1995.

Salus, Peter H. The Daemon, the Gnu, and the Penguin. Marysville, WA: Reed
Media Services, 2008. This book was also serialized at www.groklaw.net.

	 7.	 Don’t really do that. You should recycle everything.

http://www.groklaw.net

1176

For previous editions of this book, we used Adobe FrameMaker as our layout tool
and were (more or less) happy with its features, stability, and facility with book-
length writing projects. But although FrameMaker still exists, it now runs only on
Windows and has become an increasingly vestigial member of the Adobe lineup.

Rather than targeting the general publishing market, Adobe seems to be pitching
FrameMaker predominantly to multilingual workshops and to the poor lost souls
who generate government-mandated SGML content. The product’s core features
haven’t been updated in decades. It’s like seeing a much-admired football quarter-
back working at the local mini mart loading hot dogs onto the fancy rolling cooker:
someone has to do the job, but it seems like a waste of talent.

Ever since Adobe InDesign debuted in 2000, we’ve been waiting for it to grow suf-
ficiently mature that we could contemplate switching. It was never originally in-
tended for long documents, but over the years, the addition of features like tables
of contents and indexing suggested that Adobe hoped to develop InDesign as a
general solution for document publishing.

For this edition, we finally allowed ourselves to be goaded into the InDesign corral.
We ran Adobe InDesign CC 2017 on macOS systems. Hilarity ensued…at least, if
you find slapstick hilarious.

InDesign has many strengths and adherents, and we’ll certainly reach for it the next
time we need to design a six-page glossy brochure. However, we’re reasonably cer-
tain that most InDesign fans aren’t writing technical books.

One author said it best: “I have the impression that InDesign’s book features were
designed primarily to let InDesign slip past product selection committees’ screening
phases.” To get this book into your hands, we’ve had to write literally thousands of
lines of InDesign JavaScript code. Some of that code is ULSAH-specific, but a lot
of it does basic book production chores that FrameMaker handled out of the box.

Unfortunately, our complaints with InDesign go beyond its cursory support for
book production. We’ve also been continually surprised by its instability, obvious
bugs, and nondeterministic behaviors.

Colophon

	 Colophon 	 1177

We wish we had some useful tooling advice to impart to other book authors, but
we’re just as puzzled as everyone else. FrameMaker has no future and InDesign has
no present. Second-tier and on-line book publishing systems seem largely to target
those looking for EZ-mode, book-length text editors. As far as we can tell, no mod-
ern GUI software addresses the task of creating a book like this one.

Ah well, there’s always Microsoft Word. Our publisher tells us it’s still the predom-
inant format in which authors submit manuscripts.

We used the IndexUtilities add-on from Kerntiff Publishing Systems (kerntiff.co.uk)
to supplement InDesign’s fledgling indexing system. Indexing from A to Z by Hans
H. Wellisch remains an invaluable reference text for the art of indexing and a re-
source that we recommend highly.

Lisa Haney drew the interior cartoons with a 0.05mm Staedtler pigment liner, then
scanned them and converted them to 1200dpi bitmaps. The cover artwork was
executed on black Ampersand Clayboard (a scratchboard) with Dr. Martin’s Dyes
for color. After scanning, the cover art was color-corrected in Photoshop and the
layout completed in Adobe Illustrator.

The body text is Minion Pro, designed by Robert Slimbach. Headings, tables, and
illustrations are set in Myriad Pro SemiCondensed by Robert Slimbach and Carol
Twombly, with Fred Brady and Christopher Slye.

We’ve long sought a good typographical solution for “code” samples, and after
trying out pretty much every font and option on the market, we’ve finally found
our one true love: the Input font system by David Jonathan Ross, available from
input.fontbureau.com. It looks great, and with 168 different variants, it’s easy to
match to any given body text.

Better yet, Input has both monospaced and proportionally spaced versions. You can
use well-behaved proportional variants for most purposes, then switch to mono-
spaced for tabular output. The styles intermix cleanly, so readers won’t even notice
a difference unless they closely scrutinize the typography.

The authors were never in the same physical location during this project. We main-
tained a shared tree of source files hosted on GitLab. Binary .indd (InDesign) files
were stored in the repository and managed with the help of a horde of custom Ruby
scripts. This approach was tolerable, but the inability to see per-commit diffs for text
changes (because of InDesign’s binary file format) limited its flexibility.

InDesign does support an XML interchange format, but unfortunately, every trip to
XML resets all internal object IDs. The same file saved out twice in XML appears to
have thousands of differences. Hence, no diffs, no merging, and no collaboration.

http://kerntiff.co.uk
http://input.fontbureau.com

1178

James Garnett holds a PhD in Computer Science from the
University of Colorado and is a Senior Software Engineer at
Secure64 Software, Inc., where he develops DDoS mitigation
technologies for Linux kernels. When not knee-deep in kernel
code, he is usually somewhere deep in the Cascade Mountain
range of Washington state.

Fabrizio Branca (@fbrnc) is the Lead System Developer at AOE.
He, his wife, and their two children just returned to Germany after
living in San Francisco for four years. Fabrizio has contributed
to several open souce projects. He focuses on architecture, infra-
structure, and high-performance applications. He promotes solid
development, testing, and deployment processes for large projects.

Adrian Mouat (@adrianmouat) has been involved with contain-
ers from the early days of Docker and wrote the O’Reilly book
Using Docker (amzn.to/2sVAIZt). He is currently Chief Scien-
tist at Container Solutions, a pan-European company focusing
on consulting and product development for microservices and
containers.

About the Contributors

			 1179

For general comments and bug reports, please contact ulsah@book.admin.com. We
regret that we are unable to answer technical questions.

Evi Nemeth retired from the Computer Science faculty at the
University of Colorado in 2001. She explored the Pacific on her
40-foot sailboat named Wonderland for many years before be-
coming lost at sea in 2013 (see page xl). The fourth edition of
this book was her last as an active participant, but we’re proud to
say that we’ve retained her writing where possible.

Garth Snyder (@GarthSnyder) has worked at NeXT and Sun and
holds a BS in Engineering from Swarthmore College and an MD
and an MBA from the University of Rochester.

Trent R. Hein (@trenthein) is a serial entrepreneur who is pas-
sionate about practical cybersecurity and automation. Outside
of technology, he loves hiking, skiing, fly fishing, camping, blue-
grass, dogs, and the Oxford comma. Trent holds a BS in Com-
puter Science from the University of Colorado.

Ben Whaley is the founder of WhaleTech, an independent con-
sultancy. He was honored by Amazon as one of the first AWS
Community Heroes. He obtained a BS in Computer Science from
the University of Colorado at Boulder.

Dan Mackin (@dan_mackin) has a BS in Electrical and Com-
puter Engineering from the University of Colorado at Boulder.
He applies Linux and other open source technologies not only
to his work, but also to automation, monitoring, and weather
metrics collection projects at home. Dan loves skiing, sailing,
backcountry touring, and spending time with his wife and dog.

About the Authors

mailto:ulsah@book.admin.com

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Tribute to Evi
	Preface
	Foreword
	Acknowledgments
	SECTION ONE: BASIC ADMINISTRATION
	Chapter 1 Where to Start
	Essential duties of a system administrator
	Controlling access
	Adding hardware
	Automating tasks
	Overseeing backups
	Installing and upgrading software
	Monitoring
	Troubleshooting
	Maintaining local documentation
	Vigilantly monitoring security
	Tuning performance
	Developing site policies
	Working with vendors
	Fire fighting

	Suggested background
	Linux distributions
	Example systems used in this book
	Example Linux distributions
	Example UNIX distribution

	Notation and typographical conventions
	Units
	Man pages and other on-line documentation
	Organization of the man pages
	man: read man pages
	Storage of man pages

	Other authoritative documentation
	System-specific guides
	Package-specific documentation
	Books
	RFC publications

	Other sources of information
	Keeping current
	HowTos and reference sites
	Conferences

	Ways to find and install software
	Determining if software is already installed
	Adding new software
	Building software from source code
	Installing from a web script

	Where to host
	Specialization and adjacent disciplines
	DevOps
	Site reliability engineers
	Security operations engineers
	Network administrators
	Database administrators
	Network operations center (NOC) engineers
	Data center technicians
	Architects

	Recommended reading
	System administration and DevOps
	Essential tools

	Chapter 2 Booting and System Management Daemons
	Boot process overview
	System firmware
	BIOS vs. UEFI
	Legacy BIOS
	UEFI

	Boot loaders
	GRUB: the GRand Unified Boot loader
	GRUB configuration
	The GRUB command line
	Linux kernel options

	The FreeBSD boot process
	The BIOS path: boot0
	The UEFI path
	loader configuration
	loader commands

	System management daemons
	Responsibilities of init
	Implementations of init
	Traditional init
	systemd vs. the world
	inits judged and assigned their proper punishments

	systemd in detail
	Units and unit files
	systemctl: manage systemd
	Unit statuses
	Targets
	Dependencies among units
	Execution order
	A more complex unit file example
	Local services and customizations
	Service and startup control caveats
	systemd logging

	FreeBSD init and startup scripts
	Reboot and shutdown procedures
	Shutting down physical systems
	Shutting down cloud systems

	Stratagems for a nonbooting system
	Single-user mode
	Single-user mode on FreeBSD
	Single-user mode with GRUB
	Recovery of cloud systems

	Chapter 3 Access Control and Rootly Powers
	Standard UNIX access control
	Filesysem accests control
	Process ownership
	The root account
	Setuid and setgid execution

	Management of the root account
	Root account login
	su: substitute user identity
	sudo: limited su
	Example configuration
	sudo pros and cons
	sudo vs. advanced access control
	Typical setup
	Environment management
	sudo without passwords
	Precedence
	sudo without a control terminal
	Sit e-wide sudo configuration

	Disabling the root account
	System accounts other than root

	Extensions to the standard access control model
	Drawbacks of the standard model
	PAM: Pluggable Authentication Modules
	Kerberos: network cryptographic authentication
	Filesysem acces ts control lists
	Linux capabilities
	Linux namespaces

	Modern access control
	Separate ecosystems
	Mandatory access control
	Role-based access control
	SELinux: Security-Enhanced Linux
	AppArmor

	Recommended reading

	Chapter 4 Process Control
	Components of a process
	PID: process ID number
	PPID: parent PID
	UID and EUID: real and effective user ID
	GID and EGID: real and effective group ID
	Niceness
	Control terminal

	The life cycle of a process
	Signals
	kill: send signals
	Process and thread states

	ps: monitor processes
	Interactive monitoring with top
	nice and renice: influence scheduling priority
	The /proc filesystem
	strace and truss: trace signals and system calls
	Runaway processes
	Periodic processes
	cron: schedule commands
	The format of crontab files
	Crontab management
	Other crontabs
	cron access control

	systemd timers
	Structure of systemd timers
	systemd timer example
	systemd time expressions
	Transient timers

	Common uses for scheduled tasks
	Sending mail
	Cleaning up a filesystem
	Rotating a log file
	Running batch jobs
	Backing up and mirroring

	Chapter 5 The Filesystem
	Pathnames
	Filesystem mounting and unmounting
	Organization of the file tree
	File types
	Regular files
	Directories
	Hard links
	Character and block device files
	Local domain sockets
	Named pipes
	Symbolic links

	File attributes
	The permission bits
	The setuid and setgid bits
	The sticky bit
	ls: list and inspect files
	chmod: change permissions
	chown and chgrp: change ownership and group
	umask: assign default permissions
	Linux bonus flags

	Access control lists
	A cautionary note
	ACL types
	Implementation of ACLs
	Linux ACL support
	FreeBSD ACL support
	POSIX ACLs
	Interaction between traditional modes and ACLs
	POSIX access determination
	POSIX ACL inheritance

	NFSv4 ACLs
	NFSv4 entities for which permissions can be specified
	NFSv4 access determination
	ACL inheritance in NFSv4
	NFSv4 ACL viewing
	Interactions between ACLs and modes
	NFSv4 ACL setup

	Chapter 6 Software Installation and Management
	Operating system installation
	Installing from the network
	Setting up PXE
	Using kickstart, the automated installer for Red Hat and CentOS
	Setting up a kickstart configuration file
	Building a kickstart server
	Pointing kickstart at your config file

	Automating installation for Debian and Ubuntu
	Netbooting with Cobbler, the open source Linux provisioning server
	Automating FreeBSD installation

	Managing packages
	Linux package management systems
	rpm: manage RPM packages
	dpkg: manage .deb packages

	High-level Linux package management systems
	Package repositories
	RHN: the Red Hat Network
	APT: the Advanced Package Tool
	Repository configuration
	An example /etc/apt/sources.list file
	Creation of a local repository mirror
	APT automation
	yum: release management for RPM

	FreeBSD software management
	The base system
	pkg: the FreeBSD package manager
	The ports collection

	Software localization and configuration
	Organizing your localization
	Structuring updates
	Limiting the field of play
	Testing

	Recommended reading

	Chapter 7 Scripting and the Shell
	Scripting philosophy
	Write microscripts
	Learn a few tools well
	Automate all the things
	Don’t optimize prematurely
	Pick the right scripting language
	Follow best practices

	Shell basics
	Command editing
	Pipes and redirection
	Variables and quoting
	Environment variables
	Common filter commands
	cut: separate lines into fields
	sort: sort lines
	uniq: print unique lines
	wc: count lines, words, and characters
	tee: copy input to two places
	head and tail: read the beginning or end of a file
	grep: search text

	sh scripting
	Execution
	From commands to scripts
	Input and output
	Spaces in filenames
	Command-line arguments and functions
	Control flow
	Loops
	Arithmetic

	Regular expressions
	The matching process
	Literal characters
	Special characters
	Example regular expressions
	Captures
	Greediness, laziness, and catastrophic backtracking

	Python programming
	The passion of Python 3
	Python 2 or Python 3?
	Python quick start
	Objects, strings, numbers, lists, dictionaries, tuples, and files
	Input validation example
	Loops

	Ruby programming
	Installation
	Ruby quick start
	Blocks
	Symbols and option hashes
	Regular expressions in Ruby
	Ruby as a filter

	Library and environment management for Python and Ruby
	Finding and installing packages
	Creating reproducible environments
	Multiple environments
	virtualenv: virtual environments for Python
	RVM: the Ruby enVironment Manager

	Revision control with Git
	A simple Git example
	Git caveats
	Social coding with Git

	Recommended reading
	Shells and shell scripting
	Regular expressions
	Python
	Ruby

	Chapter 8 User Management
	Account mechanics
	The /etc/passwd file
	Login name
	Encrypted password
	UID (user ID) number
	Default GID (group ID) number
	GECOS field
	Home directory
	Login shell

	The Linux /etc/shadow file
	FreeBSD's /etc/master.passwd and /etc/login.conf files
	The /etc/master.passwd file
	The /etc/login.conf file

	The /etc/group file
	Manual steps for adding users
	Editing the passwd and group files
	Setting a password
	Creating the home directory and installing startup files
	Setting home directory permissions and ownerships
	Configuring roles and administrative privileges
	Finishin gup

	Scrpits for adding users: useradd, adduser, and newusers
	useradd on Linux
	adduser on Debian and Ubuntu
	adduser on FreeBSD
	newusers on Linux: adding in bulk

	Safe removal of a user’s account and files
	User login lockout
	Risk reduction with PAM
	Centralized account management
	LDAP and Active Directory
	Application-level single sign-on systems
	Identity management systems

	Chapter 9 Cloud Computing
	The cloud in context
	Cloud platform choices
	Public, private, and hybrid clouds
	Amazon Web Services
	Google Cloud Platform
	Digital Ocean

	Cloud service fundamentals
	Access to the cloud
	Regions and availability zones
	Virtual private servers
	Networking
	Storage
	Identity and authorization
	Automation
	Serverless functions

	Clouds: VPS quick start by platform
	Amazon Web Services
	aws: control AWS subsystems
	Creating an EC2 instance
	Viewing the console log
	Stopping and terminating instances

	Google Cloud Platform
	Setting up gcloud
	Running an instance on GCE

	Digital Ocean

	Cost control
	Recommended Reading

	Chapter 10 Logging
	Log locations
	Files not to manage
	How to view logs in the systemd journal

	The systemd journal
	Configuring the systemd journal
	Adding more filtering options for journalctl
	Coexisting with syslog

	Syslog
	Reading syslog messages
	Rsyslog architecture
	Rsyslog versions
	Rsyslog configuration
	Modules
	sysklogd syntax
	Legacy directives
	RainerScript

	Config file examples
	Basic rsyslog configuration
	Network logging client
	Central logging host

	Syslog message security
	Syslog configuration debugging

	Kernel and boot-time logging
	Management and rotation of log files
	logrotate: cross-platform log management
	newsyslog: log management on FreeBSD

	Management of logs at scale
	The ELK stack
	Gray log
	Logging as a service

	Logging policies

	Chapter 11 Drivers and the Kernel
	Kernel chores for system administrators
	Kernel version numbering
	Linux kernel versions
	FreeBSD kernel versions

	Devices and their drivers
	Device files and device numbers
	Challenges of device file management
	Manual creation of device files
	Modern device file management
	Linux device management
	Sysfs: a window into the souls of devices
	udevadm: explore devices
	Rules and persistent names

	FreeBSD device management
	Devfs: automatic device file configuration
	devd: higher-level device management

	Linux kernel configuration
	Tuning Linux kernel parameters
	Building a custom kernel
	If it ain’t broke, don’t fix it
	Setting up to build the Linux kernel
	Configuring kernel options
	Building the kernel binary

	Adding a Linux device driver

	FreeBSD kernel configuration
	Tuning FreeBSD kernel parameters
	Buildin ga FreeBSD kernel

	Loadable kernel modules
	Loadable kernel modules in Linux
	Loadable kernel modules in FreeBSD

	Booting
	Linux boot messages
	FreeBSD boot messages

	Booting alternate kernels in the cloud
	Kernel errors
	Linux kernel errors
	FreeBSD kernel panics

	Recommended reading

	Chapter 12 Printing
	CUPS printing
	Interfaces to the printing system
	The print queue
	Multiple printers and queues
	Printer instances
	Network printer browsing
	Filters

	CUPS server administration
	Network print server setup
	Printer autoconfiguration
	Network printer configuration
	Printer configuration examples
	Service shutoff
	Other configuration tasks

	Troubleshooting tips
	Print daemon restart
	Log files
	Direct printing connections
	Network printing problems

	Recommended reading

	SECTION TWO: NETWORKING
	Chapter 13 TCP/IP Networking
	TCP/IP and its relationship to the Internet
	Who runs the Internet?
	Network standards and documentation

	Networking basics
	IPv4 and IPv6
	Packets and encapsulation
	Ethernet framing
	Maximum transfer unit

	Packet addressing
	Hardware (MAC) addressing
	IP addressing
	Hostname “addressing”
	Ports
	Address types

	IP addresses: the gory details
	IPv4 address classes
	IPv4 subnetting
	Tricks and tools for subnet arithmetic
	CIDR: Classless Inter-Domain Routing
	Addres sallocation
	Private addresses and network address translation (NAT)
	IPv6 addressing
	IPv6 address notation
	IPv6 prefixes
	Automatic host numbering
	Stateless address autoconfiguration
	IPv6 tunneling
	IPv6 information sources

	Routing
	Routing tables
	ICMP redirects

	IPv4 ARP and IPv6 neighbor discovery
	DHCP: the Dynamic Host Configuration Protocol
	DHCP software
	DHCP behavior
	ISC’s DHCP software

	Security issues
	IP forwarding
	ICMP redirects
	Source routing
	Broadcast pings and other directed broadcasts
	IP spoofing
	Host-based firewalls
	Virtual private networks

	Basic network configuration
	Hostname and IP address assignment
	Network interface and IP configuration
	Routing configuration
	DNS configuration
	System-specific network configuration

	Linux networking
	Network Manager
	ip: manually configure a network
	Debian and Ubuntu network configuration
	Red Hat and CentOS network configuration
	Linux network hardware options
	Linux TCP/IP options
	Security-related kernel variables

	FreeBSD networking
	ifconfig: configure network interfaces
	FreeBSD network hardware configuration
	FreeBSD boot-time network configuration
	FreeBSD TCP/IP configuration

	Network troubleshooting
	ping: check to see if a host is alive
	traceroute: trace IP packets
	Packet sniffers
	tcpdump: command-line packet sniffer
	Wireshark and TShark: tcpdump on steroids

	Network monitoring
	SmokePing: gather ping statistics over time
	iPerf: track network performance
	Cacti: collect and graph data

	Firewalls and NAT
	Linux iptables: rules, chains, and tables
	iptables rule targets
	iptables firewall setup
	A complete example
	Linux NAT and packet filtering

	IPFilter for UNIX systems

	Cloud networking
	AWS’s virtual private cloud (VPC)
	Subnets and routing tables
	Security groups and NACLs
	A sample VPC architecture
	Creating a VPC with Terraform

	Google Cloud Platform networking
	DigitalOcean networking

	Recommended reading
	History
	Classics and bibles
	Protocols

	Chapter 14 Physical Networking
	Ethernet: the Swiss Army knife of networking
	Ethernet signaling
	Ethernet topology
	Unshielded twisted-pair cabling
	Optical fiber
	Ethernet connection and expansion
	Hubs
	Switches
	VLAN-capable switches
	Routers

	Autonegotiation
	Power over Ethernet
	Jumbo frames

	Wireless: Ethernet for nomads
	Wireless standards
	Wireless client access
	Wireless infrastructure and WAPs
	Wireless topology
	Small money wireless
	Big money wireless

	Wireless security

	SDN: software-defined networking
	Network testing and debugging
	Building wiring
	UTP cabling options
	Connections to offices
	Wiring standards

	Network design issues
	Network architecture vs. building architecture
	Expansion
	Congestion
	Maintenance and documentation

	Management issues
	Recommended vendors
	Cables and connectors
	Test equipment
	Routers/switches

	Recommended reading

	Chapter 15 IP Routing
	Packet forwarding: a closer look
	Routing daemons and routing protocols
	Distance-vector protocols
	Link-state protocols
	Cost metrics
	Interior and exterior protocols

	Protocols on parade
	RIP and RIPng: Routing Information Protocol
	OSPF: Open Shortest Path First
	EIGRP: Enhanced Interior Gateway Routing Protocol
	BGP: Border Gateway Protocol

	Routing protocol multicast coordination
	Routing strategy selection criteria
	Routing daemons
	routed: obsolete RIP implementation
	Quagga: mainstream routing daemon
	XORP: router in a box

	Cisco routers
	Recommended reading

	Chapter 16 DNS: The Domain Name System
	DNS architecture
	Queries and responses
	DNS service providers

	DNS for lookups
	resolv.conf: client resolver configuration
	nsswitch.conf: who do I ask for a name?

	The DNS namespace
	Registering a domain name
	Creating your own subdomains

	How DNS works
	Name servers
	Authoritative and caching-only servers
	Recursive and nonrecursive servers
	Resource records
	Delegation
	Cachin gand efficiency
	Multiple answers and round robin DNS load balancing
	Debugging with query tools

	The DNS database
	Parser commands in zone files
	Resource records
	The SOA record
	NS records
	A records
	AAAA records
	PTR records
	MX records
	CNAME records
	SRV records
	TXT records
	SPF, DKIM, and DMARC records
	DNSSEC records

	The BIND software
	Components of BIND
	Configuration files
	The include statement
	The options statement
	The acl statement
	The (TSIG) key statement
	The server statement
	The masters statement
	The logging statement
	The statistics-channels statement
	The zone statement
	Configuring the master server for a zone
	Configuring a slave server for a zone
	Setting up the root server hints
	Setting up a forwarding zone

	The controls statement for rndc

	Split DNS and the view statement
	BIND configuration examples
	The localhost zone
	A small security company

	Zone file updating
	Zone transfers
	Dynamic updates

	DNS security issues
	Access control lists in BIND, revisited
	Open resolvers
	Running in a chrooted jail
	Secure server-to-server communication with TSIG and TKEY
	Setting up TSIG for BIND
	DNSSEC
	DNSSEC policy
	DNSSEC resource records
	Turnin gon DNSSEC
	Key pair generation
	Zone signing
	The DNSSEC chain of trust
	DNSSEC key rollover
	DNSSEC tools
	ldns tools, nlnetlabs.nl/projects/ldns
	dnssec tools.org
	RIPE tools, ripe.net
	OpenDNSSEC, opendnssec.org

	Debugging DNSSEC

	BIND debugging
	Logging in BIND
	Channels
	Categories
	Log messages
	Sample BIND logging configuration
	Debug levels in BIND

	Name server control with rndc
	Command-line querying for lame delegations

	Recommended reading
	Books and other documentation
	On-line resources
	The RFCs

	Chapter 17 Single Sign-On
	Core SSO elements
	LDAP: “lightweight” directory services
	Uses for LDAP
	The structure of LDAP data
	OpenLDAP: the traditional open source LDAP server
	389 Directory Server: alternative open source LDAP server
	LDAP Querying
	Conversion of passwd and group files to LDAP

	Using directory services for login
	Kerberos
	Linux Kerberos configuration for AD integration
	FreeBSD Kerberos configuration for AD integration

	sssd: the System Security Services Daemon
	nsswitch.conf: the name service switch
	PAM: cooking spray or authentication wonder?
	PAM configuration
	PAM example

	Alternative approaches
	NIS: the Network Information Service
	rsync: transfer files securely

	Recommended reading

	Chapter 18 Electronic Mail
	Mail system architecture
	User agents
	Submission agents
	Transport agents
	Local delivery agents
	Message stores
	Access agents

	Anatomy of a mail message
	The SMTP protocol
	You had me at EHLO
	SMTP error codes
	SMTP authentication

	Spam and malware
	Forgeries
	SPF and Sender ID
	DKIM

	Message privacy and encryption
	Mail aliases
	Getting aliases from files
	Mailing to files
	Mailing to programs
	Building the hashed alias database

	Email configuration
	sendmail
	The switch file
	Starting sendmail
	Mail queues
	sendmail configuration
	The m4 preprocessor
	The sendmail configuration pieces
	A configurat ion file built from a sample .mc file
	Configuration primitives
	Tables and databases
	Generic macros and features
	OSTYPE macro
	DOMAIN macro
	MAILER macro
	FEATURE macro
	use_cw_file feature
	redirect feature
	always_add_domain feature
	access_db feature
	virtusertable feature
	ldap_routing feature
	Masquerading features
	MAIL_HUB and SMART_HOST macros

	Client configuration
	m4 configuration options
	Spam-related features in sendmail
	Relay control
	User or site blacklisting
	Throttles, rates, and connection limits

	Security and sendmail
	Ownerships
	Permissions
	Safer mail to files and programs
	Privacy options
	Running a chrooted sendmail (for the truly paranoid)
	Denia lof service attacks
	TLS: Transport Layer Security

	sendmail testing and debugging
	Queue monitoring
	Logging

	Exim
	Exim installation
	Exim startup
	Exim utilities
	Exim configuration language
	Exim configuration file
	Global options
	Options
	Lists
	Macros

	Access control lists (ACLs)
	Content scanning at ACL time
	Authenticators
	Routers
	The accept router
	The dnslookup router
	The manualroute router
	The redirect router
	Per-user filtering through .forward files

	Transports
	The appendfile transport
	The smtp transport

	Retry configuration
	Rewriting configuration
	Local scan function
	Logging
	Debugging

	Postfix
	Postfix architecture
	Receiving mail
	Managing mail-waiting queues
	Sending mail

	Security
	Postfix commands and documentation
	Postfix configuration
	What to put in main.cf
	Basic settings
	Null client
	Use of postconf
	Lookup tables
	Local delivery

	Virtual domains
	Virtual alias domains
	Virtual mailbox domains

	Access control
	Access tables
	Authentication of clients and encryption

	Debugging
	Looking at the queue
	Soft-bouncing

	Recommended reading
	sendmail references
	Exim references
	Postfix references
	RFCs

	Chapter 19 Web Hosting
	HTTP: the Hypertext Transfer Protocol
	Uniform Resource Locators (URLs)
	Structure of an HTTP transaction
	HTTP requests
	HTTP responses
	Header sand the message body

	curl: HTTP from the command line
	TCP connection reuse
	HTTP over TLS
	Virtual hosts

	Web software basics
	Web servers and HTTP proxy software
	Load balancers
	Caches
	Browser caches
	Proxy cache
	Reverse proxy cache
	Cache problems
	Cache software

	Content delivery networks
	Languages of the web
	Ruby
	Python
	Java
	Node.js
	PHP
	Go

	Application programming interfaces (APIs)

	Web hosting in the cloud
	Build versus buy
	Platform-as-a-Service
	Static content hosting
	Serverless web applications

	Apache httpd
	httpd in use
	httpd configuration logistics
	Virtual host configuration
	HTTP basic authentication
	Configuring TLS
	Running web applications within Apache

	Logging

	NGINX
	Installing and running NGINX
	Configuring NGINX
	Configuring TLS for NGINX
	Load balancing with NGINX

	HAProxy
	Health checks
	Server statistics
	Sticky sessions
	TLS termination

	Recommended reading

	SECTION THREE: STORAGE
	Chapter 20 Storage
	I just want to add a disk!
	Linux recipe
	FreeBSD recipe

	Storage hardware
	Hard disks
	Hard disk reliability
	Failure modes and metrics
	Drive types
	Warranties and retirement

	Solid state disks
	Rewritability limits
	Flash memory and controller types
	Page clusters and pre-erasing
	SSD reliability

	Hybrid drives
	Advanced Format and 4KiB blocks

	Storage hardware interfaces
	The SATA interface
	The PCI Express interface
	The SAS interface
	USB

	Attachment and low-level management of drives
	Installation verification at the hardware level
	Disk device files
	Ephemeral device names
	Formatting and bad block management
	ATA secure erase
	hdparm and camcontrol: set disk and interface parameters
	Hard disk monitoring with SMART

	The software side of storage: peeling the onion
	Elements of a storage system
	The Linux device mapper

	Disk partitioning
	Traditional partitioning
	MBR partitioning
	GPT: GUID partition tables
	Linux partitioning
	FreeBSD partitioning

	Logical volume management
	Linux logical volume management
	Volume snapshots
	Filesystem resizing

	FreeBSD logical volume management

	RAID: redundant arrays of inexpensive disks
	Software vs. hardware RAID
	RAID levels
	Disk failure recovery
	Draw backs of RAID 5
	mdadm: Linux software RAID
	Creating an array
	mdadm.conf: document array configuration
	Simulating a failure

	Filesystems
	Traditional filesystems: UFS, ext4, and XFS
	Filesystem terminology
	Filesystem polymorphism
	Filesystem formatting
	fsck: check and repair filesystems
	Filesystem mounting
	Setup for automatic mounting
	USB drive mounting
	Swapping recommendations

	Next-generation filesystems: ZFS and Btrfs
	Copy-on-write
	Error detection
	Performance

	ZFS: all your storage problems solved
	ZFS on Linux
	ZFS architecture
	Example: disk addition
	Filesystems and properties
	Property inheritance
	One filesystem per user
	Snapshots and clones
	Raw volumes
	Storage pool management

	Btr fs: “ZFS lite” for Linux
	Btr fs vs. ZFS
	Setup and storage conversion
	Volumes and subvolumes
	Volume snapshots
	Shallow copies

	Data backup strategy
	Recommended reading

	Chapter 21 The Network File System
	Meet network file services
	The competition
	Issues of state
	Performance concerns
	Security

	The NFS approach
	Protocol versions and history
	Remote procedure calls
	Transport protocols
	State
	Filesystem exports
	File locking
	Security concerns
	Identity mapping in version 4
	Root access and the nobody account
	Performance considerations in version4

	Server-side NFS
	Linux exports
	FreeBSD exports
	nfsd: serve files

	Client-side NFS
	Mounting remote filesystems at boot time
	Restricting exports to privileged ports

	Identity mapping for NFS version4
	nfsstat: dump NFS statistics
	Dedicated NFS file servers
	Automatic mounting
	Indirect maps
	Direct maps
	Master maps
	Executable maps
	Automount visibility
	Replicated filesystems and automount
	Automatic automounts (V3; all but Linux)
	Specifics for Linux

	Recommended reading

	Chapter 22 SMB
	Samba: SMB server for UNIX
	Installing and configuring Samba
	File sharing with local authentication
	File sharing with accounts authenticated by Active Directory
	Configuring shares
	Sharing home directories
	Sharing project directories

	Mounting SMB file shares
	Browsing SMB file shares
	Ensuring Samba security
	Debugging Samba
	Querying Samba’s state with smbstatus
	Configuring Samba logging
	Managing character sets

	Recommended reading

	SECTION FOUR: OPERATIONS
	Chapter 23 Configuration Management
	Configuration management in a nutshell
	Dangers of configuration management
	Elements of configuration management
	Operations and parameters
	Variables
	Facts
	Change handlers
	Bindings
	Bundles and bundle repositories
	Environments
	Client in ventory and registration

	Popular CM systems compared
	Terminology
	Business models
	Architectural options
	Language options
	Dependency management options
	General comments on Chef
	General comments on Puppet
	General comments on Ansible and Salt
	YAML: a rant

	Introduction to Ansible
	Ansible example
	Client setup
	Client groups
	Variable assignments
	Dynamic and computed client groups
	Task lists
	state parameters
	Iteration
	Interaction with Jinja
	Template rendering
	Bindings: plays and playbooks
	Roles
	Recommendations for structuring the configurationbase
	Ansible access options

	Introduction to Salt
	Minion setup
	Variable value binding for minions
	Minion matching
	Salt states
	Salt and Jinja
	State IDs and dependencies
	State and execution functions
	Parameters and names
	State binding to minions
	Highstates
	Salt formulas
	Environments
	Documentation roadmap

	Ansible and Salt compared
	Deployment flexibility and scalability
	Built-in modules and extensibility
	Security
	Miscellaneous

	Best practices
	Recommended reading

	Chapter 24 Virtualization
	Virtual vernacular
	Hypervisors
	Full virtualization
	Para virtualization
	Hardware-assisted virtualization
	Para virtualized drivers
	Modern virtualization
	Type 1 vs. type 2 hypervisors

	Live migration
	Virtual machine images
	Containerization

	Virtualization with Linux
	Xen
	Xen guest installation
	KVM
	KVM guest intsallation

	FreeBSD bhyve
	VMware
	VirtualBox
	Packer
	Vagrant
	Recommended reading

	Chapter 25 Containers
	Background and core concepts
	Kernel support
	Images
	Networking

	Docker: the open source container engine
	Basic a rchitecture
	Installation
	Client setup
	The container experience
	Volumes
	Data volume containers
	Docker networks
	Namespaces and the bridge network
	Network overlays

	Storage drivers
	dockerd option editing
	Image building
	Choosing a base image
	Building from a Dockerfile
	Composing a derived Dockerfile

	Registries

	Containers in practice
	Logging
	Security advice
	Restrict access to the daemon
	Use TLS
	Run processes as unprivileged users
	Use a read-only root filesystem
	Limit capabilities
	Secure images

	Debugging and troubleshooting

	Container clustering and management
	A synopsis of container management software
	Kubernetes
	Mesos and Marathon
	Docker Swarm
	AWS EC2 Container Service

	Recommended reading

	Chapter 26 Continuous Integration and Delivery
	CI/CD essentials
	Principles and practices
	Use revision control
	Build once, deploy often
	Automate end-to-end
	Build every integration commit
	Share responsibility
	Build fast, fix fast
	Audit and verify

	Environments
	Feature flags

	Pipelines
	The build process
	Testing
	Deployment
	Zero-downtime deployment techniques

	Jenkins: the open source automation server
	Basic Jenkins concepts
	Distributed builds
	Pipeline as code

	CI/CD in practice
	UlsahGo, a trivial web application
	Unit testing UlsahGo
	Taking first steps with the Jenkins Pipeline
	Buildinga DigitalOcean image
	Provisioning a single system for testing
	Testing the droplet
	Deploying UlsahGo to a pair of droplets and a load balancer
	Concluding the demonstration pipeline

	Containers and CI/CD
	Containers as a build environment
	Container images as build artifacts

	Recommended reading

	Chapter 27 Security
	Elements of security
	How security is compromised
	Social engineering
	Software vulnerabilities
	Distributed denial-of-service attacks (DDoS)
	Insider abuse
	Network, system, or application configuration errors

	Basic security measures
	Software updates
	Unnecessary services
	Remote event logging
	Backups
	Viruses and worms
	Root kits
	Packet filtering
	Passwords and multifactor authentication
	Vigilance
	Application penetration testing

	Passwords and user accounts
	Password changes
	Password vaults and password escrow
	Password aging
	Group logins and shared logins
	User shells
	Rootly entries

	Security power tools
	Nmap: network port scanner
	Nessus: next-generation network scanner
	Meta sploit: penetration testing software
	Lynis: on-box security auditing
	John the Ripper: finder of insecure passwords
	Bro: the programmable network intrusion detection system
	Snort: the popular network intrusion detection system
	OSSEC: host-based intrusion detection
	OSSEC basic concepts
	OSSEC installation
	OSSEC configuration

	Fail2Ban: brute-force attack response system

	Cryptography primer
	Symmetric key cryptography
	Public key cryptography
	Public key infrastructure
	Transport Layer Security
	Cryptographic hash functions
	Random number generation
	Cryptographic software selection
	The openssl command
	Preparing keys and certificates
	Debugging TLS servers

	PGP: Pretty Good Privacy
	Kerberos: a unified approach to network security

	SSH, the Secure SHell
	OpenSSH essentials
	The ssh client
	Public key authentication
	The ssh-agent
	Host a liases in ~/.ssh/config
	Connection multiplexing
	Port forwarding
	sshd: the OpenSSH server
	Host key verification with SSHFP
	File transfers
	Alternatives for secure logins

	Firewalls
	Packet-filtering firewalls
	Filtering of services
	Stateful inspection firewalls
	Firewalls: safe?

	Virtual private networks (VPNs)
	IPsec tunnels
	All I need is a VPN, right?

	Certifications and standards
	Certifications
	Security standards
	ISO 27001:2013
	PCI DSS
	NIST 800 series
	The Common Criteria
	OWASP: the Open Web Application Security Project
	CIS: the Center for Internet Security

	Sources of security information
	SecurityFocus.com, the BugTraq mailing list, and the OSS mailing list
	Schneier on Security
	The Verizon Data Breach Investigations Report
	The SANS Institute
	Distribution-specific security resources
	Other mailing lists and web sites

	When your site has been attacked
	Recommended reading

	Chapter 28 Monitoring
	An overview of monitoring
	Instrumentation
	Data types
	Intake and processing
	Notifications
	Dashboards and UIs

	The monitoring culture
	The monitoring platforms
	Open source real-time platforms
	Nagios and Icinga
	Sensu

	Open source time-series platforms
	Graphite
	Prometheus
	InfluxDB
	Munin

	Open source charting platforms
	Commercial monitoring platforms
	Hosted monitoring platforms

	Data collection
	StatsD: generic data submission protocol
	Data harvesting from command output

	Network monitoring
	Systems monitoring
	Commands for systems monitoring
	collectd: generalized system data harvester
	sysdig and dtrace: execution tracers

	Application monitoring
	Log monitoring
	Supervisor + Munin: a simple option for limited domains
	Commercial application monitoring tools

	Security monitoring
	System integrity verification
	Intrusion detection monitoring

	SNMP: the Simple Network Management Protocol
	SNMP organization
	SNMP protocol operations
	Net-SNMP: tools for servers

	Tips and tricks for monitoring
	Recommended reading

	Chapter 29 Performance Analysis
	Performance tuning philosophy
	Ways to improve performance
	Factors that affect performance
	Stolen CPU cycles
	Analysis of performance problems
	System performance checkup
	Taking stock of your equipment
	Gathering performance data
	Analyzing CPU usage
	Understanding how the system manages memory
	Analyzing memory usage
	Analyzing disk I/O
	fio:testing storage subsystem performance
	sar:collecting and reporting statistics over time
	Choosing a Linux I/O scheduler
	perf: profiling Linux systems in detail

	Help! My server just got really s low!
	Recommended reading

	Chapter 30 Data Center Basics
	Racks
	Power
	Rack power requirements
	kVA vs. kW
	Energy efficiency
	Metering
	Cost
	Remote control

	Cooling and environment
	Cooling load estimation
	Roof, walls, and windows
	Electronic gear
	Light fixtures
	Operators
	Total heat load

	Hot aisles and cold aisles
	Humidity
	Environmental monitoring

	Data center reliability tiers
	Data center security
	Location
	Perimeter
	Facility access
	Rack access

	Tools
	Recommended reading

	Chapter 31 Methodology, Policy, and Politics
	The Grand unified theory: DevOps
	DevOps is CLAMS
	Culture
	Lean
	Automation
	Measurement
	Sharing

	System administration in a DevOps world

	Ticketing and task management systems
	Common functions of ticketing systems
	Ticket ownership
	User acceptance of ticketing systems
	Sample ticketing systems
	Ticket dispatching

	Local documentation maintenance
	Infrastructure as code
	Documentation standards

	Environment separation
	Disaster management
	Risk assessment
	Recovery planning
	Staffing for a disaster
	Security incidents

	IT policies a nd procedures
	The difference between policies and procedures
	Policy best practices
	Procedures

	Service level agreements
	Scope and descriptions of services
	Queue prioritization policies
	Conformance measurements

	Compliance: regulations and standards
	Legal issues
	Privacy
	Policyenforcement
	Control = liability
	Software licenses

	Organizations, conferences, and other resources
	Recommended reading

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	A Brief History of System Administration
	Colophon
	About the Contributors
	About the Authors

