ESP32 AND ARDUINO
HARDWARE PROTOCOLS

COOKBOOK

Practical Recipes to
UART, SPI, I12C, and
Non-standard
Protocols for
Developing
Connected Devices

g~
@3
®°
T3
ou
® e
9"
o5
o
em
o:
o5
®¢
o
oz
CF)
o
ot
®2

3VIEN VP VN 34 35 32 33 25 26 27 14 12 GND 13 D2 D3 CMD 5V
NN NN N N N N N N N N N N N N NN

. R o e R

mm-—uo
2 2 2

DIGITAL (PWM ~) =

E rRxsmm ARDUINO

ESP32 AND ARDUINO
HARDWARE PROTOCOLS

COOKBOOK:

Practical Recipes to UART, SPI, 12C, and Non-
standard Protocols for Developing Connected

Devices

By
Roronoa Hatake

TABLE OF CONTENTS

PRACTICE BEFORE THEORY 9)
DIFFERENTIATION FROM WIFI, BLUETOOTH ESP NOW

OPEN VSC PLATFORMIO PROGRAM IN ARDUINO IDE

10

DIFFERENCE OSCILLOSCOPE VS. LOGIC ANALYZER

LOGIC ANALYZER CHARACTERISTICS 12
PRACTICAL USE CASES AT A GLANCE 15
MASK WITH AND 17

MASK WITH OR 20

BITWISE SHIFT 22

PRACTICAL EXERCISE EXAMPLES 1 25

PRACTICAL EXERCISE EXAMPLES 2 32

WHY PULSEVIEW 34

DOWNLOAD 36

BASE SKETCH FOR ALL EXAMPLES 37
CONFIGURATION AND CONNECTING LOGIC

ANALYZER 38

SAMPLES AND MHZ SETTING 42

FREQUENCY AND MILLISECONDS 43

BAUD RATE 45

PRODUCE AND MEASURE PWM SIGNAL 47
TRIGGER ON LEVEL WITH IR SENSOR 51
OVERVIEW OF SERIAL COMMUNICATION WITH UART 54
THEORY OF DATA TRANSMISSION 58

HARDWARE SERIAL ARDUINO UNO 60
SOFTWARE SERIAL ARDUINO UNO 61

DISPLAY ASCII WITH DECODER 63

HEX TO ASCII WITH ARDUINO UNO 65

LSB AND MSB 68

BINARY LSB AND MSB WITH ARDUINO UNO 69
WHAT IS A PARITY BIT 74

EXAMPLE PARITY BIT SERIAL_8E1 WITH ESP32 76

UART COMMUNICATION BETWEEN TWO ARDUINO
UNOS 80

NOTE THE LOGIC LEVEL WITH ESP32 TO ARDUINO
UNO 84

FINDING OR CALCULATING THE BAUD RATE 88

ANALYZING THE IKEA AIR QUALITY SENSOR
VINDRIKTNING 91

SELF-MADE ANALYSIS WITH ESP32 FOR PM2,5 SENSOR FROM
IKEA 96

ADVANTAGES AND DISADVANTAGES OF UART

101

ONEWIRE PROTOCOL BASICS 103

DS18B20 SKETCH AND WIRING 104
EXAMPLE DUMMY CODE 108

INFO FROM THE DATA SHEET 110

DATA ANALYSIS WITH LOGIC ANALYZER 114
CHANGE RESOLUTION TO 9 BIT 116
ADDING AN EXTERNAL DECODER 117

GET DATA ONLY WITH ONEWIRE LIBRARY
CIRCUIT AND WIRING 123

UNDERSTANDING THE PROTOCOL AND SIGNAL

ANALYSIS 127

USING THE DHT11 DECODER 132
INSIGHT INTO THE DHT LIBRARY 133
BASICS 136

SKETCH ARDUINO UNO TO UNO 138
ANALYSIS WITH LOGIC ANALYZER 143
DHT22 VALUES VIA SPI 145

12C INTRODUCTION 148

PROTOCOL IN DETAIL 150

SKETCH AND WIRING BH1750 152
ANALYSIS BH1750 155

SKETCH BH1750 WITHOUT EXTERNAL LIBRARY

159

SKETCH AND WIRING DHT20 165
ANALYSIS DHT20 167
SKETCH DHT20 WITHOUT EXTERNAL LIBRARY

170

ARDUINO UNO TO ARDUINO UNO 178
OVERVIEW OF 12C ADDRESSES 182

CREATE OWN SKETCH FOR READING 12C
ADDRESSES 183

12C MULTIPLEXER 186

PRACTICE BEFORE
THEORY

Let's talk about my approach according to practice versus theory. So
it's good to know in advance how my approach is and how |
structured all of the Project content so that you know what you can
expect from all of the projects. So my typical approach is that we are
talking about the protocols in theory as little as possible. That means
that it's not really a university lecturer where | go into details and give
you tons of slides with all of the aspects. I'm just focusing on what is
really necessary, what we have to do for the protocol and for all of
these contexts.

Practice vs. theory

Then we're jumping right away into coding and we are building the
sketch step by step. That means I'm not copy pasting anything. I'm
developing step by step. And | tell you on each step what I'm doing
and why I'm doing this. Then we are uploading the codes and then

we're making the analyzes with the logic analyzer to inspect how the
whole protocol is set up?

Can we refer the protocol analysis back to the sketch and also from
the sketch to the logic analyzer. And then also we investigate and
inspect that data sheet so that we can also calculate from the pulse
view analysis that, module data or the temperature data, with the
calculator. And also, these bits, we want later on to get out from an
outer, you know, with our own code so that we really understand
what is going on in this protocol, in this module. So combining
Sketch logic analyzer, datasheet, and then back to the sketch writing
our own libraries to get out the data.

DIFFERENTIATION FROM
WIFI, BLUETOOTH ESP
NOW

Let us make a delimitation here. We're focusing here only on
hardware protocols in the Arduino environment. That means
primarily we are talking about UART, we're talking about SPI,
OneWire and E2C and those four chapters we are covering. And of
course there are many more like USB, Ethernet, JTAG etc. But this
will not be covered because the main protocols in the Arduino
environment are those four which are covered here. And also the
whole Bluetooth topic, so the wireless Wi-Fi, also ESP-Now and
ZigBee for example.

L1

Hardware protocols

They are necessary but this will be an extra Project because the
wireless protocols are much more, | wouldn't say complicated, but a

little bit more complex in the way they interact. And therefore this will
be a separate chapter and this will be just focusing here on the
hardware protocols. That's also the reason why we need a logic
analyzer so that we also understand the basics in this Project and
can then write our own libraries.

OPEN VSC PLATFORMIO
PROGRAM IN ARDUINO
IDE

In this project | would like to show you how you can use my code
from Visual Studio Code and Platform.io to the Arduino IDE. We are
just using here source codes to get data out from the sensors of the
Arduino. And this is our main focus. So it doesn't matter which IDE
you are using. | am using Visual Studio Code with Platform.io
because if you are doing a little bit more with coding and Arduinos,
then you will like those components much, much more.

Because the Arduino IDE is OK, but it will lag in certain times.
Because one, and although | am really a Linux fan, Microsoft did
some really great work with the Visual Studio Code. And this is also
open source. And if you have some issues with sending here
telemetry data back to Microsoft, you also can google the VS
Codium. This is because Visual Studio is an open source program.
They are also open source without any Microsoft attachments. But
Visual Studio Code, which | am using with Platform.io, is just a great
device for coding with the Arduinos.

Give it a try.

Because it needs a few minutes of time to set up your environment.
But if it is set up, you will have a really great device for coding here.
Alone this IntelliSense from Microsoft with this auto-completion of the
code, where you have all of these parameters, are a little bit also
included in the Arduino IDE. But here you can also use other
languages such as PHP, etc. as well. So Platform.io is my
recommendation.

But the main project is how you can use my code in the Arduino IDE.
Therefore, | have the source code here. For example, if you click
here on such a folder, you will have here a source folder and a
Platform.io ini. The Platform.io ini is the first thing that you can open.
You can see here all of my settings from a hardware perspective.
That means | have a USB32 here. This is my baud rate. And here
you can find all of my external libraries which are used. And then you
can go in the Arduino IDE and can change the baud settings, etc.

And also can find where the libraries are. Here are the bauds. Here
are the libraries. And then you can search for example for bh17050.
And then you can take a look at who invented it. Clause. This should

be this one. Take a look at the information for example. Here you find
the clause. That's the same one. And then you can install it and you
can have here the same source code as | have. And where is the
source code? The source code you can find in the folder Source.
And here | have the main CPP. The main CPP can be opened by
any text editor.

You can copy and paste all of the content for example. And paste it
inside your Arduino IDE. Then you can get rid of the first include
statement of the Arduino.h. And that's it.

All of this content should work right away. If there are some compiler
errors it could be because Visual Platform 1.0. and Arduino IDE have
some different kinds of C++ compilers. Then there should be some
minor changes.

But often the Platform 1.O. is more stricter than the Arduino IDE. For
example here | have to set up some function prototypes or | have to
declare the functions before | use them. In the Arduino IDE that is
really a topic and doesn't matter. So for example if | have my
function here then | could use this function before it really exists. And
this is something that doesn't work in the Platform 1.O. for example.

So as you can see here the code is working right away. And this is
what you can do to transfer your code.

Another option is you take the CPP, copy to a new folder for example
and then you're changing the context to INNO and then you can
open it also with the Arduino IDE. As you can see, double click on it
and then it should be opened. Need a little bit of time. Then | get
here a prompt that | have to change it into a folder. And there we go,
we have it. Deleting the Arduino.h and that's it. So this is how you
can easily transfer the code from my Platform |.O. to the Arduino
IDE.

DIFFERENCE OSCILLOSCOPE
VS. LOGIC ANALYZER

In this project, | would like to show the main differences between an
oscilloscope, which is on the left side, and a logic analyzer, which we
have on the right side. And as you can see here, | have this tiny
device. And the main one of the main advantages of this device is
that price. It costs you around €20.20. It depends on where you get
it.

| bought mine for around €12. An oscilloscope is really a big
measurement device. It costs you a couple of €100, it depends on
what you need. And we will dig a little bit deeper later on in the next
project about all of the features of on logic analyzer. But to give you
here a short summary, we have here 8 channels, which is completely
sufficient for us in the Hopi area.

Differences

Oscilloscope Logic Analyzer

And with an Oscilloscope, of course, you have to watch how many
levels you would like to capture. But what is now the main
difference? The main difference is that we can measure with an
oscilloscope analog data. That means you can measure on your
circuit, for example, how is the voltage between and diodes. How is
the voltage or some, references according to time to the voltage in,
upside and and capacitor.

So it's more accurate, and you can granulate your information in
much more detail. On the other hand, the logic analyzer is only able
to convert the voltage into lead levels from 1 to 0. That means when
we have 3.3 volts or 5 volts, which we normally get from our early
inos and ESPs, Then this will be shown as in 1. And if we have no
voltage, then it will be shown as a 0. And this is also what we talk
about TTL.

This is the transistor logic level. And in this case, our logic analyzer
is only able to get series and ones converted from our spectrum from
the voltage. And here, we can measure, of course, also this kind of
logic levers. but much more. And you also see more analog values
as well.

So as you can see, much more detail, much, much more | would say
is a little bit complicated, but it's a good handheld and good
measurement device if you want to dig a little bit deeper in the world
of electronics. What we are focusing on is investigating and
analyzing all of the different kinds of protocols, and therefore, a logic
analyzer will be here our best advice at a really good price. And later
on, we talk about the features. The main difference is that you can
also buy a logic analyzer for €10200, and then we'll receive the
specs later on.

LOGIC ANALYZER
CHARACTERISTICS

So before you buy a logic analyzer, you go through your mind and
think, which one is the best one? Of course, always a cheaper one if
it works efficiently. But there are main differences, and | would like to
go through all of them so that you have a good overview. What is the
best logic analyzer for you? So the first thing | think is one of the
important points is the sampling rate.

Characteristics

Sampling rate and number of
channels

Memory depth

Real-time analysis

Protocol decoding

Software

Design and durability

The sampling rate tells you how quickly the logic analyzer can
capture and store digital samples of the signals that we are
analyzing. Here in our case, we have 24 Megahertz. And in my
opinion, this is absolutely enough for the hobby area. We can
capture e squared SPI, UWART, One Wire. Also, some non standard
sized for DHT and temperature sensors, etcetera, works absolutely
fine and accurately.

And higher sampling rate, allows you a little bit also more precise
capturing and fast changing signals. So the number of channels
indicating how many digital signals can be captured simultaneously.
And a logic analyzer can hear a very bright range. So now you have
to think, okay, my ESP, etcetera, the adenos have much more and
megahertz, maybe also the protocols. have it.

But as | told you before, with those protocols, which | mentioned, we
have 24 Megahertz here. Absolutely. No problem. The number of
channels. So here we have 8 is also absolutely enough because the
maximum we are using in this Project will be, | think, 5 channels for
SBI.

The other ones e squared c, u r does etcetera only needs 2
channels, one wire. Of course, one etcetera, and also this non
standardized, | think also two channels. That's it. Plus we don't need
a normal hobby area with the otherinos and ESPs. Memory depth.

Yeah. Memory depth is in point. how men, what is the amount of
storage capacity of this logic analyzer? And often, this logic analyzer
comes also with a device so that you don't really need, PC or
notebook, etcetera. But in our case, we are just capturing the data
with this logic analyzer and putting it into a Siggroke pulse view and

part 2 will be our main, yeah, the main program where we're
analyzing the signals afterwards and therefore also this could be
neglected in my opinion.

Also, the real time analysis and protocol decoding, these are all
software related issues in my case. And we will go through all of
these points, but, this depends on which software you're using. We
are using, and we come to this also later on, open source software,
which is available for Mac OS Linux, nearly every distribution of
Linux, and, of course, Windows. And therefore, it's easy to use, free
to use, and we really use them. But | would like to show you here
also an auto variant.

So one of the best logic analyzes on the market in my opinion is
Salia. And those devices cost, | think it starts at $1.50. It's at a but
those are really high precision and really reliable devices. And This
Salia software has or the logic analyzer has also its own software.
It's called Salia Logic. You can also download this logic software for
free.

But if you take a closer look at the license of this software, you can
see It's, attached that you have bought an original cell geologic logic
analyzer. And therefore, we always conform regarding the license.
Therefore, we are not using this as we are using the open source
software. And also because we can also have an external decoder,
and external decoder is really an important point because, with
Python, you can adhere to your own programs and can,
implemented in sick rock, pulse fuel. One point, maybe this is also
something for you. This is a really, really, cheap product, and you
see it in the whole handling, etcetera.

It's not very, really durable. And | think in a few months, etcetera, this
will fall apart maybe, but maybe not. And as you can see here, this is
just a good product design. So if you like product design, etcetera,
then maybe you should avoid those cheap ones. If you are just
wanting an logic analyzer, which is working and is cheap, then go for
example from asset delivery.

PRACTICAL USE CASES
AT A GLANCE

In this project | would like to give you an overview of practical use
cases where you can use your logic analyzer in a hobby area. And
we start with, of course , understanding. We often use some external
libraries to get data from a sensor but do we really understand what
is happening there? And also if we want to use sensors etc with for
example an ATtiny or an ATmega where we have limited resources
then it's often the case that we have to capture the data by ourselves
because the external libraries are too big.

And therefore it's a really good way to understand once you have
understood the principle you can fetch the data on your own. And
also the signal capturing that you are able to know what is a logic
level, how you can transform a logic level into ASCII code into real
life sensor data etc. And this is really interesting because it gives you
a deeper understanding how all of this ecosystem is really working
together. Trigger connection.

Really fascinating point because often when you are searching for
some errors in your electrical devices etc then you have to know
when something is triggered and therefore we could also make an
example later on that we start the measurement when something is
triggered. And then you can see okay in this time area. This certain
package will arrive then | have to change something etc and this
gives you another perspective of the whole conditions of what is

going on on your circuit.
g 2 T

Practical use cases

Understanding

Signal capturing

Trigger condition
Analysis of time

protocol analysis
Analysis of captured data

Protocol analysis and we will go through all of these different kinds of
protocols and you will see if you have once understood the main
principle it doesn't matter what or which protocol it is because nearly
the other approach is nearly the same. There are nuances but we go
through all of them. And of course analyzing the captured data this
will be our final point that we are able to fetch the data directly from
the sensor without any external libraries.

And to see what you can do with that so here is my sensor let's get
here for example this one this is a CO2 sensor and it will measure
various data but | just got the sensor and of course you can see
which one it is but | see okay this is an SCL and an SDA so you can
here think about okay it's an E2C and then you can fetch here the
E2C address with a tiny sketch this is also one of the things what we
do an E2C scanner and then you can capture the data what
everything will be what we get from the sensor and in the data sheet
then you can see how the data is processed and so you can make
your own library because this library for example is so big that | can't
use it for a tiny device and therefore this is an USB32 of course have
enough space but not for the ATtiny for example.

II_E

[N\
Y
E-

Another use case is that this is an IKEA sensor it's an air quality
sensor and when you open it up you can see here the PCB there are
some points some looks like UART and therefore you are soldering
here to jumper cables and connecting to the logic analyzer and this
is exactly what we are doing then later on in the UART chapter and
then we are analyzing what is this microprocessor sensor this
microprocessor sending data from the sensor and we are capturing
this data and try and reverse engineering and later on also process
this data with an ESP8266 a smaller device and send this data for
example to a database or visualize it in our home assistant and with
all of these projects afterwards | think you have a very good
understanding how the protocols are working what you can do with a
logic analyzer and how to investigate your own electrical PCBs.

MASK WITH AND

Now we are in the second part of our basic chapter and | would go
through some bit operations. And we're using all of this content later
on in UART and E2C to get and capture data directly from the
sensor. And also we do all of these inputs what we are going through
in this chapter in the last two projects in the Arduino environment. So
this is the theoretical part and then we do exactly the same
examples in the Arduino environment.

Lt Wt

And | would like to start with the first concept and this first concept is
the AND. And it will be used with the sign of the ampersand. Don't
mix up the logic AND with the Arduino environment. So if you're
using an |IF condition you have the first condition and a second
condition you're using two times this ampersand. At a bit level we
are only using one ampersand. And the AND condition of the bit
level means that we are having two numbers and each of these two

numbers have to be true and then the result is also true. So let's
check it in a truth table.

I'm sure a few of you know a truth table. It's some basic concepts but
you may do it also in school. So we have here a number one then
we have a number two and this is our result. So now when we have
the first number and the second number these are two zeros and of
course our result with the AND is also zero. If we have a one and a
zero this will also lead to a zero. The same exact example is if
number one is zero and number two is one then we have a zero.

And now you see the last example is if we have two numbers one
then it also the result is here one. So this special case is absolutely
necessary that we understand because why do we need such an
input? Because we want to mask some numbers here. What do |
mean with a mask? So for example if you have here a number |
store it in the variable x. So just an example: some binary value what
we get from a sensor for example. Soitsa0110andlhave 110
0. So eight bits is one byte.

This is a typical order of what we are doing later on in all of this
evaluation. And now the case could be and this will be exactly a
case. | think in the DHT20 that we only want the last four bits. So this
one should be deleted , this one and this one. And we do not do any
string operations here. We make it in a mathematical way and
therefore we could say here our second variable and we are
indicating in the Arduino environment with a zero b that now a binary
value is coming. And then we say four times a zero and four times
the one.

So let's see what | want to do here. I'm writing here those numbers
once again so that it is really really clear what I'm going to do here 0O
00011 1and1sonow the idea is so let me go here a little bit up
that my face is here something covering as we did here in the truth
table if we have 0 0 thenit'sa 0 0 1 0 0 0 and now everywhere
where is a 1 in our original number there will be also a 1 so that
means the last four digits willbe 0 0 1 1 0 0 so what we did now is
we are masking out the last four digits by making an AND operation
with these binary level so in the Arduino environment we are doing

later on x and y and the set value is 1 1 0 0 why is that so because
the leading series doesn't need has any values so we only have here
the last four digits and we are copy the digits because here we have
the four ones and with this operation by each single digit... digits
what we want and this is exactly what we are using later on in
evaluating here our sensors one special case when you when we're
investigating some libraries we see another variant of this so for
example we see here some hexadecimal values and this 0x
indicates there's an hex value coming and Of means that we... f

means

15 with the potential 10 and if we convert this to binary then we have
here 1 1 1 1 why is that so because thisis 124 8 12 14 15 and so
we could also manage this alternative so let me write this here
alternative set equals x and 0 x O f is the same is the same thing like
we did here but it has a different approach because here we have an
hex and the other was was binary binary so as you can see different
approaches same output and this is necessary because maybe you
are seeing those kind a little bit often because it's a shorter writing
yeah and this is what i would say a bit operational level the end
operation what we are using with masking.

MASK WITH OR

In the previous projects we talked about the and now | would like to
introduce you also to the logical or with this vertical pipe. And also
here don't mix it up with the logical or in the Arduino environment. So
if you have an if condition with the first expression is something true
or false or the second expression and then we are using two of these
vertical pipes of this sign and the logical or a function in that way that
we are comparing two values and each or one of the value is true
then also the result is true.

So let's face with some truth table we have here number one as
before then we have here number two and we have a result. So if
let's give us some space here if we have a zero in the first number
and a zero in the second number of course the result will also be
zero. But if we have one and zero here, this leads us to a true result.

If we have here and true in the second number or one in this sorry
second the second number is one or true both could could be used
then it's also on one in the result and also one and one will lead to
one or true to the result. Very good and now you're asking you know
maybe why do we need those example and this is also a use case
what we have later on because in the sensors often the result will be
saved in 8-bit registers and one 8-bit register is not enough so we
have to combine two of them so that we get one major number out of
it.

Speaker 1 (00:02:05) - So that could be that we have here the first
number so the first byte could be one one and four zeros because
we're shifting here around some bits we come to this later on we just
take this for granted and have here a second number so that | can
explain you what the OR operation is doing here and now | would
like combine those two values that this will be here here this first part
| would like to have in my number and the second part and this could
be done with an OR operation so my new variable set will be x ory
and this is be done let's write it once more so that we can compare
with our truth table 00 0 1 0 1 1 and now we can compare with our
truth table if there is an and one in our expression then we can do
here the result also 1 0 0is 0 O there'sa 11 0 1 and 1 and this will
be now our new value and as you can see here now we combined
both binary levels with the first expression and the last four bits and
this is now our new value 10011 0 1 1 and this could be then
translated for example if you take the calculator we can change here
to binary also under windows | think you have to change here to
scientific and then you can also type in here binary values so 1 00 1
10 1 1 and then you have here the potential of 10 or we can change
here to decimal and then we have the value 155 and this will be
done with two registers a little bit of bit shifting and then with the or

expression yeah with this operation we are using later on also to
calculating here some values and | think now we have the two major
operations with the and and the or of course there are a few more
with XOR and NAND etc but we are just keeping it simple because
this is what we are using later on in the other chapters.

BITWISE SHIFT

One more concept we need to know before we can start with the
practical example, and this will be the bitwise shift. So a bitwise shift
could be, for example, we're starting right again with one variable,
and this variable holds a binary value from example 1101, and then
we have 1 00. So let me see. Is everything good? Okay.

And now | would like to shift here to the left. with those 2 signs. So y
equals to X, then | would like to pitch shift to left and how many
spaces | would like to shift. And for example, | would like to shift four
times to the left. That means now my new y level could be, 11
010100.

7. Bitwise shift.npd - VLC media player - %

And now four times the new is wrong because we shifted it to the
left. A few things to that. We have to change the wire here. Now to

binary. It should be long or something like that because a binary can
only hold 8 bits.

So if you're not changing the data type here, we are not adding 4, or,
a pan tier 4 of these zeros. because this will be shifted to the left. So
those 4 will be deleted, and this will be the new sign. But we want to
have a long because the practical example here is that we're
combining 2 registers from ABSENCE. So for example, we're
reading the first eight bits, then the last four bits sort of only half of
the and register, which is in the DHT 20 example.

And, therefore, we only need the first four bits, and this will now be
our new number, for example. And this, you can also write another
variable so you could say for example, x, bit shift, 4 times, and then
we could use an or and | would like to add here those 4 values. And
now my set value could be Zed equals 1101 011 0O, 0, and now the 4
last digits, and this will now be my new number with this expression.
And this is exactly what we are doing later on in our evaluation. So it
means X, pitch shift to 4 so that we get those values.

And then we're making an or with those 4 digits and adding those 4
digits with this operation to this number. If it's an example, we have
here, of course, also the second example with shifting it to the right.
same principle, a little bit different in the output. So let's see. We
have here our x And we have 0101, and we have, yeah, 4 of the 0s.
And now we are seeing our y variable is x pitch shift to the right four
times So what the result will be now is 0000.

The new 40s And then adding the number here. So what have we
done now? We have shifted those 4 to the right, that means they will
be deleted. Nevertheless, what kind of data type we have. And those
4, we are putting here into the place of this one.

And those 4 will be here. And this is exactly what we're doing here,
and the result is now because we are deleting all of the series in
front because they have no value. And then if it's 1, 2, 4 equals to 5
in the 10a, 10 potential. Okay. So now we are also aware of the
concept of bit shifting to the left and to the right.

We also have some use cases here later on. especially this one will
be used because this one, we're using later on also for deleting
some numbers, etcetera. And now we can use it also later on in the
arena sketch.

PRACTICAL EXERCISE
EXAMPLES 1

Let us start now in the practical part. I'm using a platform you own
with Visual Studio Court, and if you like the audio ID, that's
completely okay. You can use all of my codes also in the audio ID.
I've made a project on how you can transfer the code. And now we
can start with the bit operations.

I'm using an Arduino Uno and clone it. And this is where we execute
the codes now. And now we are starting here in the setup part. We
don't really need any external code because | only want to use it in
the setup because the code should only execute once. So now, we
start with the first example, and we are creating the co step by step
together so you can follow me along with all of the examples.

So I'm creating here a new variable in the data type with byte, and
we are indicating that this is really a byte with the Ob. And now 8 bits
can follow. And for example, we are saying here the following
number. So this one with 1000 in the first four bits and then 0 111 in
the second 4 bits. 4 bits are also called nimble, and therefore, it's
common, really common to, to use half of the bits also.

Yeah. Okay. And then | would like to show you how we can print out
such numbers. So for example, you could say print And this is also
what we are using later on because | want to print out, what is the
binary value. And, also, | would like to have the same value in hex as
in decimal.

And what will happen if I'm not indicating here the second So then
let's upload the quote. And what we got, we the handler operations 0
prints with the baud rate 115200. Then | got my binary value as we
type it in on line 22. Then | got the hex value, the decimal value, and
also a decimal value because if I'm not prompting here, second part
of the, parameter of the function, then | will also get the decimal
value So far, so good. We are using this example very often because
it's a kind of debugging and I really like it.

So, therefore, just commenting out all of the lines before so that we
go on do not get an inquisition about the reused variables with
control and the hash example, you can make here in Visual Studio
Code, commenting out many lines at once. Then | would say we
start with the first and and or example. So for example, we have here
invite x, just with 3 bits that we can see here in the example, 111 And
now | would like to make here an, yeah, for example, we make here
value 1. and value 1 equals to X And Y, and then we copy this 1 and
say byte value 2, is x or y just to see what happens if we're printing
out those values Then we say well 1 in binary. Copy this 1 and say
well, you too.

So just before we hit your upload, we think about what will happen.
And if you can reproduce the result. Then we upload the codes, and

we're getting out here, halibut operations, and only one radio. Why is
that so? Have you expected those results?

Because when we are making our end operation here, we are
always getting 0 because 010101 is 0 and 0 is not printed out
because it's just 0. And here, we're getting the value, from our own.
This is three times the one. So a little bit of, funny experiment. Then
next example, what we're gonna do is we are creating a new byte
here, and we'll call it wall 3.

And, before we do that, we are needing here some new variables
that called bytex2 equals 0 BM. And now we have 1000, and then
we have white and this | would like to have in this case. So we have
here 10 and also here so that we can get a proper example, then
we're making an order here, | would say, with my tool. And now we
are printing out this example in binary and this should be a value 3.
And before we hit upload, just, go room, you mind what will be the
finished results.

And, of course, it's an all operation, and we have here on both sides,
and each digit on 1, and therefore, we got here the result 4 times 1.
Nothing that we don't expect. So now | would say we are trying to
solve the wise operations, what we did in our theoretical parts. And
therefore, we are starting with the new x. So let's indicate here the
example, pitch shift, the byte x 0 b, then | copy here the values.

This is the value from the left side. Now | would say the byte y is x
times 4. So we do it, firstly, in the byte way. And then | would say
long yZ2isx bit shifting 4, and then | say long. set is x, but this is also
an example so that we could do it in one term.

So now we're printing our different kinds of values here. So we have
first the y as some binary, then we have the y2 as some binary, and |
would like to have here set value as a binary. So as you can see
here, this is the 3rd example. Let's upload the code. So can you

reproduce the results? The first example and what we have here are
those numbers.

Why is that so? We have here the data type bytes. And this is our
saved X And now we are shifting four times to the left. That means
we are creating here the value 0000 and shifting all of them to the
left. But in and by it, it only has room for 8 bits.

That means that those 4 values will be deleted, and we only have
those values. And the first O will be deleted, then | have 1, 2, 3, 4, 5,
6, is the correct 1, 2, 3, 4, 5, 6. And this is the reason why we have
this value. In the second example, | changed the data type to long
and | shifted the x to the left with 4 digits. And as you can see now,
we have exactly the number, what we have here, but also the 4 digits
that we added to this number.

And this is what we are using later on because we want to have the
first register and the second register definitely had to make the
space that we can add the second number because it's different.
Different approaches. Maybe we should add 2 registers to each

other. Maybe we have to combine it. This is what the datasheet tells
us, and therefore, we're going through here.

SpaceX. And the third one is all in 1. That means we'll make a bit of
a shift in and long. 2 for, 4 bits, and we made an or we made an or.
That means the last 4 digits are those values and the first 8 digits are
those values.

So art is correct. Yes. And this is a common way to approach how
we use the results from a sensor, for example, in a way that we're
using here the bit shift and then also, in the same line, the or
operation. So now we can proceed with our bid shifting operations.
And we have one left, and this is the bit shift to the right.

So let's focus here. Can | place it a little bit up? | don't think so. So |
have to zoom out. So, now, okay, pitch shift to the right.

That means we have to use it here. Bit shift to the right. Our byte x,
for example, is Ob, this one, And now we want to have the byte y is
X, pitch shift to the right four times. And now we're printing out our Y,
O print line Y in binary. Let's see.

And as our calculation was, let's do it a little bit on the big side here,
we have shifted to the right. That means all of these will be to the
right and replaced with Os, and all the Os are deleted because there
is no value inside. So we have 010, and this is exactly what we get
here out of our operation. And now | would like to give you and show
you an example what is really also common when it comes to
evaluating, the values out from and sensor. because often we are
using the output with serial read or with e squared t read, and then
we are saving the data inside an area, and then we are fetching and
working with the area.

So how could we do that? Next example, with an array. So we have
here an byte error, and this is called buffer, for example, with the
place of 2 arrays. Then now | am making a static because normally

we are using here in 4 and reading flags out the values out, but now,
| place in the index O the first value on just for training purposes. And
then on the 1st index.

So we have 2, 2 arrays with index 0 and index 1. And the second
one has this one. And now with this buffer, what we would like to do
now is we want to work with it, and we want to create a high end low
byte. So that means for example, let me show you, the high part, just
for explanation, The high byte is the buffer 0. And this is something
that stands in the datasheet.

And the low byte, for example, is in the buffer 1. So how can we
know what should be the result now? The result is high and low
bytes together. So not operations is the first value and the second
value. This should be the result.

And how can we do that? So for example, | could say long value is
buffer, 0, and just hold on here a little bit and try to think how you
could create those numbers with Bit Operator. because when you
think on your own, it's much more that you comprehend all of the
concepts. And now what we are doing is we are creating space. We
are shifting eight spaces to the left because it's long, We are not
deleting everything.

We are appended, and then we are making a logical or with the
buffer size of 1 because this is the low byte. And when we are
printing out now, the value of value in binary and also in decimal.
This could be our desired value, what we are getting from a sensor,
like the pH 1750, 1750, | think the light sensor. So this is one before.
We don't need this one.

So this is now our combined value. As you can see, the first two are
printed here. This is this one with a high bite. And this will be,
indeed, tomorrow, those values from, 12,305. And this is a way how
we can access data from 2 or 3 or more registers in an 8 bit space, 1
byte space, and we can then have higher values like those one, as |
show you here.

PRACTICAL EXERCISE
EXAMPLES 2

And as a last example, we of course want to check if our theoretical
masking was right or not or correct. And, therefore, we start with
spike x equals. So this, | would like to copy and paste because I'm
not really good at typing the serious ones. So this should be our first,
is that right? Yes.

And here 0011, this is the y part. Then can | zoom in here with yes.
So now | would like to create the byte here. The set is x and y, and
we're printing out 0 print line zed. And let's take a look.

If everything works as expected, we should get the value. 12 is 12
right. We have here 1, 2, 4, and 8, 8, and 4 is 12. Sounds good to

me. We can also then give out here the binary and as well as the
decimal.

But before we do that, | would like to show you the second variant
that is called with an Ox at those values with the hex value 0f. And
now we are creating here. Those values should be exactly the same
result as we did here. Let me see. Here we go. here with the binary
value so we can replace it both.

Then we have some ores left here. Therefore, are they the same
values? No. Biotech is 01101234. and also he applied for 1111.

Set is xory And then we have a serial print. There we go. and tack
and here, our pie, oop. | missed this one, and now also here and
byte is missing, but now it should work. Then upload the code and
the result should be an 11.

It's not correct because | missed something. | have to enter the Ob in
front because otherwise, it will be converted from an integer to
binary. And now it's a binary value, and now we should have, yeah,
the same exact results as before. And this is what we calculated. Not
really because | made a mistake here.

but now the value should be as here. Now it looks the same. Yes.
Okay. An error in and the byte.

y, but now we have the same examples. We have to check if our
theoretical parts are correct, and it is. And now we are well prepared
because we did a lot of, or a few examples in the audio environment,
and now we can jump right into Paul's view.

WHY PULSEVIEW

We started this chapter by discussing why we should use pulse fuel
from sickrock. And one of the first points is it's open so | really love
this whole fuss philosophy, free and open source. It means as you
see, you can see in the license, we can also use it for commercial
purposes. And, also, we can add our personal programs and
decoders to it. But to this, we'll come later.

PulseHire has a really good, graphical user interface as well as a
command line interface, but we only use the GUI here. And as you
can see here, it's really, really easy in the overview. We do not have
too many functions and this is what | think it's really an advantage to
other software from logic analyzers, like logic, etcetera, because it
keeps you to the main function of what we want to do, and this is we
want to decode the signals. And, we can jump you a little bit back to
the protocol decoder. Sigrok supports a lot of internal decoders.

Nl
u
snﬁr'bk PuleeView

[+ Sa s S minien § = e |

And when we haven't found anyone that's suitable for our signals,
Then we can program with Python by ourselves, or we can find
someone, for example, on GitHub. And this is exactly what we are
doing in the, | think, 1 wire chapter. We are downloading an external
decoder, which was created by someone in the community, and this
is what you can do with open source software. Use it and find other
software. absolutely cool. Yeah.

Cross platform, supportive or compatibility because this is also what
| like in the sickroke environment, you find here analytics version for
nearly every, this Revolution, Windows, and, of course, Mac or Mac
OS. And if you have trouble downloading the actual version here is
also a reminder. Just use the older version, for example, the 0 point
4.2. This is the version | use. | think it's an app image for Linux.

So, therefore, just download this one. And, of course, on the
Windows and Mac OS just downloaded, install it right away. This is
not really something, rockets sense. And as you can see here,
there's also a command line tool, but this is not what we cover here
in this online course. Yeah.

And then what also is really, really necessary that we check on is the
hardware support. If you buy a logic analyzer, keep an eye on if the
logic analyzer is covered here. In my case, this is the ACET delivery.
You can get it on Amazon for really a few bucks, and it's covered
here. But, also, all of these cheap Chinese clones from eBay,
etcetera should work because there is the same chip inside, but | will
show you how you can, choose the right hardware here in Palmsville
later on.

And | think a lot of these loans have the same chip inside, so you
can follow me along. But also other and expensive ones, like the
sallyas, etcetera, and This is why | really like it here in the past year
because it has a broad understanding and support of hardware.
Yeah. And also the community is really good. As | told you before,
there are a lot of external decoders which you can find in GitHub,
etcetera, and implement 2 year projects and have fun with analyzing
different kinds of protocols.

DOWNLOAD

For the sake of completeness, let's go through where you can
download all of the things. So on sickrock.org on the left side, there
are downloads. And here, you can find a different kind of platform.
For example, for Linux, you get an app image for Windows and
normal Instala on for Mac | think also an installer and container. So
here, you see some notes.

So the first links are somewhere broken or what else, doesn't matter.
Just use the above, the below 1 of the pulse view 0.4.2. It works also
the same as the newer version, and they're good enough to go. If
you install here are some, as you can see, a few more inputs about
all of the binaries. It's that, but just install the container here and
you're ready to go.

Downloads

MOTE: As of Fetruary 2023, some of s Nightly downiaad lnks Debow are Droken due 10 ISSGES with busid server n D mennwiila, you can either g [he stabile version (bl m 7020}, of e Decurer J027 yhily

ot

For Windows, | just installed it. Just clicked through the installer.
There's nothing special. And you can see here this is the Windows
version and this is the Linux version with the app image. | have
exactly the same features.

So nevertheless on which platform you choose and what working,
you can do it, the exact same things as | did it. And also here, just
switch to a talk stream, talk theme, but all of the rest is the same.

BASE SKETCH FOR ALL
EXAMPLES

In this project | would like to introduce you to our base sketch. The
base sketch will be that code that we are using for every other
project and this will be our initial starting point where we code
together and build up step by step our code. Therefore we have here
just a basic one and we are using the platform EO with Visual Studio
Code. So if you are with the Arduino IDE then take a closer look at
chapter one where | explain how you can transform my code to the
Arduino IDE so that you can follow me along with the given code.

So | start with including the Arduino.h. This is the library that is
necessary that you can use, strings etc. for the C++ environment
and especially for the Arduinos.

And | am defining here a pin, for example pin 8, because our main
purpose in the next project is to make our first measurement with the
logic analyzer and therefore | just want to make one pin on a signal
output and then we will measure those pin 8 for example.

But those pin 8 could be any kind of pin, it just matters that we are
using a pin mod that is an output, setup finish that we know, ok setup
is through and this could be now our pin 8 that we have here and
digital high and digital low for around about 300 ms and exactly this
signal is our main purpose for the next project.

CONFIGURATION AND
CONNECTING LOGIC
ANALYZER

Now I've uploaded the codes to the Arduino UNO and what | would
like to do now is, so let's switch here to embed a few, | have here an
extra jumper cable because it's easier for us to grab the signals. So |
have pin 8 here and | also need a ground here. Then we can go to
our logic analyzer and with the logic analyzer | need the first one is
the ground. So ground is always necessary in each measurement so
that we have the same potential.

So just grab this one, be aware that those two don't get to each other
and then channel what you would like to use.

-’. --' /

| have a few more channels here so | grab one of the next and
connect it to the Now | can connect my logic analyzer as well to So
let's see if we have a little bit more cable here. Two wires are
connected to the logic analyzer, one here and one here and what we
do now is we're switching back to our PulseView and in PulseView
now, so let's turn on, we are seeing here for example on the left side
new window, new analyze window.

So new session if you have another language you can change it
here on the general settings and what we want to do now is the first
point is we click here on Saleae logic because we want to use here
another device and for the main part with this cheap logic analyzer
we can use here the FX2LAFW generic driver. Click on it then scan
for the device and here we go. Here stands Salea logic.

| don't know why but I'm using it and now we are ready to go. That
means our sketch is performing right now. We have connected our
logic analyzer.

We can see it with the red dot and what we can do now is we have
to change both settings above. That means | would like to sample
now one gig sample and | would like to have here for example 12
megahertz. That should be fine. Then let's click on run and let's see

if we got here some output and as you can see | have obviously
attached the signal to D1. Then | click on stop and here is my 300
millisecond signal.

With the mouse wheel you can zoom in and zoom out and with this
red clamp we could say that | only want the channel where | have my
signal and this is in my case D1. So now | have only my signal and
what is also very convenient is the measuring tool. Show cursors
and now | can grab the left side and the right side and can for
example measure here the time where there is no signal so a low
signal and here you can see 300 milliseconds. If | push it to the high
signal it should also be 300 milliseconds.

We got here the 300 milliseconds which we have here defined in our
loop. So pin high 300 and low 300 and if | would like to have here a
shorter time frame | could change here so let's get rid of that one gig
for example to one amp sample. | click on run and then you can see
| only get here a high signal so | need a more sample rate 10 m to
get here more of the signal out and this is the reason why | would
like to change here always at a minimum for one gene that | have
here and write a wider span for capturing the data.

The change of the megahertz is how fast the signal will be captured
and if we have a signal which is very fast and we choose here in our
measurement device a very low capturing signal then of course the
whole capturing process will be not really reliable and therefore it's
necessary that we often go above that what it is sent so that we can
be sure that it is captured and this is normally round about 12, 16 or
24. | often give it just a try and click on run so this is also always my
first purpose, try and error and see if something comes out.

So this was our first test now with the logic analyzer and the first
settings and that's it nearly all of these settings are used later on
also in all of these examples. We can use also some external
decoders or protocol decoders click on add protocol decoder and
here we have a lot of different predefined decoders we are using
later on for example the UART and just by clicking on it we have
here in second channel and can make all of the settings here but we
are using those settings a little later on in the chapter UART 1Y etc.

This was just a first glimpse of the logic analyzer, how it works and if
the connection is right with the PC and the Arduino UNO.

SAMPLES AND MHZ
SETTING

Let us discuss in this project once again the concept behind the
sample rate and also the time period what we can set up in the logic
analyzer or in the pulse field. So our logic analyzer is now connected
and | would like to change here from 1G to 2G. What is the main
change here? And if | keep the mouse over the setting you can see
here that | have a total sampling time from 167 seconds. If | change
it to 1G then of course this will be reduced by half and | only have 83
seconds. And this is the first concept. How long would | like to
capture my data?

And the next point is here the sampling rate. And this is a really
important concept because the sampling rate of a logic analyzer is
the number of data points that we would like to record.

So that means if the sampling rate is too low, for example in kHz,
then fast signal changes can't be captured. And we will do this
example later on. That means if we are sending data on the serial
monitor or sending some ASCII's and we change here to some kHz
setting, then the logic analyzer is not able to capture all of the data in
a reliable way.

And therefore it's always a good point to use something in the
spectrum of what the Arduino Uno is, a little bit above, so that we
can be sure that the logic analyzer can capture all of the data. So
here is our example, so let's try it out. If | use the first 20 kHz here, it
doesn't matter because here we have 300 milliseconds. This is of
course a signal that | can capture here.

But with faster protocols, E-squares, C, SPI, etc., it's really
necessary that we are changing here according to the specs to the
Arduino or ESP, so that we can then have a reliable signal. So often
when you get here in the signal processing and you find some
strange values, keep in mind if you have also changed the sample
rate.

FREQUENCY AND
MILLISECONDS

In this project, | would like to discuss with you the concept between
frequency milliseconds and what is the relationship to it. because
often, we can find in data sheets, the term and the data frequency,
and not the milisack. And also when we want to calculate or find out
the right bar rate, it's necessary that we can recalculate from
milliseconds to frequency etcetera. And therefore, we can use here 1
Hertz is 1 switching cycle per second. And 1 switching cycle is
defined you can find, for example, this is one data process, etcetera.

So, in our example, that means, Let me see here. Yes. 200
milliseconds, but we use 300 milliseconds. So just assume we had
200 milliseconds. is 1 5th of a second.

1 Hz=
1
switching
cycle
Sec

Switching
cycle

And with the basis of 1 hertz is 1 second, we can riff or transform it
to 5 hertz is 200 milliseconds. And this is what we keep in mind. So
when we are using some analyzing techniques, then, of course, you
can now use the Hertz data, or you can also use here the
milliseconds data. And when we are switching back to our previous
example, we had here 300 milliseconds. And you can also find here
the data 300 milliseconds and also here the value of the Hertz.

So let's reduce. So let's reduce the cursor here and go to the left. It's
around 200 milliseconds. That's good enough, and you can find here
the 5 hertz. And, therefore, it's easier to recalculate, to transform it
so that we know how many seconds do we have here in our
capturing data?

BAUD RATE

Let us talk about the bot rate. And I'm sure all of you have already
used the bot rate or the settings, but are you aware what the bot rate
is? thread is. So one part is the speed when one symbol is
transmitted per second. An example.

So let's assume you are right now in a lecture. Good to know. We
are already in a lecture. And therefore, when I'm speaking for
example, 4 words per second, that means the bar rate is 4. If I'm
talking a little bit faster, for example, 20 words per second, Then, of
course, | will transmit more words, more information, more data, and
this could lead to you not really being able to comprehend all of the
things that | am talking about.

Baud rade

| baud is the speed when
1 symbol is transmitted per

But with four words per seconds or let it be 2 words, then it's easier
for you to understand, but | need more time to transmit all of my

content. And this is the same with the bot rate. And normally with the
ESP cert the 2 or with the Adi and Uno, we have some predefined
alterations. So, for example, for Uno, we often use 9600. That
means 9600 symbols could be transmitted per second.

And you might have mixed up the pulse, right, with the serial monitor.
In the end, you saw just some squiggly lines or some mixed
symbols. And this is because the serial monitor and the Arden Uno
have a different bot rate, and then they can't communicate because
you have to be here at the same bot rate. that the sender and the
transmitter can really communicate in the right way. And the portrait
is also necessary for us to understand Okay.

The ESPs. So the 2, for example, have, normally, we're using the
portrait 1152, 0 0. And there are a lot more different portraits. And we
are using, different kinds of, the portraits that later on, for example,
you are or in the E squared C chapter. And we are also trying to, and
this will be also covered in the Ul section.

trying to measure is, and then we try to recalculate what is this, what
kind of boundary is this? Why do we need that in some, logic or error
inspecting or when we have an external PCB, we are capturing data.
And then we want to use this data, for example, with an outer
uniform. And therefore, we have to know what part rate is this MCU
communicating or this sensor. And of course, we can take a closer
look also in the datasheet.

But often, we only can capture data and therefore, it's necessary that
we also can recalculate from the time which power rate it is.

PRODUCE AND
MEASURE PWM SIGNAL

In this project, we want to analyze PBM signals. PBM stands for
pulse with model and it's used in the arduino environment for
simulating analog output with digital signals. And therefore, it's a
perfect use case for our logic analyzer to test the logic analyzer and
to inspect such PBM Signers. And we are using our basic sketch
here, and | will edit it here. the base sketch.

And therefore, we say, for example, the PBM 1 is on the pin. Let's
see. We are using pin 5 because it has to be a PBM pin, and you will
see it with this squiggly line. on the board, then we have PVM 2, and
we would say here in digital output. It's on the 6th pin, and we have it
here on the 7th pin.

Then we say in the output, of course, in the setup, we have to also
output all of these 3 signals. pvm1, pvm2, and the teacher. And now
in the loop, we are making a delay here. And normally, we are
skipping delays because they are really, really bad because of the
breakup or whole loop. But in this case, we can use it.

So let's see. we start and we end with some 500 milliseconds delay.
And then we could say, for example, analog. Right? And if you're
doing this with an ESP32, you have to include an external library
because in the standard core, There is not really an analog write
function implemented.

So analog write, PBM 1, and | would say 20. Then | will explain in a
minute what we are doing here. So now it doesn't work. Analog write
PWM tool. Here, | will have a duty cycle from roundabout 200.

And then | made a digital write that we can compare these 2 PBM
signals, and | would say a digital higher. Then | will copy all of that.
We're making a delay of 500 pasting in this block, and then we say
0, 0, and low. So what we are doing here in this loop, we are
producing here 3 signals on 3 different channels. 1 the PBM 1 would
have a short duty cycle by 20.

Then we have, bigger duty cycle by 200, and we have a digital signal
that is the whole duty cycle, of high. Then we have a delay from 500

milliseconds. Then we put all three channels low, and then all again,

it started. | think, yeah, we'll let you know. So it's one second | could

do here.

So then, | keep the last one. So there's a little bit more delay
between then uploading the code. And then we switch here to this
view. And I've attached 3 jumper cables here. on pin 7, 6, and 5.

And now I'm using my logic analyzer. The ground, of course, is
already connected as we did before. And then I'll see if | find channel
1 here, this should be channel 1. Channel 1, get the first Then
channel 2 should be the gray 1. This is the 2nd PVM with 200 duty
cycles.

And channel 3, we are connecting channel 3. Then let's see if I've
connected everything right because we can change now to pulse
view, making a new analyzer. been done selecting our device. Is it
connected? | don't think so.

PE
It's connected to the USB. Then we click on the connected device.

We are setting up ethics, scan, yes. Then I'm setting the level to 1 g,
and we're saying, for example, 16 Megahertz. That's it.

We don't need anything more. Our audio is running right now. You
can see it here on the Also, the logic analyzer is working. And now
we click on run, and we're capturing here some data. Then we click
here to stop.

And | can get rid of 7 to 3 because we don't need it. This is starting
by 0 and the logic analyzer starting by 1. So it's a little bit of, different
name. But, let us focus now on one of the signals. First of all, | would
like to capture and measure what is the time between the signals.

And before you measure, think on, according to the codes, what
would you say? how much time is between one signal or one loop.
And we have here one second, 1000 milliseconds. Why is it so?
Because | have a delay here and a delay here.

Of course, you can only use one delay. But this is just for, and a
thinking process. Then | would like to focus on this one. So let's
focus on the new width. And we have here roundabout 500
milliseconds Also, this is perfect.

So this is channel 3, and this is our digital signal. You see one
straight, high signal. And when we zoom a little bit more in, now we
can see here our PVM signal. and let's measure the first signal. And
this should be it.

84 microseconds, and we have 20 here. So 20 is the duty cycle. We
have in the summary 255. So one byte is 1 digital high, and | only
have 20 from this 255. And therefore, as we can see here, we have
here this little aspect of one duty cycle.

And one duty cycle is round about this one because we have 200
here. And in the second channel or D1, we have 200 in the duty
section. And this will be 1, duty section with 250 5 units. So what we
did here is we skipped the first part and had only 200 from the range
of 250 5. That means if we add here an LED with a resistor, the LED
will not have his full voltage.

And, therefore, the light will be reduced. And even more reduced, it
will be when we are, attach it to the D 0. And this is a typical way we
can control motors or we can control LEDs or some other lights with
PVM because the voltage or the whole supply will be reduced by just
this tiny pulse. And as you can see in the D 2, we have a complete

high level through all of the time, and this is the normal, high signal.
And here, we have this 200 and this 20 PVM.

And in this project, | would like to show you how we can measure
here signals and also that we can produce it from the other inu and

what we are able to do with this logic analyzer.

TRIGGER ON LEVEL
WITH IR SENSOR

In this project, we talk about what we can do with external triggers.
And we often use external triggers for Paul's view when we are
inspecting or investigating our circuit and they're, you know,
searching for some errors. And for example, if we want to test and
turn the system and want to see if the voltage which he passed
through is correct or not correct, we can also use a logic level, and
therefore, some triggering measurements would be nice. And we do
this in this scenario with, infrared sensor and hw201. And we are
simply connecting here the 3 word ground and to unpin, but this pin
is not really used because we don't attach any sketched to it, but we
could do it.

[#r - azem @I v2

And, here, you can see my setting. So this is the sensor, the infrared
and infrared sensor. And | connect the ground VCC to pin 3. Ground

for the logic analyzer is on an auto pin. And here with this clamp, |
directly connect to the breadboard or to the module to the out point.

And now, we can open and pause the view again. Start a new
analyzing window. Then we click on devices, and we select our
device. Okay. | have attached it to channel 1.

Here it's channel D 0. Then I'm changing to one gig and, for
example, 60 megahertz. So now, let's run. And we, in this use case,
have a high signal here. If nothing is detected, If | put my hand in
front of it, then we get a low signal. So you can see it works pretty
well.

But what | would like to do now is, not that we're getting here straight
the values out of it, | would like to start the measurement when
something is triggered. For example, you could click here on the left
side. And then I click here, maybe | would like to change here if the
flag is changing. Or, as you can see here, trigger on rising edge,
trigger on rising or falling edge. And | would like to trigger on a low
level in this specific scenario.

And then | click on run, and you will see nothing, nothing is captured
until | now put my hand in front of the sensor, and then the whole

measurement will be started. And this is really convenient when it
comes to investigating all of the PCPs, etcetera, or you're circled
because otherwise, you will be spammed out of the capturing data.

OVERVIEW OF SERIAL
COMMUNICATION WITH
UART

We start in this chapter by defining and discussing what is u art. 1st
of all, u art stands for universal asynchronous receiver transmitter.
And this is a communication protocol commonly used for serial
communication. and you are unable to see a serial communication
between a transmitter and a receiver via 2 data lines. That means
microcontroller sensor sensor microcontroller.

' EREDENY S =
’.' IHIIVJII \ I’

IIIIIIl
I ZAEEEEET S
HZNEEN

And UAT allows asynchronous transmission. That means that the
data is sent without any clock signal. Later on, we will also discuss
SPI and e squared. see where we have a clock line, which indicates
when data is transmitted. This is not the case in UHARD.

And this is also an advantage and disadvantage which we also
uncover later on. EODs widely used in different kinds of applications.
So for example, I've had an NFC and RFID module or a GNSS
module. So it's not really commonly used in the arena environment,
but you will find several components available within your interface
And this is when the Arlenino comes in place or an ESP because we
can use those devices. And nevertheless, what kind of MCU are they
using?

This could also be an STM32, etcetera, you will probably find a Ul
interface. also e squared c very, very commonly in the area of
microcontrollers. If you're using a typical 80 tiny, for example, you
also will find a new route. And also e squared ¢ is commonly used in
these cases. So Uart is also a kind of asynchronous communication
in which the transmitter receiver does not have to be synchronized
by incoming clock signal.

And the disadvantage is that we can't send data in a fast way.
because if we set up a clock signal, we can be very sure and correct
when we are transmitting data. Also a common misconception, or |
would say pitfall is that when it comes to the connection, we have to
crosswise implement it. That means, for example, if we have here
our microcontroller, then the Eric line comes to the t t x line from the
sensor and vice versa. Because the sensor transmits data and we
will receive it.

UART

Universal Asynchronous Receiver-Transmitter

UART enables bi-directional serial asynchronous communication

T TSSO R EN N GGl Iransmitter and receiver do not have g
receiver via two data lines be synchronised by a common clock

signal.

And also when we transmit data, the sensor will receive it. And this is
the reason why we change here Eric's and T X. So what does it
mean to have here a TTL and transistor transistor logic level? That
means we are sending analog datas, for example, and transforming
it to once and Os. And this is what we can capture.

That means when we are sending here via our GPIO and with the
Arlene Unum, we have a logic level from 5 worlds and the GPIO.
And in the ESP environment, we have a 3 point sweet world. Also,
AT Times, etcetera, have 3 point sweet world logic level. And with
this 3.3 or 5 volt, we're indicating in 1. And if we have, yeah, on
ground level, this indicates O.

And this is translated later on into bigger numbers, and these
numbers could be, for example, a sensor value from a DHT 20 or
from a light sensor. And this is exactly what we want to do. We want
to send data from our MCU to a component . Why is that so?
Because we want to say that they send the commands to the
components. Please now start with communi

UART

Universal Asynchronous Receiver-Transmitter

TTL = Transistor-
Transistor Logic.

cating with me, or please start measuring.

And if you're finished measuring, send me back the value. This is the
reason why we use both lines, the Erickson TX line. In the example
of the IKEA sensor, we only need to receive data with only one line
inclusive of g g n d as a ground, so two lines are needed. In your
communication, data bits are transmitted serially, usually in the form
of 8 bit data packets. So when we only have 8 bits of data, we can't
really transmit bigger numbers.

And, therefore, we have often the case that we have 1 regular
register with 8 bits, a second register with 8 bits and we can combine
it, for example, and then with a place for a bigger number. So in a
summary, serial data is into electrical voltage via T where the T X
line receiver detects the voltage levels on the Eric's line and
reconstructs the serial data. And this is what we do later on in the
auto enos catch that we read out all of the signals, and then

calculate from binary to decimal. And this is why we also need the
first chapter with this whole bit of operations because This is the
case in which we later on also get our data out of it without any
external libraries. And then The start bit signals the beginning of a
data package and is followed by the data bits and then stops.

UART

Universal Asynchronous Receiver-Transmitter

TTL = Transistor- Serial data into an electrical voltage via TX line.

Transistor Logic. Receiver detects voltage levels on RX ling and reconstr|

serial data.

The start bit signals the beginning of a data packet, follo
by the data bits and the stop bit.

The parity bit, if used, is used tn chesSlNG rity

In UART communication, data bits a
transmitted serially, usually in the fo
of 8-bit data packets.

And this is very good shown later on also in the policy with the start
and stop bit, etcetera. The parity bit is used to check the data in
credit, and this will be a separate project to play a little bit around
with this parity bit. Yeah. And this was a short summary about you
art, and now we would like to start a little bit more with the practical
part

THEORY OF DATA
TRANSMISSION

One more theoretical project or inputs before we start with the
practical example, | promise. But | would like to start with the TTL
logic. So transistor transistor logic so that we really understand what
is going on here. And | would like to show you here an example,
what we do later on also in pulse view. So, for example, we have the
following measurement.

So, this could be our logic level. Then we have such a thing a little bit
longer on serial. Then we have such a small one. And that's it. So on
this will is now our output, for example, on the pulse view.

And what we have here is, for example, this is our MCU, and this is
our line. We are sending here commands to a module component of
what else. Module. So what we have here is a serum, and this will be
our start. is indicated in UART when we, heavier and high level.

And then with and 0 will be indicated. Okay. The transmission could
be started. Now, we have a high line, and this high line could be, for
example, because this is 2, 2 times measured. So 1 and 1.

Then we have 3 Os here. k. This is not really the same
measurement, but maybe we have three times here. And this two
times And here we have a serum. And then we have one stop, That
means we have 1, 2, 3,4, 5,6, 7, 8.

So we're transmitting here the data 1100 0110 because this is the
stop bit. Maybe there's a parity bit, but this will be optional. And this
is exactly what we are doing later on sending data. That means also
that In this time frame, here, this is our data, our transmitted data,
And this is the start and the stop indication. And now, we can also
interpret how long a signal should be transmitted.

And therefore, we could say, let's go a little bit up. we could say, for
example, in an hour, by an early noon, we have some power rate
from 9600 Divided Nope. That was false. 1, | would say it's, in the
other way. So one divided by 9600 should be roundabout.

-

| think Let's see. 1 divided 9600 should be roundabout 104
microseconds Here we go. That means we have 104 microseconds,
and this is such a time frame, what we have here. And this is also
what we can measure later on. 104 seconds.

And this is, it's on a theoretical level that you understand what it
means transistor, transistor, logic level, when we are talking about
one's and ones and zeros, which will be transmitted, and this is our
separation on a bit level so that we can transmit and receive data.

HARDWARE SERIAL
ARDUINO UNO

In this project | would like to make with you the first Hewlett
communication and we are not interpreting the results, we just want
to be sure if the communication works or not. And therefore | have
here an Arduino UNO and clone from it. | have connected here a
ground and also on the RX and TX line which is here on the upper
side. And | just connected the TX line because | want to send here
some data and will capture it with the logic analyzer. So therefore we
are connecting those two lines to our logic analyzer.

And then we can switch back to our IDE and | have here a blank
sketch and what we are doing now is just in the setup we are starting
in serial begin. For example with 9600 or 1152 or whatever baud rate
you would like to do. And then we are printing out some text on the
serial monitor and we could say hello pulse view and we are making
a delay from 500 ms or half of a second.

Then we are uploading the sketch... will get here some squiggly lines
because | have in the platform.io | have managed here monitor
speed 1152.00 so | have to change here also to 1152.00 and now we
should see here hello pulse view exactly. And now we are starting
pulse view, new session, device, then we are seeing only the first
channel | would like to have, 1 GHz and as before for example 60
MHz. Now | click on run and we see here some data is transmitted.

Click on stop, then we are zooming in with the mouse wheel and
now we see here some data is transmitted. And as we did before we
can see now that there are some 1's and 0's and now the first thing
we can do is just calculate 1 divided by 1152.00. This will be 86
microseconds for one logic level, for one trigger logic level. And let
me see if this is correct, 8.5 microseconds. And now we have the
right baud rate and 8.5 or 8.6 yes. And we are not recalculating now
the S-keys from this binary radio, this will be done later in a later
project.

This project has only the purpose if we manage the communication
via UART from an Arduino for example and capture the data with
pulse view.

SOFTWARE SERIAL
ARDUINO UNO

Now we have the case that for example the hardware serial
connection and GPIOs are not available for some reasons or maybe
there is already a sensor on these GPIOs and therefore we also
have the possibilities to make a software serial. Therefore we have
to include here the software serial library. This is included in the
Arduino UNO core. That means we don't have to install something
here, we just have to include it. With the Arduino UNO we can go
here... some GPIOs. and... 6. Then we are starting the

software serial and now | can choose any name for example Arduino
UNO serial and | overhand here the RX pin | think and this should be
the TX pin. Yes, TX pin. This is why | love Visual Studio Code with
Platform.io because here all of these parameters will be shown in the
right way so the intelligence is really really good.

Then in the setup we could start now the serial begin but also as well
we are starting the Arduino serial and we could change here the
baud rate for example begin 9600 and in the loop we're printing out
on our serial monitor PulseView. So for example hello PulseView
software serial and also because this is what | would like to capture
later on is Arduino serial. Then we're seeing here print line same
thing hello PulseView software serial. Then upload the code. Before
we can measure anything here we have to change the pin.

The sending pin TX pin is number 6. We don't receive anything here
therefore we left this one empty. Here we see we're getting in 500
milliseconds the new hello PulseView software serial and zooming
out click on run and also now on the on the new pin on the pin
number what was it five we're receiving here the data from our new
software serial. So a convenient way we can switch here from the
hardware serial pins GPIOs to a software serial.

DISPLAY ASCII WITH
DECODER

And therefore | would like to change the text here. So for example a
smaller text that is easier to interpret. So let's take this one here,
upload it. And | have the same pin as before with the software serial.
You can use the hardware serial, doesn't matter. It's the same
output. So here we have the new text. | click on run and | also get
the new data. | click on stop because it's enough for now. And what |
do now is | am adding here a decoder. This little sign here.

And now we are typing in UART, double clicking on it. And we have
attached a second line here. And when we click on UART the option
menu will be opened. And now we have to do a few settings. So first
of all the RX and TX pins. So the TX pin is on line 6, on GPIO 6 but
on line DO. Because we are not receiving anything therefore | leave
this empty.

The baud rate, let me see what we have set up, is 9600. So | am
zooming a little bit in. As you can see here | receive the data but not
really something that can be interpreted.

So therefore we have to change here to 9600. Enter. And this looks
a little bit more like data. Because now | can see here, ah, here is my
start bit. Then | have the data 0, 0, 0. The logic level changes to 1, 1,
1, 1, 1, 0 and then stops. Then the start bit follows and the next data
is transmitted. And this will be one time frame and this should be the
text Pixlady. But we can't see it because this is just, here we have
the binary data, the raw binary. And this is some hex data. And now
of course we can search the internet for decoders here.

So for example we are typing in here 76978. What do we get out
here? Pix, that looks promising. 65, 60 and so on and so on. Pixl,
that's good, we can also get all of the data when we click here on the
binary decoder output view. Then we have UART here. | would like
to have a TX dump. And | would like to have it here, is it RX dump,
let me see, TX dump. Here we go.

But | don't want to have all of the data. The last one is 49, so maybe
| can copy this one. Copy and paste it, yes. Paste it here, convert it
and | get Pixlady here out of Pixlady.

But there is an even more convenient way. So we click here on
UART and we go a little bit down. So we have a data bit set of 8, this
is ok. Priority bit is not set. We have a stop bit. The bit order, we
come to this in a later chapter. And here we have the data format.
We can change it to ASCIIl. And as you can see here, | close this
window. Now we have the ASCII characters directly in PulseView.
Here we have some checksums etc. But here this will be transmitted.
Also in lower and upper case. In this menu we can also invert the RX
and TX line.

This is often used in circuits where we have added some transistors.
So maybe we have changed the logic level here. So that we have
the right logic level. Then we can invert it here in the program. So
now | think we have discussed nearly every step here in this menu.
And also how we can translate UART text into PulseView.

HEX TO ASCII WITH
ARDUINO UNO

And to get a little bit of practice, | would like to show you how we can
send hex data from the audio new scratch to Palsphere, so that we
get the ASCII from HEX. So in the other way around. Therefore, we
are changing our setup a little bit just for training purposes. We are
changing the softness to hardware serial. So, yeah, to KX pin, then
I'm getting rid of all of the software serial stuff.

And I'm adding here an order variable, and it's called unsigned long
previous milliseconds, and I'm assigning here the current run time in
milliseconds. And this is the proper way to get rid of the delays
because delays are bad. They are blocking our whole sketch, and
I'm sure you'll be familiar with the logic blink without delay. If not, just
search. Make a quick Google search.

The AidenO CC site has a good explanation here before. For it. So
here we have to begin. That's okay. Now, we're getting rid of the
delay.

And Now we have if the current mill is, so we have to define it here.
So it's also an unsigned long because it's really a long number. The
current millis is also millis. And if the current millis minus the
previous milliseconds. Greater than.

For example, let's make 300 milliseconds or 500 milliseconds Then,
something should happen. And inside this one, we have to set the
previous millis to the current milliseconds so that in the next loop, my
function will work. So that means every 500 milliseconds this
condition will be true because the current millis minus the previous
millis has a differentiation from more than 500 milliseconds, then it
will be set to the current milliseconds. So when we have the next
loop, this will not be true and so on and so on after 500 milliseconds,
then it's true. This is really a good way to code in our arena
environment.

So now I'm not want to send the raw ASCII jar here. | would like to
send here the hex values and then, see on policy what we get. So
that means | am sending here an 0.write And now I'm indicating here
with an 0 and x that | will send here an HEX value. And let me see
what | have here, those values. So, let me see. Could | have your
text?

Then | would like to change something here, but not ask you, could |
change it to, for example, so there we go. We have to change the
text here to hex editor. And before | had here the bigger case, bigger
letters for EDI and now | would like to change it so that we have
here, other outputs. So the last three should be changed to this one.
| copy paste it.

coming back to the audio code. And now, | would like to add here
those hex So let's paste in here a few times. Then we have 69 here,
filling out all of the points And | have already uploaded the code. As
you can see here, | have no line break anymore. I'm just sending the
serial data out, to the monitor, and it will be converted directly from
the ceremony tone to ask this, but let me see what will happen on
our Are doing Wono?

So | click on run, and we capture here some data, click on stop,
zooming in, And it doesn't work. Why? What have | changed? | have
before, | had a software 0 with 9600, and this is what | have to
change here as well. So 1100.

And if | change the portrait, it also shows, we can see here the mask
is converted. So we are sending here 1, 2, 3, 4, 5, 678 signs from
hex, and this will be translated into ASCII's as well with star and a

stop bit. And this is how we can transfer data from binary hex,
etcetera, to an auto module via u art.

LSB AND MSB

Let us now discuss the concept of LSB and MSP, and we have
already heard these terms before. And it's called least significant bit
and most significant bits. So, for example, if we have the binary
level, the binary number of 11001100 and also n The terms of least
significant or most significant bit refers now to the position and the
significance of bits within a binary number. So what does that mean?
That mean?

For example, if we got this number, we can read it from this order, or
we can get the values in this order, but we have to read it in another
order because it's called the least significant bit. And this depends
on the datasheet and the manufacturer, how they will transmit the
data to us. And when we are switching back to pulse view and click
on UART, we can see here the Bit order. Is it LSB first? or is it the
most significant bit first?

And if you change the order here, we will also see that something
will change in our outputs. And therefore, this is a necessary event
that we know what is our least and most significant bit. And normally,
we are translating our values here. So for example, this is 124, 860,
32, 64, 128, and 200. 56.

And now we would add here on each position where is in 1 at the
numbers, and this is our final number, what we are transmitted. But
always keep in mind in which order we have to read it. And why is
that so? For example, if we have here an register from a module 8
bit, and this is split it in half because here we have the plus minus
sign so that maybe we will get values with and sign. And now also
the second register is split in half.

And now This one, this content is our temperature value, and then
the comma value will be attached to the last four bits and the next
register. So it's not every time it's so clear what kind of information
we get. And we will see this later on, especially in the eastward seas
chapter with the DHT 20 evaluation of the sensor that the datasheet
shows us where and in which order we have to read it. And just keep
in mind what is most at least significant, but keep in mind when you
have some dollars or euros in your bank account, And, for example, |
am deleting you on the least significant bit. It has not so much input
into your life.

But if I'm deleting you on the first number in your bank account, so
the most significant bit 20. This has a tremendous impact on your
life. And therefore, the least significant bit should always be
considered in order to read out the right radius.

BINARY LSB AND MSB
WITH ARDUINO UNO

Let's now see a real time example with all of this LSB and MSP
topic. And | would like to send binary data here. Only three
characters. So my name, Eddie, and these binaries, have already
prepared. So let's switch back to our code from before.

uncommented all of these hex things. And now | would like to send
the least significant bit before as well as first. And now | would like to
send via 0 dot write. And now I'm indicating within 0 and MB that I'm
sending binary values. And my first binary value will be this 1.

So 0, we also, | think, could we use Let me see if we can extract it
here. This was not right. And decoder, | would like to have t x. It's
only the hex values that | am getting here. Okay.

hexdump. No binaries. Nevertheless, I'm typing all of the stuff in. So
let's see the least significant bit ready here. Let's upload the code.

The serial monitor should already, converted to, yes, converted. Now
we click on run because we have already set everything up from
before, zooming a little bit out, and you can see | receive you some
data. Then we click on stop zooming a little bit in, And of course,
we're getting these 3 characters as before. What changed is that we,
not the hex values, we are using binary levels. Now, | would like to
change the order.

So what do we do now? copy this one, then the value from the first
character will now be changed in the order. That means now | have
011 at the beginning, and now | start with the ending. So my new
number will be from this direction, from the, 1. So let's see.

0101.1 1. Then | have 000110. Then on the second number, | have
here 1, then 0011 0. And in the last one, | start with 1 0010 110.

Then we're uploading, once again, the code. Let's see what the
serial monitors are printing out. If we convert it, no, because the
most significant bit order is now not recognized. Let's see here pulse
view does, assuming we are out, we're getting here the new data,
assuming a little bit in. And now | haven't changed anything.

So you can see the same thing as we have here some data which is
not recognized and the ampersand. And now I'm changing to the

most significant bit first. And the order will be changed. And also, the
pulse you can now read the values. And | hope with this practical
example, it's now clear from which side we are reading the data and
that we can change it also in Pile Sphere or in the other Unity, how
we want to read it.

Hardware Serial with ESP32

In this project, we're gonna try to use the u art interface with an
ESP32. And I've here the ESP32D1 mini, And it's nearly the same as
the development board, just another layout and size of the board, but
you can do it with any kind of ESP32. Be aware the pinout can also
differentiate between the development port or another ESP rum,
etcetera, because often the manufacturer or the company which is
delivering you the ESP, changes the layout. | don't know why, but
there are minor changes. So be aware, especially from asset
delivery, | saw some different pinouts out there.

=1 [=]
2}
B

C2] F_JADC2 9]
(CIK | 12C1 DA
(MI50_]
CEEm
£
SRERREREER
h 4] SP-HD JADC2 4 ADC2 JRRTS 350 CMD) 3
5P/ D3 | 500 JGPIOZ 1 5P DO |

RTL4 JADC1-6] GPIO 4]
Fispict 15D cux Llouch SYRTE 12 [ADC7 4

Digital In/Out ports fall support PYWM)
B Digital Input ports
B Andlog input 12 bits, 0 to 2.3V
B Analog Outpet 8 bits, 0 - 3.3V
B e it T

surh Cansns nosts

And when we take a closer look here on this pinout, we can see we
have a serial interface here. And we can find it here on the upper
right side, TXRx. This is our interface 0 because the ESP cert user
has 3 different hardware series. And we can find here the uart 2. So
where is uart 1?

This will be used also for the internal connection between the USB
and the ESP. So this is not available for us, but we can use the
second one here because the With the index 0, it's pretty
straightforward. We can also find the Rx and TX. So let me see. it's
here on where it is?

rxdx. We can find it also on the pin out here. But | would like to use
another kind here, the u 2, and, therefore, we are using the pin
number 17, GPO 17, for our T X communication. So let's jump into
our basic sketch. And what we do at the first point is we are including
the hardware serial library.

And as always, this is in the core from the ESP 30 to include it. So
we don't have to install some external libraries here. We just have to
include And then we're starting with hardware, serial. Then we give
the name of, for example, serial ESP 32. And here in the brackets,
we have to type in which number we want to use.

And according to our pinout, we are using the 2nd u at interface. If
we want to use the normal hardware, serial port, then we have to
enter this 0. So far, so good. Nothing special until now. And now we
start with 0 ESP32 begin, and we can also use here the faster bulk
rate from 115200.

And as you can see, | have a normal serial beginning and a
hardware serial. And then we could, for example, here, type in 0 print
lines, set up finished. What we also can do It's just show you all of
the possibilities. We can say, while, if the 0 and the serial ESP. So if
they are not available because if we use these terms, then we're
getting back here and true.

But if there is not, So if it's false, then we keep here in a while loop.
This gives us the proper ability to check if the serial communication
could be established or not. And if so, we go through the loop.
Here's our link with our delay. construct.

And we want to have here, for example, each 300 milliseconds. |
would like to print out a serial print line on the monitor. Hello, serial
monitor. And I'm the serial s p 32. Should print our handler, pulse
view.

Then let's see. If we have some typos or it's the compiler, yes, we
get the success, then we upload the code. So then we can open up
the ceremony time. And we can see the output from the serial
monitor. And now we are changing to our past view.

I've already inserted my device here. changing here the sample rate.
We click on run. Then we're adding here just one channel. Then
adding in a decoder, it's an URL decoder as we did before.

Then new art that takes because we are sending something. 11
looks good. And | would like to have the ASCII. Then we're tuning
into one of the data frames. and we're getting here Hello, pulse view.

Perfect. So in this project, we learned how we can use the hardware
serial on an ESP32, and we can change the channels or which
hardware serial we would like to use and also that we can combine it
with the serial monitor, and the hardware serial on an ESP32 level.

WHAT IS A PARITY BIT

Now, it's time that we talk about error detection in UART. And
therefore, we have the parity bits. And we are focusing on the even
parity. So what does that mean? The parity bit is a bit that is added
before the stop.

and tells to receive what is the number of ones in the whole
transmitted number, the binary numbers, is, odd or even. The
possible settings for the parity bit are odd or even. So odds the parity
bits are one if there is an odd number of ones in the data frame.
Even this is what we are using, the parity bit is O if there is an even
number of ones in the data frame. So let's take an example.

For example, we have the following payload. We have here 1 byte
12345 67. And this is, the parity, the bit. So that means we have in
our data frame 1, 2, 3 ones. And, therefore, we are in an even parity
bit order.

We need to add in the parity bit on 1 so that we have four times on 1,
and that's an even number. Let's take a closer look at the payload to
them. Here we have 2 ones in my data frame. And I'm adding here
an 0 to this is the parity bit. This is an additional bit, and therefore,
we're using here and 0 because we have 2 of the ones already here.

This is an even number, and they're SSN 1. So in this case, we have
now something in the signal, some some arrows, and therefore, we
have here 31 So this is my arrow. And the priority bit is O because
this was intentionally sent. Then we can detect an error. So three
times 1, odd number, error is in the 6 bit.

Cool and easy stuff. But hold on. There is a little, | don't want to say
misconception, but there is, this error detection is not really reliable
because what if we have some case. That means we have sent

100100 here. That means we have an even number of ones.
Therefore, the priority bid is 0.

Error detection through
Pal‘ity (even parity)

0100101 1001000 1 }(01’”'10"'2 00
4x 1 Even number
Even number 10010710 :’?%%\;‘r g;rﬁ;ror
i Eors 3x 1 does not indicate

odd number an enor,
Error in 6 bit

But what if we have such an incident that when we have here 2
arrows at once and now we have here four times and 1, that's even
as also an even number. And therefore, however, 2 errors are in our
data frame, but the parity bit task does not indicate an error because
it's an even number. So you see here the limitation of the parity bit
But nevertheless, it's good when we implement it because we have a
first inside view if this could happen. In other structures, which we
will see later on, like in, some non standardized protocols with this th
HD, for example, the they are using, checksum. That means we are
adding you from the humidity and the temperature and in the
checksum register, those two values will be edited.

And if we have the summary of those values, then we can
recalculate it if the values are correct or not. This is also an
interesting more reliable check and error detection. But it is good to
implement it. And in the next project, | would like to show you how
we can do that in the ESP32.

EXAMPLE PARITY BIT
SERIAL _8E1 WITH ESP32

In this project now, we want to implement the priority bit in our sketch
from the previous project. And | would like to show you once again,
pulse here, And you can see here that the priority bit is missing
because we haven't got implemented it. And therefore, this will now
be our main goal from this project. and therefore on the Sketch from
before. And although we are using here unfixed, you are the
interface, | would like to define the pins because it's a little bit more
readable and the whole setup from the code.

And therefore, we are using here some variables, const byte
RUXpin. And this should be 16. And we are from KonSpITE T X PIN,
and this is 17. This is where our clamp is on for the logic analyzer.
So now what we are doing is, all of the magic will happen in the
beginning.

And therefore, it's a really good website from the audio in OCC
reference with the serial begin explanation. and we can't find
different kinds of 0 here. So, what we can do here with the 0 begins.
This is like a function. And normally, we are just adding here one
parameter, and the parameter is the bounce rate speed.

But we have even more possibilities here. For example, set data,
parity, and stop it. And these are all the things that we can do. So for
example, this is the default. The default one means we have 8 bits in
length, no parity bits, and 1 stop bit. So in our case now, I'm
switching back to the code.

What we do now is 0 ESP32. dot begin. And now with this intelli
sense, you can see what parameters | can fit in. And the first one is
the board rate. So you can see here in an unsigned long portrait.

Then | would like to add the serial and also you can see what | can
add here. And the standard was 88 and 1. But | would like to add
here an even for the even priority bit. 1 stop bit and it's 8 bit long. as
we can see here, 8 bits long, and one stop bit.

So, therefore, we also have to add here that we have a complete
parameter. All the parameters complete, Rx and TX PIN. And that's

it. That's all of the change, what we are making. The rest should be
enough so then upload the codes.

And before we run the pulse view, | would like to add the pulse view
from the front. And let's see here in the options, when we go a little
bit down, where is the parity bit here stands on. When I'm clicking an
event, Then you can see that nothing will happen because we have
not really impaired a bit. Here, parity error because we haven't
transmitted any parity bits. And, therefore, we get an error here
because 1, 2, 3, 4, And we haven't got any parity bits here.

That's an error. So let's see if we have uploaded it here. Yes.
Looking good. Therefore, I'm just clicking on run because the setting
should be the same.

a lot of data coming in, zooming in a little bit to one of the new data
frames. And | have already entered the parity bit. So let's investigate
if we are true. If we have everything set up here. So, We have 1111,
SO no parity bit is here, 0 as we can see in the line.

That's the check. 123456 is also even. He's only 1 So the parity bit
has to add 1 because then we have 2 ones and this should be an
even number. And as you can see, the parity bit is here 1. and,
therefore, we have a positive check.

Let's see here. 11. So the parity bit is 0. And as you can see here, 1,
2, 3, 4, 5, that means an odd number. We have to add here the
parity bit to 1, and we also have an even number.

Very good. And this is the implementation of what we could do with
the ESP32, for example, to add the parity bit to have here a little bit
more control of our data frames if everything is working well. And
afterwards, for example, if we're transmitting it the data from an ESP
or from a module, we could do in the code and check if the parity bit
has an error or not, or if, we have to calculate the numbers of the
ones, and then we can check if the parity bit is here and even or not
number in summary. And this is why we are using the parity bit also
in the code.

UART COMMUNICATION
BETWEEN TWO
ARDUINO UNOS

Let us now make some practical examples. And therefore, | have 2
otherinos, which are connected via UART, and the main goal of this
little project is now that when we are pressed the button from this
auto in order, we're sending and you add a message. This will be
received by the second order, Uno and an LED will be turned on. I'm
clicking the next one, turned off, turned on, turned off. And this
should give us now the knowledge that we are able to send data via
UART, what we already know, and receive data on an ARENA basis.

Yeah. And therefore, | would like to start with the wiring part. And we
have here the 2 other owners. could also be implemented with
ESPs, but be aware, not UNO and ESP, this will be covered in the
next project. So first of all, we have a fivefold and ground to the
button.

We have here a pull down button, resistor And then we are
connecting the button to the GPO 4. 56 will be our uart lines. which
are connecting to 3 and to the 2nd owner, this is the receiver. We
have to connect ground and ground from the auto in owners. And
here, we have an LEDM.

Also, insert a resistor for the LEDM. That's, for roundabout 200
ohms. And this will be connected to this GPO number 6 and to
ground. And that's it. So we are simulating that we are, sending data
and what often is the case that we are receiving data.

So our receiver is now our main focus in this project. So, therefore, |
have it. | have 2 sketches, and | would like to focus now on the
transmitter because this is really an easy one and we already deal
with it. So the receiver is here on the right side. I've already
implemented the sketch here. And | have 2 USB ports here.

So, with the platform you own, don't forget to edit here the USB
numbers and the sender. has now on software 0, all what we did
before, and input for the button. And what | have here is a little
debunking logic. And with this debounce logic, | tried to find out if
there is some flattering with the buttons And if | get a signal under 50
milliseconds, it will be ignored. And if it's really a button click like
here, Then | will wire you out the string button.

That's it. Nothing special. Everything we did before. But now | would
like to focus on the audio on the left side where the LEDs are. And
this is often a use case where we want to receive data from a
module, but often also send and receive, but now we are just taking
the receiver site.

| also did a software serial here. Whispin 2 and 3. This is what we
have here. 2 and 3. Eric's and T X.

So you can see here the Rx pin is on 2. And here, the Rx pin is on 5.
So 2 and 5. Let me see. 2 and 6 are now combined because we
have the receiver to the transmitter and the receiver to the
transmitter.

So let's keep on the receiver module. We have an LED on the pin
gpio 6. We are starting with the baud rate of 9600. This has, of
course, the same value as here. And we're setting the pin mode on
output.

And now we are coming to the loop, and this is what we are, want to
want to do now. So the first step is that we are checking if there is
some if we are getting here some data. Therefore, we're making a
while. And let's see if we received some UR data. And we are seeing
dots available.

And then we are seeing, string uart message, for example. is
serial.read string, and then we're printing out this message. Then
we're uploading this code. And of course, we don't have to use a
serial. We have to use it here. How do you know uno receive 1?

So now we can upload the code. And it's up. Then let's test. receive
a start so that the setup message will be received, clicking one time,
clicking 2 times, 3 times yes, it works. But what we see here, we
have here some white spaces and line breaks.

we can get rid of them by saying, uart message.trim So now we
should only get here the button as in string. And now we can, for
example, say if we receive an uart message. uart message equals to
button. because we are transmitting and stringing. And, therefore,
we can check if this is on string.

And then we make a digital write here. And | also want a serial print
line toggled LED. This will be LEDM and, for example, high or low.
But what | do now here is | make a digital read, digital read, LED. So
what I'm doing here, I'm reading out what is the current state now is
false because it's not on.

And if | get here and false, it will be turned out of So | am transferred
to true because | make a note in front. So | received it here. This is
false with this line, it will be true. So I'm clicking on it, and now it's

true. If it's true, the LED lights, then | get back from the digital read
true, but with this negation, | make it unfold.

So | can toggle the LED with only one line. Okay. Then upload. Let's
see if it works. And we can do this in the next with you exactly in the
same way, with an ESP32.

So we are clicking on our button. We are getting the toggle LED.
Now when I'm clicking once again on the button, this expression will
be true, but with the note, it will be false. So false is now the whole
expression, and therefore, it will be turned off. Let's see.

it's off clicking, clicking. And what | would like to show you in this
project was or is that how we are able to communicate and receive
data. Because often, we want to receive data from an Ul module.
This is exactly what we can do here. We also can add here and
equal greater signs, greater than 0, and then, is also in a convenient
way.

how you can fetch and get data from a module via UART. And in the
next project, we take a look on how we can communicate with 2
different logic levels.

NOTE THE LOGIC LEVEL
WITH ESP32 TO
ARDUINO UNO

In this project, | would like to show you what we can do when we
have different logic levels. So, the artery in the Oulu has some logic
level from 5 worlds. What does that mean? If we measure here with
a multimeter, the GPR outage, then we see the UNO has 5 worlds.
Besides that, the ESP 32 has 3.3 volts.

That means we can't not connect directly the GPOs from an Audi in
Uno to an ESP32 because the ESP32 is only able to handle 3.3
volts. So if we are using 5 volts and the GPO from the ESP32, It
could happen that we destroy those ESP, GPOs, or even the whole
balls. So therefore, we have to use logic levels. And this is a
common case because often we have other kinds of voltage levels.
For example, 1.8 volts It's very common with some power cons,
reducing, modules, for example, in GNSS module where you can
use just 2, double a or triple a batteries.

So therefore, we have to slow down, reduce the voltage, and reduce
the power consumption. And when we have want to use UniN USB
32, then we have also used here, leverage And a | a level shifter
works in a way that we are connecting the higher voltage and the
lower voltage and, the transistor on it will then transform, | would say,
the logics, to to the desired voltage And we, can't use directly here
voltage dividers because we want to correlate and want to have the
nuances and the details from our PDM signal, for example. And,
therefore, these logic level shifters are not really expensive and easy
to use. And in this case, we want to use the same example as
before. We want to have a push button. We want to turn on an LED,
and the LED is powered by the ESP32.

And we wire you out. We're sending as before and string. So how
can we do that? We're using his software serial of the auto in the
Uno site. And here, you can see We have a high voltage, for
example, 1, 2.

We also can use the pins we inform. And this is the UART signal.
Here, we have the five ports in the ground from the Uno, and,
therefore, we have not connected or we don't need to directly
connect the grounds together because we do it with the level

shifters. You can see you with the ground connected. And we have
3.3 volts here.

So, therefore, the logic level shifter knows, 5.3.3 volt, what they have
to do. And the UART We're now connected here to Eric's and T X.
This is the 2nd channel of the hardware serial from the ESP32. And
that's it. The LED with the resistor and the push button with the
resistor is the same as in the level before, in this example before.

So now | have here 2 sketches. And as we had before, | just want to
go through the transmitter very fastly. | have a software serial with
Eric's and TX PIN. | created a software serial, The button is on the
gp04. We have an input.

We're starting the ESP, the softer serum. And here's the logic for the
debounce as we did before, and we are sending here our wire URLs
the string button. But now to the more interesting part, And the more
interesting part is the ESP side. So we're using heat hardware
serum. This is nothing new for us.

We already did this on the channel tool. And now we already ah, let
me see. We have and we should use here also, unconced bytes for
the LED. And we have to use it in pin mode. The LED is in output.

Otherwise, it won't work. And also this kind of, checking if the serial
is available, we already did before. So there we have to do nothing
more. But now in the loop, the interesting part is how we can get the
signal via UART. And we could say, for example, while, and in this
while, but curly brackets.

In this while, we're seeing, serial. esp32 dot available, greater than
0. Then we will be getting actual information here. And then we could
say, for example, string. We see the data is equal to, oop, that was
consuming equals to, serial ESP32 dot read string.

| think this would be the proper function. And now we will get all of
the information here in this string because we are sending a string.
And | would say | would like to print out at the first step the received
data, and we'll take a closer look if this will be our desired data. We
also could do just for training purposes and that we are seeing what
we are getting here. and wind, 8.

It's also in bite, but you can see both of them. bite from Syria equals
serialesp32 dot read. So we're getting the raw bytes in this case. and
it's an int8. Then, we can print out those bytes.

This will be the first step. Then upload the code here. And here is my
setting with the audio in Uno and the push button. Here is the ESP32
with the logic level shifter as we talked before. And now | would like
to click here on the button and in the serial monitor.

I'm starting the ceremony to write again that we see here something
happened. And here is the raw data from our serial monitor. Now, we
are changing back. | would like to have this string then upload the
code. There we go.

Once again, button click, and we're getting the button. Nicely. Oh,
but we got here in one line break. So, therefore, | would suggest that
we, at the Receive data. We could say receive data dot trim.

That will delete all of the white spaces and line breaks. And then we
could say if received data equals the string, what we want to to
check. In our case, it's the button that we are sending out with the
audio. If this is so, Then, we could switch and turn on the LED. And,
therefore, we are toggling the LED.

And we could say, digital write, LED. And now we make a little trick.
and we are saying Digital Read LED. So we are not finished yet, but
| would like to explain what I'm doing here. Normally, | would write
here in high or low.

But now, | would like to read the current state of the LED. If | do that
now, | will get here in law or enforce because it's not on. So if it's
turned off, | get back here and false, and | make a knot here an So |
convert it, | make a knot in front of it. So if this statement is false,
Then | convert it to true with this knot. If it's turned on, then I'm
getting here and true and with this knot, | make a false out of it.

So we always invert the current state and therefore, we are using it
on one liner and toggle the LED. And that's what we have to want to
do. And then | could add a serial print here so that we see that
something happens to toggle LED. Let's see if our function works.
So, it's uploaded.

Then one click. And it's turned on. Next click? Turned off. Next click?

Yes. So we are sending now through a logic level shifter from the
UNO to the ESP32 via UART and string, which will trigger some
LEDs here. And of course, you're not communicating often with 2
MCUs, but you can use this, especially this available when you are
receiving data from a module, and this is exactly what we are doing
also later on. And therefore, it's a nice use case that you can see
what you can do with a logic level shifter with serial available. and
also how you can transmit data via your art.

FINDING OR
CALCULATING THE
BAUD RATE

In this project, | would like to talk with you about the common vault
rates. So imagine you have the following setting. You have here an
existing circuit, which has some external components and you want
to capture the data. But you really don't get any valuable data out of
it, what you can read and interpret. So, therefore, we capture the
data and then we measure the time frame from one logic level and
we can calculate the bot rate.

And this is often used because maybe we can't find any data sheets.
So we are trying to reverse engineer it. And the first step is of
course, we can make an arrow with some common portraits listed on
Wikipedia. We already know the 9600 115200. And also 576 alone
are really common in the audio environment.

T ol

H

s

\ \

So What we then do is we don't know the portrait, but we want to
have it. And the hertz is equal to a portrait. And it's in microseconds
when we make the calculation 1 divided by Hertz. So, we have 1
divided to 57,000 is 17.36 microseconds. So let's do this with our
sketch.

Therefore, I've already grabbed a connected to hardware serial and
the sketch from close to this one from the beginning where we're just
sending out here, portraits via serial print. And now I'm starting with
57600. And we should get a pulse here and signal length from the
data from roundabout 17 microseconds. So let's check it out. I've
already set it up here, the u rts with the serial, 2 gigs, 16 megahertz,
and let's run it.

And as you can see, we get here all of the data, it should be
synchronized with the. So let's stop it. zoom in on one of the data
frames. And | have already entered here 5600. So if we are stuck at
99,600, we are not able to read anything here.

So I'm zooming in and trying to get here on one of the logic levels.
So | think this could be one lever. Let's zoom in. And there we go.
We have 17 microseconds.

And then | could change it to 57600. enter. And now you can see,
this fits perfectly to my one to one of the signals 11. And when we
change it, for example, to 9600, which is commonly used in the
arena owner environment. So we have changed it.

Then we click on the run. Tum a little bit out, stop, zoom in to the
new data frame. And now we have to change it to 9600. enter. And
there we go.

We can read it. But let's measure the new data frame. So | assume
this is one data frame, And we get here the length of 104
microseconds, and the calculation shows you also 104
microseconds. So the serial monitor gives out here some undefined
imports because | have set up here the monitor speeds to 115200.
That's the reason why the monitor can't read it the correct way.

Yeah. And this is a way how we could recalculate or reverse
engineer the portrait according to the speed of the logic level.

ANALYZING THE IKEA
AIR QUALITY SENSOR
VINDRIKTNING

In this project, we're going to make a reverse engineering approach
with an example of an air quality sensor. This is the name, which no
one can really pronounce correctly, but this air quality sensor or this
device has a really good air quality sensor in it. And our approach is
now, if we can't capture, here's some data. And | would like to show
you my approach with all of the datasheet, analyzing, etcetera. But
before you say stop is a finished solution with Tasmotor, etcetera.

Everything is correct. There are already tons of solutions. But not
and this is why we are here. We want to train a little bit more, and we
want to get the knowledge how could we investigate all of this
information, how we can use it, and then also write our own library
because this library, which is on GitHub, etcetera, is good, but
maybe we can reduce it a little bit on space so that we can make our
own loT device out of So the first point was opening up and take a
look on the PCP if we can find here some something which is,
commonly known by us. And | found here a reset and also some
BCC endpoints And | attached here and sold it to wires on it, so it's
easier to capture hidden data and later on also for the connection
with the DSP.

Then my next approach was | took the quality sensor out and tried to
find it here, and data sheets. And | found here the PM 100 and 6 k
data sheets. And when | scroll a little bit down, you can see here the
Here it is, a picture of the sensor. And when you take a closer look at
me here. So it looks very, very similar.

And also the stick on it, shows that it's nearly the same generation,
not exactly the same we can give it a try. So my approach now was
to read all of the stuff in the data sheets. And the first thing that |
mentioned here was the UR signal output. 4.5 volt level. That means
perfectly usable.

for our Arlene Uno, but maybe not for the ESP year, but | come to
this later. So going a little bit down because | want to know in which
register the values are the values stored. Here once again, | find out
5 fold ground, RX T X perfectly for the sensor itself. So In this case,
I'm not using the sensor directly because | need an MCU, and this is
somewhere here, which already communicates with the sensor. So
I'm just capturing data and using this finished data.

Because otherwise, | have to write the whole library by myself, and
this is not really what | want to do here. So | go a little bit down.
Here's the characteristic for the sensor itself. So it gives us some
feedback about the air quality inside and room. And the maximum
value is here, 100 micrograms per cubic meters and we will test this
later on.

Also, here, once again, | have, the T X level is what | want because
I'm not sending. Yes. | won't send anything. So this will be the thing.

And here, you would create configuration.

That's it. Data bit We have a stop bit, we have no check bit, and the
ball thread is already, set it here. And also here, read measures
result of particulars So we are sending those values. So we could
connect our ESP directly to the sensor because this is what sends to
the sensor, and this should be the response. So we should get here
1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16.

Communication protocol

® UART communication:
UART level range
UART RX: 0-5.0V data input
SUART TX: 0-4.5V data omtput
UART configuration
-data bil: 8
-Stop bit: |
-Check bit: non

-Baud rate: 9600bps

Read measures result of particles:
Send: 110102 EC
Response: 1604 02 DF 1- DF4 DFS- DFS DFY-DFI2 [CS]

Nofe: SRS DF3*256+ DF4

PMLO(pg/m’) = DF7*256"1 + DFR W
PMI0¢pue/m') = DFTI*256™1 + DFI2

PWM communication
Resolution: 1ug/m3

RSP: Low potential
Range: 0-992ug/m3

Cycle: 1000ms
Concentration ug/m3 = low level ms Ams;

So a lot of bytes should we get back? And this is our sensor and
pm2.5 sensor. And in the registrar between there, we could then
calculate our value, our air quality value. And now the question could
be, how could we check if we are right? This is a good question, but |
have a second device here.

And this second device is just a few centimeters behind this camera.
This is in my office. Here are some more values which were
transmitted to Grafana. So for example, | have here humidity, | have
here something which indicates my light. pressure and here, are the
air quality.

So | have been here in Raleigh from 12, 12 is moderate and could
be better. And here's my temperature. I'm melting, but, with all of the
light, etcetera, and equipment, the room got here really, really hot.

So here, this quality, this air quality level should be read out. This is
our desired state.

no change to 14. So then, | have already attached the clips, clamps
to the PCPM. That means | have one ground and one reset. And is it
reset? So let's take a close look.

It's one of the reset and one of So here you can see it in a closer
look. So the second one, and also the second one from the right and
from the left. Those are my 2 desired values. This one is the ground.
This one is the data bin.

So with this setting, we could change here to pulse view, click on
new. As we did before, we're selecting our device. Okey dokey. I'm
changing here to 100 gigs. 60 megahertz should be the channel 0 or
channel 1, then an UR decoder, UART decoder, We already know
the bot rates.

It's 9600. Data bits, no parity bits, stop bits, The order is not really
mentioned, so we'll leave it on default. And now it should be the
takes because we transceiver. Let's test it out if we get something.
But before, we have to also power up the PCB with an USB c cable
because the internal MCU should read out all of the stuff here.

So as we can see here, it's starting up. And if it's finished with
starting with studying, then | need a 20 seconds time frame, and
then we get some data. So | clicked on start measurement, and we
can see we're getting here the first data 1, 2, 3, 4, 5, 6. | think it
should be 7. And now there should be an 8, 1, 2, 3, 4, getting a lot of
data now.

Now it is finished. Now, it should be 20 seconds, for example, no
data is transmitted and then it starts all over again with 7 or 6 data
frames. This is good to know for the later purpose when we are
using the ESP to get the data out of it. So 1, 2, 3, 4, 5, 6, 7, and now
the next time frame starts. Okay.

| click and stop. Then turning into one of the data frames, which we
got here. And now the interesting part starts because we have here
now all of these bytes should be our response. And what we have
here is now 1, 2, 3, 4, 5is TF2. So the 61 should be DF 3 because
it's index 0.

So, the 6th one should it be? So 012 4, 5. There is 0 because this is
good that this is 0 because otherwise | have some health issues
here and 6 because this is our df 4. So we have to calculate df 3
multiplied 256 plus the F 4. So 0 is the first value, and this is our
desired second value.

Communication protocol

S UART communication:

— UART level range

-UART RX: 0-5.0V data input

-UART TX: 0-4.5V data output

UART configuration

-data bit: 8

=Stop bit: 1

<Check bit: non

-Baud rate: 9600bps

Read measures result of particles:

Send: 110102 EC
Response: QELEETRS L
Noie: PM2. 5(pg/'m')= DE3*256+DF4
PMI.(pg/m") = DFT*256" 1 + DFR
PMID(pg/m*) = DFI1*256"1 + DFI12
PWM communication

Resolution: Tug/m3

RSP: Low potential

Range: 0~992ug/m3

Cycle: 1000ms

Concentration ug/m3 = low level ms Ams;

And it's in hex 4, and this should be 15, | think. if you change it to
hex and as you can see, it's 15. And my internal value shows here,
14. As | can see here, 14 is my second device, and we calculated
15. So this gives us, and first clue, how we could approach such a
new device and external device because The MCU will now make all
of the work by communicating with the sensor.

We are just interfering with it by capturing the data. and reuse this
data. But you can also send those commands via you out to the
sensor and get out the response. In the next project, we're gonna try
to make here our own library for the ESP 8266 to get out the equality
values.

SELF-MADE ANALYSIS
WITH ESP32 FOR PM2,5
SENSOR FROM IKEA

So then | would say let's do some programming, and | have already
attached an ESPN to the board. So here, we have our PCB. And |
have attached some jumper cables and some clamps here because
it's easier to use. That means | have one cable ground to ground of
this tiny twin, 8266, and one goes to an D2, just an input and digital
input. We don't use, no more, but with the ability of a wifi, where |
can now do this little ESP inside this device.

‘ommunication protoco

S UART communication:
UART level range
-UART RX: 0~5.0V data input
-UART TX J.HJ output
UART configuration
~data biv: 8
Stop bit: 1
~Check bit: non

-Baud rate: 9600bps

Read measures result of particles:
Send: |1 0102 EC

Response: 160402 DF1- DF4 DFS- DFS DF9- DF12 [CS)]
Note: PM2.5(ug/m'y= DF3*256+DF4
PM L0 pg/m") = DF7*256%1 + DFR

PMI0(gg'm') = DFI1*25671 + DFI2

PWM communication

Resolution: Tug/m3
RSP: Low potential
Range: 0-992ug/m3
Cuela 100NMe

could add maybe some BME 280 sense of humidity and also
temperature, and then we have a perfectly loT device. | also have
attached, on the other side, the logic analyzer so that we can also
control the values that we are trying to get with this ESP. 8266. And

therefore, I've created a fresh new sketch here . And be aware, we
are now using the 8266, but you can do the same approach also with
the ESP32. And one of the major issues, what we are running into is
that we have here a logic level from roundabout 4.5 volts.

And as we did in the previous projects, we know this could damage
our ESPN. So what can we do now? First thing is we could use a
level shifter. You should use a level shifter. My approach is I'm taking
the lazy way and taking the risk, to damage my ESP, but the risk is
worth it because we are not really by five volts, a little bit bizarre
down.

Maybe this is in the tolerance, and | have my device running for
more than a year, and it works really, really well. but it's not so
reliable. So if you want to have a really reliable device, use a level
shifter because otherwise it really can't, could get damaged. So | am
accessing directly, and therefore, we can focus now on some cooling
stuff. And | would like to start with some software series.

lCommunication protoco

®UART communication:
UART level range
-UART RX: 0-5.0V data input
-UART TX: 0-4.5V data output
UART confliguration
data bit: 8
-Stop bit: 1
-Check bit: non

-Baud rate: 9600bps

Read measures result of particles:

Send: 1101 02 EC

RTSOTTIEE 6 Od 02 DF1- DF4 DFS. DFR DF9- DF12 [CS)
PM2.5{pg/m’)y= DF3*256+DF4

PMILOug/m') = DFT*2567 1 + DS _ o

PMI0(ug/m") = DF11*256
WM communic sion

Resolution: Tug/m3
RSP: Low potential
Range: 0-992ug/m3
n 4o annn

So we include here, software serial.h Then we are saying software,
serial, serial, ESP, And with the ESP 8266, we are declaring it in with
the GPIOs. And D2 was my Eriks and B3 is taken and not used, but,
keep it there. So what | also need is a buffer array with 20 spaces

because we have here So let's change here the there we go. It's
better. So here, because we have arm here, 20 bytes what we are
getting as response, and this will be saved here in this array.

And | think | need an helper variable, which is an IRX ID index, and
we assign it with 0. So let's go. The next one is we have a serial
begin for the serial monitor, of course. And then, | would like to have
my serial ESP dot begin, and we have here the bar rate from 9600
according to the datasheet. And then we are saying 0O print line, set
up finished.

| like it because then | see that everything works, as | expected.
Okay. Now we start with the first reading of the content. and you
could say if serialesp.available And then we make here a while. And
of course, you could only use the while, but | would like to have this
approach and as always, many, many ways leads to success.

And then we say buff, Eric's ID, and this is our helper value starting
at 0. So 01, 2, 3, 4, 5, etcetera. And | would like to add here my
serial ESP sirror.rit. We want the raw bytes and the raw bits And |
print out here something so that | can see that there is something
happening. So it should print out 20 of these signs, and then | know,
okay, there is some data communication right away.

Yeah. And then let's see. We have to do something here, because in
the first row, let's open here. So we seewecan 1, 2, 3,4,5,6, 7
outputs. We could also take here calculating the mean value from
the 7, but just keep it simple in this way.

Now I'm only getting the first value here. So when it comes to the
first 20 values, | have to reset my helper value, so that | can get the
second cert etcetera as well. So therefore, | say if the Rx ID is
greater than 20, then I'm resetting it to 0. | think this should work.
And what | would like to do now is print lines.

And we have the buffer array. It should be 6 because 5, nothing is
now inside. | just want to check if it's working in the correct way. And
the first one, | would like to have here in hex and then in DATIMI.
Looking good so far.

Let's see if the compiler goes along with our first approach. Success,
then we upload it and it takes some time or when you're used to
working with an ESP32, the 8266 is really slow. So two minor things
we missed here, we have to increment the value because Now we
start with 0 because it has been assigned to 0. Then, the first value
will be 0. and it will increase it.

Then 1, 2, 3, 4, 5, 6 until 20. And then we have all of the data safe
here in this buff array. And if the Eric's is over 20, then it will print out
our values but we should also add this inside the first if because
otherwise, we are not getting here value of the data. So, therefore,
next try. So let's check if everything works.

Now | have already started viewing parts. And also the serial monitor
is on, and then we can check if some value is coming. Yes. 12, 12,
let's see here. 1313 So we memorized that this is the actual data
frame.

The last one is 19. So let's check if the last one is 19 because the
serial monitor will go further on. Here is our hex value, and this is the
decimal value because | have forgotten to make an 0 print line. So
last well is 19 in this last data frame. Then we're making the UART.
So now let's check if something is coming in, it always needs a little
bit of time.

So I'm tuning out a little bit. on the data, on the pulse view. So 20
seconds between each measurement, now we're getting the first
data. 21, 21, 19, 7, sh, 7 data frames should be received. There we

go.

So | click here to stop because we are finished. So let's memorize
the last value as 17. This is the hack dismissal. The hex value, this is
the decimal value. 17 in the last data frame because this will capture
the next data as well.

So let's check if we are here on the right path. That means 1, 2, 3, 4,
5, and 6 is the value 111, what is in hex, and 17 in decimal. This is
exactly what we want. So it looks promising. That means that our
first approach works very well.

So we could, at here, and PM 25 value. And let's take a look in the
datasheet. So we have here, DF3. That means Puffer 5, should that
be multiplied by 256 plus Buff 6 should be our desired value, what
we want to have. And then we could print out here the value on a 0
print line, PM25.

And of course, when we know that there are 7 circles inside in a
measurement, we could calculate here the meanwhile you're but for
our case, this will be perfect. And now we could use this PM value
and send via M quantity to influxdb, for example, and also visualize it
on Kafana. But this is not covered in this Project. You can check out
my note RED Project, for example, where I'm dealing with all of
these loT devices and aspects as well. So let's see if this also works,
then, upload the code.

And in the meantime, | will have quality tests here so I'm burning
here a little bit of paper so that | can use the air quality so that we
can change here or see a little bit of change inside the values. So,
therefore, | am adding a little bit of smoke here. Maybe this is
already enough. So this was the 1st cycle, then let's see that should
make a significant change normally in the air quality. There we go.

Nice. We know 1000 is the maximum we can receive. And now |
have 5 611. And we also can see here that the LED is changed. But
when you search a little bit about the BM 2.5, | think it should be
changed at the level 30.

‘ommunication protoco

®UART communication:
UART level range
-UART RX: 0-5.0V d.

Read measu
Send: 1101 02
Response: 16 0d 02 DF1- DF4 DFS- DFS DF9- DF12 [CS)

Note: PM2.S(pg/my W—I o —
PM LI pg/m')y = DFT*

PMI10(ue/'m") = DFI*

PWA communication

Resolution: Tug/m3

RSP: Low potential

Range: 0~ 992ug/m3

ycle: 1000ms

Concentration ug/m3 = low level r

This is the first indication that you should, open the windows,
etcetera. So first test, | would say absolutely amazing. And with just
a few lines of codes, we were able to capture the data from this,
PCP. Otherwise, we can get rid of the PCP, send the data directly to
the sensor and this is even more of an approach to what you can do.
But | would like to have this signal and start to slide the Ikea from
itself and, therefore, keep it and also attach a temperature sensor.

And now we have successfully reversed engineered here on the Ul's
communication between the sensor and PCPM and have made our
own loT device with a little ESP 8266.

ADVANTAGES AND
DISADVANTAGES OF
UART

We are coming to the end of our first protocol chapter. And | would
like to take the chance to discuss with you a little bit more the
advantages and disadvantages. So one of the first points is that we
only can establish your point to point communication. In the other
protocols, we have a bus system where we can add many other
modules to GPS | also, for example, but in this case, we only can
use 1 module with 1 Rx and Tx level. Of course, we have more
uarts, like hardware uarts in the ESP32, or we can use software
serial but this is one limitation we have.

We also have some limited transmission distance, which means
from, the cable length, etcetera. So otherwise, we will get a lot of
arrows in the communication. We don't really have error detection. or
correction. It's just an indication with this parity bit.

Advantages & Disadvantages

L[1] Point-to-point communication.
Limited transmission distance:
No error detection or correction
Limited flexibility
Limited bandwidth

Simplicity:

Widely used:

Speed:

Real-time communication:
Compatibility:

We have to do our own error detection, like checksums, etcetera, to
be very sure that the data is transmitted correctly. Limited flexibility
and also limited bandwidth, but nevertheless, it's one of the, yeah,
often used in our Reno environment because it's easy to use, and
nearly every microcontroller has it. The simplicity and widely used
speed, of course, real time communication is also, as we did before
with this air quality sensor, and the compatibility of STM, AT tiny, RT
Mega, ASPs, what do you call it? Nearly every microcontroller has
an interface. and, therefore, it's widely used and also very commonly
used.

And as you can see, easy, easy to learn the principles, the main
principles, how we can send data from and to, MCU or turn material.

ONEWIRE PROTOCOL
BASICS

Let us start in this chapter by discussing what is the 1 wire protocol.
On the right side, we see here 2 different housings from the same
sensor. And when it comes to 1 wire, the DS ATB 20 is one of the
mainly used sensors. And on the right side, we see the typical
housing, what we are using for our RD new projects on, on the left
side, we see the same sensor but with another housing so that you
can use it also with some liquids. And the reason why this is so
popular is because it's easy to get.

It's very cheap, and we only need one data line. There is not really,
library needed. Of course, we use the 1 wire library, but all of the
other aspects we can do very easily on our own. And the next real
advantage is that we can combine the VCC line and the data line So
we only need 2 GPS that means ground and one line for power and
data communication. And this is really cool.

You can go even further. You can use, many of the dealers yeah,
18b20 simultaneously on the same GPU. How does that work? Each
of this temperature sensor has this unique address And later on in
the sketch, we can address the sensor bytes unique address and
then can fetch your temperature data. Yeah.

OneWire Protocol

One data line

Power and data combined
Pull-up resistor
Time-based-communication
CRC checksum

We need a pull up resistor. That's how this whole communication
works, and it's like, time based communication. And as the last point,
we also get here in CRC, check some that we can, and have a
reliable temperature setting in our MCO. So in summary, this is really
cool or a cool protocol. It's a single bidirectional data line for
communication, to make it simple.

too and caustic cost effective to use. This is the reason why it's really
popular, and | would like to cover these one wire protocols as well
because it's good training for us on how we can access data on a bit
level.

DS18B20 SKETCH AND
WIRING

One of our first steps will be to create a simple sketch so that we can
communicate from MCU to the module. And then we start with the
wiring part. So first of all, we are connecting W5 and the ground to
our breadboards. can also use 3.3 volts. So on the left pin of our DS
18b20 sensor, we're connecting ground.

(1] LI
.ﬂmwm £0 50 rOML DX 1O ST IO | BND ET IO Z2ITHIWND
R 0% 0 [(80 (% (% (8 (% (% 1% O 1% (W = (= (%

The middle pin, we connected to some of your GPIOs. You can also
use another Uni or an ESP 866 if you would like. Then we have a 4.7
kilo ohm resistor, and this is our pull up resistor. So we need to put in
a slap. And therefore, afterwards, before we are connecting to the
GPO, afterwards, we are connecting the line to the VCC part so that
we have a resistor and pull up logic.

And on the right pin, we have here our BCC. So this is in a short
summary, our wiring part. | have implemented it now with, tiny
ESP32. This is one from the studio, but you can do it as well with an
d 1, with a dev board. What do you have in your equipment?

So the clamps from the logic analyzer are connected directly to the
center. And that's it. That's all that we need to do here. So let's
switch back to Visual Studio Code And I've prepared here my basic
sketch, nothing special in it. And let's take a closer look at that
platform for him.

Here is my information from the board. But what's really interesting is
that we need external libraries. So the first one is the 1 wire, and
then we need the delist temperature. And both libraries can also be
installed in the Ardeno ID. Just search for 1 wire in Dallas
temperature.

These are the names who are created, the libraries, then installed,
and then we are ready to go. So first thing, we have to include those
libraries, which we have just downloaded. And therefore, we're
typing in include, and it's 1y.h. And this library will mainly be used
mainly to use the 1 wire protocol. And the second one is primarily
used for the Dallas 18b20 sensor on.h.

Very good. Then we need some special points here. So | would like
to set it up here in constant byte temperature resolution. because
later on, we will use this and we will change it. So at default value,
we have here, resolution in twelve bits, and we come to this in the
next project.

What does that mean? So then we have a constant temp sensor,
and | have used the gpio 5 on a tiny ESP32. So just, take a look at
your pinout from the ESP port and then type in here, the GPIO. Then
we need 1 wire object, 1 wire, 1 wire, and we are referring here to
the sensor. This was the first step.

And then we need a Dallas temperature object. | call it a sensor. And
now we make a reference to the 1 wire object. So the 1 wire object
will be passed to the constructor of the delast temperature object.
Okay.

So far so good. Just some basics. In the setup part, we are starting
the sensor now. So this is our desired object where we can get all of
our data and we say sensors begin, sensors. No.

| was a sensor. Let's call it sensors because maybe you would like to
add here a few more of them and the same GPIO, then you can do
that with this one. Okay. Then, let's jump into the loop part and we

want to fetch the data each 2 seconds because it's also connected
with the resolution. | think you can do one second as well.

So then let's see sense or set resolution. is one point. So we do not
set it each time, but we can BTR as well. So then the temperature
resolution is a bit. Then we say sensors dot request, | think, should
be a request temperature.

So this is just a function call. And so now we are creating some flaws
here. For example, temperature in Celsius because since the
Celsius is the default value, And then we say sensors get
temperature by index. and this is, how we get here the temperature
value. The same thing could be done for the recalculation for
Fahrenheit, and then it's not get temperature c.

It's called Let's see. Get temperature f by index 0. Okeydoke. That
looks good so far. Then we can print out the values.

So | have already prepared the serial print here. And now, it's time
for the first check. Let's see if you have some typos, no, then upload
the code. And there we go. We have the values here.

And as you can see here, it refreshes every 2 seconds. And | am
here in 29 degrees. It's mid June 2023. And now | would like to have
a little bit of compression because I'm really melting here. My
temperature sensor behind me says it's around 20, 32 degrees.

This is because of the light, many monitors, the PC, etcetera, and,
it's not the perfect condition in the summertime to make some
projects here. But back to the 1 wire protocol, as we can see, the
first step we have already accomplished so we can get here the
temperature in scratch, degrees Celsius and also in Fahrenheit.

EXAMPLE DUMMY CODE
Wiring:
Connect the DS18B20 sensor to your Arduino as follows:

DS18B20 VCC pin to Arduino 5V.

DS18B20 GND pin to Arduino GND.

DS18B20 Data pin (DQ or DATA) to an Arduino digital pin
(e.g., 2).

Make sure to add a pull-up resistor (4.7k ohm) between
the DS18B20's data pin and the 5V line.

Arduino Sketch:
#include <OneWire.h>
#include <DallasTemperature.h>

/I Data wire is connected to Arduino digital pin 2
#define ONE_WIRE_BUS 2

/| Create OneWire instance to communicate with DS18B20
OneWire oneWire(ONE_WIRE_BUS);

I/l Pass oneWire reference to DallasTemperature library
DallasTemperature sensors(&oneWire);

void setup() {
/| Start serial communication
Serial.begin(9600);

I Initialize the DS18B20 sensor
sensors.begin();

}

void loop() {
Il Call sensors.requestTemperatures() to issue a global
temperature request to all devices on the bus
sensors.requestTemperatures();

Il Get temperature from the DS18B20 sensor
float temperatureC = sensors.getTempCBylIndex(0); // 0
refers to the first DS18B20 on the bus

I/l Check if a valid temperature was obtained

if (temperatureC != DEVICE_DISCONNECTED_C) {
Il Print temperature to the Serial Monitor
Serial.print("Temperature: ");
Serial.print(temperatureC);
Serial.printin(" °C");

Il You can also convert to Fahrenheit if needed

Il float temperatureF =
sensors.toFahrenheit(temperatureC);

Il Serial.print("Temperature: ");

Il Serial.print(temperatureF);

Il Serial.printin(" °F");

} else {

Serial.printin("Error: Could not read temperature

data");

}

I/l Wait a moment before taking the next reading
delay(1000);
}
In this code, we use the DallasTemperature and OneWire
libraries to interface with the DS18B20 sensor. The
temperature is read in Celsius, and you can convert it to
Fahrenheit if needed.

Upload this code to your Arduino, open the Serial
Monitor, and you should see temperature readings from

the DS18B20 sensor. Make sure the DS18B20 sensor is
correctly wired to your Arduino before running this code.

INFO FROM THE DATA
SHEET

Before we make the analysis in PulseView, | would like to go through
the datasheet, so the first few pages, and the DS18B20 one-wire
digital thermometer. As you can see here the pin configuration,
because we have other housings here as well, so we did a good job
in our wiring part so far, very good. So let's see what's interesting for
us. The measured temperature, minus 55°C to plus 125°C, is really
cool. And we can program a resolution, this is what we focus on now,
only two pins, everything what we talked about before.

So let's go a little bit down. Here is also the supply voltage, minimum
plus 3V, maximum 5.5V, so we are in the range from 3.3V to 5V, so
ESP32 and Arduino UNO logic level would work here. Then a little
bit down. Here we can see the temperature conversion time, that
means in 9-bit resolution we can fetch data in 100ms frame, but in
12-bit resolution, which is in the default setting, we have to wait 750
ms for each circle. Then here we can see a little bit more in detail
how the communication process is set up.

RE

will be investigated later when we are starting PulseView, because |
would like to scroll a little bit more down, this is what | would like to
do now, because a little bit of the basics, how we can recalculate the
data in temperature, because this is what we need later on.

So let's focus here, the output temperature is calibrated in degree
Celsius, for Fahrenheit application look up, ok we have to recalculate
it, is stored in a 16-bit signed extended two complement numbers,
ok, the sign bit indicates if the temperature is positive or negative, for
positive numbers, S is 0, negative 1. If the sensor is configured for
12-bit resolution, all bits in the temperature contain valid data.

Ok, so now we have here some examples, which | would like to
focus on, but before we do that, let's see what does it mean to have
9-bit or 12-bit resolution. So if we have here 9-bit and here we have
12-bit, then let's see, we have here by 9-bit we could say 2 to the
power of 9 and then we have 2 to the power of 12, so when we
calculate this, this should be 512 and this should be 4096.

srr e ars BIT4 BTl BTz |]

BT s BT 14 LU R BTN BT 0 ave al

IGITAL QUTPUT DIGITAL QUTPUT

TEMPERATURE (°C) | BINARY) HEX)
) 0111 1101 D000 | !

0000 0101 0101 DOOC

FESEN

So nothing special so far, but when we take here once again a closer
look on the calculation, that means we have to see here that this
least significant bit first and when we are calculating here, so that
means 2 to the power of minus 1 and this is 1 divided by 2 is 0.5 in
the granulation and here we have much more behind the comma, so
here we have 2 to the power of minus 4 and this means 1 divided by
16 and this will lead to a resolution, let's check the calculator, 1
divided by 16 is 0.0625.

So in this detail we can now fetch the data when we are setting the
resolution to 12-bits and we just get steps from half a degree Celsius
when we set it to 9-bits. So far so good, this is what the resolution is
and how we can interpret it, but let's focus now on the calculation of
those examples. So later in the next project we are getting some
data from the register, that means this is the poor bit that we want to
interpret. So let's do this one.

So that means if we have that data, let's type it in once again. So we
have here four times and zero, and that is indicating the sign. That
means if we have a plus or minus, and as we can see before, it
indicates the sign bit, positive means S is zero. So we have a
positive value here. And then we have the temperature value. So we

have here 0,0, 0, 1, 1, 0, 0, 1, and we have here 0, 0, 0, 1. So this is
the temperature value. And the last four bits are the comma. And
now we can calculate the values here.

|||||

Speaker 1 (00:05:58) - So we have 1, 2, 4, 8, 16 here, and this
doesn't matter because it's zero. And here we have just the one. So
how can we calculate it now? So that means if we add here 16 and 8
are 24, 25. So that means this is 25. And to the comma, we have to
use the value of the comma. And we have a 12-bit resolution, and
this will be as before, 0, 0, 6, 2, 5. If we get another value here, then
we set it here, for example, five divided by 16. So in summary, we
have here the value of plus 25.0625 degrees Celsius.

DIGITAL OUTPUT DIGI
(BINARY)
0111 1101

Let's do another example so that we can really be sure that we have
understood this kind of values, what we are getting. So let's focus on
the 10-degree example here. So we have four times the zero. This
means plus. Then we have four times zero. Doesn't really matter.
Then we have one, zero, one, zero, and zero, zero, one, zero. Let's
do it step-by-step. One, two, doesn't matter, one, two, four, eight.
Then as we did before, this is our temperature, and this is our
comma.

So here in the temperature, we have 10, we have plus, and the
comma is two divided by 16, and this should be, the double of this
should be, let me think, one, two, five. Is this right? Sounds good to
me. So we have, in summary, 10, one, two, five degree Celsius. And
this is what we are doing later on when we want to get the data out
of the sensor with an Arduino sketch. We have to fetch all of these
bits here, or when we want to have the bytes, or in this case, nibbles,
because it's all four bits.

And this was just a first analysis so that we can really calculate the
values here. And also necessary is that we are having here the least
significant bit to read at first, and | will show you in the next project
why this is so important.

DATA ANALYSIS WITH
LOGIC ANALYZER

So now let's do some analyzing. So my ESP32 is running and giving
me the data. | already have the clamps on it so both of the systems
are working correctly. As you can see here we're getting the fresh
data. Then I clicked on the decoder. | have here on one wire decoder
as maybe we already discussed before the zero and | use here on
stack decoder one wire network layer so that | get here something
out as sample rate 2G and 60 megahertz for the time. Then we click
on run and we're getting here some data.

So now that we have here the same results | would say | click here
now on stop and also disconnect the ESP and this one was the last
value because | think this is not captured anymore as you can see
here stop and therefore we are focusing on the last data frame and
this should be this value and this would be nice so if you can see
here this is the last data frame and this is here the last captured data
from the Arduino platform.

So let's focus and zoom in a little bit in this last data frame and now it
would be nice if we can get the data out of it. So OxBE is the
command which sends the MCU to the sensor to say let's start the
measurement and now we can calculate our values.

So therefore we start with the least significant bit first so the read
reading order is from right to left and the first four bits are the sign so
zero zero zero zero indicates here and plus sign as we trained
before then we have 0001000 1 thenwe have 11101110
and the last four bits here is where we are here let's see 0 0 0 1
there we go we have 1 0 1 1 these are the last four bits so this is our
plus sign this will be our temperature value and this should be our
comma value and if we are calculating everything right we should get
the value 30.62 so then let's try it out but now i would like to use here
the calculator if you're running a windows machine then you should
change here the calculator to scientific or to code or programming
modes then you can also add here some binary values and then we
are typing in one because the zeros are not relevant for us two three
four four times one zero and you can see here it indicates me the
decimal value as well or we can hit enter and change to decimal and
then we get here the value 30 looks promising to me and the comma
value changing back to binary then we have 1 0 1 1 enter we got the
value 11 divided by the resolution of 16 we should get the value let's
see a decimal 11 divided by 16 16 equals to 0.6875 and we have
now a new value from 30.6875 degree celsius this is our desired
value is it right let's see 36.875 36.8 so 62 i think with a little bit of
um ah this is the last value it rounded to 69 and this could be on 69
so it's roughly here 30.69 cool so this was the first analysis of the
register from our one wire protocol easy way i would say just focus a
little bit on the data sheet a little bit of bit calculation and then we
have our value as we have also in the platform.

CHANGE RESOLUTION
TO 9 BIT

And for the sake of completeness, | would like to show you here that
we also can change here the resolution For example to 9-bit and in
9-bit resolution, we can fetch data and get data here much much
quicker.

So for example when we change to 9-bit We could say here for
example Let's do 200 milliseconds Save it uploads the code And
now we should get here the data with not so and detailed Value,
we're just getting here 30 degrees But much much faster and this is
what maybe the use case could be in in in your project But would
when you would like the more detailed value, then let's see.

DS18820 Programmable Resolution
1-Wire Digital Thermometer

if
AR
it ' ALILIP
| —— | 2

Let's make here one second Then it makes sense to Leave here a
little bit more time a little bit higher resolution and get the accurate

value as we can see here But this is a matter of what you want to do
with your sensor but | just want to show you how easily you can
change it with this kind of set resolution function and that you know
that the values are Really be rough enough with 9-bit solution
Resolution and it was much more detailed with the 12-bit resolution.

ADDING AN EXTERNAL
DECODER

In this project, | would like to demonstrate to you how we can import
external decoders from third parties in Python. And | found here an
external decoder for the DS 18b20¢. So on. And although, or maybe
it's already implemented in PowerS viewer, Let's use this use case to
show you how we can do that. So there's, guy who wrote this
external library, really Chrome, and we can download this folder.

In this folder, there are 2 Python scripts in, which do all of the magic.
And where should we copy and paste this folder? To use this
decoder, just copy the folder and its contents to user share lip lip
sync rock decode decoders. This is exactly what | have here, but I'm
using a Linux system here. So if you are running a Windows
machine, the first thing is maybe you should consider changing to an
analytics distribution in your private little area because it's free, it's
open source, and it protects your data much more than Windows
does.

And it's, and more the way we are using software in the audio
environment. Just, and show notch. And also, | have a good Linux
Project, also on this platform. So maybe you are interested in this
also. But back to the topic, when you are running a Linux machine,
maybe you have the same folder structure.

It could also be the case that this is a hidden folder. So just try out in
the explorer, typing in user, share, etcetera. And then maybe you find
here in the folder structure, this lip sick rock decode, and then you
can copy the files in it. So let's open one of these first, Python script
to see what is in it. So first of all, we can find here all of these
commands and, what we've seen in the datasheet, scrolling a little
bit down, then read scratch cut.

This is also what we have read before. And this is really cool. You
can see here, the 0.0625 gives us feedback for the resolution.
highest resolution, lowest resolution, we are reading here, the
resolution out. And here is where the converter temperature is buried
NOW.

And This is exactly the same as what we did before with our
blackboards, but here it is done via Python. Really cool. And now
when we have copied this folder to the structure, then we reopen our
pulse view so that it could be initialized. And then, so restart, pulse
view. And then we can search the decoder here.

potx([0, ['Temparature conwersion status!ed READY']])
elit self.state == "WRITE SCRATCHPA

by typing in DSO18, double click on it, and then we can change the
one here, for example, and we should see something here. So let's
see here. Let's go a little bit out. And we see here our data, the
temperature into 30.375 as we had it before. in our audio, you know,
IDE.

It will be in the last byte because you also see here the resolution in
12 bits, etcetera, really, really cool what is made. But we did before
the approach by reading it ourselves, but as you can see here, with
this externally It's much more convenient. And maybe for your
purpose, you need another external decoder, search for it or even
write your own decoder with the past few. This is no problem.

GET DATA ONLY WITH
ONEWIRE LIBRARY

In this project, we are just using the 1 wire library to get the
temperature data. And therefore, here and finished example
because it's a little bit more of programming work. And | go through
the main concept, and we also do an analysis with the logic liver to
show you how we could do that. So here is the finished example we
are just needing here: The one wire in Dallas we could get rid of. So
let's compile it in the meantime.

And we are creating, including the one wire because this is our main
communication to the whole module. And what we are needing here,
let's go through setup. We have here an and function which is called
Dellus. And with this Dellus, we just initialize it and then we are
fetching the data. So let's see what this tells us.

We are just, pass here 1, that means is it in start or not in the start.
So let's see. We're making a 1 wire option here. We are getting an
array with 2 spots and an integer with result and also in float
temperature. Then we are set, we are resetting the object which
indicates that we are starting to communicate. And then we are
sending the first command and it's the cc command.

So then we are combining both of the values. And let's see CCH.
What is this register that skips RAM? The master can use this
command to address all devices on the bus simultaneously. without
sending any rom code information. For example, a master can make
all DS on the bus perform simultaneous temperature conversion by
using a skip wrong command.

This is what we do here. We're just addressing all of the temperature
sensors, what are here. Then note that the read scratch bat
command can follow the skip RAM only if there's a single slave
device on the In this case, time is saved by allowing the master to
read from the slave. Okay. In this case, we are using the BE room,
the next one.

This is the weeds scratch pad as we did also in the previous
examples. And then we're reading out the data. And I'm sure you
can read this line because we have the least significant bit in the first
place. So that means first, we're getting: do we have the pass view
open? Yes.

So that means we're reading from right to left, but we are getting this
is in the index 0 and this is in the 1. So first, we are using index 1.
This is this 1. Pitch shifting to the left, the result is an integer 16, not
in bytes. And we make an all operation so that this will be, a both
bytes together, and then we can calculate, here is some calculation
going on with, in the code.

And afterwards, we are writing here in CCR. Let's see what the CC
is. as we did before, skip RAM, and then we have 44 h. What is this

command? This command initiates a single temperature conversion.
Following the conversion, the resulting terminal data is in a 2 byte
temperature register from this catch bug memory, this is exactly what
we did before by reading out those 2 bytes.

Programmable Resolution
1-Wire Digital Thermometer

Bhcan e
pullod high by the strong

Okay. Cool thing. That's all we need to perform those actions. And
this is what we do here. So no, not starting.

a 3 is the pin, the GPIO, where the sensor is on, and that's it. So I've
already uploaded it. So let's see what the serial monitor prints us out.
Now we can open up the pulse view again, and let's inspect what we
get here. We should now get here and a shorter time data frame
because we are just sending here.

Let's see a few commands out, and that's it. So we click on stop,
zooming in to the time frame or to the date frame. And we can see
here we have here our skip RAM, our BEA command, and then we
have these two bytes where our data from the sensor is stored. Then
we're reset. We're sending CCM and, next reading command out to
the sensor.

cssey ses

That's it. That's all that we need. And this code can be fulfilled also.
For example, with an 80 tiny with limited space, etcetera, we just
need an and 1 wire library. And there are also some tiny 1 wire
libraries so that we don't have to do all the things by ourselves.

and not really more is needed for getting temperature values with an
arduino or ESP.

CIRCUIT AND WIRING

And as always, in a new chapter, we start with some basic sketch
and the wiring part so that we then lay down and can't catch the
data. The DHT 11 or DHT 22 is also communicating via such icon 1
wire protocol. It's not really standardized, but, therefore, we're only
needing also here one data line. So VCC and ground is to Bradbot,
you can choose 5 fold or 3 point three volt, and then choose 1 GPI at
home for the data communication with your USB 32, for example,
per. I'm using here, as you can see here, on prep, so, a suction
module, and this module has already and re system, pull up our
system at the data line.

If you are using the raw temperature sensor. Then you need, | think,
10 kilo ohms, 4.7 kilo ohms resistor and pull up resistor to get here
the data line. high. Also, | fear the wiring for both of the sensors, but
I'm only using the DHT11. It's the cheaper version, but not so
accurate.

But for the most part, it's absolutely sufficient enough. But if you
would like to have more range here because | think that DHT 11 is
can't or is not able to be measured here, a minus degrees. So,
therefore, you need a DHT 22. much more, range of the temperature
and humidity and also, more accurate, but costs a little bit more. The
approach is nearly the same as we see later on.

you have to calculate it a little bit differently, but you can follow me
along, but have to adapt certain steps then later also in the
calculation. Yeah. That's it. That's the first step of the rhyme part,
and | also connected here the clamps for the logic analyzer directly
to the pins on the GPIO, and that's it. All that we need.

Nothing more to do here. And then we are switching to our basic
sketch. And what we are doing here is, we are adding here either
food sensor and the DHT library. That's the first thing we need to do.
And it is under Arlino IDE, then you can just search for the DHT
Center Library for Adafruit, and both of them can be used for the 22
and the 11.

g . %
=i 3O

Sheadbed i
57T N3) S T I T L BT T e

dhadae

So then let's start by defining, yeah, the pin. And | think the example
does it with some defines and not with const bytes. So let's keep it

like in the example from the library. define the HD type, and this is in
my case, DHT 11. If you use 22, then you have to change the type
here.

would use here defined HD type DHT 22. Then I'm using here an
unsigned long previous Millies. That's correct. And I'm creating an
object here. A DHT object, write this, with the name DHT in some
lower letters.

and | have to pass here the DHT pin, which we defined and the DHT
type. So it's much more readable if we're using the definitions. Okay.
Then dht dot Begin And now we can start in our loop with getting the
data. And therefore, we are using some floats here for humidity, DHT
read immunity, | think IntelliSense is such a good thing, or you just
start typing and getting the name of the function.

Very good. Then we have a float, t is DHT reads a temperature. Nice
one. And the DHT library has some special things in it. It's called the
heat index, | think, heat index. DHTR Compute heat index.

What is the heat index? | have to pass here the temperature and the
humidity. The heat index is something like, apparent temperature

that's combining the temperature and humidity, and it should tell you
how it's be, it takes into account a combination of these effects of the

temperature and humidity on human comfort. Do you feel it? Is it,
more, is it lower in the feeling, or is it higher?

al.begin(115200);

dht.begin();

}
J

loop()

And this will be heated . So just that, you know, that you can also
calculate it. And we take a closer look also at this computing heat
index function later on when we're inspecting the library. So now we
are printing out all of the stuff. I've already prepared the server
printout, and then we're uploading the code and opening the serial
monitor, and we're getting 30 degrees straight and, humidity 57, 58
heat index, 25. Okay.

Sounds good to me. For the first tests that we get here, the humidity
and temperature data, that we can proceed.

UNDERSTANDING THE
PROTOCOL AND SIGNAL
ANALYSIS

Now let us start by inspecting the protocol a little bit more in detail
from the DHT 22 or DHT 11. So | have both data sheets here, but we
are focusing only on a DHT 11. You can follow me along with the
DHT 22, but have to adapt here. on, details. So, therefore, let's close
this one.

Open up the DHT 11 data sheet. scrolling a little bit down so that we
can see our first in force what we are needing. The first thing is that
the temperature and humidity accuracy is not really in a way that we
could say is an industry standard. But in our spare time hobby
project, thickering projects, it would be accurate enough. But you can
see M 2 degrees is some significant change and it could make a
significant difference.

1. Typical Application (Figure 1)
vDD

MCU — DHT11

neegled

the senior in within one woond in order to pass the umtable status. One
capacitor valued 100nF can be added between VDD and GND for power filtering

Scrolling a little bit down. We can see here our resolution has 8 bits.
It's also not really accurate, in comparison with the DS ATB 20, for
example, also the DHT 22. typically application with this, pull up
resistor. And also you can see here, if you have longer distances,
you can reduce the pull up resistor, for example.

Here, power and pins are also interesting. We can use here the logic
level from the ESP32, the 3.3 volt, and also the 5 volt Ardino, both of
them are sufficiently enough. And you could add here a capacitor for
filtering out any noises. So here, the communication process, this is
what | would like to see here. Singapore, why are two ways
interesting?

So it's just not a standard format. It's a single bus data form from
RTCs to communicate and synchronize between MCU and DHT
sensor. It is about 4 milliseconds, the whole process. And the data
consists of 40 bits. Okay.

Interesting. and start with the higher data bit. Okay. That means we
can read from left to right. Here the first eight bits are the relative
formality data, the decimal data, then we have the temperature and
the decimal temperature.

And then check some If the data is trans transmission is right, the
checksum should be the last 8 bits. Okay. The sum of this | see. |
see. And here we have a good overview of the communication
process.

And this is now exactly what | would like to see. We can find out the
same thing, with our example here. So I've, my sketch running. You
can see a certain degree Celsius. And | have here, the humidity by

58. The PulseViewer is already set up.

1 channel, no decoder. | have added 1 gm here and 8 Megahertz
could change it also for 60 megahertz, for example, and let's run it.
And now it would be interesting if we cut the communication because
then we can be sure that we have the right values here. So Stop.
Here we have.

Here we have the last value. So the last value should be 30 57, not
58. And this is what I'm now would like to go a little bit more in detail
with the communication process. So we're focusing and zooming in,
then let's open the communication process here. Let's go a little bit

down.

So let's have here the senior bus free status is high voltage level.
This is all before what we have here. You have the high line. And
then when the communication between the MCU and DHT 11
begins, the program sets the data voltage from high to low. This is
this area.

5.1 Overall Communication Process (Figure Z, below)

When MCU sends a start signal, DHT11 changes from the low-power-consumption mode to the
running-mode, waiting for MCU completing the start signal. Once it is completed, DHT11 sends a
response signal of 40-bit data that include the relative humidity and temperature information to
MCU. Users can choose to collect (read) some data. Without the start signal from MCU, DHT11
will not give the response signal to MCU. Once data is collected, DHT11 will change to the low-
power-consumption mode until it receives a start signal from MCU again

— Wl lsbey - e WTSh e Oty Db
[y ol TR -

SIMCLEBLS et e el gt mny F
ouTrT P - - Oyt Dy | bt §- ———)

—
MCU Sigaad DT Sigaad

Figure 2 Overall Communication Process

5.2 MCU Sends out Start Signal to DHT (Figure 3, below)

Data Single-bus free status is at high voltage level, When the communication between MCU an

And this process must take at least 80 milliseconds. So let's
measure. What do we have here? bum. bum.

Okeydoke. Then we have 20 milliseconds here. And this is because
the light Bree is set here at 20 milliseconds, and we will see this in
one of the next projects when we also investigate the library. So this
is exactly what we want. 20 milli at least 80 milliseconds to low.

And then the MCU pulls up the voltage for 20 microseconds. So
we're zooming in. We have here the next high, and this should be 20
mil microseconds, not seconds and with your 13 micros 13. So |
don't know why we are not following the standards here. It could be
that this is some intentional purpose inside the library.

| don't know, but it works. So here, we have a little glitch. the DHT
sends out a response signal and keeps it for 80 microseconds. So
this is now, if both can communicate with each other, and we have
here 80 3 microseconds. And then, DHT pulls up voltage and keeps
it for 80 microseconds.

And this is where we have started with intolerance. So we have here,
the rest of the 40 bits should be here. So let's go down a little bit.
Here's the explanation in text form. And now, something really
interesting in this kind of protocol is that we have between each data

and spare time from around 50 microseconds, as we can see here,
or, for example, here, these are the 50 microseconds.

And now, how can we interpret the data? We have here some short
impulses and some longer pulses. So the short pulses which run
about 26 to 28 microseconds, are logically 0. So here, we have 23.
Here, we have 23.

so this focuses on the Data length, is, yeah, 28 microseconds and it
is in 0. And if we have 17, 17 microseconds, then we got here and
logical 1. And this is now how we can calculate our values. So going
up a little bit because we want to have here first one is the relative
humidity and then the decimal values. So let's focus on the first eight
bits.

1,2,3,40f5,6, 7, 8. Open up the calculator. Change to binary, and
we're typing in from left to right is 00, and this one is three times a 1,
then we have 1. 1. Hit enter.

And then we are changing to decimal. And we got here at 57. 57 is
the last value we got here, humidity, because 58 was the previous
value. Amazing. It works.

So jumping back to our calculator. The next eight bits are the comma
value. So 1, 2, 3, 4, 5. 678. As we can see, 0, we have 8 bit
resolution.

So not really anything here. To mention, then the temperature data
should start. 345678. changing to binary, typing in the binary data, 3
times in serum, 4 times 1, and 0. Hitting enter, we can see here the
30 in the decimal values and this is exactly what we have here.

Then we have 1, 2,3,4,5,6,7,8.1, 2, 3,4, 5, 6, 7, 8. And this is,
the comma values from the temperature. And now the last 1, 2, 3, 4,
5, 6, 7, 8 is also interesting because this should be the checksum
and the checksum should be the sum of all of the values. So that
means 30+57 should be 87.

When DATA Single-Bus is at the low voltage level, this means that DHT ks sending the response
signal. Once DHT sent out the response signal, it pulls up voltage and keeps it for BDus and

prepares for data transmission,

When DHT is sending data to MCU, every bit of data begins with the 50us low-voltage-level and
the length of the following high-voltage-level signal determines whether data bit is "0" or *1*

[see Figures & and 5 below).
| 16-28uy "
* voltage-length .
I means data 0" Start to transmit
YCC------- i'\'.:.qli 4 (PR AR AR | - mext bit data
\ 4 S S
GND ,r;\"r\-pru TR . S 5
| start to trans-
SINGLE-BUS
SIGNAL —{mit 1-bit data j@—
it (80us)
Signal Lines
eiplanation: — .)
MCU Signal DHT Signal

If I'm calculating your rights, changing to binary, we have and 1.
Now, 0, 10, 10, and 3 times the one hitting enter. And we see 87 is
the desired value for our checksum. And now we can be sure that
we have read the values in the correct way. The last spare time and
then the data line is set to high And this means the communication
process is over.

Very good. And this is how the DHT 11 sensor communicates with
an MCU, for example, so let's see how long the whole data process
is. It's only 20 milliseconds? No. It's 20.4.

Ah, not really 24 milliseconds and what was in the datasheet around
about 4 milliseconds. Yes. 4 milliseconds is the whole data
processing. Yes. 4 milliseconds.

That works really well. So we have now checked everything on a bit
level, on a database level, and In the next projects, we're trying to
find out if we have it here also in the decoder.

USING THE DHT11
DECODER

And of course, there are also some decoders out there. But to
understand the protocol and all of the necessary content of the
datasheet, it's necessary that we are not jumping too fast into some
decoders. Also, it's beneficial and helps us, supports us. But at the
first point, just try to understand all of the meanings from a
datasheet. Then we open up here and we are typing in, it's an
AM230, because this is the sensor inside this DHT. We click here on
Enter.

Speaker 1 (00:00:38) - And now we can add here the data line, this
is DO. And now here we can change between the DHT11 and the
DHT22. And if I'm choosing here the DHT11, now we can get here in
a convenient way all of this stuff that we did before by counting the
binary values. So as you can see, easy doing, easy as an overview,

but not really helping us to understand all of the content. But why not
use it when you are trying to find out if there is some error, for
example, in your circuit.

INSIGHT INTO THE DHT
LIBRARY

And if you are more interested in how the library is working, you can
inspect it by clicking with CTRL and, for example, a mouse click. You
can jump into the DHT folder, you can also use the Arduino IDE, you
jump into the folder structure where all of your libraries are saved.
And then you can always find a CPP and .h because this is in an
object-oriented way. That means here in the header data is
mentioned all functions and variables which are used. And in the
CPP you find all of the code from this library.

And you can go through this library to understand how they
managed to read out those values in Arduino code. And | would like
to go a little bit down so that you can see, for example, that the DHT
library implemented the pin mode so that we can read the values.

Because often we have to do it on our own, but here, when we are
starting in the setup to begin, this will be done here. Then going a
little bit out, reading the temperature.

Then we can see, for example, that the sensor is now read out with
some helper function, converting the Celsius to Fahrenheit, for
example. I'm going a little bit down because | have the DHT11 here,
this will be something for us. But it's not really interesting here. |
would like to see if we find a little bit more here, compute the heat
index. Also interesting how this works, you see a lot of mathematics
is going on here. Pow wow wow, much rocket science. Here, read.
This is what was the interesting part.

Because we have the 40 bits to receive all of the data. So we have
an array here. And now the magic begins with, for example, let me
see, DHT11, delay 20. Datasheet says at least 80 milliseconds, 20 to
be safe. This was the first start. So this line, no, here we go. This 20
milliseconds is done here with this delay. And then some magical
things will happen where the start conditions start. So that means
this was this part with the, what was it, 80 seconds down and high.

And then the real magic starts with interpreting all of the zeros and
ones by measuring how long are the pulses. So it's not really easy to

measure here without any interruptions to the pulses. But you can
inspect it if you want to go a little bit deeper in this whole thing, how
this library will do it. So they make a change if it's short or not short.
And then, yeah, they will calculate the temperature and the humidity.
So you see, simple to understand, not so simple on the Arduino code
basis.

But we will do our own libraries later on with the E2C. It's a more
common way. It's a more, | would say, convenient approach to write
your own libraries. But here you can investigate how it's done for the
DHT11.

BASICS

Now, we come to, next protocol, which is called SPI serial parallel
interface. And this SPI is also widely used in the audio environment.
So if you're using an AT tiny, RT Mega, and ESP, you will find
general GPIOs. The thing is, if you are using a microcontroller, which
does not have so many in GPIOs, SPI wouldn't be the 1st protocol
with what you are using because we are needing 4 data lines, 1
ground. So 5 lines, jumper cables, 5 GPS.

=

SPI

Serial Parallel Interface

SCK = used for clock pulses to synchronise data
transmission from master devices

MOSI = Master Out Slave In = Sending data from the
master unit to the slave units used.

MISO = Master In Slave Out = Sending data from
slave units to master units used.

SS = Slave Select = to activate and deactivate certain
units and to communicate only with 2 ~ertain
number of units.

And this is not often very suitable for all circumstances. Also, we are
not there's no need for a full duplex communication. And | come to
this later on because in one of the next chapters, we are talking
about the e squared c, which is widely used and only needs tools.
lines, jumper, cables, connections. And, e squared, he can also only
talk half duplex, and here we can talk in full duplex.

So that means we can transceive and transmit and receive data at
the same time simultaneously. And this is used for example, ink
displays and other modules were NFC, for example, RFIDM. And Of
course, it's a convenient way with this full duplex, but we have to
think about, is it really necessary? Because | also have RFID and
NFC modules where | use your art, for example. And this is much
more convenient when it comes to tiny microprocessors.

So therefore, it's used, but I'm not really a fan of. So this is also the
reason why we keep this SPI a little bit shorter in the dynamic. So
let's focus here on what the SPI have, on what the GPOs are. First
of all, we have a clock SCL. And this is a clock input to synchronize
data.

transmission for master device. Same as in the e squared team. So
that means if the pulse goes high, then we send the data. going low.
This is the space.

And with the next pulse, we can send the next data, and this is how
we can set the clock into nanoseconds, for example, and can
transmit data very fastly. The mostly stands for master out and slave
in. So we are transmitting data. and the meansu stands for master in
slave out for receiving data. And this is because it's in a separate
line, full duplex.

Then we have slaves selected to activate and deactivate certain
units and communicate only with a certain number of units because
we also can use this as some parallel bus system. So that means |
can use several slave devices here for 1, master. And | have to
change the SS or CS pin here. Of course, if | have 2 slaves, | have
to use 2 different SS or CS pins. So this is a variable pin often, but
the clock meso and mostly are predefined in the outer, you know, or
ESP, for example.

SPI

Serial Parallel Interface

Slave 1

Slave 2

Slave 3
Yes. And this is how on such a parallel interface you could set up. As
you can see here, we have mostly mesone here. connected in a
parallel way, and then we have 3 in the master different slaves
selected. So then | can say, | would like now to communicate with
slave 1 when I'm putting high, for example, to SS 1. And as you can
see in parallel devices, many different MOSIS, SPI devices can talk
to 1 master. Yes. It is and where it's a | would say it's a the SBI has
his justification it's widely used, but as you can see, you need a lot of

wiring, therefore, So next project, we take a closer look on what we
can do with the SBI.

SKETCH ARDUINO UNO
TO UNO

In this project now, we want to make our own SPI environment. And
therefore, | have FEM 21 here. Audio clones which should
communicate to each other with our over SPI. And the connection is
really simple here. So we are using the predefined GPS, what you
can find here on your reference, your pinout from the manufacturer,
And normally, it should be, on the pin GPS open 13, the clock pin, 12
should be a meso on.

11 should be mostly. And 10 probably you could set up the SS pin for
example. but there's always checking your pinout. I've mentioned
here in the pins also in the codes. So what | did is | connected all of
them together that means 10 to 10, 11 to 11, 12 to 12, and 13 to 13.

And that's it for our first catch. And afterwards, we also add, here,
some sensors, but now we just want to transmit here one data that
we can see if the communication process is working in the right way.
So | have here the master on the left side and the slave on the right
side. So that means the master sensing command, and we want to
get your data from the slave, for example. And therefore, | would say
that we start with the master.

And the first thing, what we are doing here is we are setting the SS
pin. So we say const integer, for example, SSpin is on the pin 10
because this could be variable. And then we have to include. This is
also one thing. in the standard repertoire in the core from the Ardeno
is the SPI library already implemented also in the USB environment
So, therefore, just include it.

And then we have access here. For example, to sbi. Begin. Then in
the next line in the master, we are setting here some speed
variables. That means we can say here, SPI set clock divider, and
you can search about this term.

You find different kinds of explanations here. What we are doing
here, we are setting the clock so you can see a different kind of
dividers by 8. This will be probably the best speed setting for our
purpose now. Then we are setting, the digi a digital write, and we are
setting up the SS pin. too high because this is the normal default
value.

And when we want to start the communication, We have to set it to
low and then make the communication process, and then we are
setting it again too high. This is also the first step of what we are
doing now in the loop. So that means inside those 2 digital rights, we
have to make our communication process. So we are setting
ourselves low. And afterwards to hire, this is where the
communication can start.

So what we are doing now, we want to send, for example, one to buy
it. And despite being able to have the following information, a byte
data to send, for example, and we are sending here, yeah, let's send
here, for example, this value. Then spedot transfer and we are
transferring the bytes, which we just initialized. And then we could
say digital, digital. Alright.

Because | also want to see what we are printing out. SSIN. It's
digital. Yes. That's what we want to see here, the data to send.

in hex, and | also would like to add here and serial print, not done.
Print line, and here we say serial print. We could say there were no
leaks. So it just looks very promising, then we try to upload this code.
Very good.

And our first test was successful. That means we are sending out
every 2 seconds here this value, but no one can really get it so our
slave can't be able to receive it because we have to program it.
Therefore, jumping to our slave, we have to do nearly the same.
That means we have to define or include the SBI, and we have to
define here their SPIN as well. Then we are starting with the SPI.

And we are making a pinmode here because, here, we haven't really
defined it any. So that means it's an input pull up. We don't need this

in the master, and now we would like to configure the SBI settings. in
the slave. So, therefore, we say SPI set. Begin transaction.

And now we have to fill in our SPI. | think it's called settings. And
inside this function, we have to hand over some values here. First of
all, I would like to have 8 Megahertz here, and this should be in
accordance with where the SP clock divider is? Then we are seeing
the MS B should be transmitted first, and | have E and SPI mode.

And this is also where we have different kinds of modes where, in
this mode, the slave selection should be lower when we are
communicating. This could be changed by SBE mode 1. | think then
it's, we're communicating by high, otherwise, by low. So we can
change the direction here as Okay. And that means in the loop, we
say if, for example, the digit term, read of the SS pin, and this is the
reason why we set the pin mode.

If this is low, then the communication could start. And then we say,
for example, we are receiving here the data from the master. So
byte, receive data equals to, spe.tran sphere 0 because we are
sending here back Justin 0, and it's in full duplex. That means we
can receive something here and send back data. But | would like
only to receive the data here.

Nothing sent back. But otherwise, we could also see here, for
example, here, we could receive the data as well. So then, we want
to print out the data, which we have just received. So received 0x,
and we're saying 0 print line, receive data in hex. | have already
changed the USB settings here.

So this should be here on USB 0, and this one should be run on ESP
1. Then let's see if we have some first connection here. Then let's
see. Open up the terminal again. And there we go.

We're already getting some data here. Okay. It Looks like it works
perfectly. So that means we are now able to send here data in bytes
level via SPE from one device to the other device. And we also can
send back some information here as well.

We just have to grab it here. and catch it, in this line, for example,
and then we have here in full duplex. Way. One of the next projects
we're analyzing this data communication on the logic analyzer. And
then we also want to send you some real life data, for example, from
a temperature sensor.

ANALYSIS WITH LOGIC
ANALYZER

And now let's focus on the PulseView part so that we can
understand the SPI protocol a little bit more in detail. Therefore I've
already inserted the clamps on the Arduino UNO clone. So I've just
pushed up the jumper wire a little bit so that | get the clamps inside
and also that the data communication is working reliably. And now
I've already started communicating here. I've added 10 GHz here
and also in the sample speed I've changed to 24 MHz. And this is
what we got here on these four channels.

Now let's focus here on the data frame that we captured here. And
it's pretty obvious what kind of channel we have here in our SPI
communication. So the DO channel has obviously the clock values
here. So you can see here the same width for low and high. So let's
focus here and measure what is the time frame from one of these
values. And we have here 250 ns which is equivalent to 4 MHz. And
this is pretty fast what we can do here and transmit and receive data.
On our D1 channel we now have the data that we are transmitted.

The D2 channel is the receiving line and this is some serial noise
that | captured here because we do not really receive any data here.
So I'm not really evaluating this channel. The D3 channel is our chip
select. This is what we are set to low in our Arduino sketch so that
we know what kind of module we are communicating with. And now
let's focus on this one. This is our transmitted data. And when we are
focusing in here we can see our signal is starting on a falling edge.
But this is not really interesting for us.

Interesting is the rising edge of the clock and this is where we can
say here we have a logical 1. Here we have the next rising edge and
here we have a logical 0. And then we have here a logical 1 and a
logical 1. So in summary we have now when we are changed to
binary 1011. This will be in decimal the number 11 or in hex what we
send B. And this is exactly what we did before in our Arduino sketch.
So this is just the poor raw data but we can also use some external
decoders here.

So just click here on the decoder and then we are searching SPI.
Then we are adding the SPI decoder by double clicking on it. Click
on the settings and here we are referencing the different kinds of
channels. We have the clock on DO. D1 is our transmitted data that
means this is master in and slave out. This is not what we want
because here we are still receiving data lines. We have the master
out and slave in. This is the D1. And then we have the chip selected.
This is the D3 line.

And this is now what we have before made on our own with
evaluating all of these values. And as you can see here we have the
bits and the data that we transfer with the decoder. So a simple and
effective protocol. As you can see very very fast and we have a full

duplex here. That means we can send and receive and transmit data
at the same time simultaneously.

DHT22 VALUES VIA SPI

Now one of our last examples will be that we want to send real life
data from a DHT22 for example via SPI. So the wiring part is very
easy in this case we are just connecting the DHT22 to for example
3.3 volts ground to ground and the output goes to 5 to the GPIO5 for
example and the connection what we had before keeps the same 30
to 13, 12 to 12, 11 to 11 and the chip select is on 10. So of course
you can also use another sensor and if you're using not the breakout
board don't forget to use here a pull-up resistor for the data line.

) "

Okay so our existing sketch was here. Here on the left side we have
the slave and I've already had the sensor. So what we are doing now
is we want to adapt the first sketch from the master. So make it a
little bit bigger here. Closing the serial monitors for now. So let's see
this is just everything the same but what | would like to do here is we
have to add the library for the DHT sensor. So the first step will be

adding the DHT sensor library and now we could add here all the
things that we need.

I'm just copy-pasting it because we already did such an example
with the non-controversial or non-standard protocols including here
the DHT.h library. So nothing special until now. In the setup don't
forget to also start here the DHT sensor and now in the loop part we
are getting rid of this kind of text and we are making a float which is
DHT read humidity. It's a function then we have float temperature. |
call it temp DHT read temperature and then | should write the float in
the correct way and then yeah looking good so far.

We are setting up the digital write pin only when we are really
transmitting data, not when we are reading the sensor value and
now we could say the SPI transfer button transfers the temperature
for example. And that's it for the communication process and | would
like to print out the data here so that we can see if everything works
right. One thing is missing: we have also included here the Adafruit
sensor.h library as well. This is not really included here and now we
can upload the code.

So the first test of the master looks promising and then we can
switch to the slave. Here don't forget to adapt the USB port so when
we want to have two serial monitors at the same time we have to use
different kinds of USBs. So in the slave we do not really need to
change here so much the only thing what we have to change here is
DHT22 temp value and this shouldn't be in hex this should be in
decimal and that's it we can upload it and when we did everything
right then we get here back our values as we can see here.

We have here made a byte that's the reason why we only get here
not on float etc but as you can see we have here received successful
values from left to right from master to slave. If you would like to also
have the comma then we maybe could send here a second value
first is the high byte low byte for example this is also possible. But
this should just visualize how easy it is also to use the SPI for your
own purpose for your own project to transmit data.

12C INTRODUCTION

e squared c bus basics. e squared c stands for inter integrated
circuit. And the e squared c also, in my opinion, one of the populous
serial communication protocols in the Adelino environment. Why is
that so? Because it's easy to use, and it's a bus system.

That means we have master and slave connections here, which we
can see here. And that means that we have 1 master, for example,
our audio, or USB, AT, tiny, which communicates to many multiple
devices and in the case that each slave has this unique address, we
can address, for example, one sensor specifically, then the order and
in the next one. And this can be done only by 2 wires. We have an
SDA here. This is the data line, and we have a clock line.

And with this clock line, we synchronize the data transmission. And
this is one of the main differences between the e squared ¢ and the
u r because here, we can transmit faster our data because the clock
line just indicates when it comes to next data. And therefore, yeah,
we only use 2 data lines. Although we have multiple devices, this is a
bus system. So all of them are in parallel.

That is exactly what we do afterwards. So you can see here, 3
devices, all of them, e squared Centimeters, and we can use them
because each of them has a unique address. So we can use from,
according to the speed from 1 100 kilobits per second up to 3.5
megabits per second. So this is, | would say, in the environment
enough for exchanging his sensor data. Also 128 participants 127,
booth and 7 bit addressing.

12C Bus Basics

Inter-Integrated Circuit

2 data lines

100 Kbps up to 3,4 Mbps

128 participans ..

Pull-up resistors for SDA & SCL
Half- DUpIeX (both directions but not simultaneously)

Master Slave
>

To address, we come later on. We also have the ability to make a 10
bit addressing here, and then we have up to 1000 participants. It all it
always, you know, should ask yourself, is this really necessary to
have so many participants here to 1 MCO, but maybe this could be
the case. We need a polar resistor for SDA and SCL, but this is often
done by the internal inputs from the GPIOs. So you can set here in p

mode and with this input, pull up, for example, this could be done,
and also the libraries do this by demo.

Half duplex means both directions, but not simultaneously. So we
send it from the master, for example, address it if we get and
acknowledge back, then we know, okay, we can communicate. As
you can see here, in both directions we can communicate, but not
simultaneously. This is, for example, done by SPI, where we have
here a full duplex communication And here, once again, to visualize
what e squared ¢ means in the bus system, so we have here the
master, and we are connecting the SD a parallel to each component
and also the SEL, the clock line, and then we can communicate from
our auto, you know, or ESP to all of the devices. And in my case,
what we do later on is we have a sensor here in sensor and on
OLED and in second sensor.

That means we are getting data from those 2 sensors, and we're
sending data to this device. And this could be done all, only by 2
GPOs. Really great. I'm sure a lot of you already used e squared c,
but now we whittled dig a little bit deeper into the protocol and also
tried to make our own libraries on a bit level so that we have really a
deep understanding of how this protocol works.

PROTOCOL IN DETAIL

And because it's so important that we understand the whole flow of
this protocol, | would like to take a few seconds to go through some
problems. So we start with this protocol by setting up the SDA line at
high. If it changed to low, then the communication could start. This is
the starting condition. And then the first date that is transmitted from
the master is the device address on which | would like to
communicate, because in my case, | have 3 devices on my
breadboard, and I'm sending, for example, out the address for the
OLED display so that | can communicate with the OLED display.

And this is a 7 bit address. And the last one is a read or write
indication. If there is any one inside the last bits, then we know the
master would only like to read something out here, is there in 0, then
the slave knows, okay, there is something to be right on it. And what
do we want to write? But before, we got here and acknowledged
back.

Acknowledge / Not Acknowledge
Read / Write

7-bit Device Address B-bit Register Address

https:/fwww.youtube.com/watch?v=6lAkYpmA 1DQ&t=332s

So if the device is found with this address, I'm getting back an
acknowledged bit. And this is necessary to know because in the end
of the chapter, we are making our own E squared C scanner. And
with this E squared C scanner, we can, and with this flow, we are
sending out some addresses and looking if someone is sending us
back and acknowledge, so we know, this device is in our circuit. But
more to this later. So if we got back this acknowledged, we now have
here an 8 bit register address.

And nevertheless, it depends on what we want to do. If we want to
write something, for example, we want to send the model. Please
start by measuring the temperature, setting the resolution offense.
So all we want to transmit is some text, etcetera, we have to know
on which address, register address we have to address our data.
And this could be done here.

We're getting back and acknowledged, and then the data
transmission is started, and this could be many, many bits. And then,
as the last one, we're getting back here and acknowledged, or it's
inverted. We will also see an inverted acknowledgement because
this means now the stop condition is here. And that's it. And you can
see here, this is our clock signal.

And on each clock pulse, we can transmit here on 1 orange 0. And
this is in the basic form, the E squared C protocol, also very easy in
the setup, and we will see this by one of the first syncs what we do is
this PH175, 0, which it has really an easier, | would say you see
strap of the data, and, therefore, this will be the perfect start in our e
squared c journey.

SKETCH AND WIRING
BH1750

We start with our first example and as | mentioned before | have
chosen the BH1750. It's an ambient light sensor which gives us the
value of the current lux in the environment. And this is exactly what
we want to do because it has a really easy structure to read out. But
in a whole general approach we will also use the DHT20
temperature sensor later on. It's a little bit more complex and | think
it's a good way to understand the whole process.

And as well as an OLED display this is just a placeholder for
inserting E2C modules because later on we're also writing our own
E2C scanner and therefore it's perfectly suited. Yeah and also the
whole wiring part is very easy because we connect the 3.3 volts to
the breadboard here because be aware I'm not sure we have taken
a closer look into the datasheet. | think this is only compatible with
3.3 volts. Then we connect the ground also to the breadboard so that
every of this module has sufficient power supply.

And now we're making a connection point on the breadboard where
we connect each of the SDA ports to the breadboard as you can see
here. And then we are connecting the SDA to the pin. There are
some predefined GPIOs and in my case this is the GPIO number 21.
So it's on the dev kit on the D1 nearly on every ESP32 the GPIO 21
is the SDA predefined GPIO. But take a look on your datasheet
according to your manufacturer because this could be really often
also unchanged there. And the clock line we did the same thing and
here we have the GPIO 22.

that's it. That's our whole wiring part and in my case this looks like
here | have the setting. So the OLED, the DHT20 and the BH17050.
And what | did here is | set up the clamps somewhere where | have
enough space. In this case | am using the lines of the SDA and
SCAE directly from the OLED display because they are all
connected together. So it doesn't matter where | use them. And |
also use the ground pin. Where's the ground pin? Let me see. Here.

Here | have connected the ground to the logic analyzer because this
has to be the same potential. Yeah and that's it. That's it for the
wiring part. And now we can switch to our IDE. In my case
Platform.io. And the first thing we are doing here is installing the
external library for the BH1750. It's from Klos. And now we have
here our basic sketch with nothing in it. And we can start now with
our program.

Speaker 1 (00:03:27) - And one of the first things that we do is
whenever we are using E2C we include the wire because this is the
main part where we can easily connect the devices into the code. So
include wire.h and we don't have to use any external libraries here.
This is inside the core of the ESP32. That means it is already
implemented but we have to include it. Then we are using the
include with the BH1750 what we have already included in the
Platform.io. So then we can create a new object here. And this is the
BH1750. And | call it Luxmeter.

Speaker 1 (00:04:17) - Then we start the first thing in the setup. And
this is a little bit different from device to device. But in general we
should start with E2C communication. And this could be done by
wire.begin. And often the libraries do this by themselves. So if you
are not sure then take a look at the example from the library. But
normally we should start the wire.begin. And also we could now start
according to the library the object also starts here with Lux
Meter.begin. Just for us a short note that the setup is finished.

That both of them can establish the connection. And now we could
focus on getting data out of the sensor. And therefore we are
creating a Luxmeter. This is our object.readLightLevel. That's it. And

then we can print out here the current Lux. There we go. Uploading
the whole stuff. And there we go. We got here at our current Lux
level. And the experts will now say 120 Lux is way too less. Normally
we have here on an office desk beginning at 500 Lux. So therefore
just check if I'm holding the hand above. Yes, it's reacting. So | think
the values are accurate enough for this case. And as you can see
we got the first levels out of it. And this is the precondition for the
analysis which we do in the next project.

ANALYSIS BH1750

Now it's time to investigate the whole communication process via
E2C a little bit more in detail and therefore | have opened up the
datasheet for the BH175 and this is already the sketch is already
running as you can see here we have 105 lux in this time so in the
next step we would like to capture the data and also compare it with
the datasheet so this is our main goal now and therefore | am here
on the page what is it page seven and we can see here all of the
necessary information what we need but before | have to jump a little
bit up because one question is open is the VCC voltage as we
mentioned before we are connected all of the supplies via 3.3 volts
and this is necessary because this module only is able to get here
maximum 3.6 volts so do not use 5 volts it will damage your device
here are a lot of other specs what you can see also this is interesting
so the spectrum where the light can fall on the sensor and where is
working effectively but we want to go a little bit down and want to see
here the resolution and what is also interesting is let me see so there
we go here we have the communication process so first we send
from the master here our address | think this should be the E2C
address so let's check it it's called zero one zero zero zero one one
and this is 35 and this is the E2C address from this sensor so we are
sending out the E2C address if we're getting back and
acknowledged then we know we can start and then read the
measurement results this is what we want and this is what we should
capture so this is the start bit then we're sending out once again the
address from the sensor getting back and acknowledge here's a
read statement as you see seven bit address one read bit
acknowledged and here we got the high and the low byte and
inverted acknowledged and then stop it and this is our data what we
should now get on our pulse view because this one is continuously
resolution mode don't use that so therefore let's check if we see
something so I've already connected the clamps and also set up

here two channels channel one and two or zero and one | changed
here to two gigs and we can change here 60 megahertz and then
let's go so we see here the data comes here in and what | would like
to do now is once again open up the connection so that we get here
the same result click on stop and this one should now our desired
value here we go so probably you know what is the clock line and
what is the data line we can see perfectly matching here the clock
line so adding here and decoder e squared c double click on it then
we can change here the clock line is d1 in my case and sda is dO
and.

We don't need any further information because we do it all by one.
So on the left side here, we have our measurement. So as we can
see here, we have our start bit When the signal goes from high to
low This indicates that we are starting and this is our Address and |
said before 35.

0100011 0 Ach | D000 A | B

This is in decimal But normally you give the E squared C address in
hex and this is 23 So this 7-bit indicates the address and now the 8-
bit shows me that the master will Read now.

Here we are Then we're getting back in acknowledge that means the
communication from my ESP to the module was successful and
Then we got in getting here two Bytes and this is the high byte and
this is the low byte and as we can see here nothing is in the high
byte because normally when we have here and higher brightness
level and we can Simulate it lay down with some flashlight.

Then we will also have here some data in it But now | would like to
get and check if we get the value of from 97.50 Acknowledge and
then we have a low byte And how can we calculate it to calculate
when the high bit is and the low bit is so we are taking Both together.
This is why we need later on also the bit shifting and the or operation
and then we Divided by 1.2. This is necessary and then we get the
approximate Lux level So, let's see.

Yeah, we open up our Board so that we can practice here a little bit

more to calculate with all of these data So therefore we have on our
high byte our high byte Is Zero we have nothing to do here and then
our low byteis0111111 Then we have 0 10 and 1 then we have

here and not acknowledged. This is Also indicated here not
acknowledged and a stop it so that we know.

% 4TI RGN CHERAREDARCRCRAD U5 NG a0 O O O
T S0 D CE—T T S— T S T | ——

Okay, the whole transferring process is now over so what we can do
is here Let's practice this a little bit 1 24 8 16 32 64 and now we can
add here 64 plus 32 plus 16 plus 4 plus 1 and now a little bit of
calculation 6 4 plus 32 plus 16 plus 4 plus 1 is Is 118 that have to be
divided by 1.2 and This looks promising. | would say divided by 1.2
and this will result in 98 Lux So, let's see. What was our result? 98
and where is the visual studio code? 97 98 point three three.

So this is the last point what we fetched here in the Pulse view and
what we got here. So 79.5 wasn't captured here with the logic
analyzer, but 98.33 we get and this is Exactly what we wanted to
know so this is the first inspection of the protocol and In the next
project we are trying to get this data out of the ESP without any
external library.

SKETCH BH1750
WITHOUT EXTERNAL
LIBRARY

Are you ready for some code action? And if so, then we get rid of all
of the things that we did before in our code, except the wire begin,
but we get rid of the BH17050. And also here in the platform 10, we
can get rid of it, because we just need the wire. The wire is
necessary because it helps us, it's that we can communicate with the
E2C modules in an easy way, because we don't have to reinvent the
wheel by its own.

But it's easier to use here directly the wire.h and not using an
external library when it comes to, for example, using an ATtiny and
ATtiny where we have limited space or some other tiny
microcontroller. And with a few lines of code, we will get the
message here.

There's also a wire and tiny wire library out there when you're using
an ATtiny, for example, because you can also use E2C components
and you can use your own code as well. So what we want to do now
is we want to start where the wire begins, because this is what we
have to do.

Then in the loop, now the magic can happen. And we start by
wire.request, | think request from, and we have to add here the
address. So let's define the module address by saying integer bh1
70 50 address is, and that we do in hex x 23. So this is the address.
And then we are declaring, let me see here and byte buffer, as we
already did in the UART example. And this should hold here two
bytes, this, the higher byte and the lower byte. So therefore we have
enough space here. And | think that's it, that's it.

Speaker 1 (00:02:19) - So we could wire requests from, we handle
and pass here our bh1 70 50 address. And this is what we saw
before when we were transmitting the data here. We are not ready
because we also have to set the size here, what we are expecting to
get back. And we want to get back two bytes here. This is also
necessary that we give them. And this is just a function call. Now the
wire library does all of this. So that means if we got here and

acknowledged back, then we can get the data here. And this could
be done as nearly the same as in the UART chapter.

We have a wire dot available, and then we can get the data here.
For example, in buff zero, | would like to get the first data out of it.

- O0OoooOo0 00000000 OOOTOo0D
+ - TS TR CT) €Y ST T —) T TT— O

This is the most significant, if we could say so, the higher byte. And
then we have here the lower byte, because here we are getting back
both of them in one single connection as we have here. So therefore
one wire read, second wire read. And here we have the first one in
and here the second one. So let's test this. | would say | would like to
see if this is already working.

And let's print out the buffer one because | have not so much, so
much light in here. And | would like to have this in binary. Then let's
print it out. So we are already getting some data out of it. That looks
promising to me. Let's see if we can check if this is right. Zooming a
little bit out, stop. Zooming in. And this should be one, one, one, two,
three, four times and zero and one. Yes, okay. Looking good to me.
That means we have our first communication established just with
these few lines of code. Isn't that amazing? | think so.

So then the next step is the calculation because we are not finished
yet. We are implementing the high byte, the low byte divided by 1.2.
So now we need our basics from the bit operation and also the bit
shifting. So we are creating an integer. You can create a long as
well. Then what we do now is we are saying we want to have here
the buff from index zero. And now try to find your own solution and
then click on pause and then you can proceed. So it will help you
much, much more in the learning process.

So what we are doing now is the first high byte will be shifted eight to
the left. And then we are making an operation here, an OR operation
with the buffer one. And all of these will then be divided by one.

by 1.2. So, let's see if this is working and then | will give a more
detailed explanation. Just check if this will work. Okay, we are getting
85 lux here, looking good to me. Then | will start the flashlight here
so that I'm seeing a little bit more.

As you can see here with the flashlight | also start the evaluation with
the logic analyzer because here is the clamp exactly before. So, then
| would like to stop here as well so that | can show you what | was
doing here.

Zooming a little bit in and we're getting out one of these values
should be stored here. So, once again open the blackboard and
what we did now is we're getting the first in the index 0 we're getting
those data and this is the... 4 5 zeros then we have a 1 0 1 and this
will be shifted to the right. So, what we now have is 1 0 1 because
the zeros are not interesting for us then we have 1234 56 7 and 8.
Then the logical OR with the buff 1 means that we are adding here
on this space the low byte.

So, that means we have here 0 1 0 and this 1 2 3 4 and we are
adding herethe 11 0and 11 1 1. So, our new value will be this one.
So, in each place where we have a 1 we also have here the 1. Here
we have a 0 and then we have 1 1 1 1 and if | don't mix up anything
here this should be our new value. So, let's type in in the calculator
or change to binary thenwe have 1011110111 1. So, this
should be 1519 1519 divided by 1.2 should be and decimal divided
by 1.2 is 1265.83. Let's see if we have that. We have 65.83 and here
we have 1265.

I OO 8 3 D OB
I O

We have no commas therefore we have already implemented here
our own library with just a few lines of code. Isn't that great and |
really find of course these libraries aren't too big but you have to

think of having a circuit which has really limited space on our
microcontroller and therefore with these few lines of code we always
have space for those few lines. And in addition to this, so that we
have here really an incomplete example, | would also like to show
you how we could add here in our code also the resolution. So,
going a little bit up.

So, here for example for the continuous age resolution mode we
have to set this data to start with one lux resolution. So, in this case
we have to start here once again in transmission because this is in
separate transmission. So, via begin transmission, we have to set up
the address here once again and now we are saying why a write with
this code and this code should be also translated into hex. So,
therefore we have here the decimal where are the binary values from
1,1, 2, 3, 4 and this will be in hex 10.

S ani WL - Rew)

BHITSOFVI

[g

So, we are transmitting here 0x10 and then we are saying via end
transmission we're making a short delay | think this is also written
there that we have to make here and pause between where was it
here wait to complete the first measurement roundabout maximum
180 milliseconds this means maximum does this measurement
means so let's do this one then re-upload it again and there we go

we don't really see an exchange and change but let's see here in the
logic analyzer we can see that we sent here the resolution making
200 milliseconds pause and then we're getting the data and this is
how we could also send here to and register some commands
changing something and then getting data in the read modus and
also here was just an easy line and we will see in the next chapter
with this dht 20 for example that it's also easier but a little bit more
tricky to evaluate but this will capture in the next chapter.

SKETCH AND WIRING
DHTZ20

Let's examine the next sensor, and this will be the DHT 20 and
temperature sensor similar to the T2, but here with E squared C. You
can identify it with a black housing most of the time. And | already
had it here. So also my connection points to the e squared t pass are
| have to | haven't changed because, they are all connected
together. So, therefore, we open up a fresh sketch.

lllllll

=====

NOoIHOo

o -
ESP-WROOM-32 E
— SRR
1 ; aad
saa o A o
— "

rrrrrrrrrrrr

And what we are doing now is we are using the DF Robert Library
for the DHT 20. Then let's start. Let's start by including the library. So
our main goal will be that we have a simple sketch, which gives us
the temperature and humidity so that we then later on capture in
pulse fuel all of the data. And then setting up this use case, writing
our own library or our own sketch for getting the data.

Okay. That's it. Then we are creating the object it's called dfrobot, |
think, DHT 20 equals to DHT 20. This is the name of the object.
Then we start it, dht20.

Begin Not Rocket Science. And as you already know, in the loop, we
are using 2 floats, | would say, float DHT 20 temperature,
temperature equals to DHT 20, and call it temperature. Easy as it is.
Then we have DHT 20, humidity equals to DHT 20, get humidity,
from measurement range 0 to 100%. So | think I'm not really sure
that we have to multiply it by 100 so that we get really exact values
out of it.

So let's test it out. And then we are printing out both of the values
and uploading the code again. And there we go. We have nearly 29
degrees Celsius inside my office and 47% humidity. Okay.

These are the values, what we are getting currently out of this
sensor. So we have set up the first step to evaluate the Sequencing
communication now.

ANALYSIS DHT20

Ready for some analyzing. Let's start by analyzing the DHT 20 data
sheets and then we are focusing on pulse fields so that we calculate
our values. So here you can see it's an upgraded product for the
DHT 11, and it has a little bit more accuracy than the DHT11 and
also the voltage support is really good because we can use here an
ESP or an Alrino owner, for example, So let's go down to business
and also to page 1010 because here we have more about our
communication process. So here we can see the address. It's the 0
X38 that just some e squared c standards, blah blah, what we and
what | would like to focus is those two parts.

Table §. Slatun b doscrplecn
T4 Senur Readeng Proces

So we have 2 packages here. 1 is to trigger the measurement. And
the second one, what we are getting back is here, all of the reading
of humanity, and temperature. So | would suggest, before we go
further on the datasheet, the sketch is working here. properly.

And now | can click here on run because | haven't changed anything
here because it's also in e squared c logic from before, the 1, 0 and
1 and e squared c. Then | would like to do so. We are cupping the
line here so that we see the same results. So these two values
should be some here. And as we can see here, we have here a little
bit more data.

So now let's focus here on the first one. What do we have here?
Here we see the address and we see here that we are writing
something because here, the last bit is the 0 bit. Then we got an
acknowledgement, so the communication started. And then we have
3 bytes here.

ooooooon GCoOooooooD oooDoOoo

& Sianal Conversion

with the register AC3300. So then let's see. Can we find those
values here? Yes. Sense of reading process.

So after power on, when no less than 100 milliseconds before
reading the temperature, blah blah blah. Wait 10 milliseconds to
send the AC command is the trigger remeasurement. This is what
we do here. And this command parameter has 2 bytes. The first by
this, 33 and 0.

That is our trigger command. And this is also what we have here, the
AC and data. Perfect. And then wait 80 meg, milliseconds for the

measurement to be complete. And if the restart does 7 means it is
completed.

So 80 milliseconds. Let's check if we can also see if this is correct.
What do we have here? 20 milliseconds. No.

really the 80 milliseconds. What do we have here? Roundabout, 20
milliseconds. And then the next process started. So let's see what
we have here.

This is not really according to the datasheet. | don't know why it's not
on the initial purpose, but nevertheless, it will function because it's
the DF Robert library. So then we get the next few inputs. We have
here the e squared c address as well, of course, then and
acknowledged. And now we have a read bit.

and we got here. Well, let's see here. so now. No. No.

1, 2, 3456. 123456. Okay. The CRC is missing then because here
we have the state And then we have 1, 2a half. And this is a little bit
trickier afterwards to get the data out of it.

1, 2a half. and 2a half for the temperature. Okay. So this is the signal
flow, and here is a calculation of what we need, then let's start with
some analyzing process. So this is the state byte.

| don't care what the state means, but | care the next two bytes are
humidity and the first nipple for pits is also immunity. So let's check
that those values should be the humidity value. We're starting here
on the left side by typing in the first byte. 0. So first, | have to change
to buy a rim, then 011110000 is the first byte.

Second bytes 00101011, and the first four bits here are 1 10. Enter
changing to decimal value. And now | have to end here. The relative
humidity can be calculated by dividing by 2 to the power of 20. Enter
multiplies 100 should be something like this.

Let's see what our last value was. 46.94 Wow. Cool. It works. Okay.

Let's do the same thing for the temperature. So that means we have
here 2a half. Let's go a little bit out and zoom in, that means this is

the first half, pick the first liberum, and then the last 2. Starting here
with 0110, and then despite, or we have to change to binary. Once
again, then starting with the sec, the first full pipes, this one, 011s
00100.

Last byte, 10010110. And done, Digital, then we have the
temperature divided by 2 to the power of twin no, 20. Multiply 200-50
is 29 Degrees Celsius point 91. Not really. Here we have a little bit
of, it's not in-depth detail, but it's, some comma.

LLEELE]

e P e a2 can B

= L0 00000000 00000000 00000000 00000000
- - =0 A =T 1 .

8 Signal Conversion
8.1 Relathve Humsdity Comversion
The muative hurmsty FH con Be caulaid ac
iiowng formuls (he et & sigressed n

R
L2 Temperstare Converion

The serperatue T can be caloulated by sut e
The resll i exprwssed in leperaken 1 |

9 Environmental Stability

Soagr

10 Packing Instructions

Let me see. But we can lift with this accuracy. And, therefore, | would
say we have already mentioned here, yeah, could comprehend the
data flow from the DHT 20 sensor, and wouldn't it be nice in the next
project on we write our own library with this kind of knowledge so
that we can get rid of the DF robot library

SKETCH DHT20
WITHOUT EXTERNAL
LIBRARY

ready for the next coding challenge. So now, we want to have this
flow inside our arduino sketch. And we go step by step and also how
we can evaluate and also we are investigating then afterwards our
own library with the pulse view. So first step, | would say, let's get rid
of all of the things that we did before because we don't need any
extra library. So also the library here, we can pick out then we
include here the wire because this is our helper library.

And then dot h. And then we have to define 2 variables here, 2
global variables. | would say VHD address, and this was, in hex 38, |
think, if | remember correctly. And we make a buffer here as we did
before with the PH1750. And we need 6 indexes here, | think.

Let me see if this is correct. 1, 2, 3, 4, 5, 6. Yes. The 7th is not
interesting for us. we could implement it, but, also the DF robots
didn't do it.

So let's skip this one. Okay. Then in the setup, as we did before, wire
dots begin so that the E squared C communication could be started.
Now let's do some magic. The first magic is also in the previous
example, you should know that wire dot, begin transmission, and
then we are sending out the DHT address. And this should be here,
let me see this first example.

So we're sending out the DHT in the right models, then if we are
getting back here to acknowledge, this is all done by the wire dot
edge, then we are writing out here the Oxac commands. wirewire.
Right, then | copy and paste this two times because | want to write
33, and | would like to write 00. afterwards, we have to wire and
transmission. And we are not finished.

checking back to the flow because yes, it's stated out. Weights
80,000,000 seconds for the measurement to be called bleed. And
this is, we should also do that, and | would like to use 90
milliseconds here, and then the next flow can be started by reading
out the values. And this is also an easy part because we already did
this one. So we are starting the wire request from the DHT address.

Then we are now in the reading part because, we are not not what
is, request from? So it should work now. Let me check the compiler. |
missed something here because we have to adhere to the size. So,
6 bytes, | am expecting it.

Now, this should be looking a little bit better. So just run the compiler,
then also the intelli sense shows you that there is no error anymore.
And now we want to get here 6, 6 bytes. So we could do that, 1 by 1,
or we may hear a wire dot available, for example, and inside this
while we could make 4 here. So let's see if we can make an auto-
completion.

Completion. Let's check it out here. 4. Yes. And we're counting this
one.

For example, e, should be less and 6 so that we get 6 values. Size
could be the same here, and this is our code. And then we say
buffer. So we don't have to write it six times here with the index, | am
equal to wire dot read. it's a more convenient way and not writing
here six times here, the buffer element.

"
= 8000000 00000000 00000000 00000000 00000000 004
L QOSRGOS TS O ST I O G

Okay. So let's test the first thing if we are really making progress
here or not, and | have already prepared this. So just checking out if
we're getting out here the first three bytes not with the serial index
because | just want to have the humidity level here. Then, uploading
the code. So I'm getting a lot of them here.

So let's check what's going on here. So then I'm clicking on stop.
Let's see if we get the, really only once and once and once and
once. So First one is skipped. Then | got here, okay, this looks
promising.

So here, | only have 7 once. And then 1111. Okay. This looks good. |
was a little bit distracted while | got here only once out, but this looks
really promising.

So now, let's close it so that we don't get distracted. Now we need
some special operations because we have here the setting that we

need here half of the bytes. And this is what we also trained here in
the seek chapter. So | would like to show you the code and then
we're going through it step by step. First of all, we are getting the
humidity and home media.

And this is done by it. First of all, we have to direct the byte from the

index 012 3. It's the 3rd index. There we have to extract the byte. So
the, byte, | call it directed bits and, buff 3 with it, with the 3 index, and
| only want the first 4 bits.

Therefore, we'll make a bit of a shift to the right. Yeah. That should
work. Then, we have an unsigned long. And now | would like to do
this in one line.

So the humidity is buffer 1, this 1, then we have to pitch shift 12 to
the left and | explain, you know, the next step of what I'm doing here,
then this 012, the index, path 2nd index, we have to shift now, shift to
bitch shift to the left by 4 because we have 4 left, and then we have
the extracted bits. And this should be our new value. So, we can use
an unsigned long because humidity should be in the minus. And then
we are printing out or we say a float. We are not finished yet.

11 Relstrve Hurmidity Comversion

10 Packina lnatnictions

Whom well year equals to, what was the calculation? Calculation
was the come volume, this will automatically translate it or

transferred into, decimal volume divided to the power, 2 of 20 here.
So we have the first part, and then we are seeing multiply 100
looking good. Then we have a serial print here. And let's test it out,
and then we are going through the details of this very sexy line.

So let's check it out. Then | also would like to run a pulse. Then once
again, open up the line so that we have really the same data, check,
click on stop, So we have the humidity here by 50. Looks promising,
but let's see what pulse fuel says here. So here we have the first
command, the trigger commands, that, nothing new for us. And here
we have the state, and this should be now our new value.

So let's focus on what | did with this line. So, grab here on the
Blackboard once again so that we can do this step by step. So that
means those two bytes and this nimble should be now combined to
one value. And how could | do that with the humidity in three steps?
The first step is we are getting the first byte.

So these are 7 ones because the first one is a 0. So here we are. 1,
2,3,4,5,6, 7. And | have to shift it twelve times to the left because |
have 8 and 4 is 12, | need space for 12 more numbers. Then there
comes an or.

For the second number, these are 4, 8 ones. 341234. And | have to
shift those values four times to the left because | need space for the
extracted bits for the 4 of this one. And these are also 4 ones. And
this is now my new value.

So that means | have, in the first line, these 7 ones, 4, 5, 6, 7, and
then 12 O0s. So that means for 8 and the other 4. And | made an or
with those values. So that means | have 1111 111 1. And those 4
should also have space for the next one.

9000000 00000000
T O T T

So | am here at 1111. A lot of ones look really a little bit strange, but
it will give us the right value. So in summary, | have here 71 1, 2, 3,
4,5, 6, 7. Then speeding up here, | have 12 times 1. So let's try out
here in the binary.

We have here 1, 2, 3,4, 5,6, 7, 8,9, 10. 112. Enter binary to
decimal divided by 2 What was the calculation it is divided by? Was
this right to the power 20 divided by 2 to the power of 20 and 100. So
we have here the value of 50 in the humidity percent of humidity.

Nice one. Really nice one. Was it really a little bit distracted by all of
the ones here in our explanation, but it looks promising so far. Okay.
Now, we could do the same thing with the temperature.

And | would invite you to click here on pause and try it on your own
because it's a little bit different now. So | hope you tried your own
approach. And now, | would like to show you how to do it with the
temperature values. So first of all, we have to mask the last four.
This is also covered in our general, in our 1st general chapter
because the first four refer to the humidity and days last 4 will be
needed for our temperature. So masking out is extracted bits 2, for
example, we need the buffers here.

Should it be a 012 3. And now, we make a mask with an ant, Of, in
hex, tilt a tiny version of it. And then we'll make the long temperature
equal to first, we start with the extracted bits, then we make a bit shift
and how much do we need space here. So these are the first
extracted bits. Then we have 88 that means 16 spaces we need
before 2 full bytes, then we make an or, then we have the buffer 4,
and we shift the 8 to the left because we need 8 more spaces.

Then we made an or, and then we say Buff 5. what do you think?
Seems legit and comprehensible. Then we are making a float here,
the temperature value equals the temperature divided by the power
of 2 20 multiplies. Let's do it outside the brackets.

o
= & -30000000 00000000 00000000 00000000
B TSR O ST TTI. O ST

O @I O T " s mal 84|

multiplies by 200-50 should give us here the temperature value on 0
print line temp. Where are you? Here you are. So let's do one, and
let's check it out if we got some really good values here. And we're
getting here the humidity values and here we have the values from
our temperature.

It is 30 degrees, 30.03 degrees, and that is what we also want to see
here. And that was the goal of this project to show you that it's not
really rocket science to communicate via e squared to the modules
which your own written code, and you don't need every time and

finished library because here, it also makes fun helps you to
understand how this whole library or whole sensor is working and
often you don't know what is in this black box from this library. So
often you hear many more possibilities to be more accurate,
etcetera. So try it out the next time when you are, having here an e
squared ¢ module and grab the data sheet. And, yeah, try a few
things out, investigate.

ARDUINO UNO TO
ARDUINO UNO

Let's create our own e squared ¢ network with 2 other owners. And
the main tasks will be now, make it a little bit bigger, that we have
here one master that the master sends to the slave. The data, for
example, gives me what you have and the slave just creates any
kind of random number and sends them back to the master and the
master the data. So this should simulate that the master sends to a
module and commands, and this module is sending something back.
It also can be used for some internal, controlling, etcetera, because
you can have here not only one slave, you can have many slaves,
128, for example, with the 7 bit addressing, and then you could,
getting a data them, etcetera, as we did it also with you at our SBI
examples.

So the wiring part is also very easy because we are using A5 to A5,
A 4 to A 4, and ground to ground. That's it. Nothing more is needed.
Easy as it is. So on the left side, we have here our master sketch,
and | would like to start with the master.

So we are implementing the wire dot h. And, wires begin, and we
have seen 0 begin from 9600. This is sent out, you know, in an
environment very common. And we squared our master setup here
so that we know we are ready to go. So before going further on, we
have to declare here some variables, some global variables that |
would say, constraint, we are making in slave address. For example,
9, you could also use here an hex, but | would like to also, just use
here the address line.

Then we could say const byte answer size. This should be defined
here, and | set it to fix to some random string with certain lengths of
13. Then we have here and string, received data so that this is also
globally. Content will be stored in our data from the slave. Okay.

And now we are fetching data each 500 milliseconds. And we are
saying wire requests from. Here we have the slave address, nothing
new for us, and this should be the answer size. In this case, 16 in the
lengths, function call, then we received the data. So we have to
delete it because we are getting each loop, new data, then we are
saying, while a wire dot is available, also this should be known from
before.

And now we are creating character for character. So let's try it out
when we get a character. This is wire read. And, we are converting
the character. So the receive date date is, we are concatenating it
with some string.

So is it correct? Yes. So we're making a conversion to a string and
saving it to the receive data so that we have a string. And outside
these wires we can print out this value. serial print line receives data.

So, and now, nothing new is, for comes to, let me see. No. Nothing
new is mentioned here because everything we did also before. So
let's check and let's upload it. So there is nothing special because
they can't receive anything because the slave isn't programmed yet.

So I'm switching back to the left side and now we are coding here on
the slave. So the slave side is pretty much the same, but we have to
do here, let's make a global variable for a random number because
we want to send you random numbers that we see that really each
communication is sent. Therefore, we start here, the wire begins.
And this is now our module, and we are starting it with getting here,
inserting in the number and the address. We defined here the
address with 9.

So we are typing in here. The wire begins on the address 9. So we'll
begin, 9600, and then we are seeing here in the setup. Why are
there requests? That means if we are getting all the slaves and
requests, then the following function should be invoked. request
event.

And this request event is great. until now. So we are creating a new
function here, and this function will be called when there is a request
like here. So then | would like to set here and random seats we have
really each time if we start our new, random and then slave setup
finished. | think that's it for the setup.

Let's focus a little bit more on the loop part. And now we are saying,
for example, previous milliseconds equals to current milliseconds,
and we are saying random now equals to random, let's make 3
numbers here because we have set the size fixed to 13. So we have
to do three numbers here. Another request event now, we make a
string, and we are saying pixeladienpepperpoint plus string random
number. So let me see.

1,2,3,4,5,6,7, 8,9, 10 plus three numbers are 13 perfect. So we
are running that in an overflow. Then we are saying wire, right, and
we are making it here, and text 2. And | create here not a string, but
we are transmitting chars. That's the reason why I'm reading here
also the chars, but it should be in texts.

And we are printing out our text because we want to check if
everything works with our transmission. Okeydoke. Let's check and
upload the code. And when we have uploaded everything, then we
can see, our slave is transmitting the data. And before it's not a 4, a
4, we have of course, switched them.

So I've shown you this before of course. So, a5to a5, a4 to a4,
and then it should work properly. So here is the slave. The slave
sends out 996, and we're getting here. on the master.

So I'm restarting it once again so that we see that it works. Here's
the e squared c master. Here's the slave set up. And I've changed
the USB, USB 0, USB 1, and then | can open here, both serial
monitors here. And as you can see, it works quite well when we
transmit some data here.

Yeah. And this is also done with the modules. So, this should just
show you what it's, how can we do this, how is it possible, And when
you want to send you some commands, just receive the commands,
Kambulia, etcetera, you can turn on your LEDs lights. you can also,
send here some text, for example, for visualization as you might like
to do with e squared c.

OVERVIEW OF 12C
ADDRESSES

Let's talk a little bit more about the e squared ¢ addresses. So until
now, we only used 7 bit addresses here because the last one was
redone. Right? And this is absolutely enough for our area and the
arena area because why should we use more than 128 devices. But
if you would like to go a little bit deeper in the rabbit hole of e square
t addresses and if it is a good internet address for you.

So you can check out what's all about it. And keep in mind with 10
bits you have the ability to go up to 1024 theoretical devices. You
always have to think about why this is necessary in which use case?
Is it really necessary that | have 1000 devices in, my Arlino
command addressed, but maybe you have some use cases. And,
therefore, you can check it out.

Also, another reference | would like to show you is the adafruit
square dc address list, which ator food makes really a lot of sensors.
And also the clones from that are using the same e square address
and defragments scroll a little bit down and can see where and what
e squared c scheme is used for what kind of purpose. You can
define your own e squared to address, what we did in the example
before with the arduino and arduino communication. And in the next
step, we want to create our own sketch where we find out e squared
c addresses in an existing sketch because this could probably be
handy. when we want to investigate an existing circuit, what is this,
what kind of e squared c device is that, what is the address,
etcetera.

CREATE OWN SKETCH
FOR READING I2C
ADDRESSES

In this project, | would like to create with you and Sketch so that we
can find out all e squared c addresses in an existing circuit. So here
we have our Sketchform before with 3 devices, and | would like to
get here all of the e squared ¢ addresses. And this could be handy,
as | mentioned before. Maybe you have an existing circuit. You don't
really know the e squared c address and just want to use the library,
etcetera.

ISSISESTERT - WM |

So we can do this on our own very, very easily. Therefore, we have
to, at here, the wire.h And we are starting the communication after
the serial begins. For example, with wire dots begin. Nothing special
until now. And what we are doing now is this: | have just opened the

DHT 20 data sheet again because We're starting the communication,
and then we are sending out different kinds of addresses.

We are iterating through 1, example, 1, 2, 3, 4, 5, 6, etcetera, and we
are checking if we're getting an acknowledgement. If we get an
acknowledged back, we know, there is such a device out there. And
therefore, this is an easy task for So let's start by, in the loop by
defining here two variables, for example, with byte and result. And
then we are making a 4 loop here. So let's see if | can make it here.

Yes. 4. And we are saying here 4. Address is 0 because we won't
inter iterate through all of the addresses. And we are seeing that the
address should be lower than 127.

We want to iterate through 128. So 7 bits And we are saying address
plus plus. This should be our for loop. And then we could say there,
why don't we begin transmission as we did before, and we're posting
the address here. So we don't need here, this will be interpreted as
hex and therefore, the works correctly.

And then we're getting back and results so they acknowledge, and
this will be sent back by the wire and transmission. And now we
could say, and this should have to be done here. If the result is 0,
then we know that there should be an address. And this could be
printed out by address as hex radio. So, we could say 0 print device
found.

And with some double d, and this is now our main sketch. So let me
see if it's correct inside the form. We should have the if and outside
the 4 we made and delay. This is a bad delay, but it works quite well.
In this case, we don't need anything more.

Let's check if the compiler found some errors. some typos. No.
Everything is good. Then let's upload it.

Let's check it out. And there we go. We found a device. 2338 3c. So
3cis, if | don't mix it up, the OLED, then we have 30 should be this 1
and 23 this or what else we are?

| have it here. 38 is the DHT 20 and then is 20 3, the BH1750,
looking good, then let's check to hear the pulse for the logic analyzer

or if we get some data and what it looks like, then we're zooming a
little bit in. So Here is the full range of data that we are transmitting
starting at the left side. We are sending out the address 00, and we
are writing that, and we're getting back and not acknowledged
because there is no device with the address 00 in our circuit. also is
1, 2, etcetera.

ail 80ms Tor the measurement to be compleled, if the read stalus word Bil [/]1s U, it means T
mpleted, and then six bytes can be read continuously; otherwise, continue lo wait

After receiving six bytes, the next byte is the CRC check data The user can read it out as nee
d needs CRC check, an ACK will be sent after the sixth byte s received. Reply, olherwise sen
tial value of CRC is 0XFF, and the CRCS check polynomial is

CRC [7:0] = 1+ X X5 X®
alculate the temperature and humidity value

NTALLLLS; de: The calibration status check in tha first step only needs to be checked when the powe
paration is required during the acquisition process.

Trigger measurement data

—A
|5-’J|11UE--3(IE'.-’J|U|IDUE[}
| —

1°C ackdrens + write T et (aAC

|G"J|1EIG‘.fEC'GC--3’J]UD
DATAD ATA1

T20 Data Sheet

So our first device was 23. So let's switch here a little bit to the right.
22 is not acknowledged. 23 is acknowledged because it's there. And
this same should be done by 38.

Yes, Otis is not acknowledged. And this is what we do here. We are
sending you the raw bytes for the address for the e squared c
address and waiting if we are getting back and acknowledged or not.
Easy as it is to understand how the whole E squared C
communication works and how easily we can create -- our own e
squared scanner.

12C MULTIPLEXER

One last thing, and then we are at the end of this chapter, | would
like to show you an e squared ¢ multiplexer. And this can be used
when you need from the same device, a few of them in 1 of your
circuits. Because if you want to use 2 of these, OLEDs, for example,
then this is not really easy to do because so let's see if they're, if I'm
getting in focus because the e squared c address stands here on this
side, 0, 3 ¢, we can solder out this little resistor to the other side and
then we're getting here an circuit because they have the same e
squared c address. With this multiplexer, as the multiplexer says,
they can handle the communication for you, giving them an internal
address. And so you can use 7 devices with 1 multiplex here and
you can cascade them.

So you could have many more devices here. And how you can use it
here, | refer to a really good site from random notes to terrors. And
this will show you how you can use this multiplex or this DCA. You

can find all of these devices in my component list with some links on
it. And when | go down, for example, creating multiple OLED
displays or also using, for example, multiple BM sensors, like we can
see here and with this multiplexer, it's easy to do it with only one
microcontroller.

So keep in mind, you need more e squared c from the same type,
use a multiplexer.

